nfs_subs.c revision 1.202.2.3 1 /* $NetBSD: nfs_subs.c,v 1.202.2.3 2008/10/10 22:35:43 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.202.2.3 2008/10/10 22:35:43 skrll Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102 #include <sys/atomic.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <nfs/rpcv2.h>
107 #include <nfs/nfsproto.h>
108 #include <nfs/nfsnode.h>
109 #include <nfs/nfs.h>
110 #include <nfs/xdr_subs.h>
111 #include <nfs/nfsm_subs.h>
112 #include <nfs/nfsmount.h>
113 #include <nfs/nfsrtt.h>
114 #include <nfs/nfs_var.h>
115
116 #include <miscfs/specfs/specdev.h>
117
118 #include <netinet/in.h>
119 #ifdef ISO
120 #include <netiso/iso.h>
121 #endif
122
123 static u_int32_t nfs_xid;
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 const nfstype nfsv2_type[9] =
137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
138 const nfstype nfsv3_type[9] =
139 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
140 const enum vtype nv2tov_type[8] =
141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
142 const enum vtype nv3tov_type[8] =
143 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
144 int nfs_ticks;
145 int nfs_commitsize;
146
147 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
148
149 /* NFS client/server stats. */
150 struct nfsstats nfsstats;
151
152 /*
153 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
154 */
155 const int nfsv3_procid[NFS_NPROCS] = {
156 NFSPROC_NULL,
157 NFSPROC_GETATTR,
158 NFSPROC_SETATTR,
159 NFSPROC_NOOP,
160 NFSPROC_LOOKUP,
161 NFSPROC_READLINK,
162 NFSPROC_READ,
163 NFSPROC_NOOP,
164 NFSPROC_WRITE,
165 NFSPROC_CREATE,
166 NFSPROC_REMOVE,
167 NFSPROC_RENAME,
168 NFSPROC_LINK,
169 NFSPROC_SYMLINK,
170 NFSPROC_MKDIR,
171 NFSPROC_RMDIR,
172 NFSPROC_READDIR,
173 NFSPROC_FSSTAT,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP
179 };
180
181 /*
182 * and the reverse mapping from generic to Version 2 procedure numbers
183 */
184 const int nfsv2_procid[NFS_NPROCS] = {
185 NFSV2PROC_NULL,
186 NFSV2PROC_GETATTR,
187 NFSV2PROC_SETATTR,
188 NFSV2PROC_LOOKUP,
189 NFSV2PROC_NOOP,
190 NFSV2PROC_READLINK,
191 NFSV2PROC_READ,
192 NFSV2PROC_WRITE,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_MKDIR,
195 NFSV2PROC_SYMLINK,
196 NFSV2PROC_CREATE,
197 NFSV2PROC_REMOVE,
198 NFSV2PROC_RMDIR,
199 NFSV2PROC_RENAME,
200 NFSV2PROC_LINK,
201 NFSV2PROC_READDIR,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_STATFS,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 };
209
210 /*
211 * Maps errno values to nfs error numbers.
212 * Use NFSERR_IO as the catch all for ones not specifically defined in
213 * RFC 1094.
214 */
215 static const u_char nfsrv_v2errmap[ELAST] = {
216 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
217 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
220 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
229 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO,
233 };
234
235 /*
236 * Maps errno values to nfs error numbers.
237 * Although it is not obvious whether or not NFS clients really care if
238 * a returned error value is in the specified list for the procedure, the
239 * safest thing to do is filter them appropriately. For Version 2, the
240 * X/Open XNFS document is the only specification that defines error values
241 * for each RPC (The RFC simply lists all possible error values for all RPCs),
242 * so I have decided to not do this for Version 2.
243 * The first entry is the default error return and the rest are the valid
244 * errors for that RPC in increasing numeric order.
245 */
246 static const short nfsv3err_null[] = {
247 0,
248 0,
249 };
250
251 static const short nfsv3err_getattr[] = {
252 NFSERR_IO,
253 NFSERR_IO,
254 NFSERR_STALE,
255 NFSERR_BADHANDLE,
256 NFSERR_SERVERFAULT,
257 0,
258 };
259
260 static const short nfsv3err_setattr[] = {
261 NFSERR_IO,
262 NFSERR_PERM,
263 NFSERR_IO,
264 NFSERR_ACCES,
265 NFSERR_INVAL,
266 NFSERR_NOSPC,
267 NFSERR_ROFS,
268 NFSERR_DQUOT,
269 NFSERR_STALE,
270 NFSERR_BADHANDLE,
271 NFSERR_NOT_SYNC,
272 NFSERR_SERVERFAULT,
273 0,
274 };
275
276 static const short nfsv3err_lookup[] = {
277 NFSERR_IO,
278 NFSERR_NOENT,
279 NFSERR_IO,
280 NFSERR_ACCES,
281 NFSERR_NOTDIR,
282 NFSERR_NAMETOL,
283 NFSERR_STALE,
284 NFSERR_BADHANDLE,
285 NFSERR_SERVERFAULT,
286 0,
287 };
288
289 static const short nfsv3err_access[] = {
290 NFSERR_IO,
291 NFSERR_IO,
292 NFSERR_STALE,
293 NFSERR_BADHANDLE,
294 NFSERR_SERVERFAULT,
295 0,
296 };
297
298 static const short nfsv3err_readlink[] = {
299 NFSERR_IO,
300 NFSERR_IO,
301 NFSERR_ACCES,
302 NFSERR_INVAL,
303 NFSERR_STALE,
304 NFSERR_BADHANDLE,
305 NFSERR_NOTSUPP,
306 NFSERR_SERVERFAULT,
307 0,
308 };
309
310 static const short nfsv3err_read[] = {
311 NFSERR_IO,
312 NFSERR_IO,
313 NFSERR_NXIO,
314 NFSERR_ACCES,
315 NFSERR_INVAL,
316 NFSERR_STALE,
317 NFSERR_BADHANDLE,
318 NFSERR_SERVERFAULT,
319 NFSERR_JUKEBOX,
320 0,
321 };
322
323 static const short nfsv3err_write[] = {
324 NFSERR_IO,
325 NFSERR_IO,
326 NFSERR_ACCES,
327 NFSERR_INVAL,
328 NFSERR_FBIG,
329 NFSERR_NOSPC,
330 NFSERR_ROFS,
331 NFSERR_DQUOT,
332 NFSERR_STALE,
333 NFSERR_BADHANDLE,
334 NFSERR_SERVERFAULT,
335 NFSERR_JUKEBOX,
336 0,
337 };
338
339 static const short nfsv3err_create[] = {
340 NFSERR_IO,
341 NFSERR_IO,
342 NFSERR_ACCES,
343 NFSERR_EXIST,
344 NFSERR_NOTDIR,
345 NFSERR_NOSPC,
346 NFSERR_ROFS,
347 NFSERR_NAMETOL,
348 NFSERR_DQUOT,
349 NFSERR_STALE,
350 NFSERR_BADHANDLE,
351 NFSERR_NOTSUPP,
352 NFSERR_SERVERFAULT,
353 0,
354 };
355
356 static const short nfsv3err_mkdir[] = {
357 NFSERR_IO,
358 NFSERR_IO,
359 NFSERR_ACCES,
360 NFSERR_EXIST,
361 NFSERR_NOTDIR,
362 NFSERR_NOSPC,
363 NFSERR_ROFS,
364 NFSERR_NAMETOL,
365 NFSERR_DQUOT,
366 NFSERR_STALE,
367 NFSERR_BADHANDLE,
368 NFSERR_NOTSUPP,
369 NFSERR_SERVERFAULT,
370 0,
371 };
372
373 static const short nfsv3err_symlink[] = {
374 NFSERR_IO,
375 NFSERR_IO,
376 NFSERR_ACCES,
377 NFSERR_EXIST,
378 NFSERR_NOTDIR,
379 NFSERR_NOSPC,
380 NFSERR_ROFS,
381 NFSERR_NAMETOL,
382 NFSERR_DQUOT,
383 NFSERR_STALE,
384 NFSERR_BADHANDLE,
385 NFSERR_NOTSUPP,
386 NFSERR_SERVERFAULT,
387 0,
388 };
389
390 static const short nfsv3err_mknod[] = {
391 NFSERR_IO,
392 NFSERR_IO,
393 NFSERR_ACCES,
394 NFSERR_EXIST,
395 NFSERR_NOTDIR,
396 NFSERR_NOSPC,
397 NFSERR_ROFS,
398 NFSERR_NAMETOL,
399 NFSERR_DQUOT,
400 NFSERR_STALE,
401 NFSERR_BADHANDLE,
402 NFSERR_NOTSUPP,
403 NFSERR_SERVERFAULT,
404 NFSERR_BADTYPE,
405 0,
406 };
407
408 static const short nfsv3err_remove[] = {
409 NFSERR_IO,
410 NFSERR_NOENT,
411 NFSERR_IO,
412 NFSERR_ACCES,
413 NFSERR_NOTDIR,
414 NFSERR_ROFS,
415 NFSERR_NAMETOL,
416 NFSERR_STALE,
417 NFSERR_BADHANDLE,
418 NFSERR_SERVERFAULT,
419 0,
420 };
421
422 static const short nfsv3err_rmdir[] = {
423 NFSERR_IO,
424 NFSERR_NOENT,
425 NFSERR_IO,
426 NFSERR_ACCES,
427 NFSERR_EXIST,
428 NFSERR_NOTDIR,
429 NFSERR_INVAL,
430 NFSERR_ROFS,
431 NFSERR_NAMETOL,
432 NFSERR_NOTEMPTY,
433 NFSERR_STALE,
434 NFSERR_BADHANDLE,
435 NFSERR_NOTSUPP,
436 NFSERR_SERVERFAULT,
437 0,
438 };
439
440 static const short nfsv3err_rename[] = {
441 NFSERR_IO,
442 NFSERR_NOENT,
443 NFSERR_IO,
444 NFSERR_ACCES,
445 NFSERR_EXIST,
446 NFSERR_XDEV,
447 NFSERR_NOTDIR,
448 NFSERR_ISDIR,
449 NFSERR_INVAL,
450 NFSERR_NOSPC,
451 NFSERR_ROFS,
452 NFSERR_MLINK,
453 NFSERR_NAMETOL,
454 NFSERR_NOTEMPTY,
455 NFSERR_DQUOT,
456 NFSERR_STALE,
457 NFSERR_BADHANDLE,
458 NFSERR_NOTSUPP,
459 NFSERR_SERVERFAULT,
460 0,
461 };
462
463 static const short nfsv3err_link[] = {
464 NFSERR_IO,
465 NFSERR_IO,
466 NFSERR_ACCES,
467 NFSERR_EXIST,
468 NFSERR_XDEV,
469 NFSERR_NOTDIR,
470 NFSERR_INVAL,
471 NFSERR_NOSPC,
472 NFSERR_ROFS,
473 NFSERR_MLINK,
474 NFSERR_NAMETOL,
475 NFSERR_DQUOT,
476 NFSERR_STALE,
477 NFSERR_BADHANDLE,
478 NFSERR_NOTSUPP,
479 NFSERR_SERVERFAULT,
480 0,
481 };
482
483 static const short nfsv3err_readdir[] = {
484 NFSERR_IO,
485 NFSERR_IO,
486 NFSERR_ACCES,
487 NFSERR_NOTDIR,
488 NFSERR_STALE,
489 NFSERR_BADHANDLE,
490 NFSERR_BAD_COOKIE,
491 NFSERR_TOOSMALL,
492 NFSERR_SERVERFAULT,
493 0,
494 };
495
496 static const short nfsv3err_readdirplus[] = {
497 NFSERR_IO,
498 NFSERR_IO,
499 NFSERR_ACCES,
500 NFSERR_NOTDIR,
501 NFSERR_STALE,
502 NFSERR_BADHANDLE,
503 NFSERR_BAD_COOKIE,
504 NFSERR_NOTSUPP,
505 NFSERR_TOOSMALL,
506 NFSERR_SERVERFAULT,
507 0,
508 };
509
510 static const short nfsv3err_fsstat[] = {
511 NFSERR_IO,
512 NFSERR_IO,
513 NFSERR_STALE,
514 NFSERR_BADHANDLE,
515 NFSERR_SERVERFAULT,
516 0,
517 };
518
519 static const short nfsv3err_fsinfo[] = {
520 NFSERR_STALE,
521 NFSERR_STALE,
522 NFSERR_BADHANDLE,
523 NFSERR_SERVERFAULT,
524 0,
525 };
526
527 static const short nfsv3err_pathconf[] = {
528 NFSERR_STALE,
529 NFSERR_STALE,
530 NFSERR_BADHANDLE,
531 NFSERR_SERVERFAULT,
532 0,
533 };
534
535 static const short nfsv3err_commit[] = {
536 NFSERR_IO,
537 NFSERR_IO,
538 NFSERR_STALE,
539 NFSERR_BADHANDLE,
540 NFSERR_SERVERFAULT,
541 0,
542 };
543
544 static const short * const nfsrv_v3errmap[] = {
545 nfsv3err_null,
546 nfsv3err_getattr,
547 nfsv3err_setattr,
548 nfsv3err_lookup,
549 nfsv3err_access,
550 nfsv3err_readlink,
551 nfsv3err_read,
552 nfsv3err_write,
553 nfsv3err_create,
554 nfsv3err_mkdir,
555 nfsv3err_symlink,
556 nfsv3err_mknod,
557 nfsv3err_remove,
558 nfsv3err_rmdir,
559 nfsv3err_rename,
560 nfsv3err_link,
561 nfsv3err_readdir,
562 nfsv3err_readdirplus,
563 nfsv3err_fsstat,
564 nfsv3err_fsinfo,
565 nfsv3err_pathconf,
566 nfsv3err_commit,
567 };
568
569 extern struct vfs_hooks nfs_export_hooks;
570 extern struct nfsrtt nfsrtt;
571 extern struct nfsnodehashhead *nfsnodehashtbl;
572 extern u_long nfsnodehash;
573
574 u_long nfsdirhashmask;
575
576 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
577
578 /*
579 * Create the header for an rpc request packet
580 * The hsiz is the size of the rest of the nfs request header.
581 * (just used to decide if a cluster is a good idea)
582 */
583 struct mbuf *
584 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
585 {
586 struct mbuf *mb;
587 char *bpos;
588
589 mb = m_get(M_WAIT, MT_DATA);
590 MCLAIM(mb, &nfs_mowner);
591 if (hsiz >= MINCLSIZE)
592 m_clget(mb, M_WAIT);
593 mb->m_len = 0;
594 bpos = mtod(mb, void *);
595
596 /* Finally, return values */
597 *bposp = bpos;
598 return (mb);
599 }
600
601 /*
602 * Build the RPC header and fill in the authorization info.
603 * The authorization string argument is only used when the credentials
604 * come from outside of the kernel.
605 * Returns the head of the mbuf list.
606 */
607 struct mbuf *
608 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
609 verf_str, mrest, mrest_len, mbp, xidp)
610 kauth_cred_t cr;
611 int nmflag;
612 int procid;
613 int auth_type;
614 int auth_len;
615 char *auth_str;
616 int verf_len;
617 char *verf_str;
618 struct mbuf *mrest;
619 int mrest_len;
620 struct mbuf **mbp;
621 u_int32_t *xidp;
622 {
623 struct mbuf *mb;
624 u_int32_t *tl;
625 char *bpos;
626 int i;
627 struct mbuf *mreq;
628 int siz, grpsiz, authsiz;
629
630 authsiz = nfsm_rndup(auth_len);
631 mb = m_gethdr(M_WAIT, MT_DATA);
632 MCLAIM(mb, &nfs_mowner);
633 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
634 m_clget(mb, M_WAIT);
635 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
636 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
637 } else {
638 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
639 }
640 mb->m_len = 0;
641 mreq = mb;
642 bpos = mtod(mb, void *);
643
644 /*
645 * First the RPC header.
646 */
647 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
648
649 *tl++ = *xidp = nfs_getxid();
650 *tl++ = rpc_call;
651 *tl++ = rpc_vers;
652 *tl++ = txdr_unsigned(NFS_PROG);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(NFS_VER3);
655 else
656 *tl++ = txdr_unsigned(NFS_VER2);
657 if (nmflag & NFSMNT_NFSV3)
658 *tl++ = txdr_unsigned(procid);
659 else
660 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
661
662 /*
663 * And then the authorization cred.
664 */
665 *tl++ = txdr_unsigned(auth_type);
666 *tl = txdr_unsigned(authsiz);
667 switch (auth_type) {
668 case RPCAUTH_UNIX:
669 nfsm_build(tl, u_int32_t *, auth_len);
670 *tl++ = 0; /* stamp ?? */
671 *tl++ = 0; /* NULL hostname */
672 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
673 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
674 grpsiz = (auth_len >> 2) - 5;
675 *tl++ = txdr_unsigned(grpsiz);
676 for (i = 0; i < grpsiz; i++)
677 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
678 break;
679 case RPCAUTH_KERB4:
680 siz = auth_len;
681 while (siz > 0) {
682 if (M_TRAILINGSPACE(mb) == 0) {
683 struct mbuf *mb2;
684 mb2 = m_get(M_WAIT, MT_DATA);
685 MCLAIM(mb2, &nfs_mowner);
686 if (siz >= MINCLSIZE)
687 m_clget(mb2, M_WAIT);
688 mb->m_next = mb2;
689 mb = mb2;
690 mb->m_len = 0;
691 bpos = mtod(mb, void *);
692 }
693 i = min(siz, M_TRAILINGSPACE(mb));
694 memcpy(bpos, auth_str, i);
695 mb->m_len += i;
696 auth_str += i;
697 bpos += i;
698 siz -= i;
699 }
700 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
701 for (i = 0; i < siz; i++)
702 *bpos++ = '\0';
703 mb->m_len += siz;
704 }
705 break;
706 };
707
708 /*
709 * And the verifier...
710 */
711 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
712 if (verf_str) {
713 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
714 *tl = txdr_unsigned(verf_len);
715 siz = verf_len;
716 while (siz > 0) {
717 if (M_TRAILINGSPACE(mb) == 0) {
718 struct mbuf *mb2;
719 mb2 = m_get(M_WAIT, MT_DATA);
720 MCLAIM(mb2, &nfs_mowner);
721 if (siz >= MINCLSIZE)
722 m_clget(mb2, M_WAIT);
723 mb->m_next = mb2;
724 mb = mb2;
725 mb->m_len = 0;
726 bpos = mtod(mb, void *);
727 }
728 i = min(siz, M_TRAILINGSPACE(mb));
729 memcpy(bpos, verf_str, i);
730 mb->m_len += i;
731 verf_str += i;
732 bpos += i;
733 siz -= i;
734 }
735 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
736 for (i = 0; i < siz; i++)
737 *bpos++ = '\0';
738 mb->m_len += siz;
739 }
740 } else {
741 *tl++ = txdr_unsigned(RPCAUTH_NULL);
742 *tl = 0;
743 }
744 mb->m_next = mrest;
745 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
746 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
747 *mbp = mb;
748 return (mreq);
749 }
750
751 /*
752 * copies mbuf chain to the uio scatter/gather list
753 */
754 int
755 nfsm_mbuftouio(mrep, uiop, siz, dpos)
756 struct mbuf **mrep;
757 struct uio *uiop;
758 int siz;
759 char **dpos;
760 {
761 char *mbufcp, *uiocp;
762 int xfer, left, len;
763 struct mbuf *mp;
764 long uiosiz, rem;
765 int error = 0;
766
767 mp = *mrep;
768 mbufcp = *dpos;
769 len = mtod(mp, char *) + mp->m_len - mbufcp;
770 rem = nfsm_rndup(siz)-siz;
771 while (siz > 0) {
772 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
773 return (EFBIG);
774 left = uiop->uio_iov->iov_len;
775 uiocp = uiop->uio_iov->iov_base;
776 if (left > siz)
777 left = siz;
778 uiosiz = left;
779 while (left > 0) {
780 while (len == 0) {
781 mp = mp->m_next;
782 if (mp == NULL)
783 return (EBADRPC);
784 mbufcp = mtod(mp, void *);
785 len = mp->m_len;
786 }
787 xfer = (left > len) ? len : left;
788 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
789 uiocp, xfer);
790 if (error) {
791 return error;
792 }
793 left -= xfer;
794 len -= xfer;
795 mbufcp += xfer;
796 uiocp += xfer;
797 uiop->uio_offset += xfer;
798 uiop->uio_resid -= xfer;
799 }
800 if (uiop->uio_iov->iov_len <= siz) {
801 uiop->uio_iovcnt--;
802 uiop->uio_iov++;
803 } else {
804 uiop->uio_iov->iov_base =
805 (char *)uiop->uio_iov->iov_base + uiosiz;
806 uiop->uio_iov->iov_len -= uiosiz;
807 }
808 siz -= uiosiz;
809 }
810 *dpos = mbufcp;
811 *mrep = mp;
812 if (rem > 0) {
813 if (len < rem)
814 error = nfs_adv(mrep, dpos, rem, len);
815 else
816 *dpos += rem;
817 }
818 return (error);
819 }
820
821 /*
822 * copies a uio scatter/gather list to an mbuf chain.
823 * NOTE: can ony handle iovcnt == 1
824 */
825 int
826 nfsm_uiotombuf(uiop, mq, siz, bpos)
827 struct uio *uiop;
828 struct mbuf **mq;
829 int siz;
830 char **bpos;
831 {
832 char *uiocp;
833 struct mbuf *mp, *mp2;
834 int xfer, left, mlen;
835 int uiosiz, clflg, rem;
836 char *cp;
837 int error;
838
839 #ifdef DIAGNOSTIC
840 if (uiop->uio_iovcnt != 1)
841 panic("nfsm_uiotombuf: iovcnt != 1");
842 #endif
843
844 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
845 clflg = 1;
846 else
847 clflg = 0;
848 rem = nfsm_rndup(siz)-siz;
849 mp = mp2 = *mq;
850 while (siz > 0) {
851 left = uiop->uio_iov->iov_len;
852 uiocp = uiop->uio_iov->iov_base;
853 if (left > siz)
854 left = siz;
855 uiosiz = left;
856 while (left > 0) {
857 mlen = M_TRAILINGSPACE(mp);
858 if (mlen == 0) {
859 mp = m_get(M_WAIT, MT_DATA);
860 MCLAIM(mp, &nfs_mowner);
861 if (clflg)
862 m_clget(mp, M_WAIT);
863 mp->m_len = 0;
864 mp2->m_next = mp;
865 mp2 = mp;
866 mlen = M_TRAILINGSPACE(mp);
867 }
868 xfer = (left > mlen) ? mlen : left;
869 cp = mtod(mp, char *) + mp->m_len;
870 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
871 xfer);
872 if (error) {
873 /* XXX */
874 }
875 mp->m_len += xfer;
876 left -= xfer;
877 uiocp += xfer;
878 uiop->uio_offset += xfer;
879 uiop->uio_resid -= xfer;
880 }
881 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
882 uiosiz;
883 uiop->uio_iov->iov_len -= uiosiz;
884 siz -= uiosiz;
885 }
886 if (rem > 0) {
887 if (rem > M_TRAILINGSPACE(mp)) {
888 mp = m_get(M_WAIT, MT_DATA);
889 MCLAIM(mp, &nfs_mowner);
890 mp->m_len = 0;
891 mp2->m_next = mp;
892 }
893 cp = mtod(mp, char *) + mp->m_len;
894 for (left = 0; left < rem; left++)
895 *cp++ = '\0';
896 mp->m_len += rem;
897 *bpos = cp;
898 } else
899 *bpos = mtod(mp, char *) + mp->m_len;
900 *mq = mp;
901 return (0);
902 }
903
904 /*
905 * Get at least "siz" bytes of correctly aligned data.
906 * When called the mbuf pointers are not necessarily correct,
907 * dsosp points to what ought to be in m_data and left contains
908 * what ought to be in m_len.
909 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
910 * cases. (The macros use the vars. dpos and dpos2)
911 */
912 int
913 nfsm_disct(mdp, dposp, siz, left, cp2)
914 struct mbuf **mdp;
915 char **dposp;
916 int siz;
917 int left;
918 char **cp2;
919 {
920 struct mbuf *m1, *m2;
921 struct mbuf *havebuf = NULL;
922 char *src = *dposp;
923 char *dst;
924 int len;
925
926 #ifdef DEBUG
927 if (left < 0)
928 panic("nfsm_disct: left < 0");
929 #endif
930 m1 = *mdp;
931 /*
932 * Skip through the mbuf chain looking for an mbuf with
933 * some data. If the first mbuf found has enough data
934 * and it is correctly aligned return it.
935 */
936 while (left == 0) {
937 havebuf = m1;
938 *mdp = m1 = m1->m_next;
939 if (m1 == NULL)
940 return (EBADRPC);
941 src = mtod(m1, void *);
942 left = m1->m_len;
943 /*
944 * If we start a new mbuf and it is big enough
945 * and correctly aligned just return it, don't
946 * do any pull up.
947 */
948 if (left >= siz && nfsm_aligned(src)) {
949 *cp2 = src;
950 *dposp = src + siz;
951 return (0);
952 }
953 }
954 if ((m1->m_flags & M_EXT) != 0) {
955 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
956 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
957 /*
958 * If the first mbuf with data has external data
959 * and there is a previous mbuf with some trailing
960 * space, use it to move the data into.
961 */
962 m2 = m1;
963 *mdp = m1 = havebuf;
964 *cp2 = mtod(m1, char *) + m1->m_len;
965 } else if (havebuf) {
966 /*
967 * If the first mbuf has a external data
968 * and there is no previous empty mbuf
969 * allocate a new mbuf and move the external
970 * data to the new mbuf. Also make the first
971 * mbuf look empty.
972 */
973 m2 = m1;
974 *mdp = m1 = m_get(M_WAIT, MT_DATA);
975 MCLAIM(m1, m2->m_owner);
976 if ((m2->m_flags & M_PKTHDR) != 0) {
977 /* XXX MOVE */
978 M_COPY_PKTHDR(m1, m2);
979 m_tag_delete_chain(m2, NULL);
980 m2->m_flags &= ~M_PKTHDR;
981 }
982 if (havebuf) {
983 havebuf->m_next = m1;
984 }
985 m1->m_next = m2;
986 MRESETDATA(m1);
987 m1->m_len = 0;
988 m2->m_data = src;
989 m2->m_len = left;
990 *cp2 = mtod(m1, char *);
991 } else {
992 struct mbuf **nextp = &m1->m_next;
993
994 m1->m_len -= left;
995 do {
996 m2 = m_get(M_WAIT, MT_DATA);
997 MCLAIM(m2, m1->m_owner);
998 if (left >= MINCLSIZE) {
999 MCLGET(m2, M_WAIT);
1000 }
1001 m2->m_next = *nextp;
1002 *nextp = m2;
1003 nextp = &m2->m_next;
1004 len = (m2->m_flags & M_EXT) != 0 ?
1005 MCLBYTES : MLEN;
1006 if (len > left) {
1007 len = left;
1008 }
1009 memcpy(mtod(m2, char *), src, len);
1010 m2->m_len = len;
1011 src += len;
1012 left -= len;
1013 } while (left > 0);
1014 *mdp = m1 = m1->m_next;
1015 m2 = m1->m_next;
1016 *cp2 = mtod(m1, char *);
1017 }
1018 } else {
1019 /*
1020 * If the first mbuf has no external data
1021 * move the data to the front of the mbuf.
1022 */
1023 MRESETDATA(m1);
1024 dst = mtod(m1, char *);
1025 if (dst != src) {
1026 memmove(dst, src, left);
1027 }
1028 m1->m_len = left;
1029 m2 = m1->m_next;
1030 *cp2 = m1->m_data;
1031 }
1032 *dposp = *cp2 + siz;
1033 /*
1034 * Loop through mbufs pulling data up into first mbuf until
1035 * the first mbuf is full or there is no more data to
1036 * pullup.
1037 */
1038 dst = mtod(m1, char *) + m1->m_len;
1039 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1040 if ((len = min(len, m2->m_len)) != 0) {
1041 memcpy(dst, mtod(m2, char *), len);
1042 }
1043 m1->m_len += len;
1044 dst += len;
1045 m2->m_data += len;
1046 m2->m_len -= len;
1047 m2 = m2->m_next;
1048 }
1049 if (m1->m_len < siz)
1050 return (EBADRPC);
1051 return (0);
1052 }
1053
1054 /*
1055 * Advance the position in the mbuf chain.
1056 */
1057 int
1058 nfs_adv(mdp, dposp, offs, left)
1059 struct mbuf **mdp;
1060 char **dposp;
1061 int offs;
1062 int left;
1063 {
1064 struct mbuf *m;
1065 int s;
1066
1067 m = *mdp;
1068 s = left;
1069 while (s < offs) {
1070 offs -= s;
1071 m = m->m_next;
1072 if (m == NULL)
1073 return (EBADRPC);
1074 s = m->m_len;
1075 }
1076 *mdp = m;
1077 *dposp = mtod(m, char *) + offs;
1078 return (0);
1079 }
1080
1081 /*
1082 * Copy a string into mbufs for the hard cases...
1083 */
1084 int
1085 nfsm_strtmbuf(mb, bpos, cp, siz)
1086 struct mbuf **mb;
1087 char **bpos;
1088 const char *cp;
1089 long siz;
1090 {
1091 struct mbuf *m1 = NULL, *m2;
1092 long left, xfer, len, tlen;
1093 u_int32_t *tl;
1094 int putsize;
1095
1096 putsize = 1;
1097 m2 = *mb;
1098 left = M_TRAILINGSPACE(m2);
1099 if (left > 0) {
1100 tl = ((u_int32_t *)(*bpos));
1101 *tl++ = txdr_unsigned(siz);
1102 putsize = 0;
1103 left -= NFSX_UNSIGNED;
1104 m2->m_len += NFSX_UNSIGNED;
1105 if (left > 0) {
1106 memcpy((void *) tl, cp, left);
1107 siz -= left;
1108 cp += left;
1109 m2->m_len += left;
1110 left = 0;
1111 }
1112 }
1113 /* Loop around adding mbufs */
1114 while (siz > 0) {
1115 m1 = m_get(M_WAIT, MT_DATA);
1116 MCLAIM(m1, &nfs_mowner);
1117 if (siz > MLEN)
1118 m_clget(m1, M_WAIT);
1119 m1->m_len = NFSMSIZ(m1);
1120 m2->m_next = m1;
1121 m2 = m1;
1122 tl = mtod(m1, u_int32_t *);
1123 tlen = 0;
1124 if (putsize) {
1125 *tl++ = txdr_unsigned(siz);
1126 m1->m_len -= NFSX_UNSIGNED;
1127 tlen = NFSX_UNSIGNED;
1128 putsize = 0;
1129 }
1130 if (siz < m1->m_len) {
1131 len = nfsm_rndup(siz);
1132 xfer = siz;
1133 if (xfer < len)
1134 *(tl+(xfer>>2)) = 0;
1135 } else {
1136 xfer = len = m1->m_len;
1137 }
1138 memcpy((void *) tl, cp, xfer);
1139 m1->m_len = len+tlen;
1140 siz -= xfer;
1141 cp += xfer;
1142 }
1143 *mb = m1;
1144 *bpos = mtod(m1, char *) + m1->m_len;
1145 return (0);
1146 }
1147
1148 /*
1149 * Directory caching routines. They work as follows:
1150 * - a cache is maintained per VDIR nfsnode.
1151 * - for each offset cookie that is exported to userspace, and can
1152 * thus be thrown back at us as an offset to VOP_READDIR, store
1153 * information in the cache.
1154 * - cached are:
1155 * - cookie itself
1156 * - blocknumber (essentially just a search key in the buffer cache)
1157 * - entry number in block.
1158 * - offset cookie of block in which this entry is stored
1159 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1160 * - entries are looked up in a hash table
1161 * - also maintained is an LRU list of entries, used to determine
1162 * which ones to delete if the cache grows too large.
1163 * - if 32 <-> 64 translation mode is requested for a filesystem,
1164 * the cache also functions as a translation table
1165 * - in the translation case, invalidating the cache does not mean
1166 * flushing it, but just marking entries as invalid, except for
1167 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1168 * still be able to use the cache as a translation table.
1169 * - 32 bit cookies are uniquely created by combining the hash table
1170 * entry value, and one generation count per hash table entry,
1171 * incremented each time an entry is appended to the chain.
1172 * - the cache is invalidated each time a direcory is modified
1173 * - sanity checks are also done; if an entry in a block turns
1174 * out not to have a matching cookie, the cache is invalidated
1175 * and a new block starting from the wanted offset is fetched from
1176 * the server.
1177 * - directory entries as read from the server are extended to contain
1178 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1179 * the cache and exporting them to userspace through the cookie
1180 * argument to VOP_READDIR.
1181 */
1182
1183 u_long
1184 nfs_dirhash(off)
1185 off_t off;
1186 {
1187 int i;
1188 char *cp = (char *)&off;
1189 u_long sum = 0L;
1190
1191 for (i = 0 ; i < sizeof (off); i++)
1192 sum += *cp++;
1193
1194 return sum;
1195 }
1196
1197 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1198 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1199 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1200 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1201
1202 void
1203 nfs_initdircache(vp)
1204 struct vnode *vp;
1205 {
1206 struct nfsnode *np = VTONFS(vp);
1207 struct nfsdirhashhead *dircache;
1208
1209 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1210 &nfsdirhashmask);
1211
1212 NFSDC_LOCK(np);
1213 if (np->n_dircache == NULL) {
1214 np->n_dircachesize = 0;
1215 np->n_dircache = dircache;
1216 dircache = NULL;
1217 TAILQ_INIT(&np->n_dirchain);
1218 }
1219 NFSDC_UNLOCK(np);
1220 if (dircache)
1221 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1222 }
1223
1224 void
1225 nfs_initdirxlatecookie(vp)
1226 struct vnode *vp;
1227 {
1228 struct nfsnode *np = VTONFS(vp);
1229 unsigned *dirgens;
1230
1231 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1232
1233 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1234 NFSDC_LOCK(np);
1235 if (np->n_dirgens == NULL) {
1236 np->n_dirgens = dirgens;
1237 dirgens = NULL;
1238 }
1239 NFSDC_UNLOCK(np);
1240 if (dirgens)
1241 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1242 }
1243
1244 static const struct nfsdircache dzero;
1245
1246 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1247 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1248 struct nfsdircache *));
1249
1250 static void
1251 nfs_unlinkdircache(np, ndp)
1252 struct nfsnode *np;
1253 struct nfsdircache *ndp;
1254 {
1255
1256 NFSDC_ASSERT_LOCKED(np);
1257 KASSERT(ndp != &dzero);
1258
1259 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1260 return;
1261
1262 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1263 LIST_REMOVE(ndp, dc_hash);
1264 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1265
1266 nfs_putdircache_unlocked(np, ndp);
1267 }
1268
1269 void
1270 nfs_putdircache(np, ndp)
1271 struct nfsnode *np;
1272 struct nfsdircache *ndp;
1273 {
1274 int ref;
1275
1276 if (ndp == &dzero)
1277 return;
1278
1279 KASSERT(ndp->dc_refcnt > 0);
1280 NFSDC_LOCK(np);
1281 ref = --ndp->dc_refcnt;
1282 NFSDC_UNLOCK(np);
1283
1284 if (ref == 0)
1285 kmem_free(ndp, sizeof(*ndp));
1286 }
1287
1288 static void
1289 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1290 {
1291 int ref;
1292
1293 NFSDC_ASSERT_LOCKED(np);
1294
1295 if (ndp == &dzero)
1296 return;
1297
1298 KASSERT(ndp->dc_refcnt > 0);
1299 ref = --ndp->dc_refcnt;
1300 if (ref == 0)
1301 kmem_free(ndp, sizeof(*ndp));
1302 }
1303
1304 struct nfsdircache *
1305 nfs_searchdircache(vp, off, do32, hashent)
1306 struct vnode *vp;
1307 off_t off;
1308 int do32;
1309 int *hashent;
1310 {
1311 struct nfsdirhashhead *ndhp;
1312 struct nfsdircache *ndp = NULL;
1313 struct nfsnode *np = VTONFS(vp);
1314 unsigned ent;
1315
1316 /*
1317 * Zero is always a valid cookie.
1318 */
1319 if (off == 0)
1320 /* XXXUNCONST */
1321 return (struct nfsdircache *)__UNCONST(&dzero);
1322
1323 if (!np->n_dircache)
1324 return NULL;
1325
1326 /*
1327 * We use a 32bit cookie as search key, directly reconstruct
1328 * the hashentry. Else use the hashfunction.
1329 */
1330 if (do32) {
1331 ent = (u_int32_t)off >> 24;
1332 if (ent >= NFS_DIRHASHSIZ)
1333 return NULL;
1334 ndhp = &np->n_dircache[ent];
1335 } else {
1336 ndhp = NFSDIRHASH(np, off);
1337 }
1338
1339 if (hashent)
1340 *hashent = (int)(ndhp - np->n_dircache);
1341
1342 NFSDC_LOCK(np);
1343 if (do32) {
1344 LIST_FOREACH(ndp, ndhp, dc_hash) {
1345 if (ndp->dc_cookie32 == (u_int32_t)off) {
1346 /*
1347 * An invalidated entry will become the
1348 * start of a new block fetched from
1349 * the server.
1350 */
1351 if (ndp->dc_flags & NFSDC_INVALID) {
1352 ndp->dc_blkcookie = ndp->dc_cookie;
1353 ndp->dc_entry = 0;
1354 ndp->dc_flags &= ~NFSDC_INVALID;
1355 }
1356 break;
1357 }
1358 }
1359 } else {
1360 LIST_FOREACH(ndp, ndhp, dc_hash) {
1361 if (ndp->dc_cookie == off)
1362 break;
1363 }
1364 }
1365 if (ndp != NULL)
1366 ndp->dc_refcnt++;
1367 NFSDC_UNLOCK(np);
1368 return ndp;
1369 }
1370
1371
1372 struct nfsdircache *
1373 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1374 daddr_t blkno)
1375 {
1376 struct nfsnode *np = VTONFS(vp);
1377 struct nfsdirhashhead *ndhp;
1378 struct nfsdircache *ndp = NULL;
1379 struct nfsdircache *newndp = NULL;
1380 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1381 int hashent = 0, gen, overwrite; /* XXX: GCC */
1382
1383 /*
1384 * XXX refuse entries for offset 0. amd(8) erroneously sets
1385 * cookie 0 for the '.' entry, making this necessary. This
1386 * isn't so bad, as 0 is a special case anyway.
1387 */
1388 if (off == 0)
1389 /* XXXUNCONST */
1390 return (struct nfsdircache *)__UNCONST(&dzero);
1391
1392 if (!np->n_dircache)
1393 /*
1394 * XXX would like to do this in nfs_nget but vtype
1395 * isn't known at that time.
1396 */
1397 nfs_initdircache(vp);
1398
1399 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1400 nfs_initdirxlatecookie(vp);
1401
1402 retry:
1403 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1404
1405 NFSDC_LOCK(np);
1406 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1407 /*
1408 * Overwriting an old entry. Check if it's the same.
1409 * If so, just return. If not, remove the old entry.
1410 */
1411 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1412 goto done;
1413 nfs_unlinkdircache(np, ndp);
1414 nfs_putdircache_unlocked(np, ndp);
1415 ndp = NULL;
1416 }
1417
1418 ndhp = &np->n_dircache[hashent];
1419
1420 if (!ndp) {
1421 if (newndp == NULL) {
1422 NFSDC_UNLOCK(np);
1423 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1424 newndp->dc_refcnt = 1;
1425 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1426 goto retry;
1427 }
1428 ndp = newndp;
1429 newndp = NULL;
1430 overwrite = 0;
1431 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1432 /*
1433 * We're allocating a new entry, so bump the
1434 * generation number.
1435 */
1436 KASSERT(np->n_dirgens);
1437 gen = ++np->n_dirgens[hashent];
1438 if (gen == 0) {
1439 np->n_dirgens[hashent]++;
1440 gen++;
1441 }
1442 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1443 }
1444 } else
1445 overwrite = 1;
1446
1447 ndp->dc_cookie = off;
1448 ndp->dc_blkcookie = blkoff;
1449 ndp->dc_entry = en;
1450 ndp->dc_flags = 0;
1451
1452 if (overwrite)
1453 goto done;
1454
1455 /*
1456 * If the maximum directory cookie cache size has been reached
1457 * for this node, take one off the front. The idea is that
1458 * directories are typically read front-to-back once, so that
1459 * the oldest entries can be thrown away without much performance
1460 * loss.
1461 */
1462 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1463 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1464 } else
1465 np->n_dircachesize++;
1466
1467 KASSERT(ndp->dc_refcnt == 1);
1468 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1469 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1470 ndp->dc_refcnt++;
1471 done:
1472 KASSERT(ndp->dc_refcnt > 0);
1473 NFSDC_UNLOCK(np);
1474 if (newndp)
1475 nfs_putdircache(np, newndp);
1476 return ndp;
1477 }
1478
1479 void
1480 nfs_invaldircache(vp, flags)
1481 struct vnode *vp;
1482 int flags;
1483 {
1484 struct nfsnode *np = VTONFS(vp);
1485 struct nfsdircache *ndp = NULL;
1486 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1487 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1488
1489 #ifdef DIAGNOSTIC
1490 if (vp->v_type != VDIR)
1491 panic("nfs: invaldircache: not dir");
1492 #endif
1493
1494 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1495 np->n_flag &= ~NEOFVALID;
1496
1497 if (!np->n_dircache)
1498 return;
1499
1500 NFSDC_LOCK(np);
1501 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1502 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1503 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1504 nfs_unlinkdircache(np, ndp);
1505 }
1506 np->n_dircachesize = 0;
1507 if (forcefree && np->n_dirgens) {
1508 kmem_free(np->n_dirgens,
1509 NFS_DIRHASHSIZ * sizeof(unsigned));
1510 np->n_dirgens = NULL;
1511 }
1512 } else {
1513 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1514 ndp->dc_flags |= NFSDC_INVALID;
1515 }
1516
1517 NFSDC_UNLOCK(np);
1518 }
1519
1520 /*
1521 * Called once before VFS init to initialize shared and
1522 * server-specific data structures.
1523 */
1524 static int
1525 nfs_init0(void)
1526 {
1527
1528 nfsrtt.pos = 0;
1529 rpc_vers = txdr_unsigned(RPC_VER2);
1530 rpc_call = txdr_unsigned(RPC_CALL);
1531 rpc_reply = txdr_unsigned(RPC_REPLY);
1532 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1533 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1534 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1535 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1536 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1537 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1538 nfs_prog = txdr_unsigned(NFS_PROG);
1539 nfs_true = txdr_unsigned(true);
1540 nfs_false = txdr_unsigned(false);
1541 nfs_xdrneg1 = txdr_unsigned(-1);
1542 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1543 if (nfs_ticks < 1)
1544 nfs_ticks = 1;
1545 nfs_xid = arc4random();
1546 #ifdef NFSSERVER
1547 vfs_hooks_attach(&nfs_export_hooks);
1548 nfsrv_init(0); /* Init server data structures */
1549 nfsrv_initcache(); /* Init the server request cache */
1550 {
1551 extern krwlock_t netexport_lock; /* XXX */
1552 rw_init(&netexport_lock);
1553 }
1554 #endif /* NFSSERVER */
1555
1556 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1557 nfsdreq_init();
1558 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1559
1560 /*
1561 * Initialize reply list and start timer
1562 */
1563 TAILQ_INIT(&nfs_reqq);
1564 nfs_timer_init();
1565 MOWNER_ATTACH(&nfs_mowner);
1566
1567 #ifdef NFS
1568 /* Initialize the kqueue structures */
1569 nfs_kqinit();
1570 /* Initialize the iod structures */
1571 nfs_iodinit();
1572 #endif
1573
1574 return 0;
1575 }
1576
1577 void
1578 nfs_init(void)
1579 {
1580 static ONCE_DECL(nfs_init_once);
1581
1582 RUN_ONCE(&nfs_init_once, nfs_init0);
1583 }
1584
1585 #ifdef NFS
1586 /*
1587 * Called once at VFS init to initialize client-specific data structures.
1588 */
1589 void
1590 nfs_vfs_init()
1591 {
1592
1593 /* Initialize NFS server / client shared data. */
1594 nfs_init();
1595
1596 nfs_node_init();
1597 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1598 }
1599
1600 void
1601 nfs_vfs_reinit()
1602 {
1603
1604 nfs_node_reinit();
1605 }
1606
1607 void
1608 nfs_vfs_done()
1609 {
1610
1611 nfs_node_done();
1612 }
1613
1614 /*
1615 * Attribute cache routines.
1616 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1617 * that are on the mbuf list
1618 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1619 * error otherwise
1620 */
1621
1622 /*
1623 * Load the attribute cache (that lives in the nfsnode entry) with
1624 * the values on the mbuf list and
1625 * Iff vap not NULL
1626 * copy the attributes to *vaper
1627 */
1628 int
1629 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1630 struct vnode **vpp;
1631 struct mbuf **mdp;
1632 char **dposp;
1633 struct vattr *vaper;
1634 int flags;
1635 {
1636 int32_t t1;
1637 char *cp2;
1638 int error = 0;
1639 struct mbuf *md;
1640 int v3 = NFS_ISV3(*vpp);
1641
1642 md = *mdp;
1643 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1644 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1645 if (error)
1646 return (error);
1647 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1648 }
1649
1650 int
1651 nfs_loadattrcache(vpp, fp, vaper, flags)
1652 struct vnode **vpp;
1653 struct nfs_fattr *fp;
1654 struct vattr *vaper;
1655 int flags;
1656 {
1657 struct vnode *vp = *vpp;
1658 struct vattr *vap;
1659 int v3 = NFS_ISV3(vp);
1660 enum vtype vtyp;
1661 u_short vmode;
1662 struct timespec mtime;
1663 struct timespec ctime;
1664 int32_t rdev;
1665 struct nfsnode *np;
1666 extern int (**spec_nfsv2nodeop_p) __P((void *));
1667 uid_t uid;
1668 gid_t gid;
1669
1670 if (v3) {
1671 vtyp = nfsv3tov_type(fp->fa_type);
1672 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1673 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1674 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1675 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1676 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1677 } else {
1678 vtyp = nfsv2tov_type(fp->fa_type);
1679 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1680 if (vtyp == VNON || vtyp == VREG)
1681 vtyp = IFTOVT(vmode);
1682 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1683 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1684 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1685 fp->fa2_ctime.nfsv2_sec);
1686 ctime.tv_nsec = 0;
1687
1688 /*
1689 * Really ugly NFSv2 kludge.
1690 */
1691 if (vtyp == VCHR && rdev == 0xffffffff)
1692 vtyp = VFIFO;
1693 }
1694
1695 vmode &= ALLPERMS;
1696
1697 /*
1698 * If v_type == VNON it is a new node, so fill in the v_type,
1699 * n_mtime fields. Check to see if it represents a special
1700 * device, and if so, check for a possible alias. Once the
1701 * correct vnode has been obtained, fill in the rest of the
1702 * information.
1703 */
1704 np = VTONFS(vp);
1705 if (vp->v_type == VNON) {
1706 vp->v_type = vtyp;
1707 if (vp->v_type == VFIFO) {
1708 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1709 vp->v_op = fifo_nfsv2nodeop_p;
1710 } else if (vp->v_type == VREG) {
1711 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1712 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1713 vp->v_op = spec_nfsv2nodeop_p;
1714 spec_node_init(vp, (dev_t)rdev);
1715 }
1716 np->n_mtime = mtime;
1717 }
1718 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1719 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1720 vap = np->n_vattr;
1721
1722 /*
1723 * Invalidate access cache if uid, gid, mode or ctime changed.
1724 */
1725 if (np->n_accstamp != -1 &&
1726 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1727 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1728 np->n_accstamp = -1;
1729
1730 vap->va_type = vtyp;
1731 vap->va_mode = vmode;
1732 vap->va_rdev = (dev_t)rdev;
1733 vap->va_mtime = mtime;
1734 vap->va_ctime = ctime;
1735 vap->va_birthtime.tv_sec = VNOVAL;
1736 vap->va_birthtime.tv_nsec = VNOVAL;
1737 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1738 switch (vtyp) {
1739 case VDIR:
1740 vap->va_blocksize = NFS_DIRFRAGSIZ;
1741 break;
1742 case VBLK:
1743 vap->va_blocksize = BLKDEV_IOSIZE;
1744 break;
1745 case VCHR:
1746 vap->va_blocksize = MAXBSIZE;
1747 break;
1748 default:
1749 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1750 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1751 break;
1752 }
1753 if (v3) {
1754 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1755 vap->va_uid = uid;
1756 vap->va_gid = gid;
1757 vap->va_size = fxdr_hyper(&fp->fa3_size);
1758 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1759 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1760 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1761 vap->va_flags = 0;
1762 vap->va_filerev = 0;
1763 } else {
1764 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1765 vap->va_uid = uid;
1766 vap->va_gid = gid;
1767 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1768 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1769 * NFS_FABLKSIZE;
1770 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1771 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1772 vap->va_flags = 0;
1773 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1774 vap->va_filerev = 0;
1775 }
1776 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1777 return EFBIG;
1778 }
1779 if (vap->va_size != np->n_size) {
1780 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1781 vap->va_size = np->n_size;
1782 } else {
1783 np->n_size = vap->va_size;
1784 if (vap->va_type == VREG) {
1785 /*
1786 * we can't free pages if NAC_NOTRUNC because
1787 * the pages can be owned by ourselves.
1788 */
1789 if (flags & NAC_NOTRUNC) {
1790 np->n_flag |= NTRUNCDELAYED;
1791 } else {
1792 genfs_node_wrlock(vp);
1793 mutex_enter(&vp->v_interlock);
1794 (void)VOP_PUTPAGES(vp, 0,
1795 0, PGO_SYNCIO | PGO_CLEANIT |
1796 PGO_FREE | PGO_ALLPAGES);
1797 uvm_vnp_setsize(vp, np->n_size);
1798 genfs_node_unlock(vp);
1799 }
1800 }
1801 }
1802 }
1803 np->n_attrstamp = time_second;
1804 if (vaper != NULL) {
1805 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1806 if (np->n_flag & NCHG) {
1807 if (np->n_flag & NACC)
1808 vaper->va_atime = np->n_atim;
1809 if (np->n_flag & NUPD)
1810 vaper->va_mtime = np->n_mtim;
1811 }
1812 }
1813 return (0);
1814 }
1815
1816 /*
1817 * Check the time stamp
1818 * If the cache is valid, copy contents to *vap and return 0
1819 * otherwise return an error
1820 */
1821 int
1822 nfs_getattrcache(vp, vaper)
1823 struct vnode *vp;
1824 struct vattr *vaper;
1825 {
1826 struct nfsnode *np = VTONFS(vp);
1827 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1828 struct vattr *vap;
1829
1830 if (np->n_attrstamp == 0 ||
1831 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1832 nfsstats.attrcache_misses++;
1833 return (ENOENT);
1834 }
1835 nfsstats.attrcache_hits++;
1836 vap = np->n_vattr;
1837 if (vap->va_size != np->n_size) {
1838 if (vap->va_type == VREG) {
1839 if ((np->n_flag & NMODIFIED) != 0 &&
1840 vap->va_size < np->n_size) {
1841 vap->va_size = np->n_size;
1842 } else {
1843 np->n_size = vap->va_size;
1844 }
1845 genfs_node_wrlock(vp);
1846 uvm_vnp_setsize(vp, np->n_size);
1847 genfs_node_unlock(vp);
1848 } else
1849 np->n_size = vap->va_size;
1850 }
1851 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1852 if (np->n_flag & NCHG) {
1853 if (np->n_flag & NACC)
1854 vaper->va_atime = np->n_atim;
1855 if (np->n_flag & NUPD)
1856 vaper->va_mtime = np->n_mtim;
1857 }
1858 return (0);
1859 }
1860
1861 void
1862 nfs_delayedtruncate(vp)
1863 struct vnode *vp;
1864 {
1865 struct nfsnode *np = VTONFS(vp);
1866
1867 if (np->n_flag & NTRUNCDELAYED) {
1868 np->n_flag &= ~NTRUNCDELAYED;
1869 genfs_node_wrlock(vp);
1870 mutex_enter(&vp->v_interlock);
1871 (void)VOP_PUTPAGES(vp, 0,
1872 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1873 uvm_vnp_setsize(vp, np->n_size);
1874 genfs_node_unlock(vp);
1875 }
1876 }
1877
1878 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1879 #define NFS_WCCKLUDGE(nmp, now) \
1880 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1881 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1882
1883 /*
1884 * nfs_check_wccdata: check inaccurate wcc_data
1885 *
1886 * => return non-zero if we shouldn't trust the wcc_data.
1887 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1888 */
1889
1890 int
1891 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1892 struct timespec *mtime, bool docheck)
1893 {
1894 int error = 0;
1895
1896 #if !defined(NFS_V2_ONLY)
1897
1898 if (docheck) {
1899 struct vnode *vp = NFSTOV(np);
1900 struct nfsmount *nmp;
1901 long now = time_second;
1902 const struct timespec *omtime = &np->n_vattr->va_mtime;
1903 const struct timespec *octime = &np->n_vattr->va_ctime;
1904 const char *reason = NULL; /* XXX: gcc */
1905
1906 if (timespeccmp(omtime, mtime, <=)) {
1907 reason = "mtime";
1908 error = EINVAL;
1909 }
1910
1911 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1912 reason = "ctime";
1913 error = EINVAL;
1914 }
1915
1916 nmp = VFSTONFS(vp->v_mount);
1917 if (error) {
1918
1919 /*
1920 * despite of the fact that we've updated the file,
1921 * timestamps of the file were not updated as we
1922 * expected.
1923 * it means that the server has incompatible
1924 * semantics of timestamps or (more likely)
1925 * the server time is not precise enough to
1926 * track each modifications.
1927 * in that case, we disable wcc processing.
1928 *
1929 * yes, strictly speaking, we should disable all
1930 * caching. it's a compromise.
1931 */
1932
1933 mutex_enter(&nmp->nm_lock);
1934 if (!NFS_WCCKLUDGE(nmp, now)) {
1935 printf("%s: inaccurate wcc data (%s) detected,"
1936 " disabling wcc"
1937 " (ctime %u.%09u %u.%09u,"
1938 " mtime %u.%09u %u.%09u)\n",
1939 vp->v_mount->mnt_stat.f_mntfromname,
1940 reason,
1941 (unsigned int)octime->tv_sec,
1942 (unsigned int)octime->tv_nsec,
1943 (unsigned int)ctime->tv_sec,
1944 (unsigned int)ctime->tv_nsec,
1945 (unsigned int)omtime->tv_sec,
1946 (unsigned int)omtime->tv_nsec,
1947 (unsigned int)mtime->tv_sec,
1948 (unsigned int)mtime->tv_nsec);
1949 }
1950 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1951 nmp->nm_wcckludgetime = now;
1952 mutex_exit(&nmp->nm_lock);
1953 } else if (NFS_WCCKLUDGE(nmp, now)) {
1954 error = EPERM; /* XXX */
1955 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1956 mutex_enter(&nmp->nm_lock);
1957 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1958 printf("%s: re-enabling wcc\n",
1959 vp->v_mount->mnt_stat.f_mntfromname);
1960 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1961 }
1962 mutex_exit(&nmp->nm_lock);
1963 }
1964 }
1965
1966 #endif /* !defined(NFS_V2_ONLY) */
1967
1968 return error;
1969 }
1970
1971 /*
1972 * Heuristic to see if the server XDR encodes directory cookies or not.
1973 * it is not supposed to, but a lot of servers may do this. Also, since
1974 * most/all servers will implement V2 as well, it is expected that they
1975 * may return just 32 bits worth of cookie information, so we need to
1976 * find out in which 32 bits this information is available. We do this
1977 * to avoid trouble with emulated binaries that can't handle 64 bit
1978 * directory offsets.
1979 */
1980
1981 void
1982 nfs_cookieheuristic(vp, flagp, l, cred)
1983 struct vnode *vp;
1984 int *flagp;
1985 struct lwp *l;
1986 kauth_cred_t cred;
1987 {
1988 struct uio auio;
1989 struct iovec aiov;
1990 char *tbuf, *cp;
1991 struct dirent *dp;
1992 off_t *cookies = NULL, *cop;
1993 int error, eof, nc, len;
1994
1995 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1996
1997 aiov.iov_base = tbuf;
1998 aiov.iov_len = NFS_DIRFRAGSIZ;
1999 auio.uio_iov = &aiov;
2000 auio.uio_iovcnt = 1;
2001 auio.uio_rw = UIO_READ;
2002 auio.uio_resid = NFS_DIRFRAGSIZ;
2003 auio.uio_offset = 0;
2004 UIO_SETUP_SYSSPACE(&auio);
2005
2006 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2007
2008 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2009 if (error || len == 0) {
2010 FREE(tbuf, M_TEMP);
2011 if (cookies)
2012 free(cookies, M_TEMP);
2013 return;
2014 }
2015
2016 /*
2017 * Find the first valid entry and look at its offset cookie.
2018 */
2019
2020 cp = tbuf;
2021 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2022 dp = (struct dirent *)cp;
2023 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2024 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2025 *flagp |= NFSMNT_SWAPCOOKIE;
2026 nfs_invaldircache(vp, 0);
2027 nfs_vinvalbuf(vp, 0, cred, l, 1);
2028 }
2029 break;
2030 }
2031 cop++;
2032 cp += dp->d_reclen;
2033 }
2034
2035 FREE(tbuf, M_TEMP);
2036 free(cookies, M_TEMP);
2037 }
2038 #endif /* NFS */
2039
2040 #ifdef NFSSERVER
2041 /*
2042 * Set up nameidata for a lookup() call and do it.
2043 *
2044 * If pubflag is set, this call is done for a lookup operation on the
2045 * public filehandle. In that case we allow crossing mountpoints and
2046 * absolute pathnames. However, the caller is expected to check that
2047 * the lookup result is within the public fs, and deny access if
2048 * it is not.
2049 */
2050 int
2051 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2052 struct nameidata *ndp;
2053 nfsrvfh_t *nsfh;
2054 uint32_t len;
2055 struct nfssvc_sock *slp;
2056 struct mbuf *nam;
2057 struct mbuf **mdp;
2058 char **dposp;
2059 struct vnode **retdirp;
2060 struct lwp *l;
2061 int kerbflag, pubflag;
2062 {
2063 int i, rem;
2064 struct mbuf *md;
2065 char *fromcp, *tocp, *cp;
2066 struct iovec aiov;
2067 struct uio auio;
2068 struct vnode *dp;
2069 int error, rdonly, linklen;
2070 struct componentname *cnp = &ndp->ni_cnd;
2071
2072 *retdirp = NULL;
2073
2074 if ((len + 1) > MAXPATHLEN)
2075 return (ENAMETOOLONG);
2076 if (len == 0)
2077 return (EACCES);
2078 cnp->cn_pnbuf = PNBUF_GET();
2079
2080 /*
2081 * Copy the name from the mbuf list to ndp->ni_pnbuf
2082 * and set the various ndp fields appropriately.
2083 */
2084 fromcp = *dposp;
2085 tocp = cnp->cn_pnbuf;
2086 md = *mdp;
2087 rem = mtod(md, char *) + md->m_len - fromcp;
2088 for (i = 0; i < len; i++) {
2089 while (rem == 0) {
2090 md = md->m_next;
2091 if (md == NULL) {
2092 error = EBADRPC;
2093 goto out;
2094 }
2095 fromcp = mtod(md, void *);
2096 rem = md->m_len;
2097 }
2098 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2099 error = EACCES;
2100 goto out;
2101 }
2102 *tocp++ = *fromcp++;
2103 rem--;
2104 }
2105 *tocp = '\0';
2106 *mdp = md;
2107 *dposp = fromcp;
2108 len = nfsm_rndup(len)-len;
2109 if (len > 0) {
2110 if (rem >= len)
2111 *dposp += len;
2112 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2113 goto out;
2114 }
2115
2116 /*
2117 * Extract and set starting directory.
2118 */
2119 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2120 nam, &rdonly, kerbflag, pubflag);
2121 if (error)
2122 goto out;
2123 if (dp->v_type != VDIR) {
2124 vrele(dp);
2125 error = ENOTDIR;
2126 goto out;
2127 }
2128
2129 if (rdonly)
2130 cnp->cn_flags |= RDONLY;
2131
2132 *retdirp = dp;
2133
2134 if (pubflag) {
2135 /*
2136 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2137 * and the 'native path' indicator.
2138 */
2139 cp = PNBUF_GET();
2140 fromcp = cnp->cn_pnbuf;
2141 tocp = cp;
2142 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2143 switch ((unsigned char)*fromcp) {
2144 case WEBNFS_NATIVE_CHAR:
2145 /*
2146 * 'Native' path for us is the same
2147 * as a path according to the NFS spec,
2148 * just skip the escape char.
2149 */
2150 fromcp++;
2151 break;
2152 /*
2153 * More may be added in the future, range 0x80-0xff
2154 */
2155 default:
2156 error = EIO;
2157 vrele(dp);
2158 PNBUF_PUT(cp);
2159 goto out;
2160 }
2161 }
2162 /*
2163 * Translate the '%' escapes, URL-style.
2164 */
2165 while (*fromcp != '\0') {
2166 if (*fromcp == WEBNFS_ESC_CHAR) {
2167 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2168 fromcp++;
2169 *tocp++ = HEXSTRTOI(fromcp);
2170 fromcp += 2;
2171 continue;
2172 } else {
2173 error = ENOENT;
2174 vrele(dp);
2175 PNBUF_PUT(cp);
2176 goto out;
2177 }
2178 } else
2179 *tocp++ = *fromcp++;
2180 }
2181 *tocp = '\0';
2182 PNBUF_PUT(cnp->cn_pnbuf);
2183 cnp->cn_pnbuf = cp;
2184 }
2185
2186 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2187 ndp->ni_segflg = UIO_SYSSPACE;
2188 ndp->ni_rootdir = rootvnode;
2189 ndp->ni_erootdir = NULL;
2190
2191 if (pubflag) {
2192 ndp->ni_loopcnt = 0;
2193 if (cnp->cn_pnbuf[0] == '/')
2194 dp = rootvnode;
2195 } else {
2196 cnp->cn_flags |= NOCROSSMOUNT;
2197 }
2198
2199 VREF(dp);
2200 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2201
2202 for (;;) {
2203 cnp->cn_nameptr = cnp->cn_pnbuf;
2204 ndp->ni_startdir = dp;
2205
2206 /*
2207 * And call lookup() to do the real work
2208 */
2209 error = lookup(ndp);
2210 if (error) {
2211 if (ndp->ni_dvp) {
2212 vput(ndp->ni_dvp);
2213 }
2214 PNBUF_PUT(cnp->cn_pnbuf);
2215 return (error);
2216 }
2217
2218 /*
2219 * Check for encountering a symbolic link
2220 */
2221 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2222 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2223 if (ndp->ni_dvp == ndp->ni_vp) {
2224 vrele(ndp->ni_dvp);
2225 } else {
2226 vput(ndp->ni_dvp);
2227 }
2228 }
2229 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2230 cnp->cn_flags |= HASBUF;
2231 else
2232 PNBUF_PUT(cnp->cn_pnbuf);
2233 return (0);
2234 } else {
2235 if (!pubflag) {
2236 error = EINVAL;
2237 break;
2238 }
2239 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2240 error = ELOOP;
2241 break;
2242 }
2243 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2244 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2245 if (error != 0)
2246 break;
2247 }
2248 if (ndp->ni_pathlen > 1)
2249 cp = PNBUF_GET();
2250 else
2251 cp = cnp->cn_pnbuf;
2252 aiov.iov_base = cp;
2253 aiov.iov_len = MAXPATHLEN;
2254 auio.uio_iov = &aiov;
2255 auio.uio_iovcnt = 1;
2256 auio.uio_offset = 0;
2257 auio.uio_rw = UIO_READ;
2258 auio.uio_resid = MAXPATHLEN;
2259 UIO_SETUP_SYSSPACE(&auio);
2260 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2261 if (error) {
2262 badlink:
2263 if (ndp->ni_pathlen > 1)
2264 PNBUF_PUT(cp);
2265 break;
2266 }
2267 linklen = MAXPATHLEN - auio.uio_resid;
2268 if (linklen == 0) {
2269 error = ENOENT;
2270 goto badlink;
2271 }
2272 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2273 error = ENAMETOOLONG;
2274 goto badlink;
2275 }
2276 if (ndp->ni_pathlen > 1) {
2277 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2278 PNBUF_PUT(cnp->cn_pnbuf);
2279 cnp->cn_pnbuf = cp;
2280 } else
2281 cnp->cn_pnbuf[linklen] = '\0';
2282 ndp->ni_pathlen += linklen;
2283 vput(ndp->ni_vp);
2284 dp = ndp->ni_dvp;
2285
2286 /*
2287 * Check if root directory should replace current directory.
2288 */
2289 if (cnp->cn_pnbuf[0] == '/') {
2290 vput(dp);
2291 dp = ndp->ni_rootdir;
2292 VREF(dp);
2293 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2294 }
2295 }
2296 }
2297 vput(ndp->ni_dvp);
2298 vput(ndp->ni_vp);
2299 ndp->ni_vp = NULL;
2300 out:
2301 PNBUF_PUT(cnp->cn_pnbuf);
2302 return (error);
2303 }
2304 #endif /* NFSSERVER */
2305
2306 /*
2307 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2308 * boundary and only trims off the back end
2309 *
2310 * 1. trim off 'len' bytes as m_adj(mp, -len).
2311 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2312 */
2313 void
2314 nfs_zeropad(mp, len, nul)
2315 struct mbuf *mp;
2316 int len;
2317 int nul;
2318 {
2319 struct mbuf *m;
2320 int count;
2321
2322 /*
2323 * Trim from tail. Scan the mbuf chain,
2324 * calculating its length and finding the last mbuf.
2325 * If the adjustment only affects this mbuf, then just
2326 * adjust and return. Otherwise, rescan and truncate
2327 * after the remaining size.
2328 */
2329 count = 0;
2330 m = mp;
2331 for (;;) {
2332 count += m->m_len;
2333 if (m->m_next == NULL)
2334 break;
2335 m = m->m_next;
2336 }
2337
2338 KDASSERT(count >= len);
2339
2340 if (m->m_len >= len) {
2341 m->m_len -= len;
2342 } else {
2343 count -= len;
2344 /*
2345 * Correct length for chain is "count".
2346 * Find the mbuf with last data, adjust its length,
2347 * and toss data from remaining mbufs on chain.
2348 */
2349 for (m = mp; m; m = m->m_next) {
2350 if (m->m_len >= count) {
2351 m->m_len = count;
2352 break;
2353 }
2354 count -= m->m_len;
2355 }
2356 KASSERT(m && m->m_next);
2357 m_freem(m->m_next);
2358 m->m_next = NULL;
2359 }
2360
2361 KDASSERT(m->m_next == NULL);
2362
2363 /*
2364 * zero-padding.
2365 */
2366 if (nul > 0) {
2367 char *cp;
2368 int i;
2369
2370 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2371 struct mbuf *n;
2372
2373 KDASSERT(MLEN >= nul);
2374 n = m_get(M_WAIT, MT_DATA);
2375 MCLAIM(n, &nfs_mowner);
2376 n->m_len = nul;
2377 n->m_next = NULL;
2378 m->m_next = n;
2379 cp = mtod(n, void *);
2380 } else {
2381 cp = mtod(m, char *) + m->m_len;
2382 m->m_len += nul;
2383 }
2384 for (i = 0; i < nul; i++)
2385 *cp++ = '\0';
2386 }
2387 return;
2388 }
2389
2390 /*
2391 * Make these functions instead of macros, so that the kernel text size
2392 * doesn't get too big...
2393 */
2394 void
2395 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2396 struct nfsrv_descript *nfsd;
2397 int before_ret;
2398 struct vattr *before_vap;
2399 int after_ret;
2400 struct vattr *after_vap;
2401 struct mbuf **mbp;
2402 char **bposp;
2403 {
2404 struct mbuf *mb = *mbp;
2405 char *bpos = *bposp;
2406 u_int32_t *tl;
2407
2408 if (before_ret) {
2409 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2410 *tl = nfs_false;
2411 } else {
2412 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2413 *tl++ = nfs_true;
2414 txdr_hyper(before_vap->va_size, tl);
2415 tl += 2;
2416 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2417 tl += 2;
2418 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2419 }
2420 *bposp = bpos;
2421 *mbp = mb;
2422 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2423 }
2424
2425 void
2426 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2427 struct nfsrv_descript *nfsd;
2428 int after_ret;
2429 struct vattr *after_vap;
2430 struct mbuf **mbp;
2431 char **bposp;
2432 {
2433 struct mbuf *mb = *mbp;
2434 char *bpos = *bposp;
2435 u_int32_t *tl;
2436 struct nfs_fattr *fp;
2437
2438 if (after_ret) {
2439 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2440 *tl = nfs_false;
2441 } else {
2442 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2443 *tl++ = nfs_true;
2444 fp = (struct nfs_fattr *)tl;
2445 nfsm_srvfattr(nfsd, after_vap, fp);
2446 }
2447 *mbp = mb;
2448 *bposp = bpos;
2449 }
2450
2451 void
2452 nfsm_srvfattr(nfsd, vap, fp)
2453 struct nfsrv_descript *nfsd;
2454 struct vattr *vap;
2455 struct nfs_fattr *fp;
2456 {
2457
2458 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2459 fp->fa_uid = txdr_unsigned(vap->va_uid);
2460 fp->fa_gid = txdr_unsigned(vap->va_gid);
2461 if (nfsd->nd_flag & ND_NFSV3) {
2462 fp->fa_type = vtonfsv3_type(vap->va_type);
2463 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2464 txdr_hyper(vap->va_size, &fp->fa3_size);
2465 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2466 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2467 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2468 fp->fa3_fsid.nfsuquad[0] = 0;
2469 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2470 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2471 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2472 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2473 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2474 } else {
2475 fp->fa_type = vtonfsv2_type(vap->va_type);
2476 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2477 fp->fa2_size = txdr_unsigned(vap->va_size);
2478 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2479 if (vap->va_type == VFIFO)
2480 fp->fa2_rdev = 0xffffffff;
2481 else
2482 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2483 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2484 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2485 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2486 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2487 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2488 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2489 }
2490 }
2491
2492 #ifdef NFSSERVER
2493 /*
2494 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2495 * - look up fsid in mount list (if not found ret error)
2496 * - get vp and export rights by calling VFS_FHTOVP()
2497 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2498 * - if not lockflag unlock it with VOP_UNLOCK()
2499 */
2500 int
2501 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2502 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2503 int kerbflag, int pubflag)
2504 {
2505 struct mount *mp;
2506 kauth_cred_t credanon;
2507 int error, exflags;
2508 struct sockaddr_in *saddr;
2509 fhandle_t *fhp;
2510
2511 fhp = NFSRVFH_FHANDLE(nsfh);
2512 *vpp = (struct vnode *)0;
2513
2514 if (nfs_ispublicfh(nsfh)) {
2515 if (!pubflag || !nfs_pub.np_valid)
2516 return (ESTALE);
2517 fhp = nfs_pub.np_handle;
2518 }
2519
2520 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2521 if (error) {
2522 return error;
2523 }
2524
2525 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2526 if (error)
2527 return (error);
2528
2529 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2530 saddr = mtod(nam, struct sockaddr_in *);
2531 if ((saddr->sin_family == AF_INET) &&
2532 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2533 vput(*vpp);
2534 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2535 }
2536 #ifdef INET6
2537 if ((saddr->sin_family == AF_INET6) &&
2538 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2539 vput(*vpp);
2540 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2541 }
2542 #endif
2543 }
2544 /*
2545 * Check/setup credentials.
2546 */
2547 if (exflags & MNT_EXKERB) {
2548 if (!kerbflag) {
2549 vput(*vpp);
2550 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2551 }
2552 } else if (kerbflag) {
2553 vput(*vpp);
2554 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2555 } else if (kauth_cred_geteuid(cred) == 0 || /* NFS maproot, see below */
2556 (exflags & MNT_EXPORTANON)) {
2557 /*
2558 * This is used by the NFS maproot option. While we can change
2559 * the secmodel on our own host, we can't change it on the
2560 * clients. As means of least surprise, we're doing the
2561 * traditional thing here.
2562 * Should look into adding a "mapprivileged" or similar where
2563 * the users can be explicitly specified...
2564 * [elad, yamt 2008-03-05]
2565 */
2566 kauth_cred_clone(credanon, cred);
2567 }
2568 if (exflags & MNT_EXRDONLY)
2569 *rdonlyp = 1;
2570 else
2571 *rdonlyp = 0;
2572 if (!lockflag)
2573 VOP_UNLOCK(*vpp, 0);
2574 return (0);
2575 }
2576
2577 /*
2578 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2579 * means a length of 0, for v2 it means all zeroes.
2580 */
2581 int
2582 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2583 {
2584 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2585 int i;
2586
2587 if (NFSRVFH_SIZE(nsfh) == 0) {
2588 return true;
2589 }
2590 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2591 return false;
2592 }
2593 for (i = 0; i < NFSX_V2FH; i++)
2594 if (*cp++ != 0)
2595 return false;
2596 return true;
2597 }
2598 #endif /* NFSSERVER */
2599
2600 /*
2601 * This function compares two net addresses by family and returns true
2602 * if they are the same host.
2603 * If there is any doubt, return false.
2604 * The AF_INET family is handled as a special case so that address mbufs
2605 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2606 */
2607 int
2608 netaddr_match(family, haddr, nam)
2609 int family;
2610 union nethostaddr *haddr;
2611 struct mbuf *nam;
2612 {
2613 struct sockaddr_in *inetaddr;
2614
2615 switch (family) {
2616 case AF_INET:
2617 inetaddr = mtod(nam, struct sockaddr_in *);
2618 if (inetaddr->sin_family == AF_INET &&
2619 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2620 return (1);
2621 break;
2622 #ifdef INET6
2623 case AF_INET6:
2624 {
2625 struct sockaddr_in6 *sin6_1, *sin6_2;
2626
2627 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2628 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2629 if (sin6_1->sin6_family == AF_INET6 &&
2630 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2631 return 1;
2632 }
2633 #endif
2634 #ifdef ISO
2635 case AF_ISO:
2636 {
2637 struct sockaddr_iso *isoaddr1, *isoaddr2;
2638
2639 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2640 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2641 if (isoaddr1->siso_family == AF_ISO &&
2642 isoaddr1->siso_nlen > 0 &&
2643 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2644 SAME_ISOADDR(isoaddr1, isoaddr2))
2645 return (1);
2646 break;
2647 }
2648 #endif /* ISO */
2649 default:
2650 break;
2651 };
2652 return (0);
2653 }
2654
2655 /*
2656 * The write verifier has changed (probably due to a server reboot), so all
2657 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2658 * as dirty or are being written out just now, all this takes is clearing
2659 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2660 * the mount point.
2661 */
2662 void
2663 nfs_clearcommit(mp)
2664 struct mount *mp;
2665 {
2666 struct vnode *vp;
2667 struct nfsnode *np;
2668 struct vm_page *pg;
2669 struct nfsmount *nmp = VFSTONFS(mp);
2670
2671 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2672 mutex_enter(&mntvnode_lock);
2673 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2674 KASSERT(vp->v_mount == mp);
2675 if (vp->v_type != VREG)
2676 continue;
2677 np = VTONFS(vp);
2678 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2679 np->n_pushedhi = 0;
2680 np->n_commitflags &=
2681 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2682 mutex_enter(&vp->v_uobj.vmobjlock);
2683 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2684 pg->flags &= ~PG_NEEDCOMMIT;
2685 }
2686 mutex_exit(&vp->v_uobj.vmobjlock);
2687 }
2688 mutex_exit(&mntvnode_lock);
2689 mutex_enter(&nmp->nm_lock);
2690 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2691 mutex_exit(&nmp->nm_lock);
2692 rw_exit(&nmp->nm_writeverflock);
2693 }
2694
2695 void
2696 nfs_merge_commit_ranges(vp)
2697 struct vnode *vp;
2698 {
2699 struct nfsnode *np = VTONFS(vp);
2700
2701 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2702
2703 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2704 np->n_pushedlo = np->n_pushlo;
2705 np->n_pushedhi = np->n_pushhi;
2706 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2707 } else {
2708 if (np->n_pushlo < np->n_pushedlo)
2709 np->n_pushedlo = np->n_pushlo;
2710 if (np->n_pushhi > np->n_pushedhi)
2711 np->n_pushedhi = np->n_pushhi;
2712 }
2713
2714 np->n_pushlo = np->n_pushhi = 0;
2715 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2716
2717 #ifdef NFS_DEBUG_COMMIT
2718 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2719 (unsigned)np->n_pushedhi);
2720 #endif
2721 }
2722
2723 int
2724 nfs_in_committed_range(vp, off, len)
2725 struct vnode *vp;
2726 off_t off, len;
2727 {
2728 struct nfsnode *np = VTONFS(vp);
2729 off_t lo, hi;
2730
2731 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2732 return 0;
2733 lo = off;
2734 hi = lo + len;
2735
2736 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2737 }
2738
2739 int
2740 nfs_in_tobecommitted_range(vp, off, len)
2741 struct vnode *vp;
2742 off_t off, len;
2743 {
2744 struct nfsnode *np = VTONFS(vp);
2745 off_t lo, hi;
2746
2747 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2748 return 0;
2749 lo = off;
2750 hi = lo + len;
2751
2752 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2753 }
2754
2755 void
2756 nfs_add_committed_range(vp, off, len)
2757 struct vnode *vp;
2758 off_t off, len;
2759 {
2760 struct nfsnode *np = VTONFS(vp);
2761 off_t lo, hi;
2762
2763 lo = off;
2764 hi = lo + len;
2765
2766 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2767 np->n_pushedlo = lo;
2768 np->n_pushedhi = hi;
2769 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2770 } else {
2771 if (hi > np->n_pushedhi)
2772 np->n_pushedhi = hi;
2773 if (lo < np->n_pushedlo)
2774 np->n_pushedlo = lo;
2775 }
2776 #ifdef NFS_DEBUG_COMMIT
2777 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2778 (unsigned)np->n_pushedhi);
2779 #endif
2780 }
2781
2782 void
2783 nfs_del_committed_range(vp, off, len)
2784 struct vnode *vp;
2785 off_t off, len;
2786 {
2787 struct nfsnode *np = VTONFS(vp);
2788 off_t lo, hi;
2789
2790 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2791 return;
2792
2793 lo = off;
2794 hi = lo + len;
2795
2796 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2797 return;
2798 if (lo <= np->n_pushedlo)
2799 np->n_pushedlo = hi;
2800 else if (hi >= np->n_pushedhi)
2801 np->n_pushedhi = lo;
2802 else {
2803 /*
2804 * XXX There's only one range. If the deleted range
2805 * is in the middle, pick the largest of the
2806 * contiguous ranges that it leaves.
2807 */
2808 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2809 np->n_pushedhi = lo;
2810 else
2811 np->n_pushedlo = hi;
2812 }
2813 #ifdef NFS_DEBUG_COMMIT
2814 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2815 (unsigned)np->n_pushedhi);
2816 #endif
2817 }
2818
2819 void
2820 nfs_add_tobecommitted_range(vp, off, len)
2821 struct vnode *vp;
2822 off_t off, len;
2823 {
2824 struct nfsnode *np = VTONFS(vp);
2825 off_t lo, hi;
2826
2827 lo = off;
2828 hi = lo + len;
2829
2830 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2831 np->n_pushlo = lo;
2832 np->n_pushhi = hi;
2833 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2834 } else {
2835 if (lo < np->n_pushlo)
2836 np->n_pushlo = lo;
2837 if (hi > np->n_pushhi)
2838 np->n_pushhi = hi;
2839 }
2840 #ifdef NFS_DEBUG_COMMIT
2841 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2842 (unsigned)np->n_pushhi);
2843 #endif
2844 }
2845
2846 void
2847 nfs_del_tobecommitted_range(vp, off, len)
2848 struct vnode *vp;
2849 off_t off, len;
2850 {
2851 struct nfsnode *np = VTONFS(vp);
2852 off_t lo, hi;
2853
2854 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2855 return;
2856
2857 lo = off;
2858 hi = lo + len;
2859
2860 if (lo > np->n_pushhi || hi < np->n_pushlo)
2861 return;
2862
2863 if (lo <= np->n_pushlo)
2864 np->n_pushlo = hi;
2865 else if (hi >= np->n_pushhi)
2866 np->n_pushhi = lo;
2867 else {
2868 /*
2869 * XXX There's only one range. If the deleted range
2870 * is in the middle, pick the largest of the
2871 * contiguous ranges that it leaves.
2872 */
2873 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2874 np->n_pushhi = lo;
2875 else
2876 np->n_pushlo = hi;
2877 }
2878 #ifdef NFS_DEBUG_COMMIT
2879 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2880 (unsigned)np->n_pushhi);
2881 #endif
2882 }
2883
2884 /*
2885 * Map errnos to NFS error numbers. For Version 3 also filter out error
2886 * numbers not specified for the associated procedure.
2887 */
2888 int
2889 nfsrv_errmap(nd, err)
2890 struct nfsrv_descript *nd;
2891 int err;
2892 {
2893 const short *defaulterrp, *errp;
2894
2895 if (nd->nd_flag & ND_NFSV3) {
2896 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2897 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2898 while (*++errp) {
2899 if (*errp == err)
2900 return (err);
2901 else if (*errp > err)
2902 break;
2903 }
2904 return ((int)*defaulterrp);
2905 } else
2906 return (err & 0xffff);
2907 }
2908 if (err <= ELAST)
2909 return ((int)nfsrv_v2errmap[err - 1]);
2910 return (NFSERR_IO);
2911 }
2912
2913 u_int32_t
2914 nfs_getxid()
2915 {
2916 u_int32_t newxid;
2917
2918 /* get next xid. skip 0 */
2919 do {
2920 newxid = atomic_inc_32_nv(&nfs_xid);
2921 } while (__predict_false(newxid == 0));
2922
2923 return txdr_unsigned(newxid);
2924 }
2925
2926 /*
2927 * assign a new xid for existing request.
2928 * used for NFSERR_JUKEBOX handling.
2929 */
2930 void
2931 nfs_renewxid(struct nfsreq *req)
2932 {
2933 u_int32_t xid;
2934 int off;
2935
2936 xid = nfs_getxid();
2937 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2938 off = sizeof(u_int32_t); /* RPC record mark */
2939 else
2940 off = 0;
2941
2942 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2943 req->r_xid = xid;
2944 }
2945
2946 #if defined(NFSSERVER)
2947 int
2948 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2949 {
2950 int error;
2951 size_t fhsize;
2952
2953 fhsize = NFSD_MAXFHSIZE;
2954 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2955 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2956 error = EOPNOTSUPP;
2957 }
2958 if (error != 0) {
2959 return error;
2960 }
2961 if (!v3 && fhsize < NFSX_V2FH) {
2962 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2963 NFSX_V2FH - fhsize);
2964 fhsize = NFSX_V2FH;
2965 }
2966 if ((fhsize % NFSX_UNSIGNED) != 0) {
2967 return EOPNOTSUPP;
2968 }
2969 nsfh->nsfh_size = fhsize;
2970 return 0;
2971 }
2972
2973 int
2974 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2975 {
2976
2977 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2978 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2979 }
2980 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2981 }
2982
2983 void
2984 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2985 {
2986 size_t size;
2987
2988 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2989 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2990 }
2991 #endif /* defined(NFSSERVER) */
2992
2993 #if defined(NFS)
2994 /*
2995 * Set the attribute timeout based on how recently the file has been modified.
2996 */
2997
2998 time_t
2999 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3000 {
3001 time_t timeo;
3002
3003 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3004 return 0;
3005
3006 if (((np)->n_flag & NMODIFIED) != 0)
3007 return NFS_MINATTRTIMO;
3008
3009 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3010 timeo = max(timeo, NFS_MINATTRTIMO);
3011 timeo = min(timeo, NFS_MAXATTRTIMO);
3012 return timeo;
3013 }
3014 #endif /* defined(NFS) */
3015