nfs_subs.c revision 1.213 1 /* $NetBSD: nfs_subs.c,v 1.213 2009/03/14 14:46:11 dsl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.213 2009/03/14 14:46:11 dsl Exp $");
74
75 #ifdef _KERNEL_OPT
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #endif
79
80 /*
81 * These functions support the macros and help fiddle mbuf chains for
82 * the nfs op functions. They do things like create the rpc header and
83 * copy data between mbuf chains and uio lists.
84 */
85 #include <sys/param.h>
86 #include <sys/proc.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/kmem.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/filedesc.h>
97 #include <sys/time.h>
98 #include <sys/dirent.h>
99 #include <sys/once.h>
100 #include <sys/kauth.h>
101 #include <sys/atomic.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118
119 static u_int32_t nfs_xid;
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145
146 /*
147 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148 */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 NFSPROC_NULL,
151 NFSPROC_GETATTR,
152 NFSPROC_SETATTR,
153 NFSPROC_NOOP,
154 NFSPROC_LOOKUP,
155 NFSPROC_READLINK,
156 NFSPROC_READ,
157 NFSPROC_NOOP,
158 NFSPROC_WRITE,
159 NFSPROC_CREATE,
160 NFSPROC_REMOVE,
161 NFSPROC_RENAME,
162 NFSPROC_LINK,
163 NFSPROC_SYMLINK,
164 NFSPROC_MKDIR,
165 NFSPROC_RMDIR,
166 NFSPROC_READDIR,
167 NFSPROC_FSSTAT,
168 NFSPROC_NOOP,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP
173 };
174
175 /*
176 * and the reverse mapping from generic to Version 2 procedure numbers
177 */
178 const int nfsv2_procid[NFS_NPROCS] = {
179 NFSV2PROC_NULL,
180 NFSV2PROC_GETATTR,
181 NFSV2PROC_SETATTR,
182 NFSV2PROC_LOOKUP,
183 NFSV2PROC_NOOP,
184 NFSV2PROC_READLINK,
185 NFSV2PROC_READ,
186 NFSV2PROC_WRITE,
187 NFSV2PROC_CREATE,
188 NFSV2PROC_MKDIR,
189 NFSV2PROC_SYMLINK,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_REMOVE,
192 NFSV2PROC_RMDIR,
193 NFSV2PROC_RENAME,
194 NFSV2PROC_LINK,
195 NFSV2PROC_READDIR,
196 NFSV2PROC_NOOP,
197 NFSV2PROC_STATFS,
198 NFSV2PROC_NOOP,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_NOOP,
202 };
203
204 /*
205 * Maps errno values to nfs error numbers.
206 * Use NFSERR_IO as the catch all for ones not specifically defined in
207 * RFC 1094.
208 */
209 static const u_char nfsrv_v2errmap[ELAST] = {
210 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
211 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
212 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
213 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
214 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
216 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
223 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO,
227 };
228
229 /*
230 * Maps errno values to nfs error numbers.
231 * Although it is not obvious whether or not NFS clients really care if
232 * a returned error value is in the specified list for the procedure, the
233 * safest thing to do is filter them appropriately. For Version 2, the
234 * X/Open XNFS document is the only specification that defines error values
235 * for each RPC (The RFC simply lists all possible error values for all RPCs),
236 * so I have decided to not do this for Version 2.
237 * The first entry is the default error return and the rest are the valid
238 * errors for that RPC in increasing numeric order.
239 */
240 static const short nfsv3err_null[] = {
241 0,
242 0,
243 };
244
245 static const short nfsv3err_getattr[] = {
246 NFSERR_IO,
247 NFSERR_IO,
248 NFSERR_STALE,
249 NFSERR_BADHANDLE,
250 NFSERR_SERVERFAULT,
251 0,
252 };
253
254 static const short nfsv3err_setattr[] = {
255 NFSERR_IO,
256 NFSERR_PERM,
257 NFSERR_IO,
258 NFSERR_ACCES,
259 NFSERR_INVAL,
260 NFSERR_NOSPC,
261 NFSERR_ROFS,
262 NFSERR_DQUOT,
263 NFSERR_STALE,
264 NFSERR_BADHANDLE,
265 NFSERR_NOT_SYNC,
266 NFSERR_SERVERFAULT,
267 0,
268 };
269
270 static const short nfsv3err_lookup[] = {
271 NFSERR_IO,
272 NFSERR_NOENT,
273 NFSERR_IO,
274 NFSERR_ACCES,
275 NFSERR_NOTDIR,
276 NFSERR_NAMETOL,
277 NFSERR_STALE,
278 NFSERR_BADHANDLE,
279 NFSERR_SERVERFAULT,
280 0,
281 };
282
283 static const short nfsv3err_access[] = {
284 NFSERR_IO,
285 NFSERR_IO,
286 NFSERR_STALE,
287 NFSERR_BADHANDLE,
288 NFSERR_SERVERFAULT,
289 0,
290 };
291
292 static const short nfsv3err_readlink[] = {
293 NFSERR_IO,
294 NFSERR_IO,
295 NFSERR_ACCES,
296 NFSERR_INVAL,
297 NFSERR_STALE,
298 NFSERR_BADHANDLE,
299 NFSERR_NOTSUPP,
300 NFSERR_SERVERFAULT,
301 0,
302 };
303
304 static const short nfsv3err_read[] = {
305 NFSERR_IO,
306 NFSERR_IO,
307 NFSERR_NXIO,
308 NFSERR_ACCES,
309 NFSERR_INVAL,
310 NFSERR_STALE,
311 NFSERR_BADHANDLE,
312 NFSERR_SERVERFAULT,
313 NFSERR_JUKEBOX,
314 0,
315 };
316
317 static const short nfsv3err_write[] = {
318 NFSERR_IO,
319 NFSERR_IO,
320 NFSERR_ACCES,
321 NFSERR_INVAL,
322 NFSERR_FBIG,
323 NFSERR_NOSPC,
324 NFSERR_ROFS,
325 NFSERR_DQUOT,
326 NFSERR_STALE,
327 NFSERR_BADHANDLE,
328 NFSERR_SERVERFAULT,
329 NFSERR_JUKEBOX,
330 0,
331 };
332
333 static const short nfsv3err_create[] = {
334 NFSERR_IO,
335 NFSERR_IO,
336 NFSERR_ACCES,
337 NFSERR_EXIST,
338 NFSERR_NOTDIR,
339 NFSERR_NOSPC,
340 NFSERR_ROFS,
341 NFSERR_NAMETOL,
342 NFSERR_DQUOT,
343 NFSERR_STALE,
344 NFSERR_BADHANDLE,
345 NFSERR_NOTSUPP,
346 NFSERR_SERVERFAULT,
347 0,
348 };
349
350 static const short nfsv3err_mkdir[] = {
351 NFSERR_IO,
352 NFSERR_IO,
353 NFSERR_ACCES,
354 NFSERR_EXIST,
355 NFSERR_NOTDIR,
356 NFSERR_NOSPC,
357 NFSERR_ROFS,
358 NFSERR_NAMETOL,
359 NFSERR_DQUOT,
360 NFSERR_STALE,
361 NFSERR_BADHANDLE,
362 NFSERR_NOTSUPP,
363 NFSERR_SERVERFAULT,
364 0,
365 };
366
367 static const short nfsv3err_symlink[] = {
368 NFSERR_IO,
369 NFSERR_IO,
370 NFSERR_ACCES,
371 NFSERR_EXIST,
372 NFSERR_NOTDIR,
373 NFSERR_NOSPC,
374 NFSERR_ROFS,
375 NFSERR_NAMETOL,
376 NFSERR_DQUOT,
377 NFSERR_STALE,
378 NFSERR_BADHANDLE,
379 NFSERR_NOTSUPP,
380 NFSERR_SERVERFAULT,
381 0,
382 };
383
384 static const short nfsv3err_mknod[] = {
385 NFSERR_IO,
386 NFSERR_IO,
387 NFSERR_ACCES,
388 NFSERR_EXIST,
389 NFSERR_NOTDIR,
390 NFSERR_NOSPC,
391 NFSERR_ROFS,
392 NFSERR_NAMETOL,
393 NFSERR_DQUOT,
394 NFSERR_STALE,
395 NFSERR_BADHANDLE,
396 NFSERR_NOTSUPP,
397 NFSERR_SERVERFAULT,
398 NFSERR_BADTYPE,
399 0,
400 };
401
402 static const short nfsv3err_remove[] = {
403 NFSERR_IO,
404 NFSERR_NOENT,
405 NFSERR_IO,
406 NFSERR_ACCES,
407 NFSERR_NOTDIR,
408 NFSERR_ROFS,
409 NFSERR_NAMETOL,
410 NFSERR_STALE,
411 NFSERR_BADHANDLE,
412 NFSERR_SERVERFAULT,
413 0,
414 };
415
416 static const short nfsv3err_rmdir[] = {
417 NFSERR_IO,
418 NFSERR_NOENT,
419 NFSERR_IO,
420 NFSERR_ACCES,
421 NFSERR_EXIST,
422 NFSERR_NOTDIR,
423 NFSERR_INVAL,
424 NFSERR_ROFS,
425 NFSERR_NAMETOL,
426 NFSERR_NOTEMPTY,
427 NFSERR_STALE,
428 NFSERR_BADHANDLE,
429 NFSERR_NOTSUPP,
430 NFSERR_SERVERFAULT,
431 0,
432 };
433
434 static const short nfsv3err_rename[] = {
435 NFSERR_IO,
436 NFSERR_NOENT,
437 NFSERR_IO,
438 NFSERR_ACCES,
439 NFSERR_EXIST,
440 NFSERR_XDEV,
441 NFSERR_NOTDIR,
442 NFSERR_ISDIR,
443 NFSERR_INVAL,
444 NFSERR_NOSPC,
445 NFSERR_ROFS,
446 NFSERR_MLINK,
447 NFSERR_NAMETOL,
448 NFSERR_NOTEMPTY,
449 NFSERR_DQUOT,
450 NFSERR_STALE,
451 NFSERR_BADHANDLE,
452 NFSERR_NOTSUPP,
453 NFSERR_SERVERFAULT,
454 0,
455 };
456
457 static const short nfsv3err_link[] = {
458 NFSERR_IO,
459 NFSERR_IO,
460 NFSERR_ACCES,
461 NFSERR_EXIST,
462 NFSERR_XDEV,
463 NFSERR_NOTDIR,
464 NFSERR_INVAL,
465 NFSERR_NOSPC,
466 NFSERR_ROFS,
467 NFSERR_MLINK,
468 NFSERR_NAMETOL,
469 NFSERR_DQUOT,
470 NFSERR_STALE,
471 NFSERR_BADHANDLE,
472 NFSERR_NOTSUPP,
473 NFSERR_SERVERFAULT,
474 0,
475 };
476
477 static const short nfsv3err_readdir[] = {
478 NFSERR_IO,
479 NFSERR_IO,
480 NFSERR_ACCES,
481 NFSERR_NOTDIR,
482 NFSERR_STALE,
483 NFSERR_BADHANDLE,
484 NFSERR_BAD_COOKIE,
485 NFSERR_TOOSMALL,
486 NFSERR_SERVERFAULT,
487 0,
488 };
489
490 static const short nfsv3err_readdirplus[] = {
491 NFSERR_IO,
492 NFSERR_IO,
493 NFSERR_ACCES,
494 NFSERR_NOTDIR,
495 NFSERR_STALE,
496 NFSERR_BADHANDLE,
497 NFSERR_BAD_COOKIE,
498 NFSERR_NOTSUPP,
499 NFSERR_TOOSMALL,
500 NFSERR_SERVERFAULT,
501 0,
502 };
503
504 static const short nfsv3err_fsstat[] = {
505 NFSERR_IO,
506 NFSERR_IO,
507 NFSERR_STALE,
508 NFSERR_BADHANDLE,
509 NFSERR_SERVERFAULT,
510 0,
511 };
512
513 static const short nfsv3err_fsinfo[] = {
514 NFSERR_STALE,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_pathconf[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_commit[] = {
530 NFSERR_IO,
531 NFSERR_IO,
532 NFSERR_STALE,
533 NFSERR_BADHANDLE,
534 NFSERR_SERVERFAULT,
535 0,
536 };
537
538 static const short * const nfsrv_v3errmap[] = {
539 nfsv3err_null,
540 nfsv3err_getattr,
541 nfsv3err_setattr,
542 nfsv3err_lookup,
543 nfsv3err_access,
544 nfsv3err_readlink,
545 nfsv3err_read,
546 nfsv3err_write,
547 nfsv3err_create,
548 nfsv3err_mkdir,
549 nfsv3err_symlink,
550 nfsv3err_mknod,
551 nfsv3err_remove,
552 nfsv3err_rmdir,
553 nfsv3err_rename,
554 nfsv3err_link,
555 nfsv3err_readdir,
556 nfsv3err_readdirplus,
557 nfsv3err_fsstat,
558 nfsv3err_fsinfo,
559 nfsv3err_pathconf,
560 nfsv3err_commit,
561 };
562
563 extern struct nfsrtt nfsrtt;
564
565 u_long nfsdirhashmask;
566
567 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
568
569 /*
570 * Create the header for an rpc request packet
571 * The hsiz is the size of the rest of the nfs request header.
572 * (just used to decide if a cluster is a good idea)
573 */
574 struct mbuf *
575 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
576 {
577 struct mbuf *mb;
578 char *bpos;
579
580 mb = m_get(M_WAIT, MT_DATA);
581 MCLAIM(mb, &nfs_mowner);
582 if (hsiz >= MINCLSIZE)
583 m_clget(mb, M_WAIT);
584 mb->m_len = 0;
585 bpos = mtod(mb, void *);
586
587 /* Finally, return values */
588 *bposp = bpos;
589 return (mb);
590 }
591
592 /*
593 * Build the RPC header and fill in the authorization info.
594 * The authorization string argument is only used when the credentials
595 * come from outside of the kernel.
596 * Returns the head of the mbuf list.
597 */
598 struct mbuf *
599 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
600 verf_str, mrest, mrest_len, mbp, xidp)
601 kauth_cred_t cr;
602 int nmflag;
603 int procid;
604 int auth_type;
605 int auth_len;
606 char *auth_str;
607 int verf_len;
608 char *verf_str;
609 struct mbuf *mrest;
610 int mrest_len;
611 struct mbuf **mbp;
612 u_int32_t *xidp;
613 {
614 struct mbuf *mb;
615 u_int32_t *tl;
616 char *bpos;
617 int i;
618 struct mbuf *mreq;
619 int siz, grpsiz, authsiz;
620
621 authsiz = nfsm_rndup(auth_len);
622 mb = m_gethdr(M_WAIT, MT_DATA);
623 MCLAIM(mb, &nfs_mowner);
624 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
625 m_clget(mb, M_WAIT);
626 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
627 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
628 } else {
629 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
630 }
631 mb->m_len = 0;
632 mreq = mb;
633 bpos = mtod(mb, void *);
634
635 /*
636 * First the RPC header.
637 */
638 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
639
640 *tl++ = *xidp = nfs_getxid();
641 *tl++ = rpc_call;
642 *tl++ = rpc_vers;
643 *tl++ = txdr_unsigned(NFS_PROG);
644 if (nmflag & NFSMNT_NFSV3)
645 *tl++ = txdr_unsigned(NFS_VER3);
646 else
647 *tl++ = txdr_unsigned(NFS_VER2);
648 if (nmflag & NFSMNT_NFSV3)
649 *tl++ = txdr_unsigned(procid);
650 else
651 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
652
653 /*
654 * And then the authorization cred.
655 */
656 *tl++ = txdr_unsigned(auth_type);
657 *tl = txdr_unsigned(authsiz);
658 switch (auth_type) {
659 case RPCAUTH_UNIX:
660 nfsm_build(tl, u_int32_t *, auth_len);
661 *tl++ = 0; /* stamp ?? */
662 *tl++ = 0; /* NULL hostname */
663 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
664 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
665 grpsiz = (auth_len >> 2) - 5;
666 *tl++ = txdr_unsigned(grpsiz);
667 for (i = 0; i < grpsiz; i++)
668 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
669 break;
670 case RPCAUTH_KERB4:
671 siz = auth_len;
672 while (siz > 0) {
673 if (M_TRAILINGSPACE(mb) == 0) {
674 struct mbuf *mb2;
675 mb2 = m_get(M_WAIT, MT_DATA);
676 MCLAIM(mb2, &nfs_mowner);
677 if (siz >= MINCLSIZE)
678 m_clget(mb2, M_WAIT);
679 mb->m_next = mb2;
680 mb = mb2;
681 mb->m_len = 0;
682 bpos = mtod(mb, void *);
683 }
684 i = min(siz, M_TRAILINGSPACE(mb));
685 memcpy(bpos, auth_str, i);
686 mb->m_len += i;
687 auth_str += i;
688 bpos += i;
689 siz -= i;
690 }
691 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
692 for (i = 0; i < siz; i++)
693 *bpos++ = '\0';
694 mb->m_len += siz;
695 }
696 break;
697 };
698
699 /*
700 * And the verifier...
701 */
702 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
703 if (verf_str) {
704 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
705 *tl = txdr_unsigned(verf_len);
706 siz = verf_len;
707 while (siz > 0) {
708 if (M_TRAILINGSPACE(mb) == 0) {
709 struct mbuf *mb2;
710 mb2 = m_get(M_WAIT, MT_DATA);
711 MCLAIM(mb2, &nfs_mowner);
712 if (siz >= MINCLSIZE)
713 m_clget(mb2, M_WAIT);
714 mb->m_next = mb2;
715 mb = mb2;
716 mb->m_len = 0;
717 bpos = mtod(mb, void *);
718 }
719 i = min(siz, M_TRAILINGSPACE(mb));
720 memcpy(bpos, verf_str, i);
721 mb->m_len += i;
722 verf_str += i;
723 bpos += i;
724 siz -= i;
725 }
726 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
727 for (i = 0; i < siz; i++)
728 *bpos++ = '\0';
729 mb->m_len += siz;
730 }
731 } else {
732 *tl++ = txdr_unsigned(RPCAUTH_NULL);
733 *tl = 0;
734 }
735 mb->m_next = mrest;
736 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
737 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
738 *mbp = mb;
739 return (mreq);
740 }
741
742 /*
743 * copies mbuf chain to the uio scatter/gather list
744 */
745 int
746 nfsm_mbuftouio(mrep, uiop, siz, dpos)
747 struct mbuf **mrep;
748 struct uio *uiop;
749 int siz;
750 char **dpos;
751 {
752 char *mbufcp, *uiocp;
753 int xfer, left, len;
754 struct mbuf *mp;
755 long uiosiz, rem;
756 int error = 0;
757
758 mp = *mrep;
759 mbufcp = *dpos;
760 len = mtod(mp, char *) + mp->m_len - mbufcp;
761 rem = nfsm_rndup(siz)-siz;
762 while (siz > 0) {
763 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
764 return (EFBIG);
765 left = uiop->uio_iov->iov_len;
766 uiocp = uiop->uio_iov->iov_base;
767 if (left > siz)
768 left = siz;
769 uiosiz = left;
770 while (left > 0) {
771 while (len == 0) {
772 mp = mp->m_next;
773 if (mp == NULL)
774 return (EBADRPC);
775 mbufcp = mtod(mp, void *);
776 len = mp->m_len;
777 }
778 xfer = (left > len) ? len : left;
779 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
780 uiocp, xfer);
781 if (error) {
782 return error;
783 }
784 left -= xfer;
785 len -= xfer;
786 mbufcp += xfer;
787 uiocp += xfer;
788 uiop->uio_offset += xfer;
789 uiop->uio_resid -= xfer;
790 }
791 if (uiop->uio_iov->iov_len <= siz) {
792 uiop->uio_iovcnt--;
793 uiop->uio_iov++;
794 } else {
795 uiop->uio_iov->iov_base =
796 (char *)uiop->uio_iov->iov_base + uiosiz;
797 uiop->uio_iov->iov_len -= uiosiz;
798 }
799 siz -= uiosiz;
800 }
801 *dpos = mbufcp;
802 *mrep = mp;
803 if (rem > 0) {
804 if (len < rem)
805 error = nfs_adv(mrep, dpos, rem, len);
806 else
807 *dpos += rem;
808 }
809 return (error);
810 }
811
812 /*
813 * copies a uio scatter/gather list to an mbuf chain.
814 * NOTE: can ony handle iovcnt == 1
815 */
816 int
817 nfsm_uiotombuf(uiop, mq, siz, bpos)
818 struct uio *uiop;
819 struct mbuf **mq;
820 int siz;
821 char **bpos;
822 {
823 char *uiocp;
824 struct mbuf *mp, *mp2;
825 int xfer, left, mlen;
826 int uiosiz, clflg, rem;
827 char *cp;
828 int error;
829
830 #ifdef DIAGNOSTIC
831 if (uiop->uio_iovcnt != 1)
832 panic("nfsm_uiotombuf: iovcnt != 1");
833 #endif
834
835 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
836 clflg = 1;
837 else
838 clflg = 0;
839 rem = nfsm_rndup(siz)-siz;
840 mp = mp2 = *mq;
841 while (siz > 0) {
842 left = uiop->uio_iov->iov_len;
843 uiocp = uiop->uio_iov->iov_base;
844 if (left > siz)
845 left = siz;
846 uiosiz = left;
847 while (left > 0) {
848 mlen = M_TRAILINGSPACE(mp);
849 if (mlen == 0) {
850 mp = m_get(M_WAIT, MT_DATA);
851 MCLAIM(mp, &nfs_mowner);
852 if (clflg)
853 m_clget(mp, M_WAIT);
854 mp->m_len = 0;
855 mp2->m_next = mp;
856 mp2 = mp;
857 mlen = M_TRAILINGSPACE(mp);
858 }
859 xfer = (left > mlen) ? mlen : left;
860 cp = mtod(mp, char *) + mp->m_len;
861 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
862 xfer);
863 if (error) {
864 /* XXX */
865 }
866 mp->m_len += xfer;
867 left -= xfer;
868 uiocp += xfer;
869 uiop->uio_offset += xfer;
870 uiop->uio_resid -= xfer;
871 }
872 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
873 uiosiz;
874 uiop->uio_iov->iov_len -= uiosiz;
875 siz -= uiosiz;
876 }
877 if (rem > 0) {
878 if (rem > M_TRAILINGSPACE(mp)) {
879 mp = m_get(M_WAIT, MT_DATA);
880 MCLAIM(mp, &nfs_mowner);
881 mp->m_len = 0;
882 mp2->m_next = mp;
883 }
884 cp = mtod(mp, char *) + mp->m_len;
885 for (left = 0; left < rem; left++)
886 *cp++ = '\0';
887 mp->m_len += rem;
888 *bpos = cp;
889 } else
890 *bpos = mtod(mp, char *) + mp->m_len;
891 *mq = mp;
892 return (0);
893 }
894
895 /*
896 * Get at least "siz" bytes of correctly aligned data.
897 * When called the mbuf pointers are not necessarily correct,
898 * dsosp points to what ought to be in m_data and left contains
899 * what ought to be in m_len.
900 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
901 * cases. (The macros use the vars. dpos and dpos2)
902 */
903 int
904 nfsm_disct(mdp, dposp, siz, left, cp2)
905 struct mbuf **mdp;
906 char **dposp;
907 int siz;
908 int left;
909 char **cp2;
910 {
911 struct mbuf *m1, *m2;
912 struct mbuf *havebuf = NULL;
913 char *src = *dposp;
914 char *dst;
915 int len;
916
917 #ifdef DEBUG
918 if (left < 0)
919 panic("nfsm_disct: left < 0");
920 #endif
921 m1 = *mdp;
922 /*
923 * Skip through the mbuf chain looking for an mbuf with
924 * some data. If the first mbuf found has enough data
925 * and it is correctly aligned return it.
926 */
927 while (left == 0) {
928 havebuf = m1;
929 *mdp = m1 = m1->m_next;
930 if (m1 == NULL)
931 return (EBADRPC);
932 src = mtod(m1, void *);
933 left = m1->m_len;
934 /*
935 * If we start a new mbuf and it is big enough
936 * and correctly aligned just return it, don't
937 * do any pull up.
938 */
939 if (left >= siz && nfsm_aligned(src)) {
940 *cp2 = src;
941 *dposp = src + siz;
942 return (0);
943 }
944 }
945 if ((m1->m_flags & M_EXT) != 0) {
946 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
947 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
948 /*
949 * If the first mbuf with data has external data
950 * and there is a previous mbuf with some trailing
951 * space, use it to move the data into.
952 */
953 m2 = m1;
954 *mdp = m1 = havebuf;
955 *cp2 = mtod(m1, char *) + m1->m_len;
956 } else if (havebuf) {
957 /*
958 * If the first mbuf has a external data
959 * and there is no previous empty mbuf
960 * allocate a new mbuf and move the external
961 * data to the new mbuf. Also make the first
962 * mbuf look empty.
963 */
964 m2 = m1;
965 *mdp = m1 = m_get(M_WAIT, MT_DATA);
966 MCLAIM(m1, m2->m_owner);
967 if ((m2->m_flags & M_PKTHDR) != 0) {
968 /* XXX MOVE */
969 M_COPY_PKTHDR(m1, m2);
970 m_tag_delete_chain(m2, NULL);
971 m2->m_flags &= ~M_PKTHDR;
972 }
973 if (havebuf) {
974 havebuf->m_next = m1;
975 }
976 m1->m_next = m2;
977 MRESETDATA(m1);
978 m1->m_len = 0;
979 m2->m_data = src;
980 m2->m_len = left;
981 *cp2 = mtod(m1, char *);
982 } else {
983 struct mbuf **nextp = &m1->m_next;
984
985 m1->m_len -= left;
986 do {
987 m2 = m_get(M_WAIT, MT_DATA);
988 MCLAIM(m2, m1->m_owner);
989 if (left >= MINCLSIZE) {
990 MCLGET(m2, M_WAIT);
991 }
992 m2->m_next = *nextp;
993 *nextp = m2;
994 nextp = &m2->m_next;
995 len = (m2->m_flags & M_EXT) != 0 ?
996 MCLBYTES : MLEN;
997 if (len > left) {
998 len = left;
999 }
1000 memcpy(mtod(m2, char *), src, len);
1001 m2->m_len = len;
1002 src += len;
1003 left -= len;
1004 } while (left > 0);
1005 *mdp = m1 = m1->m_next;
1006 m2 = m1->m_next;
1007 *cp2 = mtod(m1, char *);
1008 }
1009 } else {
1010 /*
1011 * If the first mbuf has no external data
1012 * move the data to the front of the mbuf.
1013 */
1014 MRESETDATA(m1);
1015 dst = mtod(m1, char *);
1016 if (dst != src) {
1017 memmove(dst, src, left);
1018 }
1019 m1->m_len = left;
1020 m2 = m1->m_next;
1021 *cp2 = m1->m_data;
1022 }
1023 *dposp = *cp2 + siz;
1024 /*
1025 * Loop through mbufs pulling data up into first mbuf until
1026 * the first mbuf is full or there is no more data to
1027 * pullup.
1028 */
1029 dst = mtod(m1, char *) + m1->m_len;
1030 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1031 if ((len = min(len, m2->m_len)) != 0) {
1032 memcpy(dst, mtod(m2, char *), len);
1033 }
1034 m1->m_len += len;
1035 dst += len;
1036 m2->m_data += len;
1037 m2->m_len -= len;
1038 m2 = m2->m_next;
1039 }
1040 if (m1->m_len < siz)
1041 return (EBADRPC);
1042 return (0);
1043 }
1044
1045 /*
1046 * Advance the position in the mbuf chain.
1047 */
1048 int
1049 nfs_adv(mdp, dposp, offs, left)
1050 struct mbuf **mdp;
1051 char **dposp;
1052 int offs;
1053 int left;
1054 {
1055 struct mbuf *m;
1056 int s;
1057
1058 m = *mdp;
1059 s = left;
1060 while (s < offs) {
1061 offs -= s;
1062 m = m->m_next;
1063 if (m == NULL)
1064 return (EBADRPC);
1065 s = m->m_len;
1066 }
1067 *mdp = m;
1068 *dposp = mtod(m, char *) + offs;
1069 return (0);
1070 }
1071
1072 /*
1073 * Copy a string into mbufs for the hard cases...
1074 */
1075 int
1076 nfsm_strtmbuf(mb, bpos, cp, siz)
1077 struct mbuf **mb;
1078 char **bpos;
1079 const char *cp;
1080 long siz;
1081 {
1082 struct mbuf *m1 = NULL, *m2;
1083 long left, xfer, len, tlen;
1084 u_int32_t *tl;
1085 int putsize;
1086
1087 putsize = 1;
1088 m2 = *mb;
1089 left = M_TRAILINGSPACE(m2);
1090 if (left > 0) {
1091 tl = ((u_int32_t *)(*bpos));
1092 *tl++ = txdr_unsigned(siz);
1093 putsize = 0;
1094 left -= NFSX_UNSIGNED;
1095 m2->m_len += NFSX_UNSIGNED;
1096 if (left > 0) {
1097 memcpy((void *) tl, cp, left);
1098 siz -= left;
1099 cp += left;
1100 m2->m_len += left;
1101 left = 0;
1102 }
1103 }
1104 /* Loop around adding mbufs */
1105 while (siz > 0) {
1106 m1 = m_get(M_WAIT, MT_DATA);
1107 MCLAIM(m1, &nfs_mowner);
1108 if (siz > MLEN)
1109 m_clget(m1, M_WAIT);
1110 m1->m_len = NFSMSIZ(m1);
1111 m2->m_next = m1;
1112 m2 = m1;
1113 tl = mtod(m1, u_int32_t *);
1114 tlen = 0;
1115 if (putsize) {
1116 *tl++ = txdr_unsigned(siz);
1117 m1->m_len -= NFSX_UNSIGNED;
1118 tlen = NFSX_UNSIGNED;
1119 putsize = 0;
1120 }
1121 if (siz < m1->m_len) {
1122 len = nfsm_rndup(siz);
1123 xfer = siz;
1124 if (xfer < len)
1125 *(tl+(xfer>>2)) = 0;
1126 } else {
1127 xfer = len = m1->m_len;
1128 }
1129 memcpy((void *) tl, cp, xfer);
1130 m1->m_len = len+tlen;
1131 siz -= xfer;
1132 cp += xfer;
1133 }
1134 *mb = m1;
1135 *bpos = mtod(m1, char *) + m1->m_len;
1136 return (0);
1137 }
1138
1139 /*
1140 * Directory caching routines. They work as follows:
1141 * - a cache is maintained per VDIR nfsnode.
1142 * - for each offset cookie that is exported to userspace, and can
1143 * thus be thrown back at us as an offset to VOP_READDIR, store
1144 * information in the cache.
1145 * - cached are:
1146 * - cookie itself
1147 * - blocknumber (essentially just a search key in the buffer cache)
1148 * - entry number in block.
1149 * - offset cookie of block in which this entry is stored
1150 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1151 * - entries are looked up in a hash table
1152 * - also maintained is an LRU list of entries, used to determine
1153 * which ones to delete if the cache grows too large.
1154 * - if 32 <-> 64 translation mode is requested for a filesystem,
1155 * the cache also functions as a translation table
1156 * - in the translation case, invalidating the cache does not mean
1157 * flushing it, but just marking entries as invalid, except for
1158 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1159 * still be able to use the cache as a translation table.
1160 * - 32 bit cookies are uniquely created by combining the hash table
1161 * entry value, and one generation count per hash table entry,
1162 * incremented each time an entry is appended to the chain.
1163 * - the cache is invalidated each time a direcory is modified
1164 * - sanity checks are also done; if an entry in a block turns
1165 * out not to have a matching cookie, the cache is invalidated
1166 * and a new block starting from the wanted offset is fetched from
1167 * the server.
1168 * - directory entries as read from the server are extended to contain
1169 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1170 * the cache and exporting them to userspace through the cookie
1171 * argument to VOP_READDIR.
1172 */
1173
1174 u_long
1175 nfs_dirhash(off)
1176 off_t off;
1177 {
1178 int i;
1179 char *cp = (char *)&off;
1180 u_long sum = 0L;
1181
1182 for (i = 0 ; i < sizeof (off); i++)
1183 sum += *cp++;
1184
1185 return sum;
1186 }
1187
1188 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1189 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1190 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1191 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1192
1193 void
1194 nfs_initdircache(vp)
1195 struct vnode *vp;
1196 {
1197 struct nfsnode *np = VTONFS(vp);
1198 struct nfsdirhashhead *dircache;
1199
1200 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1201 &nfsdirhashmask);
1202
1203 NFSDC_LOCK(np);
1204 if (np->n_dircache == NULL) {
1205 np->n_dircachesize = 0;
1206 np->n_dircache = dircache;
1207 dircache = NULL;
1208 TAILQ_INIT(&np->n_dirchain);
1209 }
1210 NFSDC_UNLOCK(np);
1211 if (dircache)
1212 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1213 }
1214
1215 void
1216 nfs_initdirxlatecookie(vp)
1217 struct vnode *vp;
1218 {
1219 struct nfsnode *np = VTONFS(vp);
1220 unsigned *dirgens;
1221
1222 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1223
1224 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1225 NFSDC_LOCK(np);
1226 if (np->n_dirgens == NULL) {
1227 np->n_dirgens = dirgens;
1228 dirgens = NULL;
1229 }
1230 NFSDC_UNLOCK(np);
1231 if (dirgens)
1232 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1233 }
1234
1235 static const struct nfsdircache dzero;
1236
1237 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
1238 static void nfs_putdircache_unlocked(struct nfsnode *,
1239 struct nfsdircache *);
1240
1241 static void
1242 nfs_unlinkdircache(np, ndp)
1243 struct nfsnode *np;
1244 struct nfsdircache *ndp;
1245 {
1246
1247 NFSDC_ASSERT_LOCKED(np);
1248 KASSERT(ndp != &dzero);
1249
1250 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1251 return;
1252
1253 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1254 LIST_REMOVE(ndp, dc_hash);
1255 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1256
1257 nfs_putdircache_unlocked(np, ndp);
1258 }
1259
1260 void
1261 nfs_putdircache(np, ndp)
1262 struct nfsnode *np;
1263 struct nfsdircache *ndp;
1264 {
1265 int ref;
1266
1267 if (ndp == &dzero)
1268 return;
1269
1270 KASSERT(ndp->dc_refcnt > 0);
1271 NFSDC_LOCK(np);
1272 ref = --ndp->dc_refcnt;
1273 NFSDC_UNLOCK(np);
1274
1275 if (ref == 0)
1276 kmem_free(ndp, sizeof(*ndp));
1277 }
1278
1279 static void
1280 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1281 {
1282 int ref;
1283
1284 NFSDC_ASSERT_LOCKED(np);
1285
1286 if (ndp == &dzero)
1287 return;
1288
1289 KASSERT(ndp->dc_refcnt > 0);
1290 ref = --ndp->dc_refcnt;
1291 if (ref == 0)
1292 kmem_free(ndp, sizeof(*ndp));
1293 }
1294
1295 struct nfsdircache *
1296 nfs_searchdircache(vp, off, do32, hashent)
1297 struct vnode *vp;
1298 off_t off;
1299 int do32;
1300 int *hashent;
1301 {
1302 struct nfsdirhashhead *ndhp;
1303 struct nfsdircache *ndp = NULL;
1304 struct nfsnode *np = VTONFS(vp);
1305 unsigned ent;
1306
1307 /*
1308 * Zero is always a valid cookie.
1309 */
1310 if (off == 0)
1311 /* XXXUNCONST */
1312 return (struct nfsdircache *)__UNCONST(&dzero);
1313
1314 if (!np->n_dircache)
1315 return NULL;
1316
1317 /*
1318 * We use a 32bit cookie as search key, directly reconstruct
1319 * the hashentry. Else use the hashfunction.
1320 */
1321 if (do32) {
1322 ent = (u_int32_t)off >> 24;
1323 if (ent >= NFS_DIRHASHSIZ)
1324 return NULL;
1325 ndhp = &np->n_dircache[ent];
1326 } else {
1327 ndhp = NFSDIRHASH(np, off);
1328 }
1329
1330 if (hashent)
1331 *hashent = (int)(ndhp - np->n_dircache);
1332
1333 NFSDC_LOCK(np);
1334 if (do32) {
1335 LIST_FOREACH(ndp, ndhp, dc_hash) {
1336 if (ndp->dc_cookie32 == (u_int32_t)off) {
1337 /*
1338 * An invalidated entry will become the
1339 * start of a new block fetched from
1340 * the server.
1341 */
1342 if (ndp->dc_flags & NFSDC_INVALID) {
1343 ndp->dc_blkcookie = ndp->dc_cookie;
1344 ndp->dc_entry = 0;
1345 ndp->dc_flags &= ~NFSDC_INVALID;
1346 }
1347 break;
1348 }
1349 }
1350 } else {
1351 LIST_FOREACH(ndp, ndhp, dc_hash) {
1352 if (ndp->dc_cookie == off)
1353 break;
1354 }
1355 }
1356 if (ndp != NULL)
1357 ndp->dc_refcnt++;
1358 NFSDC_UNLOCK(np);
1359 return ndp;
1360 }
1361
1362
1363 struct nfsdircache *
1364 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1365 daddr_t blkno)
1366 {
1367 struct nfsnode *np = VTONFS(vp);
1368 struct nfsdirhashhead *ndhp;
1369 struct nfsdircache *ndp = NULL;
1370 struct nfsdircache *newndp = NULL;
1371 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1372 int hashent = 0, gen, overwrite; /* XXX: GCC */
1373
1374 /*
1375 * XXX refuse entries for offset 0. amd(8) erroneously sets
1376 * cookie 0 for the '.' entry, making this necessary. This
1377 * isn't so bad, as 0 is a special case anyway.
1378 */
1379 if (off == 0)
1380 /* XXXUNCONST */
1381 return (struct nfsdircache *)__UNCONST(&dzero);
1382
1383 if (!np->n_dircache)
1384 /*
1385 * XXX would like to do this in nfs_nget but vtype
1386 * isn't known at that time.
1387 */
1388 nfs_initdircache(vp);
1389
1390 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1391 nfs_initdirxlatecookie(vp);
1392
1393 retry:
1394 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1395
1396 NFSDC_LOCK(np);
1397 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1398 /*
1399 * Overwriting an old entry. Check if it's the same.
1400 * If so, just return. If not, remove the old entry.
1401 */
1402 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1403 goto done;
1404 nfs_unlinkdircache(np, ndp);
1405 nfs_putdircache_unlocked(np, ndp);
1406 ndp = NULL;
1407 }
1408
1409 ndhp = &np->n_dircache[hashent];
1410
1411 if (!ndp) {
1412 if (newndp == NULL) {
1413 NFSDC_UNLOCK(np);
1414 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1415 newndp->dc_refcnt = 1;
1416 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1417 goto retry;
1418 }
1419 ndp = newndp;
1420 newndp = NULL;
1421 overwrite = 0;
1422 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1423 /*
1424 * We're allocating a new entry, so bump the
1425 * generation number.
1426 */
1427 KASSERT(np->n_dirgens);
1428 gen = ++np->n_dirgens[hashent];
1429 if (gen == 0) {
1430 np->n_dirgens[hashent]++;
1431 gen++;
1432 }
1433 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1434 }
1435 } else
1436 overwrite = 1;
1437
1438 ndp->dc_cookie = off;
1439 ndp->dc_blkcookie = blkoff;
1440 ndp->dc_entry = en;
1441 ndp->dc_flags = 0;
1442
1443 if (overwrite)
1444 goto done;
1445
1446 /*
1447 * If the maximum directory cookie cache size has been reached
1448 * for this node, take one off the front. The idea is that
1449 * directories are typically read front-to-back once, so that
1450 * the oldest entries can be thrown away without much performance
1451 * loss.
1452 */
1453 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1454 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1455 } else
1456 np->n_dircachesize++;
1457
1458 KASSERT(ndp->dc_refcnt == 1);
1459 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1460 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1461 ndp->dc_refcnt++;
1462 done:
1463 KASSERT(ndp->dc_refcnt > 0);
1464 NFSDC_UNLOCK(np);
1465 if (newndp)
1466 nfs_putdircache(np, newndp);
1467 return ndp;
1468 }
1469
1470 void
1471 nfs_invaldircache(vp, flags)
1472 struct vnode *vp;
1473 int flags;
1474 {
1475 struct nfsnode *np = VTONFS(vp);
1476 struct nfsdircache *ndp = NULL;
1477 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1478 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1479
1480 #ifdef DIAGNOSTIC
1481 if (vp->v_type != VDIR)
1482 panic("nfs: invaldircache: not dir");
1483 #endif
1484
1485 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1486 np->n_flag &= ~NEOFVALID;
1487
1488 if (!np->n_dircache)
1489 return;
1490
1491 NFSDC_LOCK(np);
1492 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1493 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1494 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1495 nfs_unlinkdircache(np, ndp);
1496 }
1497 np->n_dircachesize = 0;
1498 if (forcefree && np->n_dirgens) {
1499 kmem_free(np->n_dirgens,
1500 NFS_DIRHASHSIZ * sizeof(unsigned));
1501 np->n_dirgens = NULL;
1502 }
1503 } else {
1504 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1505 ndp->dc_flags |= NFSDC_INVALID;
1506 }
1507
1508 NFSDC_UNLOCK(np);
1509 }
1510
1511 /*
1512 * Called once before VFS init to initialize shared and
1513 * server-specific data structures.
1514 */
1515 static int
1516 nfs_init0(void)
1517 {
1518
1519 nfsrtt.pos = 0;
1520 rpc_vers = txdr_unsigned(RPC_VER2);
1521 rpc_call = txdr_unsigned(RPC_CALL);
1522 rpc_reply = txdr_unsigned(RPC_REPLY);
1523 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1524 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1525 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1526 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1527 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1528 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1529 nfs_prog = txdr_unsigned(NFS_PROG);
1530 nfs_true = txdr_unsigned(true);
1531 nfs_false = txdr_unsigned(false);
1532 nfs_xdrneg1 = txdr_unsigned(-1);
1533 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1534 if (nfs_ticks < 1)
1535 nfs_ticks = 1;
1536 nfs_xid = arc4random();
1537 nfsdreq_init();
1538
1539 /*
1540 * Initialize reply list and start timer
1541 */
1542 TAILQ_INIT(&nfs_reqq);
1543 nfs_timer_init();
1544 MOWNER_ATTACH(&nfs_mowner);
1545
1546 #ifdef NFS
1547 /* Initialize the kqueue structures */
1548 nfs_kqinit();
1549 /* Initialize the iod structures */
1550 nfs_iodinit();
1551 #endif
1552
1553 return 0;
1554 }
1555
1556 /*
1557 * This is disgusting, but it must support both modular and monolothic
1558 * configurations. For monolithic builds NFSSERVER may not imply NFS.
1559 *
1560 * Yuck.
1561 */
1562 void
1563 nfs_init(void)
1564 {
1565 static ONCE_DECL(nfs_init_once);
1566
1567 RUN_ONCE(&nfs_init_once, nfs_init0);
1568 }
1569
1570 void
1571 nfs_fini(void)
1572 {
1573
1574 #ifdef NFS
1575 nfs_kqfini();
1576 nfs_iodfini();
1577 #endif
1578 nfsdreq_fini();
1579 nfs_timer_fini();
1580 MOWNER_DETACH(&nfs_mowner);
1581 }
1582
1583 #ifdef NFS
1584 /*
1585 * Called once at VFS init to initialize client-specific data structures.
1586 */
1587 void
1588 nfs_vfs_init()
1589 {
1590
1591 /* Initialize NFS server / client shared data. */
1592 nfs_init();
1593 nfs_node_init();
1594
1595 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1596 }
1597
1598 void
1599 nfs_vfs_done()
1600 {
1601
1602 nfs_node_done();
1603 }
1604
1605 /*
1606 * Attribute cache routines.
1607 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1608 * that are on the mbuf list
1609 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1610 * error otherwise
1611 */
1612
1613 /*
1614 * Load the attribute cache (that lives in the nfsnode entry) with
1615 * the values on the mbuf list and
1616 * Iff vap not NULL
1617 * copy the attributes to *vaper
1618 */
1619 int
1620 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1621 struct vnode **vpp;
1622 struct mbuf **mdp;
1623 char **dposp;
1624 struct vattr *vaper;
1625 int flags;
1626 {
1627 int32_t t1;
1628 char *cp2;
1629 int error = 0;
1630 struct mbuf *md;
1631 int v3 = NFS_ISV3(*vpp);
1632
1633 md = *mdp;
1634 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1635 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1636 if (error)
1637 return (error);
1638 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1639 }
1640
1641 int
1642 nfs_loadattrcache(vpp, fp, vaper, flags)
1643 struct vnode **vpp;
1644 struct nfs_fattr *fp;
1645 struct vattr *vaper;
1646 int flags;
1647 {
1648 struct vnode *vp = *vpp;
1649 struct vattr *vap;
1650 int v3 = NFS_ISV3(vp);
1651 enum vtype vtyp;
1652 u_short vmode;
1653 struct timespec mtime;
1654 struct timespec ctime;
1655 int32_t rdev;
1656 struct nfsnode *np;
1657 extern int (**spec_nfsv2nodeop_p)(void *);
1658 uid_t uid;
1659 gid_t gid;
1660
1661 if (v3) {
1662 vtyp = nfsv3tov_type(fp->fa_type);
1663 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1664 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1665 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1666 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1667 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1668 } else {
1669 vtyp = nfsv2tov_type(fp->fa_type);
1670 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1671 if (vtyp == VNON || vtyp == VREG)
1672 vtyp = IFTOVT(vmode);
1673 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1674 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1675 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1676 fp->fa2_ctime.nfsv2_sec);
1677 ctime.tv_nsec = 0;
1678
1679 /*
1680 * Really ugly NFSv2 kludge.
1681 */
1682 if (vtyp == VCHR && rdev == 0xffffffff)
1683 vtyp = VFIFO;
1684 }
1685
1686 vmode &= ALLPERMS;
1687
1688 /*
1689 * If v_type == VNON it is a new node, so fill in the v_type,
1690 * n_mtime fields. Check to see if it represents a special
1691 * device, and if so, check for a possible alias. Once the
1692 * correct vnode has been obtained, fill in the rest of the
1693 * information.
1694 */
1695 np = VTONFS(vp);
1696 if (vp->v_type == VNON) {
1697 vp->v_type = vtyp;
1698 if (vp->v_type == VFIFO) {
1699 extern int (**fifo_nfsv2nodeop_p)(void *);
1700 vp->v_op = fifo_nfsv2nodeop_p;
1701 } else if (vp->v_type == VREG) {
1702 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1703 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1704 vp->v_op = spec_nfsv2nodeop_p;
1705 spec_node_init(vp, (dev_t)rdev);
1706 }
1707 np->n_mtime = mtime;
1708 }
1709 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1710 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1711 vap = np->n_vattr;
1712
1713 /*
1714 * Invalidate access cache if uid, gid, mode or ctime changed.
1715 */
1716 if (np->n_accstamp != -1 &&
1717 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1718 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1719 np->n_accstamp = -1;
1720
1721 vap->va_type = vtyp;
1722 vap->va_mode = vmode;
1723 vap->va_rdev = (dev_t)rdev;
1724 vap->va_mtime = mtime;
1725 vap->va_ctime = ctime;
1726 vap->va_birthtime.tv_sec = VNOVAL;
1727 vap->va_birthtime.tv_nsec = VNOVAL;
1728 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1729 switch (vtyp) {
1730 case VDIR:
1731 vap->va_blocksize = NFS_DIRFRAGSIZ;
1732 break;
1733 case VBLK:
1734 vap->va_blocksize = BLKDEV_IOSIZE;
1735 break;
1736 case VCHR:
1737 vap->va_blocksize = MAXBSIZE;
1738 break;
1739 default:
1740 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1741 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1742 break;
1743 }
1744 if (v3) {
1745 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1746 vap->va_uid = uid;
1747 vap->va_gid = gid;
1748 vap->va_size = fxdr_hyper(&fp->fa3_size);
1749 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1750 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1751 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1752 vap->va_flags = 0;
1753 vap->va_filerev = 0;
1754 } else {
1755 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1756 vap->va_uid = uid;
1757 vap->va_gid = gid;
1758 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1759 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1760 * NFS_FABLKSIZE;
1761 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1762 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1763 vap->va_flags = 0;
1764 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1765 vap->va_filerev = 0;
1766 }
1767 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1768 return EFBIG;
1769 }
1770 if (vap->va_size != np->n_size) {
1771 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1772 vap->va_size = np->n_size;
1773 } else {
1774 np->n_size = vap->va_size;
1775 if (vap->va_type == VREG) {
1776 /*
1777 * we can't free pages if NAC_NOTRUNC because
1778 * the pages can be owned by ourselves.
1779 */
1780 if (flags & NAC_NOTRUNC) {
1781 np->n_flag |= NTRUNCDELAYED;
1782 } else {
1783 genfs_node_wrlock(vp);
1784 mutex_enter(&vp->v_interlock);
1785 (void)VOP_PUTPAGES(vp, 0,
1786 0, PGO_SYNCIO | PGO_CLEANIT |
1787 PGO_FREE | PGO_ALLPAGES);
1788 uvm_vnp_setsize(vp, np->n_size);
1789 genfs_node_unlock(vp);
1790 }
1791 }
1792 }
1793 }
1794 np->n_attrstamp = time_second;
1795 if (vaper != NULL) {
1796 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1797 if (np->n_flag & NCHG) {
1798 if (np->n_flag & NACC)
1799 vaper->va_atime = np->n_atim;
1800 if (np->n_flag & NUPD)
1801 vaper->va_mtime = np->n_mtim;
1802 }
1803 }
1804 return (0);
1805 }
1806
1807 /*
1808 * Check the time stamp
1809 * If the cache is valid, copy contents to *vap and return 0
1810 * otherwise return an error
1811 */
1812 int
1813 nfs_getattrcache(vp, vaper)
1814 struct vnode *vp;
1815 struct vattr *vaper;
1816 {
1817 struct nfsnode *np = VTONFS(vp);
1818 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1819 struct vattr *vap;
1820
1821 if (np->n_attrstamp == 0 ||
1822 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1823 nfsstats.attrcache_misses++;
1824 return (ENOENT);
1825 }
1826 nfsstats.attrcache_hits++;
1827 vap = np->n_vattr;
1828 if (vap->va_size != np->n_size) {
1829 if (vap->va_type == VREG) {
1830 if ((np->n_flag & NMODIFIED) != 0 &&
1831 vap->va_size < np->n_size) {
1832 vap->va_size = np->n_size;
1833 } else {
1834 np->n_size = vap->va_size;
1835 }
1836 genfs_node_wrlock(vp);
1837 uvm_vnp_setsize(vp, np->n_size);
1838 genfs_node_unlock(vp);
1839 } else
1840 np->n_size = vap->va_size;
1841 }
1842 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1843 if (np->n_flag & NCHG) {
1844 if (np->n_flag & NACC)
1845 vaper->va_atime = np->n_atim;
1846 if (np->n_flag & NUPD)
1847 vaper->va_mtime = np->n_mtim;
1848 }
1849 return (0);
1850 }
1851
1852 void
1853 nfs_delayedtruncate(vp)
1854 struct vnode *vp;
1855 {
1856 struct nfsnode *np = VTONFS(vp);
1857
1858 if (np->n_flag & NTRUNCDELAYED) {
1859 np->n_flag &= ~NTRUNCDELAYED;
1860 genfs_node_wrlock(vp);
1861 mutex_enter(&vp->v_interlock);
1862 (void)VOP_PUTPAGES(vp, 0,
1863 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1864 uvm_vnp_setsize(vp, np->n_size);
1865 genfs_node_unlock(vp);
1866 }
1867 }
1868
1869 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1870 #define NFS_WCCKLUDGE(nmp, now) \
1871 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1872 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1873
1874 /*
1875 * nfs_check_wccdata: check inaccurate wcc_data
1876 *
1877 * => return non-zero if we shouldn't trust the wcc_data.
1878 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1879 */
1880
1881 int
1882 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1883 struct timespec *mtime, bool docheck)
1884 {
1885 int error = 0;
1886
1887 #if !defined(NFS_V2_ONLY)
1888
1889 if (docheck) {
1890 struct vnode *vp = NFSTOV(np);
1891 struct nfsmount *nmp;
1892 long now = time_second;
1893 const struct timespec *omtime = &np->n_vattr->va_mtime;
1894 const struct timespec *octime = &np->n_vattr->va_ctime;
1895 const char *reason = NULL; /* XXX: gcc */
1896
1897 if (timespeccmp(omtime, mtime, <=)) {
1898 reason = "mtime";
1899 error = EINVAL;
1900 }
1901
1902 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1903 reason = "ctime";
1904 error = EINVAL;
1905 }
1906
1907 nmp = VFSTONFS(vp->v_mount);
1908 if (error) {
1909
1910 /*
1911 * despite of the fact that we've updated the file,
1912 * timestamps of the file were not updated as we
1913 * expected.
1914 * it means that the server has incompatible
1915 * semantics of timestamps or (more likely)
1916 * the server time is not precise enough to
1917 * track each modifications.
1918 * in that case, we disable wcc processing.
1919 *
1920 * yes, strictly speaking, we should disable all
1921 * caching. it's a compromise.
1922 */
1923
1924 mutex_enter(&nmp->nm_lock);
1925 if (!NFS_WCCKLUDGE(nmp, now)) {
1926 printf("%s: inaccurate wcc data (%s) detected,"
1927 " disabling wcc"
1928 " (ctime %u.%09u %u.%09u,"
1929 " mtime %u.%09u %u.%09u)\n",
1930 vp->v_mount->mnt_stat.f_mntfromname,
1931 reason,
1932 (unsigned int)octime->tv_sec,
1933 (unsigned int)octime->tv_nsec,
1934 (unsigned int)ctime->tv_sec,
1935 (unsigned int)ctime->tv_nsec,
1936 (unsigned int)omtime->tv_sec,
1937 (unsigned int)omtime->tv_nsec,
1938 (unsigned int)mtime->tv_sec,
1939 (unsigned int)mtime->tv_nsec);
1940 }
1941 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1942 nmp->nm_wcckludgetime = now;
1943 mutex_exit(&nmp->nm_lock);
1944 } else if (NFS_WCCKLUDGE(nmp, now)) {
1945 error = EPERM; /* XXX */
1946 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1947 mutex_enter(&nmp->nm_lock);
1948 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1949 printf("%s: re-enabling wcc\n",
1950 vp->v_mount->mnt_stat.f_mntfromname);
1951 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1952 }
1953 mutex_exit(&nmp->nm_lock);
1954 }
1955 }
1956
1957 #endif /* !defined(NFS_V2_ONLY) */
1958
1959 return error;
1960 }
1961
1962 /*
1963 * Heuristic to see if the server XDR encodes directory cookies or not.
1964 * it is not supposed to, but a lot of servers may do this. Also, since
1965 * most/all servers will implement V2 as well, it is expected that they
1966 * may return just 32 bits worth of cookie information, so we need to
1967 * find out in which 32 bits this information is available. We do this
1968 * to avoid trouble with emulated binaries that can't handle 64 bit
1969 * directory offsets.
1970 */
1971
1972 void
1973 nfs_cookieheuristic(vp, flagp, l, cred)
1974 struct vnode *vp;
1975 int *flagp;
1976 struct lwp *l;
1977 kauth_cred_t cred;
1978 {
1979 struct uio auio;
1980 struct iovec aiov;
1981 char *tbuf, *cp;
1982 struct dirent *dp;
1983 off_t *cookies = NULL, *cop;
1984 int error, eof, nc, len;
1985
1986 tbuf = malloc(NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1987
1988 aiov.iov_base = tbuf;
1989 aiov.iov_len = NFS_DIRFRAGSIZ;
1990 auio.uio_iov = &aiov;
1991 auio.uio_iovcnt = 1;
1992 auio.uio_rw = UIO_READ;
1993 auio.uio_resid = NFS_DIRFRAGSIZ;
1994 auio.uio_offset = 0;
1995 UIO_SETUP_SYSSPACE(&auio);
1996
1997 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1998
1999 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2000 if (error || len == 0) {
2001 free(tbuf, M_TEMP);
2002 if (cookies)
2003 free(cookies, M_TEMP);
2004 return;
2005 }
2006
2007 /*
2008 * Find the first valid entry and look at its offset cookie.
2009 */
2010
2011 cp = tbuf;
2012 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2013 dp = (struct dirent *)cp;
2014 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2015 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2016 *flagp |= NFSMNT_SWAPCOOKIE;
2017 nfs_invaldircache(vp, 0);
2018 nfs_vinvalbuf(vp, 0, cred, l, 1);
2019 }
2020 break;
2021 }
2022 cop++;
2023 cp += dp->d_reclen;
2024 }
2025
2026 free(tbuf, M_TEMP);
2027 free(cookies, M_TEMP);
2028 }
2029 #endif /* NFS */
2030
2031 /*
2032 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2033 * boundary and only trims off the back end
2034 *
2035 * 1. trim off 'len' bytes as m_adj(mp, -len).
2036 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2037 */
2038 void
2039 nfs_zeropad(mp, len, nul)
2040 struct mbuf *mp;
2041 int len;
2042 int nul;
2043 {
2044 struct mbuf *m;
2045 int count;
2046
2047 /*
2048 * Trim from tail. Scan the mbuf chain,
2049 * calculating its length and finding the last mbuf.
2050 * If the adjustment only affects this mbuf, then just
2051 * adjust and return. Otherwise, rescan and truncate
2052 * after the remaining size.
2053 */
2054 count = 0;
2055 m = mp;
2056 for (;;) {
2057 count += m->m_len;
2058 if (m->m_next == NULL)
2059 break;
2060 m = m->m_next;
2061 }
2062
2063 KDASSERT(count >= len);
2064
2065 if (m->m_len >= len) {
2066 m->m_len -= len;
2067 } else {
2068 count -= len;
2069 /*
2070 * Correct length for chain is "count".
2071 * Find the mbuf with last data, adjust its length,
2072 * and toss data from remaining mbufs on chain.
2073 */
2074 for (m = mp; m; m = m->m_next) {
2075 if (m->m_len >= count) {
2076 m->m_len = count;
2077 break;
2078 }
2079 count -= m->m_len;
2080 }
2081 KASSERT(m && m->m_next);
2082 m_freem(m->m_next);
2083 m->m_next = NULL;
2084 }
2085
2086 KDASSERT(m->m_next == NULL);
2087
2088 /*
2089 * zero-padding.
2090 */
2091 if (nul > 0) {
2092 char *cp;
2093 int i;
2094
2095 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2096 struct mbuf *n;
2097
2098 KDASSERT(MLEN >= nul);
2099 n = m_get(M_WAIT, MT_DATA);
2100 MCLAIM(n, &nfs_mowner);
2101 n->m_len = nul;
2102 n->m_next = NULL;
2103 m->m_next = n;
2104 cp = mtod(n, void *);
2105 } else {
2106 cp = mtod(m, char *) + m->m_len;
2107 m->m_len += nul;
2108 }
2109 for (i = 0; i < nul; i++)
2110 *cp++ = '\0';
2111 }
2112 return;
2113 }
2114
2115 /*
2116 * Make these functions instead of macros, so that the kernel text size
2117 * doesn't get too big...
2118 */
2119 void
2120 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2121 struct nfsrv_descript *nfsd;
2122 int before_ret;
2123 struct vattr *before_vap;
2124 int after_ret;
2125 struct vattr *after_vap;
2126 struct mbuf **mbp;
2127 char **bposp;
2128 {
2129 struct mbuf *mb = *mbp;
2130 char *bpos = *bposp;
2131 u_int32_t *tl;
2132
2133 if (before_ret) {
2134 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2135 *tl = nfs_false;
2136 } else {
2137 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2138 *tl++ = nfs_true;
2139 txdr_hyper(before_vap->va_size, tl);
2140 tl += 2;
2141 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2142 tl += 2;
2143 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2144 }
2145 *bposp = bpos;
2146 *mbp = mb;
2147 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2148 }
2149
2150 void
2151 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2152 struct nfsrv_descript *nfsd;
2153 int after_ret;
2154 struct vattr *after_vap;
2155 struct mbuf **mbp;
2156 char **bposp;
2157 {
2158 struct mbuf *mb = *mbp;
2159 char *bpos = *bposp;
2160 u_int32_t *tl;
2161 struct nfs_fattr *fp;
2162
2163 if (after_ret) {
2164 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2165 *tl = nfs_false;
2166 } else {
2167 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2168 *tl++ = nfs_true;
2169 fp = (struct nfs_fattr *)tl;
2170 nfsm_srvfattr(nfsd, after_vap, fp);
2171 }
2172 *mbp = mb;
2173 *bposp = bpos;
2174 }
2175
2176 void
2177 nfsm_srvfattr(nfsd, vap, fp)
2178 struct nfsrv_descript *nfsd;
2179 struct vattr *vap;
2180 struct nfs_fattr *fp;
2181 {
2182
2183 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2184 fp->fa_uid = txdr_unsigned(vap->va_uid);
2185 fp->fa_gid = txdr_unsigned(vap->va_gid);
2186 if (nfsd->nd_flag & ND_NFSV3) {
2187 fp->fa_type = vtonfsv3_type(vap->va_type);
2188 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2189 txdr_hyper(vap->va_size, &fp->fa3_size);
2190 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2191 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2192 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2193 fp->fa3_fsid.nfsuquad[0] = 0;
2194 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2195 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2196 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2197 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2198 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2199 } else {
2200 fp->fa_type = vtonfsv2_type(vap->va_type);
2201 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2202 fp->fa2_size = txdr_unsigned(vap->va_size);
2203 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2204 if (vap->va_type == VFIFO)
2205 fp->fa2_rdev = 0xffffffff;
2206 else
2207 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2208 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2209 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2210 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2211 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2212 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2213 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2214 }
2215 }
2216
2217 /*
2218 * This function compares two net addresses by family and returns true
2219 * if they are the same host.
2220 * If there is any doubt, return false.
2221 * The AF_INET family is handled as a special case so that address mbufs
2222 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2223 */
2224 int
2225 netaddr_match(family, haddr, nam)
2226 int family;
2227 union nethostaddr *haddr;
2228 struct mbuf *nam;
2229 {
2230 struct sockaddr_in *inetaddr;
2231
2232 switch (family) {
2233 case AF_INET:
2234 inetaddr = mtod(nam, struct sockaddr_in *);
2235 if (inetaddr->sin_family == AF_INET &&
2236 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2237 return (1);
2238 break;
2239 case AF_INET6:
2240 {
2241 struct sockaddr_in6 *sin6_1, *sin6_2;
2242
2243 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2244 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2245 if (sin6_1->sin6_family == AF_INET6 &&
2246 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2247 return 1;
2248 }
2249 default:
2250 break;
2251 };
2252 return (0);
2253 }
2254
2255 /*
2256 * The write verifier has changed (probably due to a server reboot), so all
2257 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2258 * as dirty or are being written out just now, all this takes is clearing
2259 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2260 * the mount point.
2261 */
2262 void
2263 nfs_clearcommit(mp)
2264 struct mount *mp;
2265 {
2266 struct vnode *vp;
2267 struct nfsnode *np;
2268 struct vm_page *pg;
2269 struct nfsmount *nmp = VFSTONFS(mp);
2270
2271 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2272 mutex_enter(&mntvnode_lock);
2273 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2274 KASSERT(vp->v_mount == mp);
2275 if (vp->v_type != VREG)
2276 continue;
2277 np = VTONFS(vp);
2278 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2279 np->n_pushedhi = 0;
2280 np->n_commitflags &=
2281 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2282 mutex_enter(&vp->v_uobj.vmobjlock);
2283 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2284 pg->flags &= ~PG_NEEDCOMMIT;
2285 }
2286 mutex_exit(&vp->v_uobj.vmobjlock);
2287 }
2288 mutex_exit(&mntvnode_lock);
2289 mutex_enter(&nmp->nm_lock);
2290 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2291 mutex_exit(&nmp->nm_lock);
2292 rw_exit(&nmp->nm_writeverflock);
2293 }
2294
2295 void
2296 nfs_merge_commit_ranges(vp)
2297 struct vnode *vp;
2298 {
2299 struct nfsnode *np = VTONFS(vp);
2300
2301 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2302
2303 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2304 np->n_pushedlo = np->n_pushlo;
2305 np->n_pushedhi = np->n_pushhi;
2306 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2307 } else {
2308 if (np->n_pushlo < np->n_pushedlo)
2309 np->n_pushedlo = np->n_pushlo;
2310 if (np->n_pushhi > np->n_pushedhi)
2311 np->n_pushedhi = np->n_pushhi;
2312 }
2313
2314 np->n_pushlo = np->n_pushhi = 0;
2315 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2316
2317 #ifdef NFS_DEBUG_COMMIT
2318 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2319 (unsigned)np->n_pushedhi);
2320 #endif
2321 }
2322
2323 int
2324 nfs_in_committed_range(vp, off, len)
2325 struct vnode *vp;
2326 off_t off, len;
2327 {
2328 struct nfsnode *np = VTONFS(vp);
2329 off_t lo, hi;
2330
2331 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2332 return 0;
2333 lo = off;
2334 hi = lo + len;
2335
2336 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2337 }
2338
2339 int
2340 nfs_in_tobecommitted_range(vp, off, len)
2341 struct vnode *vp;
2342 off_t off, len;
2343 {
2344 struct nfsnode *np = VTONFS(vp);
2345 off_t lo, hi;
2346
2347 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2348 return 0;
2349 lo = off;
2350 hi = lo + len;
2351
2352 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2353 }
2354
2355 void
2356 nfs_add_committed_range(vp, off, len)
2357 struct vnode *vp;
2358 off_t off, len;
2359 {
2360 struct nfsnode *np = VTONFS(vp);
2361 off_t lo, hi;
2362
2363 lo = off;
2364 hi = lo + len;
2365
2366 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2367 np->n_pushedlo = lo;
2368 np->n_pushedhi = hi;
2369 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2370 } else {
2371 if (hi > np->n_pushedhi)
2372 np->n_pushedhi = hi;
2373 if (lo < np->n_pushedlo)
2374 np->n_pushedlo = lo;
2375 }
2376 #ifdef NFS_DEBUG_COMMIT
2377 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2378 (unsigned)np->n_pushedhi);
2379 #endif
2380 }
2381
2382 void
2383 nfs_del_committed_range(vp, off, len)
2384 struct vnode *vp;
2385 off_t off, len;
2386 {
2387 struct nfsnode *np = VTONFS(vp);
2388 off_t lo, hi;
2389
2390 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2391 return;
2392
2393 lo = off;
2394 hi = lo + len;
2395
2396 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2397 return;
2398 if (lo <= np->n_pushedlo)
2399 np->n_pushedlo = hi;
2400 else if (hi >= np->n_pushedhi)
2401 np->n_pushedhi = lo;
2402 else {
2403 /*
2404 * XXX There's only one range. If the deleted range
2405 * is in the middle, pick the largest of the
2406 * contiguous ranges that it leaves.
2407 */
2408 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2409 np->n_pushedhi = lo;
2410 else
2411 np->n_pushedlo = hi;
2412 }
2413 #ifdef NFS_DEBUG_COMMIT
2414 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2415 (unsigned)np->n_pushedhi);
2416 #endif
2417 }
2418
2419 void
2420 nfs_add_tobecommitted_range(vp, off, len)
2421 struct vnode *vp;
2422 off_t off, len;
2423 {
2424 struct nfsnode *np = VTONFS(vp);
2425 off_t lo, hi;
2426
2427 lo = off;
2428 hi = lo + len;
2429
2430 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2431 np->n_pushlo = lo;
2432 np->n_pushhi = hi;
2433 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2434 } else {
2435 if (lo < np->n_pushlo)
2436 np->n_pushlo = lo;
2437 if (hi > np->n_pushhi)
2438 np->n_pushhi = hi;
2439 }
2440 #ifdef NFS_DEBUG_COMMIT
2441 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2442 (unsigned)np->n_pushhi);
2443 #endif
2444 }
2445
2446 void
2447 nfs_del_tobecommitted_range(vp, off, len)
2448 struct vnode *vp;
2449 off_t off, len;
2450 {
2451 struct nfsnode *np = VTONFS(vp);
2452 off_t lo, hi;
2453
2454 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2455 return;
2456
2457 lo = off;
2458 hi = lo + len;
2459
2460 if (lo > np->n_pushhi || hi < np->n_pushlo)
2461 return;
2462
2463 if (lo <= np->n_pushlo)
2464 np->n_pushlo = hi;
2465 else if (hi >= np->n_pushhi)
2466 np->n_pushhi = lo;
2467 else {
2468 /*
2469 * XXX There's only one range. If the deleted range
2470 * is in the middle, pick the largest of the
2471 * contiguous ranges that it leaves.
2472 */
2473 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2474 np->n_pushhi = lo;
2475 else
2476 np->n_pushlo = hi;
2477 }
2478 #ifdef NFS_DEBUG_COMMIT
2479 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2480 (unsigned)np->n_pushhi);
2481 #endif
2482 }
2483
2484 /*
2485 * Map errnos to NFS error numbers. For Version 3 also filter out error
2486 * numbers not specified for the associated procedure.
2487 */
2488 int
2489 nfsrv_errmap(nd, err)
2490 struct nfsrv_descript *nd;
2491 int err;
2492 {
2493 const short *defaulterrp, *errp;
2494
2495 if (nd->nd_flag & ND_NFSV3) {
2496 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2497 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2498 while (*++errp) {
2499 if (*errp == err)
2500 return (err);
2501 else if (*errp > err)
2502 break;
2503 }
2504 return ((int)*defaulterrp);
2505 } else
2506 return (err & 0xffff);
2507 }
2508 if (err <= ELAST)
2509 return ((int)nfsrv_v2errmap[err - 1]);
2510 return (NFSERR_IO);
2511 }
2512
2513 u_int32_t
2514 nfs_getxid()
2515 {
2516 u_int32_t newxid;
2517
2518 /* get next xid. skip 0 */
2519 do {
2520 newxid = atomic_inc_32_nv(&nfs_xid);
2521 } while (__predict_false(newxid == 0));
2522
2523 return txdr_unsigned(newxid);
2524 }
2525
2526 /*
2527 * assign a new xid for existing request.
2528 * used for NFSERR_JUKEBOX handling.
2529 */
2530 void
2531 nfs_renewxid(struct nfsreq *req)
2532 {
2533 u_int32_t xid;
2534 int off;
2535
2536 xid = nfs_getxid();
2537 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2538 off = sizeof(u_int32_t); /* RPC record mark */
2539 else
2540 off = 0;
2541
2542 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2543 req->r_xid = xid;
2544 }
2545
2546 #if defined(NFS)
2547 /*
2548 * Set the attribute timeout based on how recently the file has been modified.
2549 */
2550
2551 time_t
2552 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
2553 {
2554 time_t timeo;
2555
2556 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
2557 return 0;
2558
2559 if (((np)->n_flag & NMODIFIED) != 0)
2560 return NFS_MINATTRTIMO;
2561
2562 timeo = (time_second - np->n_mtime.tv_sec) / 10;
2563 timeo = max(timeo, NFS_MINATTRTIMO);
2564 timeo = min(timeo, NFS_MAXATTRTIMO);
2565 return timeo;
2566 }
2567 #endif /* defined(NFS) */
2568