Home | History | Annotate | Line # | Download | only in nfs
nfs_subs.c revision 1.215
      1 /*	$NetBSD: nfs_subs.c,v 1.215 2009/03/14 21:04:25 dsl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     35  */
     36 
     37 /*
     38  * Copyright 2000 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Frank van der Linden for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed for the NetBSD Project by
     54  *      Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.215 2009/03/14 21:04:25 dsl Exp $");
     74 
     75 #ifdef _KERNEL_OPT
     76 #include "fs_nfs.h"
     77 #include "opt_nfs.h"
     78 #endif
     79 
     80 /*
     81  * These functions support the macros and help fiddle mbuf chains for
     82  * the nfs op functions. They do things like create the rpc header and
     83  * copy data between mbuf chains and uio lists.
     84  */
     85 #include <sys/param.h>
     86 #include <sys/proc.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/kmem.h>
     90 #include <sys/mount.h>
     91 #include <sys/vnode.h>
     92 #include <sys/namei.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/socket.h>
     95 #include <sys/stat.h>
     96 #include <sys/filedesc.h>
     97 #include <sys/time.h>
     98 #include <sys/dirent.h>
     99 #include <sys/once.h>
    100 #include <sys/kauth.h>
    101 #include <sys/atomic.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #include <nfs/rpcv2.h>
    106 #include <nfs/nfsproto.h>
    107 #include <nfs/nfsnode.h>
    108 #include <nfs/nfs.h>
    109 #include <nfs/xdr_subs.h>
    110 #include <nfs/nfsm_subs.h>
    111 #include <nfs/nfsmount.h>
    112 #include <nfs/nfsrtt.h>
    113 #include <nfs/nfs_var.h>
    114 
    115 #include <miscfs/specfs/specdev.h>
    116 
    117 #include <netinet/in.h>
    118 
    119 static u_int32_t nfs_xid;
    120 
    121 /*
    122  * Data items converted to xdr at startup, since they are constant
    123  * This is kinda hokey, but may save a little time doing byte swaps
    124  */
    125 u_int32_t nfs_xdrneg1;
    126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
    127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
    128 	rpc_auth_kerb;
    129 u_int32_t nfs_prog, nfs_true, nfs_false;
    130 
    131 /* And other global data */
    132 const nfstype nfsv2_type[9] =
    133 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
    134 const nfstype nfsv3_type[9] =
    135 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
    136 const enum vtype nv2tov_type[8] =
    137 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    138 const enum vtype nv3tov_type[8] =
    139 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    140 int nfs_ticks;
    141 int nfs_commitsize;
    142 
    143 /* NFS client/server stats. */
    144 struct nfsstats nfsstats;
    145 
    146 /*
    147  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    148  */
    149 const int nfsv3_procid[NFS_NPROCS] = {
    150 	NFSPROC_NULL,
    151 	NFSPROC_GETATTR,
    152 	NFSPROC_SETATTR,
    153 	NFSPROC_NOOP,
    154 	NFSPROC_LOOKUP,
    155 	NFSPROC_READLINK,
    156 	NFSPROC_READ,
    157 	NFSPROC_NOOP,
    158 	NFSPROC_WRITE,
    159 	NFSPROC_CREATE,
    160 	NFSPROC_REMOVE,
    161 	NFSPROC_RENAME,
    162 	NFSPROC_LINK,
    163 	NFSPROC_SYMLINK,
    164 	NFSPROC_MKDIR,
    165 	NFSPROC_RMDIR,
    166 	NFSPROC_READDIR,
    167 	NFSPROC_FSSTAT,
    168 	NFSPROC_NOOP,
    169 	NFSPROC_NOOP,
    170 	NFSPROC_NOOP,
    171 	NFSPROC_NOOP,
    172 	NFSPROC_NOOP
    173 };
    174 
    175 /*
    176  * and the reverse mapping from generic to Version 2 procedure numbers
    177  */
    178 const int nfsv2_procid[NFS_NPROCS] = {
    179 	NFSV2PROC_NULL,
    180 	NFSV2PROC_GETATTR,
    181 	NFSV2PROC_SETATTR,
    182 	NFSV2PROC_LOOKUP,
    183 	NFSV2PROC_NOOP,
    184 	NFSV2PROC_READLINK,
    185 	NFSV2PROC_READ,
    186 	NFSV2PROC_WRITE,
    187 	NFSV2PROC_CREATE,
    188 	NFSV2PROC_MKDIR,
    189 	NFSV2PROC_SYMLINK,
    190 	NFSV2PROC_CREATE,
    191 	NFSV2PROC_REMOVE,
    192 	NFSV2PROC_RMDIR,
    193 	NFSV2PROC_RENAME,
    194 	NFSV2PROC_LINK,
    195 	NFSV2PROC_READDIR,
    196 	NFSV2PROC_NOOP,
    197 	NFSV2PROC_STATFS,
    198 	NFSV2PROC_NOOP,
    199 	NFSV2PROC_NOOP,
    200 	NFSV2PROC_NOOP,
    201 	NFSV2PROC_NOOP,
    202 };
    203 
    204 /*
    205  * Maps errno values to nfs error numbers.
    206  * Use NFSERR_IO as the catch all for ones not specifically defined in
    207  * RFC 1094.
    208  */
    209 static const u_char nfsrv_v2errmap[ELAST] = {
    210   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    211   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    212   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    213   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    214   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    215   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    216   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    217   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    218   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    219   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    221   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    222   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    223   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    226   NFSERR_IO,	NFSERR_IO,
    227 };
    228 
    229 /*
    230  * Maps errno values to nfs error numbers.
    231  * Although it is not obvious whether or not NFS clients really care if
    232  * a returned error value is in the specified list for the procedure, the
    233  * safest thing to do is filter them appropriately. For Version 2, the
    234  * X/Open XNFS document is the only specification that defines error values
    235  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    236  * so I have decided to not do this for Version 2.
    237  * The first entry is the default error return and the rest are the valid
    238  * errors for that RPC in increasing numeric order.
    239  */
    240 static const short nfsv3err_null[] = {
    241 	0,
    242 	0,
    243 };
    244 
    245 static const short nfsv3err_getattr[] = {
    246 	NFSERR_IO,
    247 	NFSERR_IO,
    248 	NFSERR_STALE,
    249 	NFSERR_BADHANDLE,
    250 	NFSERR_SERVERFAULT,
    251 	0,
    252 };
    253 
    254 static const short nfsv3err_setattr[] = {
    255 	NFSERR_IO,
    256 	NFSERR_PERM,
    257 	NFSERR_IO,
    258 	NFSERR_ACCES,
    259 	NFSERR_INVAL,
    260 	NFSERR_NOSPC,
    261 	NFSERR_ROFS,
    262 	NFSERR_DQUOT,
    263 	NFSERR_STALE,
    264 	NFSERR_BADHANDLE,
    265 	NFSERR_NOT_SYNC,
    266 	NFSERR_SERVERFAULT,
    267 	0,
    268 };
    269 
    270 static const short nfsv3err_lookup[] = {
    271 	NFSERR_IO,
    272 	NFSERR_NOENT,
    273 	NFSERR_IO,
    274 	NFSERR_ACCES,
    275 	NFSERR_NOTDIR,
    276 	NFSERR_NAMETOL,
    277 	NFSERR_STALE,
    278 	NFSERR_BADHANDLE,
    279 	NFSERR_SERVERFAULT,
    280 	0,
    281 };
    282 
    283 static const short nfsv3err_access[] = {
    284 	NFSERR_IO,
    285 	NFSERR_IO,
    286 	NFSERR_STALE,
    287 	NFSERR_BADHANDLE,
    288 	NFSERR_SERVERFAULT,
    289 	0,
    290 };
    291 
    292 static const short nfsv3err_readlink[] = {
    293 	NFSERR_IO,
    294 	NFSERR_IO,
    295 	NFSERR_ACCES,
    296 	NFSERR_INVAL,
    297 	NFSERR_STALE,
    298 	NFSERR_BADHANDLE,
    299 	NFSERR_NOTSUPP,
    300 	NFSERR_SERVERFAULT,
    301 	0,
    302 };
    303 
    304 static const short nfsv3err_read[] = {
    305 	NFSERR_IO,
    306 	NFSERR_IO,
    307 	NFSERR_NXIO,
    308 	NFSERR_ACCES,
    309 	NFSERR_INVAL,
    310 	NFSERR_STALE,
    311 	NFSERR_BADHANDLE,
    312 	NFSERR_SERVERFAULT,
    313 	NFSERR_JUKEBOX,
    314 	0,
    315 };
    316 
    317 static const short nfsv3err_write[] = {
    318 	NFSERR_IO,
    319 	NFSERR_IO,
    320 	NFSERR_ACCES,
    321 	NFSERR_INVAL,
    322 	NFSERR_FBIG,
    323 	NFSERR_NOSPC,
    324 	NFSERR_ROFS,
    325 	NFSERR_DQUOT,
    326 	NFSERR_STALE,
    327 	NFSERR_BADHANDLE,
    328 	NFSERR_SERVERFAULT,
    329 	NFSERR_JUKEBOX,
    330 	0,
    331 };
    332 
    333 static const short nfsv3err_create[] = {
    334 	NFSERR_IO,
    335 	NFSERR_IO,
    336 	NFSERR_ACCES,
    337 	NFSERR_EXIST,
    338 	NFSERR_NOTDIR,
    339 	NFSERR_NOSPC,
    340 	NFSERR_ROFS,
    341 	NFSERR_NAMETOL,
    342 	NFSERR_DQUOT,
    343 	NFSERR_STALE,
    344 	NFSERR_BADHANDLE,
    345 	NFSERR_NOTSUPP,
    346 	NFSERR_SERVERFAULT,
    347 	0,
    348 };
    349 
    350 static const short nfsv3err_mkdir[] = {
    351 	NFSERR_IO,
    352 	NFSERR_IO,
    353 	NFSERR_ACCES,
    354 	NFSERR_EXIST,
    355 	NFSERR_NOTDIR,
    356 	NFSERR_NOSPC,
    357 	NFSERR_ROFS,
    358 	NFSERR_NAMETOL,
    359 	NFSERR_DQUOT,
    360 	NFSERR_STALE,
    361 	NFSERR_BADHANDLE,
    362 	NFSERR_NOTSUPP,
    363 	NFSERR_SERVERFAULT,
    364 	0,
    365 };
    366 
    367 static const short nfsv3err_symlink[] = {
    368 	NFSERR_IO,
    369 	NFSERR_IO,
    370 	NFSERR_ACCES,
    371 	NFSERR_EXIST,
    372 	NFSERR_NOTDIR,
    373 	NFSERR_NOSPC,
    374 	NFSERR_ROFS,
    375 	NFSERR_NAMETOL,
    376 	NFSERR_DQUOT,
    377 	NFSERR_STALE,
    378 	NFSERR_BADHANDLE,
    379 	NFSERR_NOTSUPP,
    380 	NFSERR_SERVERFAULT,
    381 	0,
    382 };
    383 
    384 static const short nfsv3err_mknod[] = {
    385 	NFSERR_IO,
    386 	NFSERR_IO,
    387 	NFSERR_ACCES,
    388 	NFSERR_EXIST,
    389 	NFSERR_NOTDIR,
    390 	NFSERR_NOSPC,
    391 	NFSERR_ROFS,
    392 	NFSERR_NAMETOL,
    393 	NFSERR_DQUOT,
    394 	NFSERR_STALE,
    395 	NFSERR_BADHANDLE,
    396 	NFSERR_NOTSUPP,
    397 	NFSERR_SERVERFAULT,
    398 	NFSERR_BADTYPE,
    399 	0,
    400 };
    401 
    402 static const short nfsv3err_remove[] = {
    403 	NFSERR_IO,
    404 	NFSERR_NOENT,
    405 	NFSERR_IO,
    406 	NFSERR_ACCES,
    407 	NFSERR_NOTDIR,
    408 	NFSERR_ROFS,
    409 	NFSERR_NAMETOL,
    410 	NFSERR_STALE,
    411 	NFSERR_BADHANDLE,
    412 	NFSERR_SERVERFAULT,
    413 	0,
    414 };
    415 
    416 static const short nfsv3err_rmdir[] = {
    417 	NFSERR_IO,
    418 	NFSERR_NOENT,
    419 	NFSERR_IO,
    420 	NFSERR_ACCES,
    421 	NFSERR_EXIST,
    422 	NFSERR_NOTDIR,
    423 	NFSERR_INVAL,
    424 	NFSERR_ROFS,
    425 	NFSERR_NAMETOL,
    426 	NFSERR_NOTEMPTY,
    427 	NFSERR_STALE,
    428 	NFSERR_BADHANDLE,
    429 	NFSERR_NOTSUPP,
    430 	NFSERR_SERVERFAULT,
    431 	0,
    432 };
    433 
    434 static const short nfsv3err_rename[] = {
    435 	NFSERR_IO,
    436 	NFSERR_NOENT,
    437 	NFSERR_IO,
    438 	NFSERR_ACCES,
    439 	NFSERR_EXIST,
    440 	NFSERR_XDEV,
    441 	NFSERR_NOTDIR,
    442 	NFSERR_ISDIR,
    443 	NFSERR_INVAL,
    444 	NFSERR_NOSPC,
    445 	NFSERR_ROFS,
    446 	NFSERR_MLINK,
    447 	NFSERR_NAMETOL,
    448 	NFSERR_NOTEMPTY,
    449 	NFSERR_DQUOT,
    450 	NFSERR_STALE,
    451 	NFSERR_BADHANDLE,
    452 	NFSERR_NOTSUPP,
    453 	NFSERR_SERVERFAULT,
    454 	0,
    455 };
    456 
    457 static const short nfsv3err_link[] = {
    458 	NFSERR_IO,
    459 	NFSERR_IO,
    460 	NFSERR_ACCES,
    461 	NFSERR_EXIST,
    462 	NFSERR_XDEV,
    463 	NFSERR_NOTDIR,
    464 	NFSERR_INVAL,
    465 	NFSERR_NOSPC,
    466 	NFSERR_ROFS,
    467 	NFSERR_MLINK,
    468 	NFSERR_NAMETOL,
    469 	NFSERR_DQUOT,
    470 	NFSERR_STALE,
    471 	NFSERR_BADHANDLE,
    472 	NFSERR_NOTSUPP,
    473 	NFSERR_SERVERFAULT,
    474 	0,
    475 };
    476 
    477 static const short nfsv3err_readdir[] = {
    478 	NFSERR_IO,
    479 	NFSERR_IO,
    480 	NFSERR_ACCES,
    481 	NFSERR_NOTDIR,
    482 	NFSERR_STALE,
    483 	NFSERR_BADHANDLE,
    484 	NFSERR_BAD_COOKIE,
    485 	NFSERR_TOOSMALL,
    486 	NFSERR_SERVERFAULT,
    487 	0,
    488 };
    489 
    490 static const short nfsv3err_readdirplus[] = {
    491 	NFSERR_IO,
    492 	NFSERR_IO,
    493 	NFSERR_ACCES,
    494 	NFSERR_NOTDIR,
    495 	NFSERR_STALE,
    496 	NFSERR_BADHANDLE,
    497 	NFSERR_BAD_COOKIE,
    498 	NFSERR_NOTSUPP,
    499 	NFSERR_TOOSMALL,
    500 	NFSERR_SERVERFAULT,
    501 	0,
    502 };
    503 
    504 static const short nfsv3err_fsstat[] = {
    505 	NFSERR_IO,
    506 	NFSERR_IO,
    507 	NFSERR_STALE,
    508 	NFSERR_BADHANDLE,
    509 	NFSERR_SERVERFAULT,
    510 	0,
    511 };
    512 
    513 static const short nfsv3err_fsinfo[] = {
    514 	NFSERR_STALE,
    515 	NFSERR_STALE,
    516 	NFSERR_BADHANDLE,
    517 	NFSERR_SERVERFAULT,
    518 	0,
    519 };
    520 
    521 static const short nfsv3err_pathconf[] = {
    522 	NFSERR_STALE,
    523 	NFSERR_STALE,
    524 	NFSERR_BADHANDLE,
    525 	NFSERR_SERVERFAULT,
    526 	0,
    527 };
    528 
    529 static const short nfsv3err_commit[] = {
    530 	NFSERR_IO,
    531 	NFSERR_IO,
    532 	NFSERR_STALE,
    533 	NFSERR_BADHANDLE,
    534 	NFSERR_SERVERFAULT,
    535 	0,
    536 };
    537 
    538 static const short * const nfsrv_v3errmap[] = {
    539 	nfsv3err_null,
    540 	nfsv3err_getattr,
    541 	nfsv3err_setattr,
    542 	nfsv3err_lookup,
    543 	nfsv3err_access,
    544 	nfsv3err_readlink,
    545 	nfsv3err_read,
    546 	nfsv3err_write,
    547 	nfsv3err_create,
    548 	nfsv3err_mkdir,
    549 	nfsv3err_symlink,
    550 	nfsv3err_mknod,
    551 	nfsv3err_remove,
    552 	nfsv3err_rmdir,
    553 	nfsv3err_rename,
    554 	nfsv3err_link,
    555 	nfsv3err_readdir,
    556 	nfsv3err_readdirplus,
    557 	nfsv3err_fsstat,
    558 	nfsv3err_fsinfo,
    559 	nfsv3err_pathconf,
    560 	nfsv3err_commit,
    561 };
    562 
    563 extern struct nfsrtt nfsrtt;
    564 
    565 u_long nfsdirhashmask;
    566 
    567 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
    568 
    569 /*
    570  * Create the header for an rpc request packet
    571  * The hsiz is the size of the rest of the nfs request header.
    572  * (just used to decide if a cluster is a good idea)
    573  */
    574 struct mbuf *
    575 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
    576 {
    577 	struct mbuf *mb;
    578 	char *bpos;
    579 
    580 	mb = m_get(M_WAIT, MT_DATA);
    581 	MCLAIM(mb, &nfs_mowner);
    582 	if (hsiz >= MINCLSIZE)
    583 		m_clget(mb, M_WAIT);
    584 	mb->m_len = 0;
    585 	bpos = mtod(mb, void *);
    586 
    587 	/* Finally, return values */
    588 	*bposp = bpos;
    589 	return (mb);
    590 }
    591 
    592 /*
    593  * Build the RPC header and fill in the authorization info.
    594  * The authorization string argument is only used when the credentials
    595  * come from outside of the kernel.
    596  * Returns the head of the mbuf list.
    597  */
    598 struct mbuf *
    599 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
    600 	verf_str, mrest, mrest_len, mbp, xidp)
    601 	kauth_cred_t cr;
    602 	int nmflag;
    603 	int procid;
    604 	int auth_type;
    605 	int auth_len;
    606 	char *auth_str;
    607 	int verf_len;
    608 	char *verf_str;
    609 	struct mbuf *mrest;
    610 	int mrest_len;
    611 	struct mbuf **mbp;
    612 	u_int32_t *xidp;
    613 {
    614 	struct mbuf *mb;
    615 	u_int32_t *tl;
    616 	char *bpos;
    617 	int i;
    618 	struct mbuf *mreq;
    619 	int siz, grpsiz, authsiz;
    620 
    621 	authsiz = nfsm_rndup(auth_len);
    622 	mb = m_gethdr(M_WAIT, MT_DATA);
    623 	MCLAIM(mb, &nfs_mowner);
    624 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    625 		m_clget(mb, M_WAIT);
    626 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    627 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
    628 	} else {
    629 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
    630 	}
    631 	mb->m_len = 0;
    632 	mreq = mb;
    633 	bpos = mtod(mb, void *);
    634 
    635 	/*
    636 	 * First the RPC header.
    637 	 */
    638 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    639 
    640 	*tl++ = *xidp = nfs_getxid();
    641 	*tl++ = rpc_call;
    642 	*tl++ = rpc_vers;
    643 	*tl++ = txdr_unsigned(NFS_PROG);
    644 	if (nmflag & NFSMNT_NFSV3)
    645 		*tl++ = txdr_unsigned(NFS_VER3);
    646 	else
    647 		*tl++ = txdr_unsigned(NFS_VER2);
    648 	if (nmflag & NFSMNT_NFSV3)
    649 		*tl++ = txdr_unsigned(procid);
    650 	else
    651 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    652 
    653 	/*
    654 	 * And then the authorization cred.
    655 	 */
    656 	*tl++ = txdr_unsigned(auth_type);
    657 	*tl = txdr_unsigned(authsiz);
    658 	switch (auth_type) {
    659 	case RPCAUTH_UNIX:
    660 		nfsm_build(tl, u_int32_t *, auth_len);
    661 		*tl++ = 0;		/* stamp ?? */
    662 		*tl++ = 0;		/* NULL hostname */
    663 		*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
    664 		*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
    665 		grpsiz = (auth_len >> 2) - 5;
    666 		*tl++ = txdr_unsigned(grpsiz);
    667 		for (i = 0; i < grpsiz; i++)
    668 			*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
    669 		break;
    670 	case RPCAUTH_KERB4:
    671 		siz = auth_len;
    672 		while (siz > 0) {
    673 			if (M_TRAILINGSPACE(mb) == 0) {
    674 				struct mbuf *mb2;
    675 				mb2 = m_get(M_WAIT, MT_DATA);
    676 				MCLAIM(mb2, &nfs_mowner);
    677 				if (siz >= MINCLSIZE)
    678 					m_clget(mb2, M_WAIT);
    679 				mb->m_next = mb2;
    680 				mb = mb2;
    681 				mb->m_len = 0;
    682 				bpos = mtod(mb, void *);
    683 			}
    684 			i = min(siz, M_TRAILINGSPACE(mb));
    685 			memcpy(bpos, auth_str, i);
    686 			mb->m_len += i;
    687 			auth_str += i;
    688 			bpos += i;
    689 			siz -= i;
    690 		}
    691 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    692 			for (i = 0; i < siz; i++)
    693 				*bpos++ = '\0';
    694 			mb->m_len += siz;
    695 		}
    696 		break;
    697 	};
    698 
    699 	/*
    700 	 * And the verifier...
    701 	 */
    702 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    703 	if (verf_str) {
    704 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    705 		*tl = txdr_unsigned(verf_len);
    706 		siz = verf_len;
    707 		while (siz > 0) {
    708 			if (M_TRAILINGSPACE(mb) == 0) {
    709 				struct mbuf *mb2;
    710 				mb2 = m_get(M_WAIT, MT_DATA);
    711 				MCLAIM(mb2, &nfs_mowner);
    712 				if (siz >= MINCLSIZE)
    713 					m_clget(mb2, M_WAIT);
    714 				mb->m_next = mb2;
    715 				mb = mb2;
    716 				mb->m_len = 0;
    717 				bpos = mtod(mb, void *);
    718 			}
    719 			i = min(siz, M_TRAILINGSPACE(mb));
    720 			memcpy(bpos, verf_str, i);
    721 			mb->m_len += i;
    722 			verf_str += i;
    723 			bpos += i;
    724 			siz -= i;
    725 		}
    726 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    727 			for (i = 0; i < siz; i++)
    728 				*bpos++ = '\0';
    729 			mb->m_len += siz;
    730 		}
    731 	} else {
    732 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    733 		*tl = 0;
    734 	}
    735 	mb->m_next = mrest;
    736 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    737 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
    738 	*mbp = mb;
    739 	return (mreq);
    740 }
    741 
    742 /*
    743  * copies mbuf chain to the uio scatter/gather list
    744  */
    745 int
    746 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
    747 {
    748 	char *mbufcp, *uiocp;
    749 	int xfer, left, len;
    750 	struct mbuf *mp;
    751 	long uiosiz, rem;
    752 	int error = 0;
    753 
    754 	mp = *mrep;
    755 	mbufcp = *dpos;
    756 	len = mtod(mp, char *) + mp->m_len - mbufcp;
    757 	rem = nfsm_rndup(siz)-siz;
    758 	while (siz > 0) {
    759 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    760 			return (EFBIG);
    761 		left = uiop->uio_iov->iov_len;
    762 		uiocp = uiop->uio_iov->iov_base;
    763 		if (left > siz)
    764 			left = siz;
    765 		uiosiz = left;
    766 		while (left > 0) {
    767 			while (len == 0) {
    768 				mp = mp->m_next;
    769 				if (mp == NULL)
    770 					return (EBADRPC);
    771 				mbufcp = mtod(mp, void *);
    772 				len = mp->m_len;
    773 			}
    774 			xfer = (left > len) ? len : left;
    775 			error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
    776 			    uiocp, xfer);
    777 			if (error) {
    778 				return error;
    779 			}
    780 			left -= xfer;
    781 			len -= xfer;
    782 			mbufcp += xfer;
    783 			uiocp += xfer;
    784 			uiop->uio_offset += xfer;
    785 			uiop->uio_resid -= xfer;
    786 		}
    787 		if (uiop->uio_iov->iov_len <= siz) {
    788 			uiop->uio_iovcnt--;
    789 			uiop->uio_iov++;
    790 		} else {
    791 			uiop->uio_iov->iov_base =
    792 			    (char *)uiop->uio_iov->iov_base + uiosiz;
    793 			uiop->uio_iov->iov_len -= uiosiz;
    794 		}
    795 		siz -= uiosiz;
    796 	}
    797 	*dpos = mbufcp;
    798 	*mrep = mp;
    799 	if (rem > 0) {
    800 		if (len < rem)
    801 			error = nfs_adv(mrep, dpos, rem, len);
    802 		else
    803 			*dpos += rem;
    804 	}
    805 	return (error);
    806 }
    807 
    808 /*
    809  * copies a uio scatter/gather list to an mbuf chain.
    810  * NOTE: can ony handle iovcnt == 1
    811  */
    812 int
    813 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
    814 {
    815 	char *uiocp;
    816 	struct mbuf *mp, *mp2;
    817 	int xfer, left, mlen;
    818 	int uiosiz, clflg, rem;
    819 	char *cp;
    820 	int error;
    821 
    822 #ifdef DIAGNOSTIC
    823 	if (uiop->uio_iovcnt != 1)
    824 		panic("nfsm_uiotombuf: iovcnt != 1");
    825 #endif
    826 
    827 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    828 		clflg = 1;
    829 	else
    830 		clflg = 0;
    831 	rem = nfsm_rndup(siz)-siz;
    832 	mp = mp2 = *mq;
    833 	while (siz > 0) {
    834 		left = uiop->uio_iov->iov_len;
    835 		uiocp = uiop->uio_iov->iov_base;
    836 		if (left > siz)
    837 			left = siz;
    838 		uiosiz = left;
    839 		while (left > 0) {
    840 			mlen = M_TRAILINGSPACE(mp);
    841 			if (mlen == 0) {
    842 				mp = m_get(M_WAIT, MT_DATA);
    843 				MCLAIM(mp, &nfs_mowner);
    844 				if (clflg)
    845 					m_clget(mp, M_WAIT);
    846 				mp->m_len = 0;
    847 				mp2->m_next = mp;
    848 				mp2 = mp;
    849 				mlen = M_TRAILINGSPACE(mp);
    850 			}
    851 			xfer = (left > mlen) ? mlen : left;
    852 			cp = mtod(mp, char *) + mp->m_len;
    853 			error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
    854 			    xfer);
    855 			if (error) {
    856 				/* XXX */
    857 			}
    858 			mp->m_len += xfer;
    859 			left -= xfer;
    860 			uiocp += xfer;
    861 			uiop->uio_offset += xfer;
    862 			uiop->uio_resid -= xfer;
    863 		}
    864 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
    865 		    uiosiz;
    866 		uiop->uio_iov->iov_len -= uiosiz;
    867 		siz -= uiosiz;
    868 	}
    869 	if (rem > 0) {
    870 		if (rem > M_TRAILINGSPACE(mp)) {
    871 			mp = m_get(M_WAIT, MT_DATA);
    872 			MCLAIM(mp, &nfs_mowner);
    873 			mp->m_len = 0;
    874 			mp2->m_next = mp;
    875 		}
    876 		cp = mtod(mp, char *) + mp->m_len;
    877 		for (left = 0; left < rem; left++)
    878 			*cp++ = '\0';
    879 		mp->m_len += rem;
    880 		*bpos = cp;
    881 	} else
    882 		*bpos = mtod(mp, char *) + mp->m_len;
    883 	*mq = mp;
    884 	return (0);
    885 }
    886 
    887 /*
    888  * Get at least "siz" bytes of correctly aligned data.
    889  * When called the mbuf pointers are not necessarily correct,
    890  * dsosp points to what ought to be in m_data and left contains
    891  * what ought to be in m_len.
    892  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    893  * cases. (The macros use the vars. dpos and dpos2)
    894  */
    895 int
    896 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
    897 {
    898 	struct mbuf *m1, *m2;
    899 	struct mbuf *havebuf = NULL;
    900 	char *src = *dposp;
    901 	char *dst;
    902 	int len;
    903 
    904 #ifdef DEBUG
    905 	if (left < 0)
    906 		panic("nfsm_disct: left < 0");
    907 #endif
    908 	m1 = *mdp;
    909 	/*
    910 	 * Skip through the mbuf chain looking for an mbuf with
    911 	 * some data. If the first mbuf found has enough data
    912 	 * and it is correctly aligned return it.
    913 	 */
    914 	while (left == 0) {
    915 		havebuf = m1;
    916 		*mdp = m1 = m1->m_next;
    917 		if (m1 == NULL)
    918 			return (EBADRPC);
    919 		src = mtod(m1, void *);
    920 		left = m1->m_len;
    921 		/*
    922 		 * If we start a new mbuf and it is big enough
    923 		 * and correctly aligned just return it, don't
    924 		 * do any pull up.
    925 		 */
    926 		if (left >= siz && nfsm_aligned(src)) {
    927 			*cp2 = src;
    928 			*dposp = src + siz;
    929 			return (0);
    930 		}
    931 	}
    932 	if ((m1->m_flags & M_EXT) != 0) {
    933 		if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
    934 		    nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
    935 			/*
    936 			 * If the first mbuf with data has external data
    937 			 * and there is a previous mbuf with some trailing
    938 			 * space, use it to move the data into.
    939 			 */
    940 			m2 = m1;
    941 			*mdp = m1 = havebuf;
    942 			*cp2 = mtod(m1, char *) + m1->m_len;
    943 		} else if (havebuf) {
    944 			/*
    945 			 * If the first mbuf has a external data
    946 			 * and there is no previous empty mbuf
    947 			 * allocate a new mbuf and move the external
    948 			 * data to the new mbuf. Also make the first
    949 			 * mbuf look empty.
    950 			 */
    951 			m2 = m1;
    952 			*mdp = m1 = m_get(M_WAIT, MT_DATA);
    953 			MCLAIM(m1, m2->m_owner);
    954 			if ((m2->m_flags & M_PKTHDR) != 0) {
    955 				/* XXX MOVE */
    956 				M_COPY_PKTHDR(m1, m2);
    957 				m_tag_delete_chain(m2, NULL);
    958 				m2->m_flags &= ~M_PKTHDR;
    959 			}
    960 			if (havebuf) {
    961 				havebuf->m_next = m1;
    962 			}
    963 			m1->m_next = m2;
    964 			MRESETDATA(m1);
    965 			m1->m_len = 0;
    966 			m2->m_data = src;
    967 			m2->m_len = left;
    968 			*cp2 = mtod(m1, char *);
    969 		} else {
    970 			struct mbuf **nextp = &m1->m_next;
    971 
    972 			m1->m_len -= left;
    973 			do {
    974 				m2 = m_get(M_WAIT, MT_DATA);
    975 				MCLAIM(m2, m1->m_owner);
    976 				if (left >= MINCLSIZE) {
    977 					MCLGET(m2, M_WAIT);
    978 				}
    979 				m2->m_next = *nextp;
    980 				*nextp = m2;
    981 				nextp = &m2->m_next;
    982 				len = (m2->m_flags & M_EXT) != 0 ?
    983 				    MCLBYTES : MLEN;
    984 				if (len > left) {
    985 					len = left;
    986 				}
    987 				memcpy(mtod(m2, char *), src, len);
    988 				m2->m_len = len;
    989 				src += len;
    990 				left -= len;
    991 			} while (left > 0);
    992 			*mdp = m1 = m1->m_next;
    993 			m2 = m1->m_next;
    994 			*cp2 = mtod(m1, char *);
    995 		}
    996 	} else {
    997 		/*
    998 		 * If the first mbuf has no external data
    999 		 * move the data to the front of the mbuf.
   1000 		 */
   1001 		MRESETDATA(m1);
   1002 		dst = mtod(m1, char *);
   1003 		if (dst != src) {
   1004 			memmove(dst, src, left);
   1005 		}
   1006 		m1->m_len = left;
   1007 		m2 = m1->m_next;
   1008 		*cp2 = m1->m_data;
   1009 	}
   1010 	*dposp = *cp2 + siz;
   1011 	/*
   1012 	 * Loop through mbufs pulling data up into first mbuf until
   1013 	 * the first mbuf is full or there is no more data to
   1014 	 * pullup.
   1015 	 */
   1016 	dst = mtod(m1, char *) + m1->m_len;
   1017 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
   1018 		if ((len = min(len, m2->m_len)) != 0) {
   1019 			memcpy(dst, mtod(m2, char *), len);
   1020 		}
   1021 		m1->m_len += len;
   1022 		dst += len;
   1023 		m2->m_data += len;
   1024 		m2->m_len -= len;
   1025 		m2 = m2->m_next;
   1026 	}
   1027 	if (m1->m_len < siz)
   1028 		return (EBADRPC);
   1029 	return (0);
   1030 }
   1031 
   1032 /*
   1033  * Advance the position in the mbuf chain.
   1034  */
   1035 int
   1036 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
   1037 {
   1038 	struct mbuf *m;
   1039 	int s;
   1040 
   1041 	m = *mdp;
   1042 	s = left;
   1043 	while (s < offs) {
   1044 		offs -= s;
   1045 		m = m->m_next;
   1046 		if (m == NULL)
   1047 			return (EBADRPC);
   1048 		s = m->m_len;
   1049 	}
   1050 	*mdp = m;
   1051 	*dposp = mtod(m, char *) + offs;
   1052 	return (0);
   1053 }
   1054 
   1055 /*
   1056  * Copy a string into mbufs for the hard cases...
   1057  */
   1058 int
   1059 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
   1060 {
   1061 	struct mbuf *m1 = NULL, *m2;
   1062 	long left, xfer, len, tlen;
   1063 	u_int32_t *tl;
   1064 	int putsize;
   1065 
   1066 	putsize = 1;
   1067 	m2 = *mb;
   1068 	left = M_TRAILINGSPACE(m2);
   1069 	if (left > 0) {
   1070 		tl = ((u_int32_t *)(*bpos));
   1071 		*tl++ = txdr_unsigned(siz);
   1072 		putsize = 0;
   1073 		left -= NFSX_UNSIGNED;
   1074 		m2->m_len += NFSX_UNSIGNED;
   1075 		if (left > 0) {
   1076 			memcpy((void *) tl, cp, left);
   1077 			siz -= left;
   1078 			cp += left;
   1079 			m2->m_len += left;
   1080 			left = 0;
   1081 		}
   1082 	}
   1083 	/* Loop around adding mbufs */
   1084 	while (siz > 0) {
   1085 		m1 = m_get(M_WAIT, MT_DATA);
   1086 		MCLAIM(m1, &nfs_mowner);
   1087 		if (siz > MLEN)
   1088 			m_clget(m1, M_WAIT);
   1089 		m1->m_len = NFSMSIZ(m1);
   1090 		m2->m_next = m1;
   1091 		m2 = m1;
   1092 		tl = mtod(m1, u_int32_t *);
   1093 		tlen = 0;
   1094 		if (putsize) {
   1095 			*tl++ = txdr_unsigned(siz);
   1096 			m1->m_len -= NFSX_UNSIGNED;
   1097 			tlen = NFSX_UNSIGNED;
   1098 			putsize = 0;
   1099 		}
   1100 		if (siz < m1->m_len) {
   1101 			len = nfsm_rndup(siz);
   1102 			xfer = siz;
   1103 			if (xfer < len)
   1104 				*(tl+(xfer>>2)) = 0;
   1105 		} else {
   1106 			xfer = len = m1->m_len;
   1107 		}
   1108 		memcpy((void *) tl, cp, xfer);
   1109 		m1->m_len = len+tlen;
   1110 		siz -= xfer;
   1111 		cp += xfer;
   1112 	}
   1113 	*mb = m1;
   1114 	*bpos = mtod(m1, char *) + m1->m_len;
   1115 	return (0);
   1116 }
   1117 
   1118 /*
   1119  * Directory caching routines. They work as follows:
   1120  * - a cache is maintained per VDIR nfsnode.
   1121  * - for each offset cookie that is exported to userspace, and can
   1122  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1123  *   information in the cache.
   1124  * - cached are:
   1125  *   - cookie itself
   1126  *   - blocknumber (essentially just a search key in the buffer cache)
   1127  *   - entry number in block.
   1128  *   - offset cookie of block in which this entry is stored
   1129  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1130  * - entries are looked up in a hash table
   1131  * - also maintained is an LRU list of entries, used to determine
   1132  *   which ones to delete if the cache grows too large.
   1133  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1134  *   the cache also functions as a translation table
   1135  * - in the translation case, invalidating the cache does not mean
   1136  *   flushing it, but just marking entries as invalid, except for
   1137  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1138  *   still be able to use the cache as a translation table.
   1139  * - 32 bit cookies are uniquely created by combining the hash table
   1140  *   entry value, and one generation count per hash table entry,
   1141  *   incremented each time an entry is appended to the chain.
   1142  * - the cache is invalidated each time a direcory is modified
   1143  * - sanity checks are also done; if an entry in a block turns
   1144  *   out not to have a matching cookie, the cache is invalidated
   1145  *   and a new block starting from the wanted offset is fetched from
   1146  *   the server.
   1147  * - directory entries as read from the server are extended to contain
   1148  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1149  *   the cache and exporting them to userspace through the cookie
   1150  *   argument to VOP_READDIR.
   1151  */
   1152 
   1153 u_long
   1154 nfs_dirhash(off_t off)
   1155 {
   1156 	int i;
   1157 	char *cp = (char *)&off;
   1158 	u_long sum = 0L;
   1159 
   1160 	for (i = 0 ; i < sizeof (off); i++)
   1161 		sum += *cp++;
   1162 
   1163 	return sum;
   1164 }
   1165 
   1166 #define	_NFSDC_MTX(np)		(&NFSTOV(np)->v_interlock)
   1167 #define	NFSDC_LOCK(np)		mutex_enter(_NFSDC_MTX(np))
   1168 #define	NFSDC_UNLOCK(np)	mutex_exit(_NFSDC_MTX(np))
   1169 #define	NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
   1170 
   1171 void
   1172 nfs_initdircache(struct vnode *vp)
   1173 {
   1174 	struct nfsnode *np = VTONFS(vp);
   1175 	struct nfsdirhashhead *dircache;
   1176 
   1177 	dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
   1178 	    &nfsdirhashmask);
   1179 
   1180 	NFSDC_LOCK(np);
   1181 	if (np->n_dircache == NULL) {
   1182 		np->n_dircachesize = 0;
   1183 		np->n_dircache = dircache;
   1184 		dircache = NULL;
   1185 		TAILQ_INIT(&np->n_dirchain);
   1186 	}
   1187 	NFSDC_UNLOCK(np);
   1188 	if (dircache)
   1189 		hashdone(dircache, HASH_LIST, nfsdirhashmask);
   1190 }
   1191 
   1192 void
   1193 nfs_initdirxlatecookie(struct vnode *vp)
   1194 {
   1195 	struct nfsnode *np = VTONFS(vp);
   1196 	unsigned *dirgens;
   1197 
   1198 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
   1199 
   1200 	dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
   1201 	NFSDC_LOCK(np);
   1202 	if (np->n_dirgens == NULL) {
   1203 		np->n_dirgens = dirgens;
   1204 		dirgens = NULL;
   1205 	}
   1206 	NFSDC_UNLOCK(np);
   1207 	if (dirgens)
   1208 		kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
   1209 }
   1210 
   1211 static const struct nfsdircache dzero;
   1212 
   1213 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
   1214 static void nfs_putdircache_unlocked(struct nfsnode *,
   1215     struct nfsdircache *);
   1216 
   1217 static void
   1218 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
   1219 {
   1220 
   1221 	NFSDC_ASSERT_LOCKED(np);
   1222 	KASSERT(ndp != &dzero);
   1223 
   1224 	if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
   1225 		return;
   1226 
   1227 	TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1228 	LIST_REMOVE(ndp, dc_hash);
   1229 	LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
   1230 
   1231 	nfs_putdircache_unlocked(np, ndp);
   1232 }
   1233 
   1234 void
   1235 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
   1236 {
   1237 	int ref;
   1238 
   1239 	if (ndp == &dzero)
   1240 		return;
   1241 
   1242 	KASSERT(ndp->dc_refcnt > 0);
   1243 	NFSDC_LOCK(np);
   1244 	ref = --ndp->dc_refcnt;
   1245 	NFSDC_UNLOCK(np);
   1246 
   1247 	if (ref == 0)
   1248 		kmem_free(ndp, sizeof(*ndp));
   1249 }
   1250 
   1251 static void
   1252 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
   1253 {
   1254 	int ref;
   1255 
   1256 	NFSDC_ASSERT_LOCKED(np);
   1257 
   1258 	if (ndp == &dzero)
   1259 		return;
   1260 
   1261 	KASSERT(ndp->dc_refcnt > 0);
   1262 	ref = --ndp->dc_refcnt;
   1263 	if (ref == 0)
   1264 		kmem_free(ndp, sizeof(*ndp));
   1265 }
   1266 
   1267 struct nfsdircache *
   1268 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
   1269 {
   1270 	struct nfsdirhashhead *ndhp;
   1271 	struct nfsdircache *ndp = NULL;
   1272 	struct nfsnode *np = VTONFS(vp);
   1273 	unsigned ent;
   1274 
   1275 	/*
   1276 	 * Zero is always a valid cookie.
   1277 	 */
   1278 	if (off == 0)
   1279 		/* XXXUNCONST */
   1280 		return (struct nfsdircache *)__UNCONST(&dzero);
   1281 
   1282 	if (!np->n_dircache)
   1283 		return NULL;
   1284 
   1285 	/*
   1286 	 * We use a 32bit cookie as search key, directly reconstruct
   1287 	 * the hashentry. Else use the hashfunction.
   1288 	 */
   1289 	if (do32) {
   1290 		ent = (u_int32_t)off >> 24;
   1291 		if (ent >= NFS_DIRHASHSIZ)
   1292 			return NULL;
   1293 		ndhp = &np->n_dircache[ent];
   1294 	} else {
   1295 		ndhp = NFSDIRHASH(np, off);
   1296 	}
   1297 
   1298 	if (hashent)
   1299 		*hashent = (int)(ndhp - np->n_dircache);
   1300 
   1301 	NFSDC_LOCK(np);
   1302 	if (do32) {
   1303 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1304 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1305 				/*
   1306 				 * An invalidated entry will become the
   1307 				 * start of a new block fetched from
   1308 				 * the server.
   1309 				 */
   1310 				if (ndp->dc_flags & NFSDC_INVALID) {
   1311 					ndp->dc_blkcookie = ndp->dc_cookie;
   1312 					ndp->dc_entry = 0;
   1313 					ndp->dc_flags &= ~NFSDC_INVALID;
   1314 				}
   1315 				break;
   1316 			}
   1317 		}
   1318 	} else {
   1319 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1320 			if (ndp->dc_cookie == off)
   1321 				break;
   1322 		}
   1323 	}
   1324 	if (ndp != NULL)
   1325 		ndp->dc_refcnt++;
   1326 	NFSDC_UNLOCK(np);
   1327 	return ndp;
   1328 }
   1329 
   1330 
   1331 struct nfsdircache *
   1332 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
   1333     daddr_t blkno)
   1334 {
   1335 	struct nfsnode *np = VTONFS(vp);
   1336 	struct nfsdirhashhead *ndhp;
   1337 	struct nfsdircache *ndp = NULL;
   1338 	struct nfsdircache *newndp = NULL;
   1339 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1340 	int hashent = 0, gen, overwrite;	/* XXX: GCC */
   1341 
   1342 	/*
   1343 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1344 	 * cookie 0 for the '.' entry, making this necessary. This
   1345 	 * isn't so bad, as 0 is a special case anyway.
   1346 	 */
   1347 	if (off == 0)
   1348 		/* XXXUNCONST */
   1349 		return (struct nfsdircache *)__UNCONST(&dzero);
   1350 
   1351 	if (!np->n_dircache)
   1352 		/*
   1353 		 * XXX would like to do this in nfs_nget but vtype
   1354 		 * isn't known at that time.
   1355 		 */
   1356 		nfs_initdircache(vp);
   1357 
   1358 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
   1359 		nfs_initdirxlatecookie(vp);
   1360 
   1361 retry:
   1362 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1363 
   1364 	NFSDC_LOCK(np);
   1365 	if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
   1366 		/*
   1367 		 * Overwriting an old entry. Check if it's the same.
   1368 		 * If so, just return. If not, remove the old entry.
   1369 		 */
   1370 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1371 			goto done;
   1372 		nfs_unlinkdircache(np, ndp);
   1373 		nfs_putdircache_unlocked(np, ndp);
   1374 		ndp = NULL;
   1375 	}
   1376 
   1377 	ndhp = &np->n_dircache[hashent];
   1378 
   1379 	if (!ndp) {
   1380 		if (newndp == NULL) {
   1381 			NFSDC_UNLOCK(np);
   1382 			newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
   1383 			newndp->dc_refcnt = 1;
   1384 			LIST_NEXT(newndp, dc_hash) = (void *)-1;
   1385 			goto retry;
   1386 		}
   1387 		ndp = newndp;
   1388 		newndp = NULL;
   1389 		overwrite = 0;
   1390 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1391 			/*
   1392 			 * We're allocating a new entry, so bump the
   1393 			 * generation number.
   1394 			 */
   1395 			KASSERT(np->n_dirgens);
   1396 			gen = ++np->n_dirgens[hashent];
   1397 			if (gen == 0) {
   1398 				np->n_dirgens[hashent]++;
   1399 				gen++;
   1400 			}
   1401 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1402 		}
   1403 	} else
   1404 		overwrite = 1;
   1405 
   1406 	ndp->dc_cookie = off;
   1407 	ndp->dc_blkcookie = blkoff;
   1408 	ndp->dc_entry = en;
   1409 	ndp->dc_flags = 0;
   1410 
   1411 	if (overwrite)
   1412 		goto done;
   1413 
   1414 	/*
   1415 	 * If the maximum directory cookie cache size has been reached
   1416 	 * for this node, take one off the front. The idea is that
   1417 	 * directories are typically read front-to-back once, so that
   1418 	 * the oldest entries can be thrown away without much performance
   1419 	 * loss.
   1420 	 */
   1421 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1422 		nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
   1423 	} else
   1424 		np->n_dircachesize++;
   1425 
   1426 	KASSERT(ndp->dc_refcnt == 1);
   1427 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1428 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1429 	ndp->dc_refcnt++;
   1430 done:
   1431 	KASSERT(ndp->dc_refcnt > 0);
   1432 	NFSDC_UNLOCK(np);
   1433 	if (newndp)
   1434 		nfs_putdircache(np, newndp);
   1435 	return ndp;
   1436 }
   1437 
   1438 void
   1439 nfs_invaldircache(struct vnode *vp, int flags)
   1440 {
   1441 	struct nfsnode *np = VTONFS(vp);
   1442 	struct nfsdircache *ndp = NULL;
   1443 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1444 	const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
   1445 
   1446 #ifdef DIAGNOSTIC
   1447 	if (vp->v_type != VDIR)
   1448 		panic("nfs: invaldircache: not dir");
   1449 #endif
   1450 
   1451 	if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
   1452 		np->n_flag &= ~NEOFVALID;
   1453 
   1454 	if (!np->n_dircache)
   1455 		return;
   1456 
   1457 	NFSDC_LOCK(np);
   1458 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1459 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
   1460 			KASSERT(!forcefree || ndp->dc_refcnt == 1);
   1461 			nfs_unlinkdircache(np, ndp);
   1462 		}
   1463 		np->n_dircachesize = 0;
   1464 		if (forcefree && np->n_dirgens) {
   1465 			kmem_free(np->n_dirgens,
   1466 			    NFS_DIRHASHSIZ * sizeof(unsigned));
   1467 			np->n_dirgens = NULL;
   1468 		}
   1469 	} else {
   1470 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
   1471 			ndp->dc_flags |= NFSDC_INVALID;
   1472 	}
   1473 
   1474 	NFSDC_UNLOCK(np);
   1475 }
   1476 
   1477 /*
   1478  * Called once before VFS init to initialize shared and
   1479  * server-specific data structures.
   1480  */
   1481 static int
   1482 nfs_init0(void)
   1483 {
   1484 
   1485 	nfsrtt.pos = 0;
   1486 	rpc_vers = txdr_unsigned(RPC_VER2);
   1487 	rpc_call = txdr_unsigned(RPC_CALL);
   1488 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1489 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1490 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1491 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1492 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1493 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1494 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1495 	nfs_prog = txdr_unsigned(NFS_PROG);
   1496 	nfs_true = txdr_unsigned(true);
   1497 	nfs_false = txdr_unsigned(false);
   1498 	nfs_xdrneg1 = txdr_unsigned(-1);
   1499 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1500 	if (nfs_ticks < 1)
   1501 		nfs_ticks = 1;
   1502 	nfs_xid = arc4random();
   1503 	nfsdreq_init();
   1504 
   1505 	/*
   1506 	 * Initialize reply list and start timer
   1507 	 */
   1508 	TAILQ_INIT(&nfs_reqq);
   1509 	nfs_timer_init();
   1510 	MOWNER_ATTACH(&nfs_mowner);
   1511 
   1512 #ifdef NFS
   1513 	/* Initialize the kqueue structures */
   1514 	nfs_kqinit();
   1515 	/* Initialize the iod structures */
   1516 	nfs_iodinit();
   1517 #endif
   1518 
   1519 	return 0;
   1520 }
   1521 
   1522 /*
   1523  * This is disgusting, but it must support both modular and monolothic
   1524  * configurations.  For monolithic builds NFSSERVER may not imply NFS.
   1525  *
   1526  * Yuck.
   1527  */
   1528 void
   1529 nfs_init(void)
   1530 {
   1531 	static ONCE_DECL(nfs_init_once);
   1532 
   1533 	RUN_ONCE(&nfs_init_once, nfs_init0);
   1534 }
   1535 
   1536 void
   1537 nfs_fini(void)
   1538 {
   1539 
   1540 #ifdef NFS
   1541 	nfs_kqfini();
   1542 	nfs_iodfini();
   1543 #endif
   1544 	nfsdreq_fini();
   1545 	nfs_timer_fini();
   1546 	MOWNER_DETACH(&nfs_mowner);
   1547 }
   1548 
   1549 #ifdef NFS
   1550 /*
   1551  * Called once at VFS init to initialize client-specific data structures.
   1552  */
   1553 void
   1554 nfs_vfs_init()
   1555 {
   1556 
   1557 	/* Initialize NFS server / client shared data. */
   1558 	nfs_init();
   1559 	nfs_node_init();
   1560 
   1561 	nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
   1562 }
   1563 
   1564 void
   1565 nfs_vfs_done()
   1566 {
   1567 
   1568 	nfs_node_done();
   1569 }
   1570 
   1571 /*
   1572  * Attribute cache routines.
   1573  * nfs_loadattrcache() - loads or updates the cache contents from attributes
   1574  *	that are on the mbuf list
   1575  * nfs_getattrcache() - returns valid attributes if found in cache, returns
   1576  *	error otherwise
   1577  */
   1578 
   1579 /*
   1580  * Load the attribute cache (that lives in the nfsnode entry) with
   1581  * the values on the mbuf list and
   1582  * Iff vap not NULL
   1583  *    copy the attributes to *vaper
   1584  */
   1585 int
   1586 nfsm_loadattrcache(struct vnode **vpp, struct mbuf **mdp, char **dposp, struct vattr *vaper, int flags)
   1587 {
   1588 	int32_t t1;
   1589 	char *cp2;
   1590 	int error = 0;
   1591 	struct mbuf *md;
   1592 	int v3 = NFS_ISV3(*vpp);
   1593 
   1594 	md = *mdp;
   1595 	t1 = (mtod(md, char *) + md->m_len) - *dposp;
   1596 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
   1597 	if (error)
   1598 		return (error);
   1599 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
   1600 }
   1601 
   1602 int
   1603 nfs_loadattrcache(struct vnode **vpp, struct nfs_fattr *fp, struct vattr *vaper, int flags)
   1604 {
   1605 	struct vnode *vp = *vpp;
   1606 	struct vattr *vap;
   1607 	int v3 = NFS_ISV3(vp);
   1608 	enum vtype vtyp;
   1609 	u_short vmode;
   1610 	struct timespec mtime;
   1611 	struct timespec ctime;
   1612 	int32_t rdev;
   1613 	struct nfsnode *np;
   1614 	extern int (**spec_nfsv2nodeop_p)(void *);
   1615 	uid_t uid;
   1616 	gid_t gid;
   1617 
   1618 	if (v3) {
   1619 		vtyp = nfsv3tov_type(fp->fa_type);
   1620 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1621 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
   1622 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
   1623 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
   1624 		fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
   1625 	} else {
   1626 		vtyp = nfsv2tov_type(fp->fa_type);
   1627 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1628 		if (vtyp == VNON || vtyp == VREG)
   1629 			vtyp = IFTOVT(vmode);
   1630 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
   1631 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
   1632 		ctime.tv_sec = fxdr_unsigned(u_int32_t,
   1633 		    fp->fa2_ctime.nfsv2_sec);
   1634 		ctime.tv_nsec = 0;
   1635 
   1636 		/*
   1637 		 * Really ugly NFSv2 kludge.
   1638 		 */
   1639 		if (vtyp == VCHR && rdev == 0xffffffff)
   1640 			vtyp = VFIFO;
   1641 	}
   1642 
   1643 	vmode &= ALLPERMS;
   1644 
   1645 	/*
   1646 	 * If v_type == VNON it is a new node, so fill in the v_type,
   1647 	 * n_mtime fields. Check to see if it represents a special
   1648 	 * device, and if so, check for a possible alias. Once the
   1649 	 * correct vnode has been obtained, fill in the rest of the
   1650 	 * information.
   1651 	 */
   1652 	np = VTONFS(vp);
   1653 	if (vp->v_type == VNON) {
   1654 		vp->v_type = vtyp;
   1655 		if (vp->v_type == VFIFO) {
   1656 			extern int (**fifo_nfsv2nodeop_p)(void *);
   1657 			vp->v_op = fifo_nfsv2nodeop_p;
   1658 		} else if (vp->v_type == VREG) {
   1659 			mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
   1660 		} else if (vp->v_type == VCHR || vp->v_type == VBLK) {
   1661 			vp->v_op = spec_nfsv2nodeop_p;
   1662 			spec_node_init(vp, (dev_t)rdev);
   1663 		}
   1664 		np->n_mtime = mtime;
   1665 	}
   1666 	uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1667 	gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1668 	vap = np->n_vattr;
   1669 
   1670 	/*
   1671 	 * Invalidate access cache if uid, gid, mode or ctime changed.
   1672 	 */
   1673 	if (np->n_accstamp != -1 &&
   1674 	    (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
   1675 	    || timespeccmp(&ctime, &vap->va_ctime, !=)))
   1676 		np->n_accstamp = -1;
   1677 
   1678 	vap->va_type = vtyp;
   1679 	vap->va_mode = vmode;
   1680 	vap->va_rdev = (dev_t)rdev;
   1681 	vap->va_mtime = mtime;
   1682 	vap->va_ctime = ctime;
   1683 	vap->va_birthtime.tv_sec = VNOVAL;
   1684 	vap->va_birthtime.tv_nsec = VNOVAL;
   1685 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
   1686 	switch (vtyp) {
   1687 	case VDIR:
   1688 		vap->va_blocksize = NFS_DIRFRAGSIZ;
   1689 		break;
   1690 	case VBLK:
   1691 		vap->va_blocksize = BLKDEV_IOSIZE;
   1692 		break;
   1693 	case VCHR:
   1694 		vap->va_blocksize = MAXBSIZE;
   1695 		break;
   1696 	default:
   1697 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
   1698 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
   1699 		break;
   1700 	}
   1701 	if (v3) {
   1702 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1703 		vap->va_uid = uid;
   1704 		vap->va_gid = gid;
   1705 		vap->va_size = fxdr_hyper(&fp->fa3_size);
   1706 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
   1707 		vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
   1708 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
   1709 		vap->va_flags = 0;
   1710 		vap->va_filerev = 0;
   1711 	} else {
   1712 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1713 		vap->va_uid = uid;
   1714 		vap->va_gid = gid;
   1715 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
   1716 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
   1717 		    * NFS_FABLKSIZE;
   1718 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
   1719 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
   1720 		vap->va_flags = 0;
   1721 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
   1722 		vap->va_filerev = 0;
   1723 	}
   1724 	if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
   1725 		return EFBIG;
   1726 	}
   1727 	if (vap->va_size != np->n_size) {
   1728 		if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
   1729 			vap->va_size = np->n_size;
   1730 		} else {
   1731 			np->n_size = vap->va_size;
   1732 			if (vap->va_type == VREG) {
   1733 				/*
   1734 				 * we can't free pages if NAC_NOTRUNC because
   1735 				 * the pages can be owned by ourselves.
   1736 				 */
   1737 				if (flags & NAC_NOTRUNC) {
   1738 					np->n_flag |= NTRUNCDELAYED;
   1739 				} else {
   1740 					genfs_node_wrlock(vp);
   1741 					mutex_enter(&vp->v_interlock);
   1742 					(void)VOP_PUTPAGES(vp, 0,
   1743 					    0, PGO_SYNCIO | PGO_CLEANIT |
   1744 					    PGO_FREE | PGO_ALLPAGES);
   1745 					uvm_vnp_setsize(vp, np->n_size);
   1746 					genfs_node_unlock(vp);
   1747 				}
   1748 			}
   1749 		}
   1750 	}
   1751 	np->n_attrstamp = time_second;
   1752 	if (vaper != NULL) {
   1753 		memcpy((void *)vaper, (void *)vap, sizeof(*vap));
   1754 		if (np->n_flag & NCHG) {
   1755 			if (np->n_flag & NACC)
   1756 				vaper->va_atime = np->n_atim;
   1757 			if (np->n_flag & NUPD)
   1758 				vaper->va_mtime = np->n_mtim;
   1759 		}
   1760 	}
   1761 	return (0);
   1762 }
   1763 
   1764 /*
   1765  * Check the time stamp
   1766  * If the cache is valid, copy contents to *vap and return 0
   1767  * otherwise return an error
   1768  */
   1769 int
   1770 nfs_getattrcache(struct vnode *vp, struct vattr *vaper)
   1771 {
   1772 	struct nfsnode *np = VTONFS(vp);
   1773 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1774 	struct vattr *vap;
   1775 
   1776 	if (np->n_attrstamp == 0 ||
   1777 	    (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
   1778 		nfsstats.attrcache_misses++;
   1779 		return (ENOENT);
   1780 	}
   1781 	nfsstats.attrcache_hits++;
   1782 	vap = np->n_vattr;
   1783 	if (vap->va_size != np->n_size) {
   1784 		if (vap->va_type == VREG) {
   1785 			if ((np->n_flag & NMODIFIED) != 0 &&
   1786 			    vap->va_size < np->n_size) {
   1787 				vap->va_size = np->n_size;
   1788 			} else {
   1789 				np->n_size = vap->va_size;
   1790 			}
   1791 			genfs_node_wrlock(vp);
   1792 			uvm_vnp_setsize(vp, np->n_size);
   1793 			genfs_node_unlock(vp);
   1794 		} else
   1795 			np->n_size = vap->va_size;
   1796 	}
   1797 	memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
   1798 	if (np->n_flag & NCHG) {
   1799 		if (np->n_flag & NACC)
   1800 			vaper->va_atime = np->n_atim;
   1801 		if (np->n_flag & NUPD)
   1802 			vaper->va_mtime = np->n_mtim;
   1803 	}
   1804 	return (0);
   1805 }
   1806 
   1807 void
   1808 nfs_delayedtruncate(struct vnode *vp)
   1809 {
   1810 	struct nfsnode *np = VTONFS(vp);
   1811 
   1812 	if (np->n_flag & NTRUNCDELAYED) {
   1813 		np->n_flag &= ~NTRUNCDELAYED;
   1814 		genfs_node_wrlock(vp);
   1815 		mutex_enter(&vp->v_interlock);
   1816 		(void)VOP_PUTPAGES(vp, 0,
   1817 		    0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
   1818 		uvm_vnp_setsize(vp, np->n_size);
   1819 		genfs_node_unlock(vp);
   1820 	}
   1821 }
   1822 
   1823 #define	NFS_WCCKLUDGE_TIMEOUT	(24 * 60 * 60)	/* 1 day */
   1824 #define	NFS_WCCKLUDGE(nmp, now) \
   1825 	(((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
   1826 	((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
   1827 
   1828 /*
   1829  * nfs_check_wccdata: check inaccurate wcc_data
   1830  *
   1831  * => return non-zero if we shouldn't trust the wcc_data.
   1832  * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
   1833  */
   1834 
   1835 int
   1836 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
   1837     struct timespec *mtime, bool docheck)
   1838 {
   1839 	int error = 0;
   1840 
   1841 #if !defined(NFS_V2_ONLY)
   1842 
   1843 	if (docheck) {
   1844 		struct vnode *vp = NFSTOV(np);
   1845 		struct nfsmount *nmp;
   1846 		long now = time_second;
   1847 		const struct timespec *omtime = &np->n_vattr->va_mtime;
   1848 		const struct timespec *octime = &np->n_vattr->va_ctime;
   1849 		const char *reason = NULL; /* XXX: gcc */
   1850 
   1851 		if (timespeccmp(omtime, mtime, <=)) {
   1852 			reason = "mtime";
   1853 			error = EINVAL;
   1854 		}
   1855 
   1856 		if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
   1857 			reason = "ctime";
   1858 			error = EINVAL;
   1859 		}
   1860 
   1861 		nmp = VFSTONFS(vp->v_mount);
   1862 		if (error) {
   1863 
   1864 			/*
   1865 			 * despite of the fact that we've updated the file,
   1866 			 * timestamps of the file were not updated as we
   1867 			 * expected.
   1868 			 * it means that the server has incompatible
   1869 			 * semantics of timestamps or (more likely)
   1870 			 * the server time is not precise enough to
   1871 			 * track each modifications.
   1872 			 * in that case, we disable wcc processing.
   1873 			 *
   1874 			 * yes, strictly speaking, we should disable all
   1875 			 * caching.  it's a compromise.
   1876 			 */
   1877 
   1878 			mutex_enter(&nmp->nm_lock);
   1879 			if (!NFS_WCCKLUDGE(nmp, now)) {
   1880 				printf("%s: inaccurate wcc data (%s) detected,"
   1881 				    " disabling wcc"
   1882 				    " (ctime %u.%09u %u.%09u,"
   1883 				    " mtime %u.%09u %u.%09u)\n",
   1884 				    vp->v_mount->mnt_stat.f_mntfromname,
   1885 				    reason,
   1886 				    (unsigned int)octime->tv_sec,
   1887 				    (unsigned int)octime->tv_nsec,
   1888 				    (unsigned int)ctime->tv_sec,
   1889 				    (unsigned int)ctime->tv_nsec,
   1890 				    (unsigned int)omtime->tv_sec,
   1891 				    (unsigned int)omtime->tv_nsec,
   1892 				    (unsigned int)mtime->tv_sec,
   1893 				    (unsigned int)mtime->tv_nsec);
   1894 			}
   1895 			nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
   1896 			nmp->nm_wcckludgetime = now;
   1897 			mutex_exit(&nmp->nm_lock);
   1898 		} else if (NFS_WCCKLUDGE(nmp, now)) {
   1899 			error = EPERM; /* XXX */
   1900 		} else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
   1901 			mutex_enter(&nmp->nm_lock);
   1902 			if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
   1903 				printf("%s: re-enabling wcc\n",
   1904 				    vp->v_mount->mnt_stat.f_mntfromname);
   1905 				nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
   1906 			}
   1907 			mutex_exit(&nmp->nm_lock);
   1908 		}
   1909 	}
   1910 
   1911 #endif /* !defined(NFS_V2_ONLY) */
   1912 
   1913 	return error;
   1914 }
   1915 
   1916 /*
   1917  * Heuristic to see if the server XDR encodes directory cookies or not.
   1918  * it is not supposed to, but a lot of servers may do this. Also, since
   1919  * most/all servers will implement V2 as well, it is expected that they
   1920  * may return just 32 bits worth of cookie information, so we need to
   1921  * find out in which 32 bits this information is available. We do this
   1922  * to avoid trouble with emulated binaries that can't handle 64 bit
   1923  * directory offsets.
   1924  */
   1925 
   1926 void
   1927 nfs_cookieheuristic(struct vnode *vp, int *flagp, struct lwp *l, kauth_cred_t cred)
   1928 {
   1929 	struct uio auio;
   1930 	struct iovec aiov;
   1931 	char *tbuf, *cp;
   1932 	struct dirent *dp;
   1933 	off_t *cookies = NULL, *cop;
   1934 	int error, eof, nc, len;
   1935 
   1936 	tbuf = malloc(NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
   1937 
   1938 	aiov.iov_base = tbuf;
   1939 	aiov.iov_len = NFS_DIRFRAGSIZ;
   1940 	auio.uio_iov = &aiov;
   1941 	auio.uio_iovcnt = 1;
   1942 	auio.uio_rw = UIO_READ;
   1943 	auio.uio_resid = NFS_DIRFRAGSIZ;
   1944 	auio.uio_offset = 0;
   1945 	UIO_SETUP_SYSSPACE(&auio);
   1946 
   1947 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
   1948 
   1949 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
   1950 	if (error || len == 0) {
   1951 		free(tbuf, M_TEMP);
   1952 		if (cookies)
   1953 			free(cookies, M_TEMP);
   1954 		return;
   1955 	}
   1956 
   1957 	/*
   1958 	 * Find the first valid entry and look at its offset cookie.
   1959 	 */
   1960 
   1961 	cp = tbuf;
   1962 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
   1963 		dp = (struct dirent *)cp;
   1964 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
   1965 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
   1966 				*flagp |= NFSMNT_SWAPCOOKIE;
   1967 				nfs_invaldircache(vp, 0);
   1968 				nfs_vinvalbuf(vp, 0, cred, l, 1);
   1969 			}
   1970 			break;
   1971 		}
   1972 		cop++;
   1973 		cp += dp->d_reclen;
   1974 	}
   1975 
   1976 	free(tbuf, M_TEMP);
   1977 	free(cookies, M_TEMP);
   1978 }
   1979 #endif /* NFS */
   1980 
   1981 /*
   1982  * A fiddled version of m_adj() that ensures null fill to a 32-bit
   1983  * boundary and only trims off the back end
   1984  *
   1985  * 1. trim off 'len' bytes as m_adj(mp, -len).
   1986  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
   1987  */
   1988 void
   1989 nfs_zeropad(struct mbuf *mp, int len, int nul)
   1990 {
   1991 	struct mbuf *m;
   1992 	int count;
   1993 
   1994 	/*
   1995 	 * Trim from tail.  Scan the mbuf chain,
   1996 	 * calculating its length and finding the last mbuf.
   1997 	 * If the adjustment only affects this mbuf, then just
   1998 	 * adjust and return.  Otherwise, rescan and truncate
   1999 	 * after the remaining size.
   2000 	 */
   2001 	count = 0;
   2002 	m = mp;
   2003 	for (;;) {
   2004 		count += m->m_len;
   2005 		if (m->m_next == NULL)
   2006 			break;
   2007 		m = m->m_next;
   2008 	}
   2009 
   2010 	KDASSERT(count >= len);
   2011 
   2012 	if (m->m_len >= len) {
   2013 		m->m_len -= len;
   2014 	} else {
   2015 		count -= len;
   2016 		/*
   2017 		 * Correct length for chain is "count".
   2018 		 * Find the mbuf with last data, adjust its length,
   2019 		 * and toss data from remaining mbufs on chain.
   2020 		 */
   2021 		for (m = mp; m; m = m->m_next) {
   2022 			if (m->m_len >= count) {
   2023 				m->m_len = count;
   2024 				break;
   2025 			}
   2026 			count -= m->m_len;
   2027 		}
   2028 		KASSERT(m && m->m_next);
   2029 		m_freem(m->m_next);
   2030 		m->m_next = NULL;
   2031 	}
   2032 
   2033 	KDASSERT(m->m_next == NULL);
   2034 
   2035 	/*
   2036 	 * zero-padding.
   2037 	 */
   2038 	if (nul > 0) {
   2039 		char *cp;
   2040 		int i;
   2041 
   2042 		if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
   2043 			struct mbuf *n;
   2044 
   2045 			KDASSERT(MLEN >= nul);
   2046 			n = m_get(M_WAIT, MT_DATA);
   2047 			MCLAIM(n, &nfs_mowner);
   2048 			n->m_len = nul;
   2049 			n->m_next = NULL;
   2050 			m->m_next = n;
   2051 			cp = mtod(n, void *);
   2052 		} else {
   2053 			cp = mtod(m, char *) + m->m_len;
   2054 			m->m_len += nul;
   2055 		}
   2056 		for (i = 0; i < nul; i++)
   2057 			*cp++ = '\0';
   2058 	}
   2059 	return;
   2060 }
   2061 
   2062 /*
   2063  * Make these functions instead of macros, so that the kernel text size
   2064  * doesn't get too big...
   2065  */
   2066 void
   2067 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
   2068 {
   2069 	struct mbuf *mb = *mbp;
   2070 	char *bpos = *bposp;
   2071 	u_int32_t *tl;
   2072 
   2073 	if (before_ret) {
   2074 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2075 		*tl = nfs_false;
   2076 	} else {
   2077 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   2078 		*tl++ = nfs_true;
   2079 		txdr_hyper(before_vap->va_size, tl);
   2080 		tl += 2;
   2081 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   2082 		tl += 2;
   2083 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   2084 	}
   2085 	*bposp = bpos;
   2086 	*mbp = mb;
   2087 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   2088 }
   2089 
   2090 void
   2091 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
   2092 {
   2093 	struct mbuf *mb = *mbp;
   2094 	char *bpos = *bposp;
   2095 	u_int32_t *tl;
   2096 	struct nfs_fattr *fp;
   2097 
   2098 	if (after_ret) {
   2099 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2100 		*tl = nfs_false;
   2101 	} else {
   2102 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   2103 		*tl++ = nfs_true;
   2104 		fp = (struct nfs_fattr *)tl;
   2105 		nfsm_srvfattr(nfsd, after_vap, fp);
   2106 	}
   2107 	*mbp = mb;
   2108 	*bposp = bpos;
   2109 }
   2110 
   2111 void
   2112 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
   2113 {
   2114 
   2115 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   2116 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   2117 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   2118 	if (nfsd->nd_flag & ND_NFSV3) {
   2119 		fp->fa_type = vtonfsv3_type(vap->va_type);
   2120 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   2121 		txdr_hyper(vap->va_size, &fp->fa3_size);
   2122 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   2123 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   2124 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   2125 		fp->fa3_fsid.nfsuquad[0] = 0;
   2126 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   2127 		txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
   2128 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   2129 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   2130 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   2131 	} else {
   2132 		fp->fa_type = vtonfsv2_type(vap->va_type);
   2133 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   2134 		fp->fa2_size = txdr_unsigned(vap->va_size);
   2135 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
   2136 		if (vap->va_type == VFIFO)
   2137 			fp->fa2_rdev = 0xffffffff;
   2138 		else
   2139 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   2140 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   2141 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   2142 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   2143 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   2144 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   2145 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   2146 	}
   2147 }
   2148 
   2149 /*
   2150  * This function compares two net addresses by family and returns true
   2151  * if they are the same host.
   2152  * If there is any doubt, return false.
   2153  * The AF_INET family is handled as a special case so that address mbufs
   2154  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   2155  */
   2156 int
   2157 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
   2158 {
   2159 	struct sockaddr_in *inetaddr;
   2160 
   2161 	switch (family) {
   2162 	case AF_INET:
   2163 		inetaddr = mtod(nam, struct sockaddr_in *);
   2164 		if (inetaddr->sin_family == AF_INET &&
   2165 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   2166 			return (1);
   2167 		break;
   2168 	case AF_INET6:
   2169 	    {
   2170 		struct sockaddr_in6 *sin6_1, *sin6_2;
   2171 
   2172 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
   2173 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
   2174 		if (sin6_1->sin6_family == AF_INET6 &&
   2175 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
   2176 			return 1;
   2177 	    }
   2178 	default:
   2179 		break;
   2180 	};
   2181 	return (0);
   2182 }
   2183 
   2184 /*
   2185  * The write verifier has changed (probably due to a server reboot), so all
   2186  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
   2187  * as dirty or are being written out just now, all this takes is clearing
   2188  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
   2189  * the mount point.
   2190  */
   2191 void
   2192 nfs_clearcommit(struct mount *mp)
   2193 {
   2194 	struct vnode *vp;
   2195 	struct nfsnode *np;
   2196 	struct vm_page *pg;
   2197 	struct nfsmount *nmp = VFSTONFS(mp);
   2198 
   2199 	rw_enter(&nmp->nm_writeverflock, RW_WRITER);
   2200 	mutex_enter(&mntvnode_lock);
   2201 	TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
   2202 		KASSERT(vp->v_mount == mp);
   2203 		if (vp->v_type != VREG)
   2204 			continue;
   2205 		np = VTONFS(vp);
   2206 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
   2207 		    np->n_pushedhi = 0;
   2208 		np->n_commitflags &=
   2209 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
   2210 		mutex_enter(&vp->v_uobj.vmobjlock);
   2211 		TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
   2212 			pg->flags &= ~PG_NEEDCOMMIT;
   2213 		}
   2214 		mutex_exit(&vp->v_uobj.vmobjlock);
   2215 	}
   2216 	mutex_exit(&mntvnode_lock);
   2217 	mutex_enter(&nmp->nm_lock);
   2218 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
   2219 	mutex_exit(&nmp->nm_lock);
   2220 	rw_exit(&nmp->nm_writeverflock);
   2221 }
   2222 
   2223 void
   2224 nfs_merge_commit_ranges(struct vnode *vp)
   2225 {
   2226 	struct nfsnode *np = VTONFS(vp);
   2227 
   2228 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
   2229 
   2230 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   2231 		np->n_pushedlo = np->n_pushlo;
   2232 		np->n_pushedhi = np->n_pushhi;
   2233 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   2234 	} else {
   2235 		if (np->n_pushlo < np->n_pushedlo)
   2236 			np->n_pushedlo = np->n_pushlo;
   2237 		if (np->n_pushhi > np->n_pushedhi)
   2238 			np->n_pushedhi = np->n_pushhi;
   2239 	}
   2240 
   2241 	np->n_pushlo = np->n_pushhi = 0;
   2242 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
   2243 
   2244 #ifdef NFS_DEBUG_COMMIT
   2245 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   2246 	    (unsigned)np->n_pushedhi);
   2247 #endif
   2248 }
   2249 
   2250 int
   2251 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
   2252 {
   2253 	struct nfsnode *np = VTONFS(vp);
   2254 	off_t lo, hi;
   2255 
   2256 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   2257 		return 0;
   2258 	lo = off;
   2259 	hi = lo + len;
   2260 
   2261 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
   2262 }
   2263 
   2264 int
   2265 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   2266 {
   2267 	struct nfsnode *np = VTONFS(vp);
   2268 	off_t lo, hi;
   2269 
   2270 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   2271 		return 0;
   2272 	lo = off;
   2273 	hi = lo + len;
   2274 
   2275 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
   2276 }
   2277 
   2278 void
   2279 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
   2280 {
   2281 	struct nfsnode *np = VTONFS(vp);
   2282 	off_t lo, hi;
   2283 
   2284 	lo = off;
   2285 	hi = lo + len;
   2286 
   2287 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   2288 		np->n_pushedlo = lo;
   2289 		np->n_pushedhi = hi;
   2290 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   2291 	} else {
   2292 		if (hi > np->n_pushedhi)
   2293 			np->n_pushedhi = hi;
   2294 		if (lo < np->n_pushedlo)
   2295 			np->n_pushedlo = lo;
   2296 	}
   2297 #ifdef NFS_DEBUG_COMMIT
   2298 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   2299 	    (unsigned)np->n_pushedhi);
   2300 #endif
   2301 }
   2302 
   2303 void
   2304 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
   2305 {
   2306 	struct nfsnode *np = VTONFS(vp);
   2307 	off_t lo, hi;
   2308 
   2309 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   2310 		return;
   2311 
   2312 	lo = off;
   2313 	hi = lo + len;
   2314 
   2315 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
   2316 		return;
   2317 	if (lo <= np->n_pushedlo)
   2318 		np->n_pushedlo = hi;
   2319 	else if (hi >= np->n_pushedhi)
   2320 		np->n_pushedhi = lo;
   2321 	else {
   2322 		/*
   2323 		 * XXX There's only one range. If the deleted range
   2324 		 * is in the middle, pick the largest of the
   2325 		 * contiguous ranges that it leaves.
   2326 		 */
   2327 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
   2328 			np->n_pushedhi = lo;
   2329 		else
   2330 			np->n_pushedlo = hi;
   2331 	}
   2332 #ifdef NFS_DEBUG_COMMIT
   2333 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   2334 	    (unsigned)np->n_pushedhi);
   2335 #endif
   2336 }
   2337 
   2338 void
   2339 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   2340 {
   2341 	struct nfsnode *np = VTONFS(vp);
   2342 	off_t lo, hi;
   2343 
   2344 	lo = off;
   2345 	hi = lo + len;
   2346 
   2347 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
   2348 		np->n_pushlo = lo;
   2349 		np->n_pushhi = hi;
   2350 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
   2351 	} else {
   2352 		if (lo < np->n_pushlo)
   2353 			np->n_pushlo = lo;
   2354 		if (hi > np->n_pushhi)
   2355 			np->n_pushhi = hi;
   2356 	}
   2357 #ifdef NFS_DEBUG_COMMIT
   2358 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   2359 	    (unsigned)np->n_pushhi);
   2360 #endif
   2361 }
   2362 
   2363 void
   2364 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   2365 {
   2366 	struct nfsnode *np = VTONFS(vp);
   2367 	off_t lo, hi;
   2368 
   2369 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   2370 		return;
   2371 
   2372 	lo = off;
   2373 	hi = lo + len;
   2374 
   2375 	if (lo > np->n_pushhi || hi < np->n_pushlo)
   2376 		return;
   2377 
   2378 	if (lo <= np->n_pushlo)
   2379 		np->n_pushlo = hi;
   2380 	else if (hi >= np->n_pushhi)
   2381 		np->n_pushhi = lo;
   2382 	else {
   2383 		/*
   2384 		 * XXX There's only one range. If the deleted range
   2385 		 * is in the middle, pick the largest of the
   2386 		 * contiguous ranges that it leaves.
   2387 		 */
   2388 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
   2389 			np->n_pushhi = lo;
   2390 		else
   2391 			np->n_pushlo = hi;
   2392 	}
   2393 #ifdef NFS_DEBUG_COMMIT
   2394 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   2395 	    (unsigned)np->n_pushhi);
   2396 #endif
   2397 }
   2398 
   2399 /*
   2400  * Map errnos to NFS error numbers. For Version 3 also filter out error
   2401  * numbers not specified for the associated procedure.
   2402  */
   2403 int
   2404 nfsrv_errmap(struct nfsrv_descript *nd, int err)
   2405 {
   2406 	const short *defaulterrp, *errp;
   2407 
   2408 	if (nd->nd_flag & ND_NFSV3) {
   2409 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   2410 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   2411 		while (*++errp) {
   2412 			if (*errp == err)
   2413 				return (err);
   2414 			else if (*errp > err)
   2415 				break;
   2416 		}
   2417 		return ((int)*defaulterrp);
   2418 	    } else
   2419 		return (err & 0xffff);
   2420 	}
   2421 	if (err <= ELAST)
   2422 		return ((int)nfsrv_v2errmap[err - 1]);
   2423 	return (NFSERR_IO);
   2424 }
   2425 
   2426 u_int32_t
   2427 nfs_getxid()
   2428 {
   2429 	u_int32_t newxid;
   2430 
   2431 	/* get next xid.  skip 0 */
   2432 	do {
   2433 		newxid = atomic_inc_32_nv(&nfs_xid);
   2434 	} while (__predict_false(newxid == 0));
   2435 
   2436 	return txdr_unsigned(newxid);
   2437 }
   2438 
   2439 /*
   2440  * assign a new xid for existing request.
   2441  * used for NFSERR_JUKEBOX handling.
   2442  */
   2443 void
   2444 nfs_renewxid(struct nfsreq *req)
   2445 {
   2446 	u_int32_t xid;
   2447 	int off;
   2448 
   2449 	xid = nfs_getxid();
   2450 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
   2451 		off = sizeof(u_int32_t); /* RPC record mark */
   2452 	else
   2453 		off = 0;
   2454 
   2455 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
   2456 	req->r_xid = xid;
   2457 }
   2458 
   2459 #if defined(NFS)
   2460 /*
   2461  * Set the attribute timeout based on how recently the file has been modified.
   2462  */
   2463 
   2464 time_t
   2465 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
   2466 {
   2467 	time_t timeo;
   2468 
   2469 	if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
   2470 		return 0;
   2471 
   2472 	if (((np)->n_flag & NMODIFIED) != 0)
   2473 		return NFS_MINATTRTIMO;
   2474 
   2475 	timeo = (time_second - np->n_mtime.tv_sec) / 10;
   2476 	timeo = max(timeo, NFS_MINATTRTIMO);
   2477 	timeo = min(timeo, NFS_MAXATTRTIMO);
   2478 	return timeo;
   2479 }
   2480 #endif /* defined(NFS) */
   2481