nfs_subs.c revision 1.202.2.2 1 /* $NetBSD: nfs_subs.c,v 1.202.2.2 2008/09/18 04:37:02 wrstuden Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.202.2.2 2008/09/18 04:37:02 wrstuden Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct vfs_hooks nfs_export_hooks;
567 extern struct nfsrtt nfsrtt;
568 extern struct nfsnodehashhead *nfsnodehashtbl;
569 extern u_long nfsnodehash;
570
571 u_long nfsdirhashmask;
572
573 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
574
575 /*
576 * Create the header for an rpc request packet
577 * The hsiz is the size of the rest of the nfs request header.
578 * (just used to decide if a cluster is a good idea)
579 */
580 struct mbuf *
581 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
582 {
583 struct mbuf *mb;
584 char *bpos;
585
586 mb = m_get(M_WAIT, MT_DATA);
587 MCLAIM(mb, &nfs_mowner);
588 if (hsiz >= MINCLSIZE)
589 m_clget(mb, M_WAIT);
590 mb->m_len = 0;
591 bpos = mtod(mb, void *);
592
593 /* Finally, return values */
594 *bposp = bpos;
595 return (mb);
596 }
597
598 /*
599 * Build the RPC header and fill in the authorization info.
600 * The authorization string argument is only used when the credentials
601 * come from outside of the kernel.
602 * Returns the head of the mbuf list.
603 */
604 struct mbuf *
605 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
606 verf_str, mrest, mrest_len, mbp, xidp)
607 kauth_cred_t cr;
608 int nmflag;
609 int procid;
610 int auth_type;
611 int auth_len;
612 char *auth_str;
613 int verf_len;
614 char *verf_str;
615 struct mbuf *mrest;
616 int mrest_len;
617 struct mbuf **mbp;
618 u_int32_t *xidp;
619 {
620 struct mbuf *mb;
621 u_int32_t *tl;
622 char *bpos;
623 int i;
624 struct mbuf *mreq;
625 int siz, grpsiz, authsiz;
626
627 authsiz = nfsm_rndup(auth_len);
628 mb = m_gethdr(M_WAIT, MT_DATA);
629 MCLAIM(mb, &nfs_mowner);
630 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
631 m_clget(mb, M_WAIT);
632 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
633 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
634 } else {
635 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
636 }
637 mb->m_len = 0;
638 mreq = mb;
639 bpos = mtod(mb, void *);
640
641 /*
642 * First the RPC header.
643 */
644 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
645
646 *tl++ = *xidp = nfs_getxid();
647 *tl++ = rpc_call;
648 *tl++ = rpc_vers;
649 *tl++ = txdr_unsigned(NFS_PROG);
650 if (nmflag & NFSMNT_NFSV3)
651 *tl++ = txdr_unsigned(NFS_VER3);
652 else
653 *tl++ = txdr_unsigned(NFS_VER2);
654 if (nmflag & NFSMNT_NFSV3)
655 *tl++ = txdr_unsigned(procid);
656 else
657 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
658
659 /*
660 * And then the authorization cred.
661 */
662 *tl++ = txdr_unsigned(auth_type);
663 *tl = txdr_unsigned(authsiz);
664 switch (auth_type) {
665 case RPCAUTH_UNIX:
666 nfsm_build(tl, u_int32_t *, auth_len);
667 *tl++ = 0; /* stamp ?? */
668 *tl++ = 0; /* NULL hostname */
669 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
670 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
671 grpsiz = (auth_len >> 2) - 5;
672 *tl++ = txdr_unsigned(grpsiz);
673 for (i = 0; i < grpsiz; i++)
674 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
675 break;
676 case RPCAUTH_KERB4:
677 siz = auth_len;
678 while (siz > 0) {
679 if (M_TRAILINGSPACE(mb) == 0) {
680 struct mbuf *mb2;
681 mb2 = m_get(M_WAIT, MT_DATA);
682 MCLAIM(mb2, &nfs_mowner);
683 if (siz >= MINCLSIZE)
684 m_clget(mb2, M_WAIT);
685 mb->m_next = mb2;
686 mb = mb2;
687 mb->m_len = 0;
688 bpos = mtod(mb, void *);
689 }
690 i = min(siz, M_TRAILINGSPACE(mb));
691 memcpy(bpos, auth_str, i);
692 mb->m_len += i;
693 auth_str += i;
694 bpos += i;
695 siz -= i;
696 }
697 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
698 for (i = 0; i < siz; i++)
699 *bpos++ = '\0';
700 mb->m_len += siz;
701 }
702 break;
703 };
704
705 /*
706 * And the verifier...
707 */
708 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
709 if (verf_str) {
710 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
711 *tl = txdr_unsigned(verf_len);
712 siz = verf_len;
713 while (siz > 0) {
714 if (M_TRAILINGSPACE(mb) == 0) {
715 struct mbuf *mb2;
716 mb2 = m_get(M_WAIT, MT_DATA);
717 MCLAIM(mb2, &nfs_mowner);
718 if (siz >= MINCLSIZE)
719 m_clget(mb2, M_WAIT);
720 mb->m_next = mb2;
721 mb = mb2;
722 mb->m_len = 0;
723 bpos = mtod(mb, void *);
724 }
725 i = min(siz, M_TRAILINGSPACE(mb));
726 memcpy(bpos, verf_str, i);
727 mb->m_len += i;
728 verf_str += i;
729 bpos += i;
730 siz -= i;
731 }
732 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
733 for (i = 0; i < siz; i++)
734 *bpos++ = '\0';
735 mb->m_len += siz;
736 }
737 } else {
738 *tl++ = txdr_unsigned(RPCAUTH_NULL);
739 *tl = 0;
740 }
741 mb->m_next = mrest;
742 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
743 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
744 *mbp = mb;
745 return (mreq);
746 }
747
748 /*
749 * copies mbuf chain to the uio scatter/gather list
750 */
751 int
752 nfsm_mbuftouio(mrep, uiop, siz, dpos)
753 struct mbuf **mrep;
754 struct uio *uiop;
755 int siz;
756 char **dpos;
757 {
758 char *mbufcp, *uiocp;
759 int xfer, left, len;
760 struct mbuf *mp;
761 long uiosiz, rem;
762 int error = 0;
763
764 mp = *mrep;
765 mbufcp = *dpos;
766 len = mtod(mp, char *) + mp->m_len - mbufcp;
767 rem = nfsm_rndup(siz)-siz;
768 while (siz > 0) {
769 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
770 return (EFBIG);
771 left = uiop->uio_iov->iov_len;
772 uiocp = uiop->uio_iov->iov_base;
773 if (left > siz)
774 left = siz;
775 uiosiz = left;
776 while (left > 0) {
777 while (len == 0) {
778 mp = mp->m_next;
779 if (mp == NULL)
780 return (EBADRPC);
781 mbufcp = mtod(mp, void *);
782 len = mp->m_len;
783 }
784 xfer = (left > len) ? len : left;
785 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
786 uiocp, xfer);
787 if (error) {
788 return error;
789 }
790 left -= xfer;
791 len -= xfer;
792 mbufcp += xfer;
793 uiocp += xfer;
794 uiop->uio_offset += xfer;
795 uiop->uio_resid -= xfer;
796 }
797 if (uiop->uio_iov->iov_len <= siz) {
798 uiop->uio_iovcnt--;
799 uiop->uio_iov++;
800 } else {
801 uiop->uio_iov->iov_base =
802 (char *)uiop->uio_iov->iov_base + uiosiz;
803 uiop->uio_iov->iov_len -= uiosiz;
804 }
805 siz -= uiosiz;
806 }
807 *dpos = mbufcp;
808 *mrep = mp;
809 if (rem > 0) {
810 if (len < rem)
811 error = nfs_adv(mrep, dpos, rem, len);
812 else
813 *dpos += rem;
814 }
815 return (error);
816 }
817
818 /*
819 * copies a uio scatter/gather list to an mbuf chain.
820 * NOTE: can ony handle iovcnt == 1
821 */
822 int
823 nfsm_uiotombuf(uiop, mq, siz, bpos)
824 struct uio *uiop;
825 struct mbuf **mq;
826 int siz;
827 char **bpos;
828 {
829 char *uiocp;
830 struct mbuf *mp, *mp2;
831 int xfer, left, mlen;
832 int uiosiz, clflg, rem;
833 char *cp;
834 int error;
835
836 #ifdef DIAGNOSTIC
837 if (uiop->uio_iovcnt != 1)
838 panic("nfsm_uiotombuf: iovcnt != 1");
839 #endif
840
841 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
842 clflg = 1;
843 else
844 clflg = 0;
845 rem = nfsm_rndup(siz)-siz;
846 mp = mp2 = *mq;
847 while (siz > 0) {
848 left = uiop->uio_iov->iov_len;
849 uiocp = uiop->uio_iov->iov_base;
850 if (left > siz)
851 left = siz;
852 uiosiz = left;
853 while (left > 0) {
854 mlen = M_TRAILINGSPACE(mp);
855 if (mlen == 0) {
856 mp = m_get(M_WAIT, MT_DATA);
857 MCLAIM(mp, &nfs_mowner);
858 if (clflg)
859 m_clget(mp, M_WAIT);
860 mp->m_len = 0;
861 mp2->m_next = mp;
862 mp2 = mp;
863 mlen = M_TRAILINGSPACE(mp);
864 }
865 xfer = (left > mlen) ? mlen : left;
866 cp = mtod(mp, char *) + mp->m_len;
867 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
868 xfer);
869 if (error) {
870 /* XXX */
871 }
872 mp->m_len += xfer;
873 left -= xfer;
874 uiocp += xfer;
875 uiop->uio_offset += xfer;
876 uiop->uio_resid -= xfer;
877 }
878 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
879 uiosiz;
880 uiop->uio_iov->iov_len -= uiosiz;
881 siz -= uiosiz;
882 }
883 if (rem > 0) {
884 if (rem > M_TRAILINGSPACE(mp)) {
885 mp = m_get(M_WAIT, MT_DATA);
886 MCLAIM(mp, &nfs_mowner);
887 mp->m_len = 0;
888 mp2->m_next = mp;
889 }
890 cp = mtod(mp, char *) + mp->m_len;
891 for (left = 0; left < rem; left++)
892 *cp++ = '\0';
893 mp->m_len += rem;
894 *bpos = cp;
895 } else
896 *bpos = mtod(mp, char *) + mp->m_len;
897 *mq = mp;
898 return (0);
899 }
900
901 /*
902 * Get at least "siz" bytes of correctly aligned data.
903 * When called the mbuf pointers are not necessarily correct,
904 * dsosp points to what ought to be in m_data and left contains
905 * what ought to be in m_len.
906 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
907 * cases. (The macros use the vars. dpos and dpos2)
908 */
909 int
910 nfsm_disct(mdp, dposp, siz, left, cp2)
911 struct mbuf **mdp;
912 char **dposp;
913 int siz;
914 int left;
915 char **cp2;
916 {
917 struct mbuf *m1, *m2;
918 struct mbuf *havebuf = NULL;
919 char *src = *dposp;
920 char *dst;
921 int len;
922
923 #ifdef DEBUG
924 if (left < 0)
925 panic("nfsm_disct: left < 0");
926 #endif
927 m1 = *mdp;
928 /*
929 * Skip through the mbuf chain looking for an mbuf with
930 * some data. If the first mbuf found has enough data
931 * and it is correctly aligned return it.
932 */
933 while (left == 0) {
934 havebuf = m1;
935 *mdp = m1 = m1->m_next;
936 if (m1 == NULL)
937 return (EBADRPC);
938 src = mtod(m1, void *);
939 left = m1->m_len;
940 /*
941 * If we start a new mbuf and it is big enough
942 * and correctly aligned just return it, don't
943 * do any pull up.
944 */
945 if (left >= siz && nfsm_aligned(src)) {
946 *cp2 = src;
947 *dposp = src + siz;
948 return (0);
949 }
950 }
951 if ((m1->m_flags & M_EXT) != 0) {
952 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
953 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
954 /*
955 * If the first mbuf with data has external data
956 * and there is a previous mbuf with some trailing
957 * space, use it to move the data into.
958 */
959 m2 = m1;
960 *mdp = m1 = havebuf;
961 *cp2 = mtod(m1, char *) + m1->m_len;
962 } else if (havebuf) {
963 /*
964 * If the first mbuf has a external data
965 * and there is no previous empty mbuf
966 * allocate a new mbuf and move the external
967 * data to the new mbuf. Also make the first
968 * mbuf look empty.
969 */
970 m2 = m1;
971 *mdp = m1 = m_get(M_WAIT, MT_DATA);
972 MCLAIM(m1, m2->m_owner);
973 if ((m2->m_flags & M_PKTHDR) != 0) {
974 /* XXX MOVE */
975 M_COPY_PKTHDR(m1, m2);
976 m_tag_delete_chain(m2, NULL);
977 m2->m_flags &= ~M_PKTHDR;
978 }
979 if (havebuf) {
980 havebuf->m_next = m1;
981 }
982 m1->m_next = m2;
983 MRESETDATA(m1);
984 m1->m_len = 0;
985 m2->m_data = src;
986 m2->m_len = left;
987 *cp2 = mtod(m1, char *);
988 } else {
989 struct mbuf **nextp = &m1->m_next;
990
991 m1->m_len -= left;
992 do {
993 m2 = m_get(M_WAIT, MT_DATA);
994 MCLAIM(m2, m1->m_owner);
995 if (left >= MINCLSIZE) {
996 MCLGET(m2, M_WAIT);
997 }
998 m2->m_next = *nextp;
999 *nextp = m2;
1000 nextp = &m2->m_next;
1001 len = (m2->m_flags & M_EXT) != 0 ?
1002 MCLBYTES : MLEN;
1003 if (len > left) {
1004 len = left;
1005 }
1006 memcpy(mtod(m2, char *), src, len);
1007 m2->m_len = len;
1008 src += len;
1009 left -= len;
1010 } while (left > 0);
1011 *mdp = m1 = m1->m_next;
1012 m2 = m1->m_next;
1013 *cp2 = mtod(m1, char *);
1014 }
1015 } else {
1016 /*
1017 * If the first mbuf has no external data
1018 * move the data to the front of the mbuf.
1019 */
1020 MRESETDATA(m1);
1021 dst = mtod(m1, char *);
1022 if (dst != src) {
1023 memmove(dst, src, left);
1024 }
1025 m1->m_len = left;
1026 m2 = m1->m_next;
1027 *cp2 = m1->m_data;
1028 }
1029 *dposp = *cp2 + siz;
1030 /*
1031 * Loop through mbufs pulling data up into first mbuf until
1032 * the first mbuf is full or there is no more data to
1033 * pullup.
1034 */
1035 dst = mtod(m1, char *) + m1->m_len;
1036 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1037 if ((len = min(len, m2->m_len)) != 0) {
1038 memcpy(dst, mtod(m2, char *), len);
1039 }
1040 m1->m_len += len;
1041 dst += len;
1042 m2->m_data += len;
1043 m2->m_len -= len;
1044 m2 = m2->m_next;
1045 }
1046 if (m1->m_len < siz)
1047 return (EBADRPC);
1048 return (0);
1049 }
1050
1051 /*
1052 * Advance the position in the mbuf chain.
1053 */
1054 int
1055 nfs_adv(mdp, dposp, offs, left)
1056 struct mbuf **mdp;
1057 char **dposp;
1058 int offs;
1059 int left;
1060 {
1061 struct mbuf *m;
1062 int s;
1063
1064 m = *mdp;
1065 s = left;
1066 while (s < offs) {
1067 offs -= s;
1068 m = m->m_next;
1069 if (m == NULL)
1070 return (EBADRPC);
1071 s = m->m_len;
1072 }
1073 *mdp = m;
1074 *dposp = mtod(m, char *) + offs;
1075 return (0);
1076 }
1077
1078 /*
1079 * Copy a string into mbufs for the hard cases...
1080 */
1081 int
1082 nfsm_strtmbuf(mb, bpos, cp, siz)
1083 struct mbuf **mb;
1084 char **bpos;
1085 const char *cp;
1086 long siz;
1087 {
1088 struct mbuf *m1 = NULL, *m2;
1089 long left, xfer, len, tlen;
1090 u_int32_t *tl;
1091 int putsize;
1092
1093 putsize = 1;
1094 m2 = *mb;
1095 left = M_TRAILINGSPACE(m2);
1096 if (left > 0) {
1097 tl = ((u_int32_t *)(*bpos));
1098 *tl++ = txdr_unsigned(siz);
1099 putsize = 0;
1100 left -= NFSX_UNSIGNED;
1101 m2->m_len += NFSX_UNSIGNED;
1102 if (left > 0) {
1103 memcpy((void *) tl, cp, left);
1104 siz -= left;
1105 cp += left;
1106 m2->m_len += left;
1107 left = 0;
1108 }
1109 }
1110 /* Loop around adding mbufs */
1111 while (siz > 0) {
1112 m1 = m_get(M_WAIT, MT_DATA);
1113 MCLAIM(m1, &nfs_mowner);
1114 if (siz > MLEN)
1115 m_clget(m1, M_WAIT);
1116 m1->m_len = NFSMSIZ(m1);
1117 m2->m_next = m1;
1118 m2 = m1;
1119 tl = mtod(m1, u_int32_t *);
1120 tlen = 0;
1121 if (putsize) {
1122 *tl++ = txdr_unsigned(siz);
1123 m1->m_len -= NFSX_UNSIGNED;
1124 tlen = NFSX_UNSIGNED;
1125 putsize = 0;
1126 }
1127 if (siz < m1->m_len) {
1128 len = nfsm_rndup(siz);
1129 xfer = siz;
1130 if (xfer < len)
1131 *(tl+(xfer>>2)) = 0;
1132 } else {
1133 xfer = len = m1->m_len;
1134 }
1135 memcpy((void *) tl, cp, xfer);
1136 m1->m_len = len+tlen;
1137 siz -= xfer;
1138 cp += xfer;
1139 }
1140 *mb = m1;
1141 *bpos = mtod(m1, char *) + m1->m_len;
1142 return (0);
1143 }
1144
1145 /*
1146 * Directory caching routines. They work as follows:
1147 * - a cache is maintained per VDIR nfsnode.
1148 * - for each offset cookie that is exported to userspace, and can
1149 * thus be thrown back at us as an offset to VOP_READDIR, store
1150 * information in the cache.
1151 * - cached are:
1152 * - cookie itself
1153 * - blocknumber (essentially just a search key in the buffer cache)
1154 * - entry number in block.
1155 * - offset cookie of block in which this entry is stored
1156 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1157 * - entries are looked up in a hash table
1158 * - also maintained is an LRU list of entries, used to determine
1159 * which ones to delete if the cache grows too large.
1160 * - if 32 <-> 64 translation mode is requested for a filesystem,
1161 * the cache also functions as a translation table
1162 * - in the translation case, invalidating the cache does not mean
1163 * flushing it, but just marking entries as invalid, except for
1164 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1165 * still be able to use the cache as a translation table.
1166 * - 32 bit cookies are uniquely created by combining the hash table
1167 * entry value, and one generation count per hash table entry,
1168 * incremented each time an entry is appended to the chain.
1169 * - the cache is invalidated each time a direcory is modified
1170 * - sanity checks are also done; if an entry in a block turns
1171 * out not to have a matching cookie, the cache is invalidated
1172 * and a new block starting from the wanted offset is fetched from
1173 * the server.
1174 * - directory entries as read from the server are extended to contain
1175 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1176 * the cache and exporting them to userspace through the cookie
1177 * argument to VOP_READDIR.
1178 */
1179
1180 u_long
1181 nfs_dirhash(off)
1182 off_t off;
1183 {
1184 int i;
1185 char *cp = (char *)&off;
1186 u_long sum = 0L;
1187
1188 for (i = 0 ; i < sizeof (off); i++)
1189 sum += *cp++;
1190
1191 return sum;
1192 }
1193
1194 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1195 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1196 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1197 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1198
1199 void
1200 nfs_initdircache(vp)
1201 struct vnode *vp;
1202 {
1203 struct nfsnode *np = VTONFS(vp);
1204 struct nfsdirhashhead *dircache;
1205
1206 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1207 &nfsdirhashmask);
1208
1209 NFSDC_LOCK(np);
1210 if (np->n_dircache == NULL) {
1211 np->n_dircachesize = 0;
1212 np->n_dircache = dircache;
1213 dircache = NULL;
1214 TAILQ_INIT(&np->n_dirchain);
1215 }
1216 NFSDC_UNLOCK(np);
1217 if (dircache)
1218 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1219 }
1220
1221 void
1222 nfs_initdirxlatecookie(vp)
1223 struct vnode *vp;
1224 {
1225 struct nfsnode *np = VTONFS(vp);
1226 unsigned *dirgens;
1227
1228 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1229
1230 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1231 NFSDC_LOCK(np);
1232 if (np->n_dirgens == NULL) {
1233 np->n_dirgens = dirgens;
1234 dirgens = NULL;
1235 }
1236 NFSDC_UNLOCK(np);
1237 if (dirgens)
1238 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1239 }
1240
1241 static const struct nfsdircache dzero;
1242
1243 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1244 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1245 struct nfsdircache *));
1246
1247 static void
1248 nfs_unlinkdircache(np, ndp)
1249 struct nfsnode *np;
1250 struct nfsdircache *ndp;
1251 {
1252
1253 NFSDC_ASSERT_LOCKED(np);
1254 KASSERT(ndp != &dzero);
1255
1256 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1257 return;
1258
1259 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1260 LIST_REMOVE(ndp, dc_hash);
1261 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1262
1263 nfs_putdircache_unlocked(np, ndp);
1264 }
1265
1266 void
1267 nfs_putdircache(np, ndp)
1268 struct nfsnode *np;
1269 struct nfsdircache *ndp;
1270 {
1271 int ref;
1272
1273 if (ndp == &dzero)
1274 return;
1275
1276 KASSERT(ndp->dc_refcnt > 0);
1277 NFSDC_LOCK(np);
1278 ref = --ndp->dc_refcnt;
1279 NFSDC_UNLOCK(np);
1280
1281 if (ref == 0)
1282 kmem_free(ndp, sizeof(*ndp));
1283 }
1284
1285 static void
1286 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1287 {
1288 int ref;
1289
1290 NFSDC_ASSERT_LOCKED(np);
1291
1292 if (ndp == &dzero)
1293 return;
1294
1295 KASSERT(ndp->dc_refcnt > 0);
1296 ref = --ndp->dc_refcnt;
1297 if (ref == 0)
1298 kmem_free(ndp, sizeof(*ndp));
1299 }
1300
1301 struct nfsdircache *
1302 nfs_searchdircache(vp, off, do32, hashent)
1303 struct vnode *vp;
1304 off_t off;
1305 int do32;
1306 int *hashent;
1307 {
1308 struct nfsdirhashhead *ndhp;
1309 struct nfsdircache *ndp = NULL;
1310 struct nfsnode *np = VTONFS(vp);
1311 unsigned ent;
1312
1313 /*
1314 * Zero is always a valid cookie.
1315 */
1316 if (off == 0)
1317 /* XXXUNCONST */
1318 return (struct nfsdircache *)__UNCONST(&dzero);
1319
1320 if (!np->n_dircache)
1321 return NULL;
1322
1323 /*
1324 * We use a 32bit cookie as search key, directly reconstruct
1325 * the hashentry. Else use the hashfunction.
1326 */
1327 if (do32) {
1328 ent = (u_int32_t)off >> 24;
1329 if (ent >= NFS_DIRHASHSIZ)
1330 return NULL;
1331 ndhp = &np->n_dircache[ent];
1332 } else {
1333 ndhp = NFSDIRHASH(np, off);
1334 }
1335
1336 if (hashent)
1337 *hashent = (int)(ndhp - np->n_dircache);
1338
1339 NFSDC_LOCK(np);
1340 if (do32) {
1341 LIST_FOREACH(ndp, ndhp, dc_hash) {
1342 if (ndp->dc_cookie32 == (u_int32_t)off) {
1343 /*
1344 * An invalidated entry will become the
1345 * start of a new block fetched from
1346 * the server.
1347 */
1348 if (ndp->dc_flags & NFSDC_INVALID) {
1349 ndp->dc_blkcookie = ndp->dc_cookie;
1350 ndp->dc_entry = 0;
1351 ndp->dc_flags &= ~NFSDC_INVALID;
1352 }
1353 break;
1354 }
1355 }
1356 } else {
1357 LIST_FOREACH(ndp, ndhp, dc_hash) {
1358 if (ndp->dc_cookie == off)
1359 break;
1360 }
1361 }
1362 if (ndp != NULL)
1363 ndp->dc_refcnt++;
1364 NFSDC_UNLOCK(np);
1365 return ndp;
1366 }
1367
1368
1369 struct nfsdircache *
1370 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1371 daddr_t blkno)
1372 {
1373 struct nfsnode *np = VTONFS(vp);
1374 struct nfsdirhashhead *ndhp;
1375 struct nfsdircache *ndp = NULL;
1376 struct nfsdircache *newndp = NULL;
1377 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1378 int hashent = 0, gen, overwrite; /* XXX: GCC */
1379
1380 /*
1381 * XXX refuse entries for offset 0. amd(8) erroneously sets
1382 * cookie 0 for the '.' entry, making this necessary. This
1383 * isn't so bad, as 0 is a special case anyway.
1384 */
1385 if (off == 0)
1386 /* XXXUNCONST */
1387 return (struct nfsdircache *)__UNCONST(&dzero);
1388
1389 if (!np->n_dircache)
1390 /*
1391 * XXX would like to do this in nfs_nget but vtype
1392 * isn't known at that time.
1393 */
1394 nfs_initdircache(vp);
1395
1396 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1397 nfs_initdirxlatecookie(vp);
1398
1399 retry:
1400 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1401
1402 NFSDC_LOCK(np);
1403 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1404 /*
1405 * Overwriting an old entry. Check if it's the same.
1406 * If so, just return. If not, remove the old entry.
1407 */
1408 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1409 goto done;
1410 nfs_unlinkdircache(np, ndp);
1411 nfs_putdircache_unlocked(np, ndp);
1412 ndp = NULL;
1413 }
1414
1415 ndhp = &np->n_dircache[hashent];
1416
1417 if (!ndp) {
1418 if (newndp == NULL) {
1419 NFSDC_UNLOCK(np);
1420 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1421 newndp->dc_refcnt = 1;
1422 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1423 goto retry;
1424 }
1425 ndp = newndp;
1426 newndp = NULL;
1427 overwrite = 0;
1428 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1429 /*
1430 * We're allocating a new entry, so bump the
1431 * generation number.
1432 */
1433 KASSERT(np->n_dirgens);
1434 gen = ++np->n_dirgens[hashent];
1435 if (gen == 0) {
1436 np->n_dirgens[hashent]++;
1437 gen++;
1438 }
1439 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1440 }
1441 } else
1442 overwrite = 1;
1443
1444 ndp->dc_cookie = off;
1445 ndp->dc_blkcookie = blkoff;
1446 ndp->dc_entry = en;
1447 ndp->dc_flags = 0;
1448
1449 if (overwrite)
1450 goto done;
1451
1452 /*
1453 * If the maximum directory cookie cache size has been reached
1454 * for this node, take one off the front. The idea is that
1455 * directories are typically read front-to-back once, so that
1456 * the oldest entries can be thrown away without much performance
1457 * loss.
1458 */
1459 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1460 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1461 } else
1462 np->n_dircachesize++;
1463
1464 KASSERT(ndp->dc_refcnt == 1);
1465 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1466 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1467 ndp->dc_refcnt++;
1468 done:
1469 KASSERT(ndp->dc_refcnt > 0);
1470 NFSDC_UNLOCK(np);
1471 if (newndp)
1472 nfs_putdircache(np, newndp);
1473 return ndp;
1474 }
1475
1476 void
1477 nfs_invaldircache(vp, flags)
1478 struct vnode *vp;
1479 int flags;
1480 {
1481 struct nfsnode *np = VTONFS(vp);
1482 struct nfsdircache *ndp = NULL;
1483 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1484 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1485
1486 #ifdef DIAGNOSTIC
1487 if (vp->v_type != VDIR)
1488 panic("nfs: invaldircache: not dir");
1489 #endif
1490
1491 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1492 np->n_flag &= ~NEOFVALID;
1493
1494 if (!np->n_dircache)
1495 return;
1496
1497 NFSDC_LOCK(np);
1498 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1499 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1500 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1501 nfs_unlinkdircache(np, ndp);
1502 }
1503 np->n_dircachesize = 0;
1504 if (forcefree && np->n_dirgens) {
1505 kmem_free(np->n_dirgens,
1506 NFS_DIRHASHSIZ * sizeof(unsigned));
1507 np->n_dirgens = NULL;
1508 }
1509 } else {
1510 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1511 ndp->dc_flags |= NFSDC_INVALID;
1512 }
1513
1514 NFSDC_UNLOCK(np);
1515 }
1516
1517 /*
1518 * Called once before VFS init to initialize shared and
1519 * server-specific data structures.
1520 */
1521 static int
1522 nfs_init0(void)
1523 {
1524
1525 nfsrtt.pos = 0;
1526 rpc_vers = txdr_unsigned(RPC_VER2);
1527 rpc_call = txdr_unsigned(RPC_CALL);
1528 rpc_reply = txdr_unsigned(RPC_REPLY);
1529 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1530 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1531 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1532 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1533 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1534 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1535 nfs_prog = txdr_unsigned(NFS_PROG);
1536 nfs_true = txdr_unsigned(true);
1537 nfs_false = txdr_unsigned(false);
1538 nfs_xdrneg1 = txdr_unsigned(-1);
1539 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1540 if (nfs_ticks < 1)
1541 nfs_ticks = 1;
1542 #ifdef NFSSERVER
1543 vfs_hooks_attach(&nfs_export_hooks);
1544 nfsrv_init(0); /* Init server data structures */
1545 nfsrv_initcache(); /* Init the server request cache */
1546 {
1547 extern krwlock_t netexport_lock; /* XXX */
1548 rw_init(&netexport_lock);
1549 }
1550 #endif /* NFSSERVER */
1551
1552 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1553 nfsdreq_init();
1554 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1555
1556 /*
1557 * Initialize reply list and start timer
1558 */
1559 TAILQ_INIT(&nfs_reqq);
1560 nfs_timer_init();
1561 MOWNER_ATTACH(&nfs_mowner);
1562
1563 #ifdef NFS
1564 /* Initialize the kqueue structures */
1565 nfs_kqinit();
1566 /* Initialize the iod structures */
1567 nfs_iodinit();
1568 #endif
1569 return 0;
1570 }
1571
1572 void
1573 nfs_init(void)
1574 {
1575 static ONCE_DECL(nfs_init_once);
1576
1577 RUN_ONCE(&nfs_init_once, nfs_init0);
1578 }
1579
1580 #ifdef NFS
1581 /*
1582 * Called once at VFS init to initialize client-specific data structures.
1583 */
1584 void
1585 nfs_vfs_init()
1586 {
1587 /* Initialize NFS server / client shared data. */
1588 nfs_init();
1589
1590 nfs_nhinit(); /* Init the nfsnode table */
1591 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1592 }
1593
1594 void
1595 nfs_vfs_reinit()
1596 {
1597 nfs_nhreinit();
1598 }
1599
1600 void
1601 nfs_vfs_done()
1602 {
1603 nfs_nhdone();
1604 }
1605
1606 /*
1607 * Attribute cache routines.
1608 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1609 * that are on the mbuf list
1610 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1611 * error otherwise
1612 */
1613
1614 /*
1615 * Load the attribute cache (that lives in the nfsnode entry) with
1616 * the values on the mbuf list and
1617 * Iff vap not NULL
1618 * copy the attributes to *vaper
1619 */
1620 int
1621 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1622 struct vnode **vpp;
1623 struct mbuf **mdp;
1624 char **dposp;
1625 struct vattr *vaper;
1626 int flags;
1627 {
1628 int32_t t1;
1629 char *cp2;
1630 int error = 0;
1631 struct mbuf *md;
1632 int v3 = NFS_ISV3(*vpp);
1633
1634 md = *mdp;
1635 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1636 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1637 if (error)
1638 return (error);
1639 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1640 }
1641
1642 int
1643 nfs_loadattrcache(vpp, fp, vaper, flags)
1644 struct vnode **vpp;
1645 struct nfs_fattr *fp;
1646 struct vattr *vaper;
1647 int flags;
1648 {
1649 struct vnode *vp = *vpp;
1650 struct vattr *vap;
1651 int v3 = NFS_ISV3(vp);
1652 enum vtype vtyp;
1653 u_short vmode;
1654 struct timespec mtime;
1655 struct timespec ctime;
1656 int32_t rdev;
1657 struct nfsnode *np;
1658 extern int (**spec_nfsv2nodeop_p) __P((void *));
1659 uid_t uid;
1660 gid_t gid;
1661
1662 if (v3) {
1663 vtyp = nfsv3tov_type(fp->fa_type);
1664 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1665 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1666 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1667 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1668 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1669 } else {
1670 vtyp = nfsv2tov_type(fp->fa_type);
1671 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1672 if (vtyp == VNON || vtyp == VREG)
1673 vtyp = IFTOVT(vmode);
1674 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1675 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1676 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1677 fp->fa2_ctime.nfsv2_sec);
1678 ctime.tv_nsec = 0;
1679
1680 /*
1681 * Really ugly NFSv2 kludge.
1682 */
1683 if (vtyp == VCHR && rdev == 0xffffffff)
1684 vtyp = VFIFO;
1685 }
1686
1687 vmode &= ALLPERMS;
1688
1689 /*
1690 * If v_type == VNON it is a new node, so fill in the v_type,
1691 * n_mtime fields. Check to see if it represents a special
1692 * device, and if so, check for a possible alias. Once the
1693 * correct vnode has been obtained, fill in the rest of the
1694 * information.
1695 */
1696 np = VTONFS(vp);
1697 if (vp->v_type == VNON) {
1698 vp->v_type = vtyp;
1699 if (vp->v_type == VFIFO) {
1700 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1701 vp->v_op = fifo_nfsv2nodeop_p;
1702 } else if (vp->v_type == VREG) {
1703 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1704 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1705 vp->v_op = spec_nfsv2nodeop_p;
1706 spec_node_init(vp, (dev_t)rdev);
1707 }
1708 np->n_mtime = mtime;
1709 }
1710 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1711 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1712 vap = np->n_vattr;
1713
1714 /*
1715 * Invalidate access cache if uid, gid, mode or ctime changed.
1716 */
1717 if (np->n_accstamp != -1 &&
1718 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1719 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1720 np->n_accstamp = -1;
1721
1722 vap->va_type = vtyp;
1723 vap->va_mode = vmode;
1724 vap->va_rdev = (dev_t)rdev;
1725 vap->va_mtime = mtime;
1726 vap->va_ctime = ctime;
1727 vap->va_birthtime.tv_sec = VNOVAL;
1728 vap->va_birthtime.tv_nsec = VNOVAL;
1729 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1730 switch (vtyp) {
1731 case VDIR:
1732 vap->va_blocksize = NFS_DIRFRAGSIZ;
1733 break;
1734 case VBLK:
1735 vap->va_blocksize = BLKDEV_IOSIZE;
1736 break;
1737 case VCHR:
1738 vap->va_blocksize = MAXBSIZE;
1739 break;
1740 default:
1741 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1742 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1743 break;
1744 }
1745 if (v3) {
1746 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1747 vap->va_uid = uid;
1748 vap->va_gid = gid;
1749 vap->va_size = fxdr_hyper(&fp->fa3_size);
1750 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1751 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1752 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1753 vap->va_flags = 0;
1754 vap->va_filerev = 0;
1755 } else {
1756 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1757 vap->va_uid = uid;
1758 vap->va_gid = gid;
1759 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1760 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1761 * NFS_FABLKSIZE;
1762 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1763 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1764 vap->va_flags = 0;
1765 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1766 vap->va_filerev = 0;
1767 }
1768 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1769 return EFBIG;
1770 }
1771 if (vap->va_size != np->n_size) {
1772 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1773 vap->va_size = np->n_size;
1774 } else {
1775 np->n_size = vap->va_size;
1776 if (vap->va_type == VREG) {
1777 /*
1778 * we can't free pages if NAC_NOTRUNC because
1779 * the pages can be owned by ourselves.
1780 */
1781 if (flags & NAC_NOTRUNC) {
1782 np->n_flag |= NTRUNCDELAYED;
1783 } else {
1784 genfs_node_wrlock(vp);
1785 mutex_enter(&vp->v_interlock);
1786 (void)VOP_PUTPAGES(vp, 0,
1787 0, PGO_SYNCIO | PGO_CLEANIT |
1788 PGO_FREE | PGO_ALLPAGES);
1789 uvm_vnp_setsize(vp, np->n_size);
1790 genfs_node_unlock(vp);
1791 }
1792 }
1793 }
1794 }
1795 np->n_attrstamp = time_second;
1796 if (vaper != NULL) {
1797 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1798 if (np->n_flag & NCHG) {
1799 if (np->n_flag & NACC)
1800 vaper->va_atime = np->n_atim;
1801 if (np->n_flag & NUPD)
1802 vaper->va_mtime = np->n_mtim;
1803 }
1804 }
1805 return (0);
1806 }
1807
1808 /*
1809 * Check the time stamp
1810 * If the cache is valid, copy contents to *vap and return 0
1811 * otherwise return an error
1812 */
1813 int
1814 nfs_getattrcache(vp, vaper)
1815 struct vnode *vp;
1816 struct vattr *vaper;
1817 {
1818 struct nfsnode *np = VTONFS(vp);
1819 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1820 struct vattr *vap;
1821
1822 if (np->n_attrstamp == 0 ||
1823 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1824 nfsstats.attrcache_misses++;
1825 return (ENOENT);
1826 }
1827 nfsstats.attrcache_hits++;
1828 vap = np->n_vattr;
1829 if (vap->va_size != np->n_size) {
1830 if (vap->va_type == VREG) {
1831 if ((np->n_flag & NMODIFIED) != 0 &&
1832 vap->va_size < np->n_size) {
1833 vap->va_size = np->n_size;
1834 } else {
1835 np->n_size = vap->va_size;
1836 }
1837 genfs_node_wrlock(vp);
1838 uvm_vnp_setsize(vp, np->n_size);
1839 genfs_node_unlock(vp);
1840 } else
1841 np->n_size = vap->va_size;
1842 }
1843 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1844 if (np->n_flag & NCHG) {
1845 if (np->n_flag & NACC)
1846 vaper->va_atime = np->n_atim;
1847 if (np->n_flag & NUPD)
1848 vaper->va_mtime = np->n_mtim;
1849 }
1850 return (0);
1851 }
1852
1853 void
1854 nfs_delayedtruncate(vp)
1855 struct vnode *vp;
1856 {
1857 struct nfsnode *np = VTONFS(vp);
1858
1859 if (np->n_flag & NTRUNCDELAYED) {
1860 np->n_flag &= ~NTRUNCDELAYED;
1861 genfs_node_wrlock(vp);
1862 mutex_enter(&vp->v_interlock);
1863 (void)VOP_PUTPAGES(vp, 0,
1864 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1865 uvm_vnp_setsize(vp, np->n_size);
1866 genfs_node_unlock(vp);
1867 }
1868 }
1869
1870 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1871 #define NFS_WCCKLUDGE(nmp, now) \
1872 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1873 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1874
1875 /*
1876 * nfs_check_wccdata: check inaccurate wcc_data
1877 *
1878 * => return non-zero if we shouldn't trust the wcc_data.
1879 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1880 */
1881
1882 int
1883 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1884 struct timespec *mtime, bool docheck)
1885 {
1886 int error = 0;
1887
1888 #if !defined(NFS_V2_ONLY)
1889
1890 if (docheck) {
1891 struct vnode *vp = NFSTOV(np);
1892 struct nfsmount *nmp;
1893 long now = time_second;
1894 const struct timespec *omtime = &np->n_vattr->va_mtime;
1895 const struct timespec *octime = &np->n_vattr->va_ctime;
1896 const char *reason = NULL; /* XXX: gcc */
1897
1898 if (timespeccmp(omtime, mtime, <=)) {
1899 reason = "mtime";
1900 error = EINVAL;
1901 }
1902
1903 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1904 reason = "ctime";
1905 error = EINVAL;
1906 }
1907
1908 nmp = VFSTONFS(vp->v_mount);
1909 if (error) {
1910
1911 /*
1912 * despite of the fact that we've updated the file,
1913 * timestamps of the file were not updated as we
1914 * expected.
1915 * it means that the server has incompatible
1916 * semantics of timestamps or (more likely)
1917 * the server time is not precise enough to
1918 * track each modifications.
1919 * in that case, we disable wcc processing.
1920 *
1921 * yes, strictly speaking, we should disable all
1922 * caching. it's a compromise.
1923 */
1924
1925 mutex_enter(&nmp->nm_lock);
1926 if (!NFS_WCCKLUDGE(nmp, now)) {
1927 printf("%s: inaccurate wcc data (%s) detected,"
1928 " disabling wcc"
1929 " (ctime %u.%09u %u.%09u,"
1930 " mtime %u.%09u %u.%09u)\n",
1931 vp->v_mount->mnt_stat.f_mntfromname,
1932 reason,
1933 (unsigned int)octime->tv_sec,
1934 (unsigned int)octime->tv_nsec,
1935 (unsigned int)ctime->tv_sec,
1936 (unsigned int)ctime->tv_nsec,
1937 (unsigned int)omtime->tv_sec,
1938 (unsigned int)omtime->tv_nsec,
1939 (unsigned int)mtime->tv_sec,
1940 (unsigned int)mtime->tv_nsec);
1941 }
1942 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1943 nmp->nm_wcckludgetime = now;
1944 mutex_exit(&nmp->nm_lock);
1945 } else if (NFS_WCCKLUDGE(nmp, now)) {
1946 error = EPERM; /* XXX */
1947 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1948 mutex_enter(&nmp->nm_lock);
1949 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1950 printf("%s: re-enabling wcc\n",
1951 vp->v_mount->mnt_stat.f_mntfromname);
1952 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1953 }
1954 mutex_exit(&nmp->nm_lock);
1955 }
1956 }
1957
1958 #endif /* !defined(NFS_V2_ONLY) */
1959
1960 return error;
1961 }
1962
1963 /*
1964 * Heuristic to see if the server XDR encodes directory cookies or not.
1965 * it is not supposed to, but a lot of servers may do this. Also, since
1966 * most/all servers will implement V2 as well, it is expected that they
1967 * may return just 32 bits worth of cookie information, so we need to
1968 * find out in which 32 bits this information is available. We do this
1969 * to avoid trouble with emulated binaries that can't handle 64 bit
1970 * directory offsets.
1971 */
1972
1973 void
1974 nfs_cookieheuristic(vp, flagp, l, cred)
1975 struct vnode *vp;
1976 int *flagp;
1977 struct lwp *l;
1978 kauth_cred_t cred;
1979 {
1980 struct uio auio;
1981 struct iovec aiov;
1982 char *tbuf, *cp;
1983 struct dirent *dp;
1984 off_t *cookies = NULL, *cop;
1985 int error, eof, nc, len;
1986
1987 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1988
1989 aiov.iov_base = tbuf;
1990 aiov.iov_len = NFS_DIRFRAGSIZ;
1991 auio.uio_iov = &aiov;
1992 auio.uio_iovcnt = 1;
1993 auio.uio_rw = UIO_READ;
1994 auio.uio_resid = NFS_DIRFRAGSIZ;
1995 auio.uio_offset = 0;
1996 UIO_SETUP_SYSSPACE(&auio);
1997
1998 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1999
2000 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2001 if (error || len == 0) {
2002 FREE(tbuf, M_TEMP);
2003 if (cookies)
2004 free(cookies, M_TEMP);
2005 return;
2006 }
2007
2008 /*
2009 * Find the first valid entry and look at its offset cookie.
2010 */
2011
2012 cp = tbuf;
2013 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2014 dp = (struct dirent *)cp;
2015 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2016 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2017 *flagp |= NFSMNT_SWAPCOOKIE;
2018 nfs_invaldircache(vp, 0);
2019 nfs_vinvalbuf(vp, 0, cred, l, 1);
2020 }
2021 break;
2022 }
2023 cop++;
2024 cp += dp->d_reclen;
2025 }
2026
2027 FREE(tbuf, M_TEMP);
2028 free(cookies, M_TEMP);
2029 }
2030 #endif /* NFS */
2031
2032 #ifdef NFSSERVER
2033 /*
2034 * Set up nameidata for a lookup() call and do it.
2035 *
2036 * If pubflag is set, this call is done for a lookup operation on the
2037 * public filehandle. In that case we allow crossing mountpoints and
2038 * absolute pathnames. However, the caller is expected to check that
2039 * the lookup result is within the public fs, and deny access if
2040 * it is not.
2041 */
2042 int
2043 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2044 struct nameidata *ndp;
2045 nfsrvfh_t *nsfh;
2046 uint32_t len;
2047 struct nfssvc_sock *slp;
2048 struct mbuf *nam;
2049 struct mbuf **mdp;
2050 char **dposp;
2051 struct vnode **retdirp;
2052 struct lwp *l;
2053 int kerbflag, pubflag;
2054 {
2055 int i, rem;
2056 struct mbuf *md;
2057 char *fromcp, *tocp, *cp;
2058 struct iovec aiov;
2059 struct uio auio;
2060 struct vnode *dp;
2061 int error, rdonly, linklen;
2062 struct componentname *cnp = &ndp->ni_cnd;
2063
2064 *retdirp = NULL;
2065
2066 if ((len + 1) > MAXPATHLEN)
2067 return (ENAMETOOLONG);
2068 if (len == 0)
2069 return (EACCES);
2070 cnp->cn_pnbuf = PNBUF_GET();
2071
2072 /*
2073 * Copy the name from the mbuf list to ndp->ni_pnbuf
2074 * and set the various ndp fields appropriately.
2075 */
2076 fromcp = *dposp;
2077 tocp = cnp->cn_pnbuf;
2078 md = *mdp;
2079 rem = mtod(md, char *) + md->m_len - fromcp;
2080 for (i = 0; i < len; i++) {
2081 while (rem == 0) {
2082 md = md->m_next;
2083 if (md == NULL) {
2084 error = EBADRPC;
2085 goto out;
2086 }
2087 fromcp = mtod(md, void *);
2088 rem = md->m_len;
2089 }
2090 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2091 error = EACCES;
2092 goto out;
2093 }
2094 *tocp++ = *fromcp++;
2095 rem--;
2096 }
2097 *tocp = '\0';
2098 *mdp = md;
2099 *dposp = fromcp;
2100 len = nfsm_rndup(len)-len;
2101 if (len > 0) {
2102 if (rem >= len)
2103 *dposp += len;
2104 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2105 goto out;
2106 }
2107
2108 /*
2109 * Extract and set starting directory.
2110 */
2111 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2112 nam, &rdonly, kerbflag, pubflag);
2113 if (error)
2114 goto out;
2115 if (dp->v_type != VDIR) {
2116 vrele(dp);
2117 error = ENOTDIR;
2118 goto out;
2119 }
2120
2121 if (rdonly)
2122 cnp->cn_flags |= RDONLY;
2123
2124 *retdirp = dp;
2125
2126 if (pubflag) {
2127 /*
2128 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2129 * and the 'native path' indicator.
2130 */
2131 cp = PNBUF_GET();
2132 fromcp = cnp->cn_pnbuf;
2133 tocp = cp;
2134 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2135 switch ((unsigned char)*fromcp) {
2136 case WEBNFS_NATIVE_CHAR:
2137 /*
2138 * 'Native' path for us is the same
2139 * as a path according to the NFS spec,
2140 * just skip the escape char.
2141 */
2142 fromcp++;
2143 break;
2144 /*
2145 * More may be added in the future, range 0x80-0xff
2146 */
2147 default:
2148 error = EIO;
2149 vrele(dp);
2150 PNBUF_PUT(cp);
2151 goto out;
2152 }
2153 }
2154 /*
2155 * Translate the '%' escapes, URL-style.
2156 */
2157 while (*fromcp != '\0') {
2158 if (*fromcp == WEBNFS_ESC_CHAR) {
2159 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2160 fromcp++;
2161 *tocp++ = HEXSTRTOI(fromcp);
2162 fromcp += 2;
2163 continue;
2164 } else {
2165 error = ENOENT;
2166 vrele(dp);
2167 PNBUF_PUT(cp);
2168 goto out;
2169 }
2170 } else
2171 *tocp++ = *fromcp++;
2172 }
2173 *tocp = '\0';
2174 PNBUF_PUT(cnp->cn_pnbuf);
2175 cnp->cn_pnbuf = cp;
2176 }
2177
2178 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2179 ndp->ni_segflg = UIO_SYSSPACE;
2180 ndp->ni_rootdir = rootvnode;
2181 ndp->ni_erootdir = NULL;
2182
2183 if (pubflag) {
2184 ndp->ni_loopcnt = 0;
2185 if (cnp->cn_pnbuf[0] == '/')
2186 dp = rootvnode;
2187 } else {
2188 cnp->cn_flags |= NOCROSSMOUNT;
2189 }
2190
2191 VREF(dp);
2192 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2193
2194 for (;;) {
2195 cnp->cn_nameptr = cnp->cn_pnbuf;
2196 ndp->ni_startdir = dp;
2197
2198 /*
2199 * And call lookup() to do the real work
2200 */
2201 error = lookup(ndp);
2202 if (error) {
2203 if (ndp->ni_dvp) {
2204 vput(ndp->ni_dvp);
2205 }
2206 PNBUF_PUT(cnp->cn_pnbuf);
2207 return (error);
2208 }
2209
2210 /*
2211 * Check for encountering a symbolic link
2212 */
2213 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2214 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2215 if (ndp->ni_dvp == ndp->ni_vp) {
2216 vrele(ndp->ni_dvp);
2217 } else {
2218 vput(ndp->ni_dvp);
2219 }
2220 }
2221 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2222 cnp->cn_flags |= HASBUF;
2223 else
2224 PNBUF_PUT(cnp->cn_pnbuf);
2225 return (0);
2226 } else {
2227 if (!pubflag) {
2228 error = EINVAL;
2229 break;
2230 }
2231 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2232 error = ELOOP;
2233 break;
2234 }
2235 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2236 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2237 if (error != 0)
2238 break;
2239 }
2240 if (ndp->ni_pathlen > 1)
2241 cp = PNBUF_GET();
2242 else
2243 cp = cnp->cn_pnbuf;
2244 aiov.iov_base = cp;
2245 aiov.iov_len = MAXPATHLEN;
2246 auio.uio_iov = &aiov;
2247 auio.uio_iovcnt = 1;
2248 auio.uio_offset = 0;
2249 auio.uio_rw = UIO_READ;
2250 auio.uio_resid = MAXPATHLEN;
2251 UIO_SETUP_SYSSPACE(&auio);
2252 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2253 if (error) {
2254 badlink:
2255 if (ndp->ni_pathlen > 1)
2256 PNBUF_PUT(cp);
2257 break;
2258 }
2259 linklen = MAXPATHLEN - auio.uio_resid;
2260 if (linklen == 0) {
2261 error = ENOENT;
2262 goto badlink;
2263 }
2264 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2265 error = ENAMETOOLONG;
2266 goto badlink;
2267 }
2268 if (ndp->ni_pathlen > 1) {
2269 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2270 PNBUF_PUT(cnp->cn_pnbuf);
2271 cnp->cn_pnbuf = cp;
2272 } else
2273 cnp->cn_pnbuf[linklen] = '\0';
2274 ndp->ni_pathlen += linklen;
2275 vput(ndp->ni_vp);
2276 dp = ndp->ni_dvp;
2277
2278 /*
2279 * Check if root directory should replace current directory.
2280 */
2281 if (cnp->cn_pnbuf[0] == '/') {
2282 vput(dp);
2283 dp = ndp->ni_rootdir;
2284 VREF(dp);
2285 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2286 }
2287 }
2288 }
2289 vput(ndp->ni_dvp);
2290 vput(ndp->ni_vp);
2291 ndp->ni_vp = NULL;
2292 out:
2293 PNBUF_PUT(cnp->cn_pnbuf);
2294 return (error);
2295 }
2296 #endif /* NFSSERVER */
2297
2298 /*
2299 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2300 * boundary and only trims off the back end
2301 *
2302 * 1. trim off 'len' bytes as m_adj(mp, -len).
2303 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2304 */
2305 void
2306 nfs_zeropad(mp, len, nul)
2307 struct mbuf *mp;
2308 int len;
2309 int nul;
2310 {
2311 struct mbuf *m;
2312 int count;
2313
2314 /*
2315 * Trim from tail. Scan the mbuf chain,
2316 * calculating its length and finding the last mbuf.
2317 * If the adjustment only affects this mbuf, then just
2318 * adjust and return. Otherwise, rescan and truncate
2319 * after the remaining size.
2320 */
2321 count = 0;
2322 m = mp;
2323 for (;;) {
2324 count += m->m_len;
2325 if (m->m_next == NULL)
2326 break;
2327 m = m->m_next;
2328 }
2329
2330 KDASSERT(count >= len);
2331
2332 if (m->m_len >= len) {
2333 m->m_len -= len;
2334 } else {
2335 count -= len;
2336 /*
2337 * Correct length for chain is "count".
2338 * Find the mbuf with last data, adjust its length,
2339 * and toss data from remaining mbufs on chain.
2340 */
2341 for (m = mp; m; m = m->m_next) {
2342 if (m->m_len >= count) {
2343 m->m_len = count;
2344 break;
2345 }
2346 count -= m->m_len;
2347 }
2348 KASSERT(m && m->m_next);
2349 m_freem(m->m_next);
2350 m->m_next = NULL;
2351 }
2352
2353 KDASSERT(m->m_next == NULL);
2354
2355 /*
2356 * zero-padding.
2357 */
2358 if (nul > 0) {
2359 char *cp;
2360 int i;
2361
2362 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2363 struct mbuf *n;
2364
2365 KDASSERT(MLEN >= nul);
2366 n = m_get(M_WAIT, MT_DATA);
2367 MCLAIM(n, &nfs_mowner);
2368 n->m_len = nul;
2369 n->m_next = NULL;
2370 m->m_next = n;
2371 cp = mtod(n, void *);
2372 } else {
2373 cp = mtod(m, char *) + m->m_len;
2374 m->m_len += nul;
2375 }
2376 for (i = 0; i < nul; i++)
2377 *cp++ = '\0';
2378 }
2379 return;
2380 }
2381
2382 /*
2383 * Make these functions instead of macros, so that the kernel text size
2384 * doesn't get too big...
2385 */
2386 void
2387 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2388 struct nfsrv_descript *nfsd;
2389 int before_ret;
2390 struct vattr *before_vap;
2391 int after_ret;
2392 struct vattr *after_vap;
2393 struct mbuf **mbp;
2394 char **bposp;
2395 {
2396 struct mbuf *mb = *mbp;
2397 char *bpos = *bposp;
2398 u_int32_t *tl;
2399
2400 if (before_ret) {
2401 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2402 *tl = nfs_false;
2403 } else {
2404 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2405 *tl++ = nfs_true;
2406 txdr_hyper(before_vap->va_size, tl);
2407 tl += 2;
2408 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2409 tl += 2;
2410 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2411 }
2412 *bposp = bpos;
2413 *mbp = mb;
2414 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2415 }
2416
2417 void
2418 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2419 struct nfsrv_descript *nfsd;
2420 int after_ret;
2421 struct vattr *after_vap;
2422 struct mbuf **mbp;
2423 char **bposp;
2424 {
2425 struct mbuf *mb = *mbp;
2426 char *bpos = *bposp;
2427 u_int32_t *tl;
2428 struct nfs_fattr *fp;
2429
2430 if (after_ret) {
2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2432 *tl = nfs_false;
2433 } else {
2434 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2435 *tl++ = nfs_true;
2436 fp = (struct nfs_fattr *)tl;
2437 nfsm_srvfattr(nfsd, after_vap, fp);
2438 }
2439 *mbp = mb;
2440 *bposp = bpos;
2441 }
2442
2443 void
2444 nfsm_srvfattr(nfsd, vap, fp)
2445 struct nfsrv_descript *nfsd;
2446 struct vattr *vap;
2447 struct nfs_fattr *fp;
2448 {
2449
2450 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2451 fp->fa_uid = txdr_unsigned(vap->va_uid);
2452 fp->fa_gid = txdr_unsigned(vap->va_gid);
2453 if (nfsd->nd_flag & ND_NFSV3) {
2454 fp->fa_type = vtonfsv3_type(vap->va_type);
2455 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2456 txdr_hyper(vap->va_size, &fp->fa3_size);
2457 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2458 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2459 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2460 fp->fa3_fsid.nfsuquad[0] = 0;
2461 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2462 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2463 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2464 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2465 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2466 } else {
2467 fp->fa_type = vtonfsv2_type(vap->va_type);
2468 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2469 fp->fa2_size = txdr_unsigned(vap->va_size);
2470 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2471 if (vap->va_type == VFIFO)
2472 fp->fa2_rdev = 0xffffffff;
2473 else
2474 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2475 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2476 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2477 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2478 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2479 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2480 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2481 }
2482 }
2483
2484 #ifdef NFSSERVER
2485 /*
2486 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2487 * - look up fsid in mount list (if not found ret error)
2488 * - get vp and export rights by calling VFS_FHTOVP()
2489 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2490 * - if not lockflag unlock it with VOP_UNLOCK()
2491 */
2492 int
2493 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2494 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2495 int kerbflag, int pubflag)
2496 {
2497 struct mount *mp;
2498 kauth_cred_t credanon;
2499 int error, exflags;
2500 struct sockaddr_in *saddr;
2501 fhandle_t *fhp;
2502
2503 fhp = NFSRVFH_FHANDLE(nsfh);
2504 *vpp = (struct vnode *)0;
2505
2506 if (nfs_ispublicfh(nsfh)) {
2507 if (!pubflag || !nfs_pub.np_valid)
2508 return (ESTALE);
2509 fhp = nfs_pub.np_handle;
2510 }
2511
2512 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2513 if (error) {
2514 return error;
2515 }
2516
2517 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2518 if (error)
2519 return (error);
2520
2521 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2522 saddr = mtod(nam, struct sockaddr_in *);
2523 if ((saddr->sin_family == AF_INET) &&
2524 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2525 vput(*vpp);
2526 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2527 }
2528 #ifdef INET6
2529 if ((saddr->sin_family == AF_INET6) &&
2530 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2531 vput(*vpp);
2532 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2533 }
2534 #endif
2535 }
2536 /*
2537 * Check/setup credentials.
2538 */
2539 if (exflags & MNT_EXKERB) {
2540 if (!kerbflag) {
2541 vput(*vpp);
2542 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2543 }
2544 } else if (kerbflag) {
2545 vput(*vpp);
2546 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2547 } else if (kauth_cred_geteuid(cred) == 0 || /* NFS maproot, see below */
2548 (exflags & MNT_EXPORTANON)) {
2549 /*
2550 * This is used by the NFS maproot option. While we can change
2551 * the secmodel on our own host, we can't change it on the
2552 * clients. As means of least surprise, we're doing the
2553 * traditional thing here.
2554 * Should look into adding a "mapprivileged" or similar where
2555 * the users can be explicitly specified...
2556 * [elad, yamt 2008-03-05]
2557 */
2558 kauth_cred_clone(credanon, cred);
2559 }
2560 if (exflags & MNT_EXRDONLY)
2561 *rdonlyp = 1;
2562 else
2563 *rdonlyp = 0;
2564 if (!lockflag)
2565 VOP_UNLOCK(*vpp, 0);
2566 return (0);
2567 }
2568
2569 /*
2570 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2571 * means a length of 0, for v2 it means all zeroes.
2572 */
2573 int
2574 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2575 {
2576 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2577 int i;
2578
2579 if (NFSRVFH_SIZE(nsfh) == 0) {
2580 return true;
2581 }
2582 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2583 return false;
2584 }
2585 for (i = 0; i < NFSX_V2FH; i++)
2586 if (*cp++ != 0)
2587 return false;
2588 return true;
2589 }
2590 #endif /* NFSSERVER */
2591
2592 /*
2593 * This function compares two net addresses by family and returns true
2594 * if they are the same host.
2595 * If there is any doubt, return false.
2596 * The AF_INET family is handled as a special case so that address mbufs
2597 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2598 */
2599 int
2600 netaddr_match(family, haddr, nam)
2601 int family;
2602 union nethostaddr *haddr;
2603 struct mbuf *nam;
2604 {
2605 struct sockaddr_in *inetaddr;
2606
2607 switch (family) {
2608 case AF_INET:
2609 inetaddr = mtod(nam, struct sockaddr_in *);
2610 if (inetaddr->sin_family == AF_INET &&
2611 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2612 return (1);
2613 break;
2614 #ifdef INET6
2615 case AF_INET6:
2616 {
2617 struct sockaddr_in6 *sin6_1, *sin6_2;
2618
2619 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2620 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2621 if (sin6_1->sin6_family == AF_INET6 &&
2622 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2623 return 1;
2624 }
2625 #endif
2626 #ifdef ISO
2627 case AF_ISO:
2628 {
2629 struct sockaddr_iso *isoaddr1, *isoaddr2;
2630
2631 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2632 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2633 if (isoaddr1->siso_family == AF_ISO &&
2634 isoaddr1->siso_nlen > 0 &&
2635 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2636 SAME_ISOADDR(isoaddr1, isoaddr2))
2637 return (1);
2638 break;
2639 }
2640 #endif /* ISO */
2641 default:
2642 break;
2643 };
2644 return (0);
2645 }
2646
2647 /*
2648 * The write verifier has changed (probably due to a server reboot), so all
2649 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2650 * as dirty or are being written out just now, all this takes is clearing
2651 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2652 * the mount point.
2653 */
2654 void
2655 nfs_clearcommit(mp)
2656 struct mount *mp;
2657 {
2658 struct vnode *vp;
2659 struct nfsnode *np;
2660 struct vm_page *pg;
2661 struct nfsmount *nmp = VFSTONFS(mp);
2662
2663 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2664 mutex_enter(&mntvnode_lock);
2665 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2666 KASSERT(vp->v_mount == mp);
2667 if (vp->v_type != VREG)
2668 continue;
2669 np = VTONFS(vp);
2670 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2671 np->n_pushedhi = 0;
2672 np->n_commitflags &=
2673 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2674 mutex_enter(&vp->v_uobj.vmobjlock);
2675 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2676 pg->flags &= ~PG_NEEDCOMMIT;
2677 }
2678 mutex_exit(&vp->v_uobj.vmobjlock);
2679 }
2680 mutex_exit(&mntvnode_lock);
2681 mutex_enter(&nmp->nm_lock);
2682 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2683 mutex_exit(&nmp->nm_lock);
2684 rw_exit(&nmp->nm_writeverflock);
2685 }
2686
2687 void
2688 nfs_merge_commit_ranges(vp)
2689 struct vnode *vp;
2690 {
2691 struct nfsnode *np = VTONFS(vp);
2692
2693 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2694
2695 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2696 np->n_pushedlo = np->n_pushlo;
2697 np->n_pushedhi = np->n_pushhi;
2698 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2699 } else {
2700 if (np->n_pushlo < np->n_pushedlo)
2701 np->n_pushedlo = np->n_pushlo;
2702 if (np->n_pushhi > np->n_pushedhi)
2703 np->n_pushedhi = np->n_pushhi;
2704 }
2705
2706 np->n_pushlo = np->n_pushhi = 0;
2707 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2708
2709 #ifdef NFS_DEBUG_COMMIT
2710 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2711 (unsigned)np->n_pushedhi);
2712 #endif
2713 }
2714
2715 int
2716 nfs_in_committed_range(vp, off, len)
2717 struct vnode *vp;
2718 off_t off, len;
2719 {
2720 struct nfsnode *np = VTONFS(vp);
2721 off_t lo, hi;
2722
2723 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2724 return 0;
2725 lo = off;
2726 hi = lo + len;
2727
2728 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2729 }
2730
2731 int
2732 nfs_in_tobecommitted_range(vp, off, len)
2733 struct vnode *vp;
2734 off_t off, len;
2735 {
2736 struct nfsnode *np = VTONFS(vp);
2737 off_t lo, hi;
2738
2739 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2740 return 0;
2741 lo = off;
2742 hi = lo + len;
2743
2744 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2745 }
2746
2747 void
2748 nfs_add_committed_range(vp, off, len)
2749 struct vnode *vp;
2750 off_t off, len;
2751 {
2752 struct nfsnode *np = VTONFS(vp);
2753 off_t lo, hi;
2754
2755 lo = off;
2756 hi = lo + len;
2757
2758 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2759 np->n_pushedlo = lo;
2760 np->n_pushedhi = hi;
2761 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2762 } else {
2763 if (hi > np->n_pushedhi)
2764 np->n_pushedhi = hi;
2765 if (lo < np->n_pushedlo)
2766 np->n_pushedlo = lo;
2767 }
2768 #ifdef NFS_DEBUG_COMMIT
2769 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2770 (unsigned)np->n_pushedhi);
2771 #endif
2772 }
2773
2774 void
2775 nfs_del_committed_range(vp, off, len)
2776 struct vnode *vp;
2777 off_t off, len;
2778 {
2779 struct nfsnode *np = VTONFS(vp);
2780 off_t lo, hi;
2781
2782 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2783 return;
2784
2785 lo = off;
2786 hi = lo + len;
2787
2788 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2789 return;
2790 if (lo <= np->n_pushedlo)
2791 np->n_pushedlo = hi;
2792 else if (hi >= np->n_pushedhi)
2793 np->n_pushedhi = lo;
2794 else {
2795 /*
2796 * XXX There's only one range. If the deleted range
2797 * is in the middle, pick the largest of the
2798 * contiguous ranges that it leaves.
2799 */
2800 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2801 np->n_pushedhi = lo;
2802 else
2803 np->n_pushedlo = hi;
2804 }
2805 #ifdef NFS_DEBUG_COMMIT
2806 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2807 (unsigned)np->n_pushedhi);
2808 #endif
2809 }
2810
2811 void
2812 nfs_add_tobecommitted_range(vp, off, len)
2813 struct vnode *vp;
2814 off_t off, len;
2815 {
2816 struct nfsnode *np = VTONFS(vp);
2817 off_t lo, hi;
2818
2819 lo = off;
2820 hi = lo + len;
2821
2822 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2823 np->n_pushlo = lo;
2824 np->n_pushhi = hi;
2825 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2826 } else {
2827 if (lo < np->n_pushlo)
2828 np->n_pushlo = lo;
2829 if (hi > np->n_pushhi)
2830 np->n_pushhi = hi;
2831 }
2832 #ifdef NFS_DEBUG_COMMIT
2833 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2834 (unsigned)np->n_pushhi);
2835 #endif
2836 }
2837
2838 void
2839 nfs_del_tobecommitted_range(vp, off, len)
2840 struct vnode *vp;
2841 off_t off, len;
2842 {
2843 struct nfsnode *np = VTONFS(vp);
2844 off_t lo, hi;
2845
2846 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2847 return;
2848
2849 lo = off;
2850 hi = lo + len;
2851
2852 if (lo > np->n_pushhi || hi < np->n_pushlo)
2853 return;
2854
2855 if (lo <= np->n_pushlo)
2856 np->n_pushlo = hi;
2857 else if (hi >= np->n_pushhi)
2858 np->n_pushhi = lo;
2859 else {
2860 /*
2861 * XXX There's only one range. If the deleted range
2862 * is in the middle, pick the largest of the
2863 * contiguous ranges that it leaves.
2864 */
2865 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2866 np->n_pushhi = lo;
2867 else
2868 np->n_pushlo = hi;
2869 }
2870 #ifdef NFS_DEBUG_COMMIT
2871 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2872 (unsigned)np->n_pushhi);
2873 #endif
2874 }
2875
2876 /*
2877 * Map errnos to NFS error numbers. For Version 3 also filter out error
2878 * numbers not specified for the associated procedure.
2879 */
2880 int
2881 nfsrv_errmap(nd, err)
2882 struct nfsrv_descript *nd;
2883 int err;
2884 {
2885 const short *defaulterrp, *errp;
2886
2887 if (nd->nd_flag & ND_NFSV3) {
2888 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2889 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2890 while (*++errp) {
2891 if (*errp == err)
2892 return (err);
2893 else if (*errp > err)
2894 break;
2895 }
2896 return ((int)*defaulterrp);
2897 } else
2898 return (err & 0xffff);
2899 }
2900 if (err <= ELAST)
2901 return ((int)nfsrv_v2errmap[err - 1]);
2902 return (NFSERR_IO);
2903 }
2904
2905 u_int32_t
2906 nfs_getxid()
2907 {
2908 static u_int32_t base;
2909 static u_int32_t nfs_xid = 0;
2910 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2911 u_int32_t newxid;
2912
2913 simple_lock(&nfs_xidlock);
2914 /*
2915 * derive initial xid from system time
2916 * XXX time is invalid if root not yet mounted
2917 */
2918 if (__predict_false(!base && (rootvp))) {
2919 struct timeval tv;
2920
2921 microtime(&tv);
2922 base = tv.tv_sec << 12;
2923 nfs_xid = base;
2924 }
2925
2926 /*
2927 * Skip zero xid if it should ever happen.
2928 */
2929 if (__predict_false(++nfs_xid == 0))
2930 nfs_xid++;
2931 newxid = nfs_xid;
2932 simple_unlock(&nfs_xidlock);
2933
2934 return txdr_unsigned(newxid);
2935 }
2936
2937 /*
2938 * assign a new xid for existing request.
2939 * used for NFSERR_JUKEBOX handling.
2940 */
2941 void
2942 nfs_renewxid(struct nfsreq *req)
2943 {
2944 u_int32_t xid;
2945 int off;
2946
2947 xid = nfs_getxid();
2948 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2949 off = sizeof(u_int32_t); /* RPC record mark */
2950 else
2951 off = 0;
2952
2953 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2954 req->r_xid = xid;
2955 }
2956
2957 #if defined(NFSSERVER)
2958 int
2959 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2960 {
2961 int error;
2962 size_t fhsize;
2963
2964 fhsize = NFSD_MAXFHSIZE;
2965 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2966 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2967 error = EOPNOTSUPP;
2968 }
2969 if (error != 0) {
2970 return error;
2971 }
2972 if (!v3 && fhsize < NFSX_V2FH) {
2973 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2974 NFSX_V2FH - fhsize);
2975 fhsize = NFSX_V2FH;
2976 }
2977 if ((fhsize % NFSX_UNSIGNED) != 0) {
2978 return EOPNOTSUPP;
2979 }
2980 nsfh->nsfh_size = fhsize;
2981 return 0;
2982 }
2983
2984 int
2985 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2986 {
2987
2988 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2989 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2990 }
2991 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2992 }
2993
2994 void
2995 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2996 {
2997 size_t size;
2998
2999 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3000 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3001 }
3002 #endif /* defined(NFSSERVER) */
3003
3004 #if defined(NFS)
3005 /*
3006 * Set the attribute timeout based on how recently the file has been modified.
3007 */
3008
3009 time_t
3010 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3011 {
3012 time_t timeo;
3013
3014 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3015 return 0;
3016
3017 if (((np)->n_flag & NMODIFIED) != 0)
3018 return NFS_MINATTRTIMO;
3019
3020 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3021 timeo = max(timeo, NFS_MINATTRTIMO);
3022 timeo = min(timeo, NFS_MAXATTRTIMO);
3023 return timeo;
3024 }
3025 #endif /* defined(NFS) */
3026