Home | History | Annotate | Line # | Download | only in nfs
nfs_subs.c revision 1.230.2.2
      1 /*	$NetBSD: nfs_subs.c,v 1.230.2.2 2018/05/21 04:36:17 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     35  */
     36 
     37 /*
     38  * Copyright 2000 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Frank van der Linden for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed for the NetBSD Project by
     54  *      Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.230.2.2 2018/05/21 04:36:17 pgoyette Exp $");
     74 
     75 #ifdef _KERNEL_OPT
     76 #include "opt_nfs.h"
     77 #endif
     78 
     79 /*
     80  * These functions support the macros and help fiddle mbuf chains for
     81  * the nfs op functions. They do things like create the rpc header and
     82  * copy data between mbuf chains and uio lists.
     83  */
     84 #include <sys/param.h>
     85 #include <sys/proc.h>
     86 #include <sys/systm.h>
     87 #include <sys/kernel.h>
     88 #include <sys/kmem.h>
     89 #include <sys/mount.h>
     90 #include <sys/vnode.h>
     91 #include <sys/namei.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/socket.h>
     94 #include <sys/stat.h>
     95 #include <sys/filedesc.h>
     96 #include <sys/time.h>
     97 #include <sys/dirent.h>
     98 #include <sys/once.h>
     99 #include <sys/kauth.h>
    100 #include <sys/atomic.h>
    101 #include <sys/cprng.h>
    102 
    103 #include <uvm/uvm.h>
    104 
    105 #include <nfs/rpcv2.h>
    106 #include <nfs/nfsproto.h>
    107 #include <nfs/nfsnode.h>
    108 #include <nfs/nfs.h>
    109 #include <nfs/xdr_subs.h>
    110 #include <nfs/nfsm_subs.h>
    111 #include <nfs/nfsmount.h>
    112 #include <nfs/nfsrtt.h>
    113 #include <nfs/nfs_var.h>
    114 
    115 #include <miscfs/specfs/specdev.h>
    116 
    117 #include <netinet/in.h>
    118 
    119 static u_int32_t nfs_xid;
    120 
    121 int nuidhash_max = NFS_MAXUIDHASH;
    122 /*
    123  * Data items converted to xdr at startup, since they are constant
    124  * This is kinda hokey, but may save a little time doing byte swaps
    125  */
    126 u_int32_t nfs_xdrneg1;
    127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
    128 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
    129 	rpc_auth_kerb;
    130 u_int32_t nfs_prog, nfs_true, nfs_false;
    131 
    132 /* And other global data */
    133 const nfstype nfsv2_type[9] =
    134 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
    135 const nfstype nfsv3_type[9] =
    136 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
    137 const enum vtype nv2tov_type[8] =
    138 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    139 const enum vtype nv3tov_type[8] =
    140 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    141 int nfs_ticks;
    142 
    143 /* NFS client/server stats. */
    144 struct nfsstats nfsstats;
    145 
    146 /*
    147  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    148  */
    149 const int nfsv3_procid[NFS_NPROCS] = {
    150 	NFSPROC_NULL,
    151 	NFSPROC_GETATTR,
    152 	NFSPROC_SETATTR,
    153 	NFSPROC_NOOP,
    154 	NFSPROC_LOOKUP,
    155 	NFSPROC_READLINK,
    156 	NFSPROC_READ,
    157 	NFSPROC_NOOP,
    158 	NFSPROC_WRITE,
    159 	NFSPROC_CREATE,
    160 	NFSPROC_REMOVE,
    161 	NFSPROC_RENAME,
    162 	NFSPROC_LINK,
    163 	NFSPROC_SYMLINK,
    164 	NFSPROC_MKDIR,
    165 	NFSPROC_RMDIR,
    166 	NFSPROC_READDIR,
    167 	NFSPROC_FSSTAT,
    168 	NFSPROC_NOOP,
    169 	NFSPROC_NOOP,
    170 	NFSPROC_NOOP,
    171 	NFSPROC_NOOP,
    172 	NFSPROC_NOOP
    173 };
    174 
    175 /*
    176  * and the reverse mapping from generic to Version 2 procedure numbers
    177  */
    178 const int nfsv2_procid[NFS_NPROCS] = {
    179 	NFSV2PROC_NULL,
    180 	NFSV2PROC_GETATTR,
    181 	NFSV2PROC_SETATTR,
    182 	NFSV2PROC_LOOKUP,
    183 	NFSV2PROC_NOOP,
    184 	NFSV2PROC_READLINK,
    185 	NFSV2PROC_READ,
    186 	NFSV2PROC_WRITE,
    187 	NFSV2PROC_CREATE,
    188 	NFSV2PROC_MKDIR,
    189 	NFSV2PROC_SYMLINK,
    190 	NFSV2PROC_CREATE,
    191 	NFSV2PROC_REMOVE,
    192 	NFSV2PROC_RMDIR,
    193 	NFSV2PROC_RENAME,
    194 	NFSV2PROC_LINK,
    195 	NFSV2PROC_READDIR,
    196 	NFSV2PROC_NOOP,
    197 	NFSV2PROC_STATFS,
    198 	NFSV2PROC_NOOP,
    199 	NFSV2PROC_NOOP,
    200 	NFSV2PROC_NOOP,
    201 	NFSV2PROC_NOOP,
    202 };
    203 
    204 /*
    205  * Maps errno values to nfs error numbers.
    206  * Use NFSERR_IO as the catch all for ones not specifically defined in
    207  * RFC 1094.
    208  */
    209 static const u_char nfsrv_v2errmap[ELAST] = {
    210   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    211   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    212   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    213   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    214   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    215   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    216   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    217   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    218   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    219   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    220   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    221   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    222   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    223   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    226   NFSERR_IO,	NFSERR_IO,
    227 };
    228 
    229 /*
    230  * Maps errno values to nfs error numbers.
    231  * Although it is not obvious whether or not NFS clients really care if
    232  * a returned error value is in the specified list for the procedure, the
    233  * safest thing to do is filter them appropriately. For Version 2, the
    234  * X/Open XNFS document is the only specification that defines error values
    235  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    236  * so I have decided to not do this for Version 2.
    237  * The first entry is the default error return and the rest are the valid
    238  * errors for that RPC in increasing numeric order.
    239  */
    240 static const short nfsv3err_null[] = {
    241 	0,
    242 	0,
    243 };
    244 
    245 static const short nfsv3err_getattr[] = {
    246 	NFSERR_IO,
    247 	NFSERR_IO,
    248 	NFSERR_STALE,
    249 	NFSERR_BADHANDLE,
    250 	NFSERR_SERVERFAULT,
    251 	0,
    252 };
    253 
    254 static const short nfsv3err_setattr[] = {
    255 	NFSERR_IO,
    256 	NFSERR_PERM,
    257 	NFSERR_IO,
    258 	NFSERR_ACCES,
    259 	NFSERR_INVAL,
    260 	NFSERR_NOSPC,
    261 	NFSERR_ROFS,
    262 	NFSERR_DQUOT,
    263 	NFSERR_STALE,
    264 	NFSERR_BADHANDLE,
    265 	NFSERR_NOT_SYNC,
    266 	NFSERR_SERVERFAULT,
    267 	0,
    268 };
    269 
    270 static const short nfsv3err_lookup[] = {
    271 	NFSERR_IO,
    272 	NFSERR_NOENT,
    273 	NFSERR_IO,
    274 	NFSERR_ACCES,
    275 	NFSERR_NOTDIR,
    276 	NFSERR_NAMETOL,
    277 	NFSERR_STALE,
    278 	NFSERR_BADHANDLE,
    279 	NFSERR_SERVERFAULT,
    280 	0,
    281 };
    282 
    283 static const short nfsv3err_access[] = {
    284 	NFSERR_IO,
    285 	NFSERR_IO,
    286 	NFSERR_STALE,
    287 	NFSERR_BADHANDLE,
    288 	NFSERR_SERVERFAULT,
    289 	0,
    290 };
    291 
    292 static const short nfsv3err_readlink[] = {
    293 	NFSERR_IO,
    294 	NFSERR_IO,
    295 	NFSERR_ACCES,
    296 	NFSERR_INVAL,
    297 	NFSERR_STALE,
    298 	NFSERR_BADHANDLE,
    299 	NFSERR_NOTSUPP,
    300 	NFSERR_SERVERFAULT,
    301 	0,
    302 };
    303 
    304 static const short nfsv3err_read[] = {
    305 	NFSERR_IO,
    306 	NFSERR_IO,
    307 	NFSERR_NXIO,
    308 	NFSERR_ACCES,
    309 	NFSERR_INVAL,
    310 	NFSERR_STALE,
    311 	NFSERR_BADHANDLE,
    312 	NFSERR_SERVERFAULT,
    313 	NFSERR_JUKEBOX,
    314 	0,
    315 };
    316 
    317 static const short nfsv3err_write[] = {
    318 	NFSERR_IO,
    319 	NFSERR_IO,
    320 	NFSERR_ACCES,
    321 	NFSERR_INVAL,
    322 	NFSERR_FBIG,
    323 	NFSERR_NOSPC,
    324 	NFSERR_ROFS,
    325 	NFSERR_DQUOT,
    326 	NFSERR_STALE,
    327 	NFSERR_BADHANDLE,
    328 	NFSERR_SERVERFAULT,
    329 	NFSERR_JUKEBOX,
    330 	0,
    331 };
    332 
    333 static const short nfsv3err_create[] = {
    334 	NFSERR_IO,
    335 	NFSERR_IO,
    336 	NFSERR_ACCES,
    337 	NFSERR_EXIST,
    338 	NFSERR_NOTDIR,
    339 	NFSERR_NOSPC,
    340 	NFSERR_ROFS,
    341 	NFSERR_NAMETOL,
    342 	NFSERR_DQUOT,
    343 	NFSERR_STALE,
    344 	NFSERR_BADHANDLE,
    345 	NFSERR_NOTSUPP,
    346 	NFSERR_SERVERFAULT,
    347 	0,
    348 };
    349 
    350 static const short nfsv3err_mkdir[] = {
    351 	NFSERR_IO,
    352 	NFSERR_IO,
    353 	NFSERR_ACCES,
    354 	NFSERR_EXIST,
    355 	NFSERR_NOTDIR,
    356 	NFSERR_NOSPC,
    357 	NFSERR_ROFS,
    358 	NFSERR_NAMETOL,
    359 	NFSERR_DQUOT,
    360 	NFSERR_STALE,
    361 	NFSERR_BADHANDLE,
    362 	NFSERR_NOTSUPP,
    363 	NFSERR_SERVERFAULT,
    364 	0,
    365 };
    366 
    367 static const short nfsv3err_symlink[] = {
    368 	NFSERR_IO,
    369 	NFSERR_IO,
    370 	NFSERR_ACCES,
    371 	NFSERR_EXIST,
    372 	NFSERR_NOTDIR,
    373 	NFSERR_NOSPC,
    374 	NFSERR_ROFS,
    375 	NFSERR_NAMETOL,
    376 	NFSERR_DQUOT,
    377 	NFSERR_STALE,
    378 	NFSERR_BADHANDLE,
    379 	NFSERR_NOTSUPP,
    380 	NFSERR_SERVERFAULT,
    381 	0,
    382 };
    383 
    384 static const short nfsv3err_mknod[] = {
    385 	NFSERR_IO,
    386 	NFSERR_IO,
    387 	NFSERR_ACCES,
    388 	NFSERR_EXIST,
    389 	NFSERR_NOTDIR,
    390 	NFSERR_NOSPC,
    391 	NFSERR_ROFS,
    392 	NFSERR_NAMETOL,
    393 	NFSERR_DQUOT,
    394 	NFSERR_STALE,
    395 	NFSERR_BADHANDLE,
    396 	NFSERR_NOTSUPP,
    397 	NFSERR_SERVERFAULT,
    398 	NFSERR_BADTYPE,
    399 	0,
    400 };
    401 
    402 static const short nfsv3err_remove[] = {
    403 	NFSERR_IO,
    404 	NFSERR_NOENT,
    405 	NFSERR_IO,
    406 	NFSERR_ACCES,
    407 	NFSERR_NOTDIR,
    408 	NFSERR_ROFS,
    409 	NFSERR_NAMETOL,
    410 	NFSERR_STALE,
    411 	NFSERR_BADHANDLE,
    412 	NFSERR_SERVERFAULT,
    413 	0,
    414 };
    415 
    416 static const short nfsv3err_rmdir[] = {
    417 	NFSERR_IO,
    418 	NFSERR_NOENT,
    419 	NFSERR_IO,
    420 	NFSERR_ACCES,
    421 	NFSERR_EXIST,
    422 	NFSERR_NOTDIR,
    423 	NFSERR_INVAL,
    424 	NFSERR_ROFS,
    425 	NFSERR_NAMETOL,
    426 	NFSERR_NOTEMPTY,
    427 	NFSERR_STALE,
    428 	NFSERR_BADHANDLE,
    429 	NFSERR_NOTSUPP,
    430 	NFSERR_SERVERFAULT,
    431 	0,
    432 };
    433 
    434 static const short nfsv3err_rename[] = {
    435 	NFSERR_IO,
    436 	NFSERR_NOENT,
    437 	NFSERR_IO,
    438 	NFSERR_ACCES,
    439 	NFSERR_EXIST,
    440 	NFSERR_XDEV,
    441 	NFSERR_NOTDIR,
    442 	NFSERR_ISDIR,
    443 	NFSERR_INVAL,
    444 	NFSERR_NOSPC,
    445 	NFSERR_ROFS,
    446 	NFSERR_MLINK,
    447 	NFSERR_NAMETOL,
    448 	NFSERR_NOTEMPTY,
    449 	NFSERR_DQUOT,
    450 	NFSERR_STALE,
    451 	NFSERR_BADHANDLE,
    452 	NFSERR_NOTSUPP,
    453 	NFSERR_SERVERFAULT,
    454 	0,
    455 };
    456 
    457 static const short nfsv3err_link[] = {
    458 	NFSERR_IO,
    459 	NFSERR_IO,
    460 	NFSERR_ACCES,
    461 	NFSERR_EXIST,
    462 	NFSERR_XDEV,
    463 	NFSERR_NOTDIR,
    464 	NFSERR_INVAL,
    465 	NFSERR_NOSPC,
    466 	NFSERR_ROFS,
    467 	NFSERR_MLINK,
    468 	NFSERR_NAMETOL,
    469 	NFSERR_DQUOT,
    470 	NFSERR_STALE,
    471 	NFSERR_BADHANDLE,
    472 	NFSERR_NOTSUPP,
    473 	NFSERR_SERVERFAULT,
    474 	0,
    475 };
    476 
    477 static const short nfsv3err_readdir[] = {
    478 	NFSERR_IO,
    479 	NFSERR_IO,
    480 	NFSERR_ACCES,
    481 	NFSERR_NOTDIR,
    482 	NFSERR_STALE,
    483 	NFSERR_BADHANDLE,
    484 	NFSERR_BAD_COOKIE,
    485 	NFSERR_TOOSMALL,
    486 	NFSERR_SERVERFAULT,
    487 	0,
    488 };
    489 
    490 static const short nfsv3err_readdirplus[] = {
    491 	NFSERR_IO,
    492 	NFSERR_IO,
    493 	NFSERR_ACCES,
    494 	NFSERR_NOTDIR,
    495 	NFSERR_STALE,
    496 	NFSERR_BADHANDLE,
    497 	NFSERR_BAD_COOKIE,
    498 	NFSERR_NOTSUPP,
    499 	NFSERR_TOOSMALL,
    500 	NFSERR_SERVERFAULT,
    501 	0,
    502 };
    503 
    504 static const short nfsv3err_fsstat[] = {
    505 	NFSERR_IO,
    506 	NFSERR_IO,
    507 	NFSERR_STALE,
    508 	NFSERR_BADHANDLE,
    509 	NFSERR_SERVERFAULT,
    510 	0,
    511 };
    512 
    513 static const short nfsv3err_fsinfo[] = {
    514 	NFSERR_STALE,
    515 	NFSERR_STALE,
    516 	NFSERR_BADHANDLE,
    517 	NFSERR_SERVERFAULT,
    518 	0,
    519 };
    520 
    521 static const short nfsv3err_pathconf[] = {
    522 	NFSERR_STALE,
    523 	NFSERR_STALE,
    524 	NFSERR_BADHANDLE,
    525 	NFSERR_SERVERFAULT,
    526 	0,
    527 };
    528 
    529 static const short nfsv3err_commit[] = {
    530 	NFSERR_IO,
    531 	NFSERR_IO,
    532 	NFSERR_STALE,
    533 	NFSERR_BADHANDLE,
    534 	NFSERR_SERVERFAULT,
    535 	0,
    536 };
    537 
    538 static const short * const nfsrv_v3errmap[] = {
    539 	nfsv3err_null,
    540 	nfsv3err_getattr,
    541 	nfsv3err_setattr,
    542 	nfsv3err_lookup,
    543 	nfsv3err_access,
    544 	nfsv3err_readlink,
    545 	nfsv3err_read,
    546 	nfsv3err_write,
    547 	nfsv3err_create,
    548 	nfsv3err_mkdir,
    549 	nfsv3err_symlink,
    550 	nfsv3err_mknod,
    551 	nfsv3err_remove,
    552 	nfsv3err_rmdir,
    553 	nfsv3err_rename,
    554 	nfsv3err_link,
    555 	nfsv3err_readdir,
    556 	nfsv3err_readdirplus,
    557 	nfsv3err_fsstat,
    558 	nfsv3err_fsinfo,
    559 	nfsv3err_pathconf,
    560 	nfsv3err_commit,
    561 };
    562 
    563 extern struct nfsrtt nfsrtt;
    564 
    565 u_long nfsdirhashmask;
    566 
    567 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
    568 
    569 /*
    570  * Create the header for an rpc request packet
    571  * The hsiz is the size of the rest of the nfs request header.
    572  * (just used to decide if a cluster is a good idea)
    573  */
    574 struct mbuf *
    575 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
    576 {
    577 	struct mbuf *mb;
    578 	char *bpos;
    579 
    580 	mb = m_get(M_WAIT, MT_DATA);
    581 	MCLAIM(mb, &nfs_mowner);
    582 	if (hsiz >= MINCLSIZE)
    583 		m_clget(mb, M_WAIT);
    584 	mb->m_len = 0;
    585 	bpos = mtod(mb, void *);
    586 
    587 	/* Finally, return values */
    588 	*bposp = bpos;
    589 	return (mb);
    590 }
    591 
    592 /*
    593  * Build the RPC header and fill in the authorization info.
    594  * The authorization string argument is only used when the credentials
    595  * come from outside of the kernel.
    596  * Returns the head of the mbuf list.
    597  */
    598 struct mbuf *
    599 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
    600 	int auth_type, int auth_len, char *auth_str, int verf_len,
    601 	char *verf_str, struct mbuf *mrest, int mrest_len,
    602 	struct mbuf **mbp, uint32_t *xidp)
    603 {
    604 	struct mbuf *mb;
    605 	u_int32_t *tl;
    606 	char *bpos;
    607 	int i;
    608 	struct mbuf *mreq;
    609 	int siz, grpsiz, authsiz;
    610 
    611 	authsiz = nfsm_rndup(auth_len);
    612 	mb = m_gethdr(M_WAIT, MT_DATA);
    613 	MCLAIM(mb, &nfs_mowner);
    614 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    615 		m_clget(mb, M_WAIT);
    616 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    617 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
    618 	} else {
    619 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
    620 	}
    621 	mb->m_len = 0;
    622 	mreq = mb;
    623 	bpos = mtod(mb, void *);
    624 
    625 	/*
    626 	 * First the RPC header.
    627 	 */
    628 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    629 
    630 	*tl++ = *xidp = nfs_getxid();
    631 	*tl++ = rpc_call;
    632 	*tl++ = rpc_vers;
    633 	*tl++ = txdr_unsigned(NFS_PROG);
    634 	if (nmflag & NFSMNT_NFSV3)
    635 		*tl++ = txdr_unsigned(NFS_VER3);
    636 	else
    637 		*tl++ = txdr_unsigned(NFS_VER2);
    638 	if (nmflag & NFSMNT_NFSV3)
    639 		*tl++ = txdr_unsigned(procid);
    640 	else
    641 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    642 
    643 	/*
    644 	 * And then the authorization cred.
    645 	 */
    646 	*tl++ = txdr_unsigned(auth_type);
    647 	*tl = txdr_unsigned(authsiz);
    648 	switch (auth_type) {
    649 	case RPCAUTH_UNIX:
    650 		nfsm_build(tl, u_int32_t *, auth_len);
    651 		*tl++ = 0;		/* stamp ?? */
    652 		*tl++ = 0;		/* NULL hostname */
    653 		*tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
    654 		*tl++ = txdr_unsigned(kauth_cred_getegid(cr));
    655 		grpsiz = (auth_len >> 2) - 5;
    656 		*tl++ = txdr_unsigned(grpsiz);
    657 		for (i = 0; i < grpsiz; i++)
    658 			*tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
    659 		break;
    660 	case RPCAUTH_KERB4:
    661 		siz = auth_len;
    662 		while (siz > 0) {
    663 			if (M_TRAILINGSPACE(mb) == 0) {
    664 				struct mbuf *mb2;
    665 				mb2 = m_get(M_WAIT, MT_DATA);
    666 				MCLAIM(mb2, &nfs_mowner);
    667 				if (siz >= MINCLSIZE)
    668 					m_clget(mb2, M_WAIT);
    669 				mb->m_next = mb2;
    670 				mb = mb2;
    671 				mb->m_len = 0;
    672 				bpos = mtod(mb, void *);
    673 			}
    674 			i = min(siz, M_TRAILINGSPACE(mb));
    675 			memcpy(bpos, auth_str, i);
    676 			mb->m_len += i;
    677 			auth_str += i;
    678 			bpos += i;
    679 			siz -= i;
    680 		}
    681 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    682 			for (i = 0; i < siz; i++)
    683 				*bpos++ = '\0';
    684 			mb->m_len += siz;
    685 		}
    686 		break;
    687 	};
    688 
    689 	/*
    690 	 * And the verifier...
    691 	 */
    692 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    693 	if (verf_str) {
    694 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    695 		*tl = txdr_unsigned(verf_len);
    696 		siz = verf_len;
    697 		while (siz > 0) {
    698 			if (M_TRAILINGSPACE(mb) == 0) {
    699 				struct mbuf *mb2;
    700 				mb2 = m_get(M_WAIT, MT_DATA);
    701 				MCLAIM(mb2, &nfs_mowner);
    702 				if (siz >= MINCLSIZE)
    703 					m_clget(mb2, M_WAIT);
    704 				mb->m_next = mb2;
    705 				mb = mb2;
    706 				mb->m_len = 0;
    707 				bpos = mtod(mb, void *);
    708 			}
    709 			i = min(siz, M_TRAILINGSPACE(mb));
    710 			memcpy(bpos, verf_str, i);
    711 			mb->m_len += i;
    712 			verf_str += i;
    713 			bpos += i;
    714 			siz -= i;
    715 		}
    716 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    717 			for (i = 0; i < siz; i++)
    718 				*bpos++ = '\0';
    719 			mb->m_len += siz;
    720 		}
    721 	} else {
    722 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    723 		*tl = 0;
    724 	}
    725 	mb->m_next = mrest;
    726 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    727 	m_reset_rcvif(mreq);
    728 	*mbp = mb;
    729 	return (mreq);
    730 }
    731 
    732 /*
    733  * copies mbuf chain to the uio scatter/gather list
    734  */
    735 int
    736 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
    737 {
    738 	char *mbufcp, *uiocp;
    739 	int xfer, left, len;
    740 	struct mbuf *mp;
    741 	long uiosiz, rem;
    742 	int error = 0;
    743 
    744 	mp = *mrep;
    745 	mbufcp = *dpos;
    746 	len = mtod(mp, char *) + mp->m_len - mbufcp;
    747 	rem = nfsm_rndup(siz)-siz;
    748 	while (siz > 0) {
    749 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    750 			return (EFBIG);
    751 		left = uiop->uio_iov->iov_len;
    752 		uiocp = uiop->uio_iov->iov_base;
    753 		if (left > siz)
    754 			left = siz;
    755 		uiosiz = left;
    756 		while (left > 0) {
    757 			while (len == 0) {
    758 				mp = mp->m_next;
    759 				if (mp == NULL)
    760 					return (EBADRPC);
    761 				mbufcp = mtod(mp, void *);
    762 				len = mp->m_len;
    763 			}
    764 			xfer = (left > len) ? len : left;
    765 			error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
    766 			    uiocp, xfer);
    767 			if (error) {
    768 				return error;
    769 			}
    770 			left -= xfer;
    771 			len -= xfer;
    772 			mbufcp += xfer;
    773 			uiocp += xfer;
    774 			uiop->uio_offset += xfer;
    775 			uiop->uio_resid -= xfer;
    776 		}
    777 		if (uiop->uio_iov->iov_len <= siz) {
    778 			uiop->uio_iovcnt--;
    779 			uiop->uio_iov++;
    780 		} else {
    781 			uiop->uio_iov->iov_base =
    782 			    (char *)uiop->uio_iov->iov_base + uiosiz;
    783 			uiop->uio_iov->iov_len -= uiosiz;
    784 		}
    785 		siz -= uiosiz;
    786 	}
    787 	*dpos = mbufcp;
    788 	*mrep = mp;
    789 	if (rem > 0) {
    790 		if (len < rem)
    791 			error = nfs_adv(mrep, dpos, rem, len);
    792 		else
    793 			*dpos += rem;
    794 	}
    795 	return (error);
    796 }
    797 
    798 /*
    799  * copies a uio scatter/gather list to an mbuf chain.
    800  * NOTE: can ony handle iovcnt == 1
    801  */
    802 int
    803 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
    804 {
    805 	char *uiocp;
    806 	struct mbuf *mp, *mp2;
    807 	int xfer, left, mlen;
    808 	int uiosiz, clflg, rem;
    809 	char *cp;
    810 	int error;
    811 
    812 #ifdef DIAGNOSTIC
    813 	if (uiop->uio_iovcnt != 1)
    814 		panic("nfsm_uiotombuf: iovcnt != 1");
    815 #endif
    816 
    817 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    818 		clflg = 1;
    819 	else
    820 		clflg = 0;
    821 	rem = nfsm_rndup(siz)-siz;
    822 	mp = mp2 = *mq;
    823 	while (siz > 0) {
    824 		left = uiop->uio_iov->iov_len;
    825 		uiocp = uiop->uio_iov->iov_base;
    826 		if (left > siz)
    827 			left = siz;
    828 		uiosiz = left;
    829 		while (left > 0) {
    830 			mlen = M_TRAILINGSPACE(mp);
    831 			if (mlen == 0) {
    832 				mp = m_get(M_WAIT, MT_DATA);
    833 				MCLAIM(mp, &nfs_mowner);
    834 				if (clflg)
    835 					m_clget(mp, M_WAIT);
    836 				mp->m_len = 0;
    837 				mp2->m_next = mp;
    838 				mp2 = mp;
    839 				mlen = M_TRAILINGSPACE(mp);
    840 			}
    841 			xfer = (left > mlen) ? mlen : left;
    842 			cp = mtod(mp, char *) + mp->m_len;
    843 			error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
    844 			    xfer);
    845 			if (error) {
    846 				/* XXX */
    847 			}
    848 			mp->m_len += xfer;
    849 			left -= xfer;
    850 			uiocp += xfer;
    851 			uiop->uio_offset += xfer;
    852 			uiop->uio_resid -= xfer;
    853 		}
    854 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
    855 		    uiosiz;
    856 		uiop->uio_iov->iov_len -= uiosiz;
    857 		siz -= uiosiz;
    858 	}
    859 	if (rem > 0) {
    860 		if (rem > M_TRAILINGSPACE(mp)) {
    861 			mp = m_get(M_WAIT, MT_DATA);
    862 			MCLAIM(mp, &nfs_mowner);
    863 			mp->m_len = 0;
    864 			mp2->m_next = mp;
    865 		}
    866 		cp = mtod(mp, char *) + mp->m_len;
    867 		for (left = 0; left < rem; left++)
    868 			*cp++ = '\0';
    869 		mp->m_len += rem;
    870 		*bpos = cp;
    871 	} else
    872 		*bpos = mtod(mp, char *) + mp->m_len;
    873 	*mq = mp;
    874 	return (0);
    875 }
    876 
    877 /*
    878  * Get at least "siz" bytes of correctly aligned data.
    879  * When called the mbuf pointers are not necessarily correct,
    880  * dsosp points to what ought to be in m_data and left contains
    881  * what ought to be in m_len.
    882  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    883  * cases. (The macros use the vars. dpos and dpos2)
    884  */
    885 int
    886 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
    887 {
    888 	struct mbuf *m1, *m2;
    889 	struct mbuf *havebuf = NULL;
    890 	char *src = *dposp;
    891 	char *dst;
    892 	int len;
    893 
    894 #ifdef DEBUG
    895 	if (left < 0)
    896 		panic("nfsm_disct: left < 0");
    897 #endif
    898 	m1 = *mdp;
    899 	/*
    900 	 * Skip through the mbuf chain looking for an mbuf with
    901 	 * some data. If the first mbuf found has enough data
    902 	 * and it is correctly aligned return it.
    903 	 */
    904 	while (left == 0) {
    905 		havebuf = m1;
    906 		*mdp = m1 = m1->m_next;
    907 		if (m1 == NULL)
    908 			return (EBADRPC);
    909 		src = mtod(m1, void *);
    910 		left = m1->m_len;
    911 		/*
    912 		 * If we start a new mbuf and it is big enough
    913 		 * and correctly aligned just return it, don't
    914 		 * do any pull up.
    915 		 */
    916 		if (left >= siz && nfsm_aligned(src)) {
    917 			*cp2 = src;
    918 			*dposp = src + siz;
    919 			return (0);
    920 		}
    921 	}
    922 	if ((m1->m_flags & M_EXT) != 0) {
    923 		if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
    924 		    nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
    925 			/*
    926 			 * If the first mbuf with data has external data
    927 			 * and there is a previous mbuf with some trailing
    928 			 * space, use it to move the data into.
    929 			 */
    930 			m2 = m1;
    931 			*mdp = m1 = havebuf;
    932 			*cp2 = mtod(m1, char *) + m1->m_len;
    933 		} else if (havebuf) {
    934 			/*
    935 			 * If the first mbuf has a external data
    936 			 * and there is no previous empty mbuf
    937 			 * allocate a new mbuf and move the external
    938 			 * data to the new mbuf. Also make the first
    939 			 * mbuf look empty.
    940 			 */
    941 			m2 = m1;
    942 			*mdp = m1 = m_get(M_WAIT, MT_DATA);
    943 			MCLAIM(m1, m2->m_owner);
    944 			if ((m2->m_flags & M_PKTHDR) != 0) {
    945 				M_MOVE_PKTHDR(m1, m2);
    946 			}
    947 			if (havebuf) {
    948 				havebuf->m_next = m1;
    949 			}
    950 			m1->m_next = m2;
    951 			MRESETDATA(m1);
    952 			m1->m_len = 0;
    953 			m2->m_data = src;
    954 			m2->m_len = left;
    955 			*cp2 = mtod(m1, char *);
    956 		} else {
    957 			struct mbuf **nextp = &m1->m_next;
    958 
    959 			m1->m_len -= left;
    960 			do {
    961 				m2 = m_get(M_WAIT, MT_DATA);
    962 				MCLAIM(m2, m1->m_owner);
    963 				if (left >= MINCLSIZE) {
    964 					MCLGET(m2, M_WAIT);
    965 				}
    966 				m2->m_next = *nextp;
    967 				*nextp = m2;
    968 				nextp = &m2->m_next;
    969 				len = (m2->m_flags & M_EXT) != 0 ?
    970 				    MCLBYTES : MLEN;
    971 				if (len > left) {
    972 					len = left;
    973 				}
    974 				memcpy(mtod(m2, char *), src, len);
    975 				m2->m_len = len;
    976 				src += len;
    977 				left -= len;
    978 			} while (left > 0);
    979 			*mdp = m1 = m1->m_next;
    980 			m2 = m1->m_next;
    981 			*cp2 = mtod(m1, char *);
    982 		}
    983 	} else {
    984 		/*
    985 		 * If the first mbuf has no external data
    986 		 * move the data to the front of the mbuf.
    987 		 */
    988 		MRESETDATA(m1);
    989 		dst = mtod(m1, char *);
    990 		if (dst != src) {
    991 			memmove(dst, src, left);
    992 		}
    993 		m1->m_len = left;
    994 		m2 = m1->m_next;
    995 		*cp2 = m1->m_data;
    996 	}
    997 	*dposp = *cp2 + siz;
    998 	/*
    999 	 * Loop through mbufs pulling data up into first mbuf until
   1000 	 * the first mbuf is full or there is no more data to
   1001 	 * pullup.
   1002 	 */
   1003 	dst = mtod(m1, char *) + m1->m_len;
   1004 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
   1005 		if ((len = min(len, m2->m_len)) != 0) {
   1006 			memcpy(dst, mtod(m2, char *), len);
   1007 		}
   1008 		m1->m_len += len;
   1009 		dst += len;
   1010 		m2->m_data += len;
   1011 		m2->m_len -= len;
   1012 		m2 = m2->m_next;
   1013 	}
   1014 	if (m1->m_len < siz)
   1015 		return (EBADRPC);
   1016 	return (0);
   1017 }
   1018 
   1019 /*
   1020  * Advance the position in the mbuf chain.
   1021  */
   1022 int
   1023 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
   1024 {
   1025 	struct mbuf *m;
   1026 	int s;
   1027 
   1028 	m = *mdp;
   1029 	s = left;
   1030 	while (s < offs) {
   1031 		offs -= s;
   1032 		m = m->m_next;
   1033 		if (m == NULL)
   1034 			return (EBADRPC);
   1035 		s = m->m_len;
   1036 	}
   1037 	*mdp = m;
   1038 	*dposp = mtod(m, char *) + offs;
   1039 	return (0);
   1040 }
   1041 
   1042 /*
   1043  * Copy a string into mbufs for the hard cases...
   1044  */
   1045 int
   1046 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
   1047 {
   1048 	struct mbuf *m1 = NULL, *m2;
   1049 	long left, xfer, len, tlen;
   1050 	u_int32_t *tl;
   1051 	int putsize;
   1052 
   1053 	putsize = 1;
   1054 	m2 = *mb;
   1055 	left = M_TRAILINGSPACE(m2);
   1056 	if (left > 0) {
   1057 		tl = ((u_int32_t *)(*bpos));
   1058 		*tl++ = txdr_unsigned(siz);
   1059 		putsize = 0;
   1060 		left -= NFSX_UNSIGNED;
   1061 		m2->m_len += NFSX_UNSIGNED;
   1062 		if (left > 0) {
   1063 			memcpy((void *) tl, cp, left);
   1064 			siz -= left;
   1065 			cp += left;
   1066 			m2->m_len += left;
   1067 			left = 0;
   1068 		}
   1069 	}
   1070 	/* Loop around adding mbufs */
   1071 	while (siz > 0) {
   1072 		m1 = m_get(M_WAIT, MT_DATA);
   1073 		MCLAIM(m1, &nfs_mowner);
   1074 		if (siz > MLEN)
   1075 			m_clget(m1, M_WAIT);
   1076 		m1->m_len = NFSMSIZ(m1);
   1077 		m2->m_next = m1;
   1078 		m2 = m1;
   1079 		tl = mtod(m1, u_int32_t *);
   1080 		tlen = 0;
   1081 		if (putsize) {
   1082 			*tl++ = txdr_unsigned(siz);
   1083 			m1->m_len -= NFSX_UNSIGNED;
   1084 			tlen = NFSX_UNSIGNED;
   1085 			putsize = 0;
   1086 		}
   1087 		if (siz < m1->m_len) {
   1088 			len = nfsm_rndup(siz);
   1089 			xfer = siz;
   1090 			if (xfer < len)
   1091 				*(tl+(xfer>>2)) = 0;
   1092 		} else {
   1093 			xfer = len = m1->m_len;
   1094 		}
   1095 		memcpy((void *) tl, cp, xfer);
   1096 		m1->m_len = len+tlen;
   1097 		siz -= xfer;
   1098 		cp += xfer;
   1099 	}
   1100 	*mb = m1;
   1101 	*bpos = mtod(m1, char *) + m1->m_len;
   1102 	return (0);
   1103 }
   1104 
   1105 /*
   1106  * Directory caching routines. They work as follows:
   1107  * - a cache is maintained per VDIR nfsnode.
   1108  * - for each offset cookie that is exported to userspace, and can
   1109  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1110  *   information in the cache.
   1111  * - cached are:
   1112  *   - cookie itself
   1113  *   - blocknumber (essentially just a search key in the buffer cache)
   1114  *   - entry number in block.
   1115  *   - offset cookie of block in which this entry is stored
   1116  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1117  * - entries are looked up in a hash table
   1118  * - also maintained is an LRU list of entries, used to determine
   1119  *   which ones to delete if the cache grows too large.
   1120  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1121  *   the cache also functions as a translation table
   1122  * - in the translation case, invalidating the cache does not mean
   1123  *   flushing it, but just marking entries as invalid, except for
   1124  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1125  *   still be able to use the cache as a translation table.
   1126  * - 32 bit cookies are uniquely created by combining the hash table
   1127  *   entry value, and one generation count per hash table entry,
   1128  *   incremented each time an entry is appended to the chain.
   1129  * - the cache is invalidated each time a direcory is modified
   1130  * - sanity checks are also done; if an entry in a block turns
   1131  *   out not to have a matching cookie, the cache is invalidated
   1132  *   and a new block starting from the wanted offset is fetched from
   1133  *   the server.
   1134  * - directory entries as read from the server are extended to contain
   1135  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1136  *   the cache and exporting them to userspace through the cookie
   1137  *   argument to VOP_READDIR.
   1138  */
   1139 
   1140 u_long
   1141 nfs_dirhash(off_t off)
   1142 {
   1143 	int i;
   1144 	char *cp = (char *)&off;
   1145 	u_long sum = 0L;
   1146 
   1147 	for (i = 0 ; i < sizeof (off); i++)
   1148 		sum += *cp++;
   1149 
   1150 	return sum;
   1151 }
   1152 
   1153 #define	_NFSDC_MTX(np)		(NFSTOV(np)->v_interlock)
   1154 #define	NFSDC_LOCK(np)		mutex_enter(_NFSDC_MTX(np))
   1155 #define	NFSDC_UNLOCK(np)	mutex_exit(_NFSDC_MTX(np))
   1156 #define	NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
   1157 
   1158 void
   1159 nfs_initdircache(struct vnode *vp)
   1160 {
   1161 	struct nfsnode *np = VTONFS(vp);
   1162 	struct nfsdirhashhead *dircache;
   1163 
   1164 	dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
   1165 	    &nfsdirhashmask);
   1166 
   1167 	NFSDC_LOCK(np);
   1168 	if (np->n_dircache == NULL) {
   1169 		np->n_dircachesize = 0;
   1170 		np->n_dircache = dircache;
   1171 		dircache = NULL;
   1172 		TAILQ_INIT(&np->n_dirchain);
   1173 	}
   1174 	NFSDC_UNLOCK(np);
   1175 	if (dircache)
   1176 		hashdone(dircache, HASH_LIST, nfsdirhashmask);
   1177 }
   1178 
   1179 void
   1180 nfs_initdirxlatecookie(struct vnode *vp)
   1181 {
   1182 	struct nfsnode *np = VTONFS(vp);
   1183 	unsigned *dirgens;
   1184 
   1185 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
   1186 
   1187 	dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
   1188 	NFSDC_LOCK(np);
   1189 	if (np->n_dirgens == NULL) {
   1190 		np->n_dirgens = dirgens;
   1191 		dirgens = NULL;
   1192 	}
   1193 	NFSDC_UNLOCK(np);
   1194 	if (dirgens)
   1195 		kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
   1196 }
   1197 
   1198 static const struct nfsdircache dzero;
   1199 
   1200 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
   1201 static void nfs_putdircache_unlocked(struct nfsnode *,
   1202     struct nfsdircache *);
   1203 
   1204 static void
   1205 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
   1206 {
   1207 
   1208 	NFSDC_ASSERT_LOCKED(np);
   1209 	KASSERT(ndp != &dzero);
   1210 
   1211 	if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
   1212 		return;
   1213 
   1214 	TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1215 	LIST_REMOVE(ndp, dc_hash);
   1216 	LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
   1217 
   1218 	nfs_putdircache_unlocked(np, ndp);
   1219 }
   1220 
   1221 void
   1222 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
   1223 {
   1224 	int ref;
   1225 
   1226 	if (ndp == &dzero)
   1227 		return;
   1228 
   1229 	KASSERT(ndp->dc_refcnt > 0);
   1230 	NFSDC_LOCK(np);
   1231 	ref = --ndp->dc_refcnt;
   1232 	NFSDC_UNLOCK(np);
   1233 
   1234 	if (ref == 0)
   1235 		kmem_free(ndp, sizeof(*ndp));
   1236 }
   1237 
   1238 static void
   1239 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
   1240 {
   1241 	int ref;
   1242 
   1243 	NFSDC_ASSERT_LOCKED(np);
   1244 
   1245 	if (ndp == &dzero)
   1246 		return;
   1247 
   1248 	KASSERT(ndp->dc_refcnt > 0);
   1249 	ref = --ndp->dc_refcnt;
   1250 	if (ref == 0)
   1251 		kmem_free(ndp, sizeof(*ndp));
   1252 }
   1253 
   1254 struct nfsdircache *
   1255 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
   1256 {
   1257 	struct nfsdirhashhead *ndhp;
   1258 	struct nfsdircache *ndp = NULL;
   1259 	struct nfsnode *np = VTONFS(vp);
   1260 	unsigned ent;
   1261 
   1262 	/*
   1263 	 * Zero is always a valid cookie.
   1264 	 */
   1265 	if (off == 0)
   1266 		/* XXXUNCONST */
   1267 		return (struct nfsdircache *)__UNCONST(&dzero);
   1268 
   1269 	if (!np->n_dircache)
   1270 		return NULL;
   1271 
   1272 	/*
   1273 	 * We use a 32bit cookie as search key, directly reconstruct
   1274 	 * the hashentry. Else use the hashfunction.
   1275 	 */
   1276 	if (do32) {
   1277 		ent = (u_int32_t)off >> 24;
   1278 		if (ent >= NFS_DIRHASHSIZ)
   1279 			return NULL;
   1280 		ndhp = &np->n_dircache[ent];
   1281 	} else {
   1282 		ndhp = NFSDIRHASH(np, off);
   1283 	}
   1284 
   1285 	if (hashent)
   1286 		*hashent = (int)(ndhp - np->n_dircache);
   1287 
   1288 	NFSDC_LOCK(np);
   1289 	if (do32) {
   1290 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1291 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1292 				/*
   1293 				 * An invalidated entry will become the
   1294 				 * start of a new block fetched from
   1295 				 * the server.
   1296 				 */
   1297 				if (ndp->dc_flags & NFSDC_INVALID) {
   1298 					ndp->dc_blkcookie = ndp->dc_cookie;
   1299 					ndp->dc_entry = 0;
   1300 					ndp->dc_flags &= ~NFSDC_INVALID;
   1301 				}
   1302 				break;
   1303 			}
   1304 		}
   1305 	} else {
   1306 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1307 			if (ndp->dc_cookie == off)
   1308 				break;
   1309 		}
   1310 	}
   1311 	if (ndp != NULL)
   1312 		ndp->dc_refcnt++;
   1313 	NFSDC_UNLOCK(np);
   1314 	return ndp;
   1315 }
   1316 
   1317 
   1318 struct nfsdircache *
   1319 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
   1320     daddr_t blkno)
   1321 {
   1322 	struct nfsnode *np = VTONFS(vp);
   1323 	struct nfsdirhashhead *ndhp;
   1324 	struct nfsdircache *ndp = NULL;
   1325 	struct nfsdircache *newndp = NULL;
   1326 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1327 	int hashent = 0, gen, overwrite;	/* XXX: GCC */
   1328 
   1329 	/*
   1330 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1331 	 * cookie 0 for the '.' entry, making this necessary. This
   1332 	 * isn't so bad, as 0 is a special case anyway.
   1333 	 */
   1334 	if (off == 0)
   1335 		/* XXXUNCONST */
   1336 		return (struct nfsdircache *)__UNCONST(&dzero);
   1337 
   1338 	if (!np->n_dircache)
   1339 		/*
   1340 		 * XXX would like to do this in nfs_nget but vtype
   1341 		 * isn't known at that time.
   1342 		 */
   1343 		nfs_initdircache(vp);
   1344 
   1345 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
   1346 		nfs_initdirxlatecookie(vp);
   1347 
   1348 retry:
   1349 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1350 
   1351 	NFSDC_LOCK(np);
   1352 	if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
   1353 		/*
   1354 		 * Overwriting an old entry. Check if it's the same.
   1355 		 * If so, just return. If not, remove the old entry.
   1356 		 */
   1357 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1358 			goto done;
   1359 		nfs_unlinkdircache(np, ndp);
   1360 		nfs_putdircache_unlocked(np, ndp);
   1361 		ndp = NULL;
   1362 	}
   1363 
   1364 	ndhp = &np->n_dircache[hashent];
   1365 
   1366 	if (!ndp) {
   1367 		if (newndp == NULL) {
   1368 			NFSDC_UNLOCK(np);
   1369 			newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
   1370 			newndp->dc_refcnt = 1;
   1371 			LIST_NEXT(newndp, dc_hash) = (void *)-1;
   1372 			goto retry;
   1373 		}
   1374 		ndp = newndp;
   1375 		newndp = NULL;
   1376 		overwrite = 0;
   1377 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1378 			/*
   1379 			 * We're allocating a new entry, so bump the
   1380 			 * generation number.
   1381 			 */
   1382 			KASSERT(np->n_dirgens);
   1383 			gen = ++np->n_dirgens[hashent];
   1384 			if (gen == 0) {
   1385 				np->n_dirgens[hashent]++;
   1386 				gen++;
   1387 			}
   1388 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1389 		}
   1390 	} else
   1391 		overwrite = 1;
   1392 
   1393 	ndp->dc_cookie = off;
   1394 	ndp->dc_blkcookie = blkoff;
   1395 	ndp->dc_entry = en;
   1396 	ndp->dc_flags = 0;
   1397 
   1398 	if (overwrite)
   1399 		goto done;
   1400 
   1401 	/*
   1402 	 * If the maximum directory cookie cache size has been reached
   1403 	 * for this node, take one off the front. The idea is that
   1404 	 * directories are typically read front-to-back once, so that
   1405 	 * the oldest entries can be thrown away without much performance
   1406 	 * loss.
   1407 	 */
   1408 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1409 		nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
   1410 	} else
   1411 		np->n_dircachesize++;
   1412 
   1413 	KASSERT(ndp->dc_refcnt == 1);
   1414 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1415 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1416 	ndp->dc_refcnt++;
   1417 done:
   1418 	KASSERT(ndp->dc_refcnt > 0);
   1419 	NFSDC_UNLOCK(np);
   1420 	if (newndp)
   1421 		nfs_putdircache(np, newndp);
   1422 	return ndp;
   1423 }
   1424 
   1425 void
   1426 nfs_invaldircache(struct vnode *vp, int flags)
   1427 {
   1428 	struct nfsnode *np = VTONFS(vp);
   1429 	struct nfsdircache *ndp = NULL;
   1430 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1431 	const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
   1432 
   1433 #ifdef DIAGNOSTIC
   1434 	if (vp->v_type != VDIR)
   1435 		panic("nfs: invaldircache: not dir");
   1436 #endif
   1437 
   1438 	if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
   1439 		np->n_flag &= ~NEOFVALID;
   1440 
   1441 	if (!np->n_dircache)
   1442 		return;
   1443 
   1444 	NFSDC_LOCK(np);
   1445 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1446 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
   1447 			KASSERT(!forcefree || ndp->dc_refcnt == 1);
   1448 			nfs_unlinkdircache(np, ndp);
   1449 		}
   1450 		np->n_dircachesize = 0;
   1451 		if (forcefree && np->n_dirgens) {
   1452 			kmem_free(np->n_dirgens,
   1453 			    NFS_DIRHASHSIZ * sizeof(unsigned));
   1454 			np->n_dirgens = NULL;
   1455 		}
   1456 	} else {
   1457 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
   1458 			ndp->dc_flags |= NFSDC_INVALID;
   1459 	}
   1460 
   1461 	NFSDC_UNLOCK(np);
   1462 }
   1463 
   1464 /*
   1465  * Called once before VFS init to initialize shared and
   1466  * server-specific data structures.
   1467  */
   1468 static int
   1469 nfs_init0(void)
   1470 {
   1471 
   1472 	nfsrtt.pos = 0;
   1473 	rpc_vers = txdr_unsigned(RPC_VER2);
   1474 	rpc_call = txdr_unsigned(RPC_CALL);
   1475 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1476 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1477 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1478 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1479 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1480 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1481 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1482 	nfs_prog = txdr_unsigned(NFS_PROG);
   1483 	nfs_true = txdr_unsigned(true);
   1484 	nfs_false = txdr_unsigned(false);
   1485 	nfs_xdrneg1 = txdr_unsigned(-1);
   1486 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1487 	if (nfs_ticks < 1)
   1488 		nfs_ticks = 1;
   1489 	nfsdreq_init();
   1490 
   1491 	/*
   1492 	 * Initialize reply list and start timer
   1493 	 */
   1494 	TAILQ_INIT(&nfs_reqq);
   1495 	mutex_init(&nfs_reqq_lock, MUTEX_DEFAULT, IPL_NONE);
   1496 	nfs_timer_init();
   1497 	MOWNER_ATTACH(&nfs_mowner);
   1498 
   1499 	return 0;
   1500 }
   1501 
   1502 static volatile uint32_t nfs_mutex;
   1503 static uint32_t nfs_refcount;
   1504 
   1505 #define nfs_p()	while (atomic_cas_32(&nfs_mutex, 0, 1) == 0) continue;
   1506 #define nfs_v()	while (atomic_cas_32(&nfs_mutex, 1, 0) == 1) continue;
   1507 
   1508 /*
   1509  * This is disgusting, but it must support both modular and monolothic
   1510  * configurations, plus the code is shared between server and client.
   1511  * For monolithic builds NFSSERVER may not imply NFS. Unfortunately we
   1512  * can't use regular mutexes here that would require static initialization
   1513  * and we can get initialized from multiple places, so we improvise.
   1514  *
   1515  * Yuck.
   1516  */
   1517 void
   1518 nfs_init(void)
   1519 {
   1520 
   1521 	nfs_p();
   1522 	if (nfs_refcount++ == 0)
   1523 		nfs_init0();
   1524 	nfs_v();
   1525 }
   1526 
   1527 void
   1528 nfs_fini(void)
   1529 {
   1530 
   1531 	nfs_p();
   1532 	if (--nfs_refcount == 0) {
   1533 		MOWNER_DETACH(&nfs_mowner);
   1534 		nfs_timer_fini();
   1535 		mutex_destroy(&nfs_reqq_lock);
   1536 		nfsdreq_fini();
   1537 	}
   1538 	nfs_v();
   1539 }
   1540 
   1541 /*
   1542  * A fiddled version of m_adj() that ensures null fill to a 32-bit
   1543  * boundary and only trims off the back end
   1544  *
   1545  * 1. trim off 'len' bytes as m_adj(mp, -len).
   1546  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
   1547  */
   1548 void
   1549 nfs_zeropad(struct mbuf *mp, int len, int nul)
   1550 {
   1551 	struct mbuf *m;
   1552 	int count;
   1553 
   1554 	/*
   1555 	 * Trim from tail.  Scan the mbuf chain,
   1556 	 * calculating its length and finding the last mbuf.
   1557 	 * If the adjustment only affects this mbuf, then just
   1558 	 * adjust and return.  Otherwise, rescan and truncate
   1559 	 * after the remaining size.
   1560 	 */
   1561 	count = 0;
   1562 	m = mp;
   1563 	for (;;) {
   1564 		count += m->m_len;
   1565 		if (m->m_next == NULL)
   1566 			break;
   1567 		m = m->m_next;
   1568 	}
   1569 
   1570 	KDASSERT(count >= len);
   1571 
   1572 	if (m->m_len >= len) {
   1573 		m->m_len -= len;
   1574 	} else {
   1575 		count -= len;
   1576 		/*
   1577 		 * Correct length for chain is "count".
   1578 		 * Find the mbuf with last data, adjust its length,
   1579 		 * and toss data from remaining mbufs on chain.
   1580 		 */
   1581 		for (m = mp; m; m = m->m_next) {
   1582 			if (m->m_len >= count) {
   1583 				m->m_len = count;
   1584 				break;
   1585 			}
   1586 			count -= m->m_len;
   1587 		}
   1588 		KASSERT(m && m->m_next);
   1589 		m_freem(m->m_next);
   1590 		m->m_next = NULL;
   1591 	}
   1592 
   1593 	KDASSERT(m->m_next == NULL);
   1594 
   1595 	/*
   1596 	 * zero-padding.
   1597 	 */
   1598 	if (nul > 0) {
   1599 		char *cp;
   1600 		int i;
   1601 
   1602 		if (M_READONLY(m) || M_TRAILINGSPACE(m) < nul) {
   1603 			struct mbuf *n;
   1604 
   1605 			KDASSERT(MLEN >= nul);
   1606 			n = m_get(M_WAIT, MT_DATA);
   1607 			MCLAIM(n, &nfs_mowner);
   1608 			n->m_len = nul;
   1609 			n->m_next = NULL;
   1610 			m->m_next = n;
   1611 			cp = mtod(n, void *);
   1612 		} else {
   1613 			cp = mtod(m, char *) + m->m_len;
   1614 			m->m_len += nul;
   1615 		}
   1616 		for (i = 0; i < nul; i++)
   1617 			*cp++ = '\0';
   1618 	}
   1619 	return;
   1620 }
   1621 
   1622 /*
   1623  * Make these functions instead of macros, so that the kernel text size
   1624  * doesn't get too big...
   1625  */
   1626 void
   1627 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
   1628 {
   1629 	struct mbuf *mb = *mbp;
   1630 	char *bpos = *bposp;
   1631 	u_int32_t *tl;
   1632 
   1633 	if (before_ret) {
   1634 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   1635 		*tl = nfs_false;
   1636 	} else {
   1637 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   1638 		*tl++ = nfs_true;
   1639 		txdr_hyper(before_vap->va_size, tl);
   1640 		tl += 2;
   1641 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   1642 		tl += 2;
   1643 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   1644 	}
   1645 	*bposp = bpos;
   1646 	*mbp = mb;
   1647 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   1648 }
   1649 
   1650 void
   1651 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
   1652 {
   1653 	struct mbuf *mb = *mbp;
   1654 	char *bpos = *bposp;
   1655 	u_int32_t *tl;
   1656 	struct nfs_fattr *fp;
   1657 
   1658 	if (after_ret) {
   1659 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   1660 		*tl = nfs_false;
   1661 	} else {
   1662 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   1663 		*tl++ = nfs_true;
   1664 		fp = (struct nfs_fattr *)tl;
   1665 		nfsm_srvfattr(nfsd, after_vap, fp);
   1666 	}
   1667 	*mbp = mb;
   1668 	*bposp = bpos;
   1669 }
   1670 
   1671 void
   1672 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
   1673 {
   1674 
   1675 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   1676 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   1677 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   1678 	if (nfsd->nd_flag & ND_NFSV3) {
   1679 		fp->fa_type = vtonfsv3_type(vap->va_type);
   1680 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   1681 		txdr_hyper(vap->va_size, &fp->fa3_size);
   1682 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   1683 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   1684 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   1685 		fp->fa3_fsid.nfsuquad[0] = 0;
   1686 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   1687 		txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
   1688 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   1689 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   1690 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   1691 	} else {
   1692 		fp->fa_type = vtonfsv2_type(vap->va_type);
   1693 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   1694 		fp->fa2_size = txdr_unsigned(vap->va_size);
   1695 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
   1696 		if (vap->va_type == VFIFO)
   1697 			fp->fa2_rdev = 0xffffffff;
   1698 		else
   1699 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   1700 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   1701 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   1702 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   1703 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   1704 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   1705 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   1706 	}
   1707 }
   1708 
   1709 /*
   1710  * This function compares two net addresses by family and returns true
   1711  * if they are the same host.
   1712  * If there is any doubt, return false.
   1713  * The AF_INET family is handled as a special case so that address mbufs
   1714  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   1715  */
   1716 int
   1717 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
   1718 {
   1719 	struct sockaddr_in *inetaddr;
   1720 
   1721 	switch (family) {
   1722 	case AF_INET:
   1723 		inetaddr = mtod(nam, struct sockaddr_in *);
   1724 		if (inetaddr->sin_family == AF_INET &&
   1725 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   1726 			return (1);
   1727 		break;
   1728 	case AF_INET6:
   1729 	    {
   1730 		struct sockaddr_in6 *sin6_1, *sin6_2;
   1731 
   1732 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
   1733 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
   1734 		if (sin6_1->sin6_family == AF_INET6 &&
   1735 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
   1736 			return 1;
   1737 	    }
   1738 	default:
   1739 		break;
   1740 	};
   1741 	return (0);
   1742 }
   1743 
   1744 struct nfs_clearcommit_ctx {
   1745 	struct mount *mp;
   1746 };
   1747 
   1748 static bool
   1749 nfs_clearcommit_selector(void *cl, struct vnode *vp)
   1750 {
   1751 	struct nfs_clearcommit_ctx *c = cl;
   1752 	struct nfsnode *np;
   1753 	struct vm_page *pg;
   1754 
   1755 	KASSERT(mutex_owned(vp->v_interlock));
   1756 
   1757 	np = VTONFS(vp);
   1758 	if (vp->v_type != VREG || vp->v_mount != c->mp || np == NULL)
   1759 		return false;
   1760 	np->n_pushlo = np->n_pushhi = np->n_pushedlo =
   1761 	    np->n_pushedhi = 0;
   1762 	np->n_commitflags &=
   1763 	    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
   1764 	TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
   1765 		pg->flags &= ~PG_NEEDCOMMIT;
   1766 	}
   1767 	return false;
   1768 }
   1769 
   1770 /*
   1771  * The write verifier has changed (probably due to a server reboot), so all
   1772  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
   1773  * as dirty or are being written out just now, all this takes is clearing
   1774  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
   1775  * the mount point.
   1776  */
   1777 void
   1778 nfs_clearcommit(struct mount *mp)
   1779 {
   1780 	struct vnode *vp __diagused;
   1781 	struct vnode_iterator *marker;
   1782 	struct nfsmount *nmp = VFSTONFS(mp);
   1783 	struct nfs_clearcommit_ctx ctx;
   1784 
   1785 	rw_enter(&nmp->nm_writeverflock, RW_WRITER);
   1786 	vfs_vnode_iterator_init(mp, &marker);
   1787 	ctx.mp = mp;
   1788 	vp = vfs_vnode_iterator_next(marker, nfs_clearcommit_selector, &ctx);
   1789 	KASSERT(vp == NULL);
   1790 	vfs_vnode_iterator_destroy(marker);
   1791 	mutex_enter(&nmp->nm_lock);
   1792 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
   1793 	mutex_exit(&nmp->nm_lock);
   1794 	rw_exit(&nmp->nm_writeverflock);
   1795 }
   1796 
   1797 void
   1798 nfs_merge_commit_ranges(struct vnode *vp)
   1799 {
   1800 	struct nfsnode *np = VTONFS(vp);
   1801 
   1802 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
   1803 
   1804 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   1805 		np->n_pushedlo = np->n_pushlo;
   1806 		np->n_pushedhi = np->n_pushhi;
   1807 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   1808 	} else {
   1809 		if (np->n_pushlo < np->n_pushedlo)
   1810 			np->n_pushedlo = np->n_pushlo;
   1811 		if (np->n_pushhi > np->n_pushedhi)
   1812 			np->n_pushedhi = np->n_pushhi;
   1813 	}
   1814 
   1815 	np->n_pushlo = np->n_pushhi = 0;
   1816 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
   1817 
   1818 #ifdef NFS_DEBUG_COMMIT
   1819 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   1820 	    (unsigned)np->n_pushedhi);
   1821 #endif
   1822 }
   1823 
   1824 int
   1825 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
   1826 {
   1827 	struct nfsnode *np = VTONFS(vp);
   1828 	off_t lo, hi;
   1829 
   1830 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   1831 		return 0;
   1832 	lo = off;
   1833 	hi = lo + len;
   1834 
   1835 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
   1836 }
   1837 
   1838 int
   1839 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   1840 {
   1841 	struct nfsnode *np = VTONFS(vp);
   1842 	off_t lo, hi;
   1843 
   1844 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   1845 		return 0;
   1846 	lo = off;
   1847 	hi = lo + len;
   1848 
   1849 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
   1850 }
   1851 
   1852 void
   1853 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
   1854 {
   1855 	struct nfsnode *np = VTONFS(vp);
   1856 	off_t lo, hi;
   1857 
   1858 	lo = off;
   1859 	hi = lo + len;
   1860 
   1861 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   1862 		np->n_pushedlo = lo;
   1863 		np->n_pushedhi = hi;
   1864 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   1865 	} else {
   1866 		if (hi > np->n_pushedhi)
   1867 			np->n_pushedhi = hi;
   1868 		if (lo < np->n_pushedlo)
   1869 			np->n_pushedlo = lo;
   1870 	}
   1871 #ifdef NFS_DEBUG_COMMIT
   1872 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   1873 	    (unsigned)np->n_pushedhi);
   1874 #endif
   1875 }
   1876 
   1877 void
   1878 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
   1879 {
   1880 	struct nfsnode *np = VTONFS(vp);
   1881 	off_t lo, hi;
   1882 
   1883 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   1884 		return;
   1885 
   1886 	lo = off;
   1887 	hi = lo + len;
   1888 
   1889 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
   1890 		return;
   1891 	if (lo <= np->n_pushedlo)
   1892 		np->n_pushedlo = hi;
   1893 	else if (hi >= np->n_pushedhi)
   1894 		np->n_pushedhi = lo;
   1895 	else {
   1896 		/*
   1897 		 * XXX There's only one range. If the deleted range
   1898 		 * is in the middle, pick the largest of the
   1899 		 * contiguous ranges that it leaves.
   1900 		 */
   1901 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
   1902 			np->n_pushedhi = lo;
   1903 		else
   1904 			np->n_pushedlo = hi;
   1905 	}
   1906 #ifdef NFS_DEBUG_COMMIT
   1907 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   1908 	    (unsigned)np->n_pushedhi);
   1909 #endif
   1910 }
   1911 
   1912 void
   1913 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   1914 {
   1915 	struct nfsnode *np = VTONFS(vp);
   1916 	off_t lo, hi;
   1917 
   1918 	lo = off;
   1919 	hi = lo + len;
   1920 
   1921 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
   1922 		np->n_pushlo = lo;
   1923 		np->n_pushhi = hi;
   1924 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
   1925 	} else {
   1926 		if (lo < np->n_pushlo)
   1927 			np->n_pushlo = lo;
   1928 		if (hi > np->n_pushhi)
   1929 			np->n_pushhi = hi;
   1930 	}
   1931 #ifdef NFS_DEBUG_COMMIT
   1932 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   1933 	    (unsigned)np->n_pushhi);
   1934 #endif
   1935 }
   1936 
   1937 void
   1938 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
   1939 {
   1940 	struct nfsnode *np = VTONFS(vp);
   1941 	off_t lo, hi;
   1942 
   1943 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   1944 		return;
   1945 
   1946 	lo = off;
   1947 	hi = lo + len;
   1948 
   1949 	if (lo > np->n_pushhi || hi < np->n_pushlo)
   1950 		return;
   1951 
   1952 	if (lo <= np->n_pushlo)
   1953 		np->n_pushlo = hi;
   1954 	else if (hi >= np->n_pushhi)
   1955 		np->n_pushhi = lo;
   1956 	else {
   1957 		/*
   1958 		 * XXX There's only one range. If the deleted range
   1959 		 * is in the middle, pick the largest of the
   1960 		 * contiguous ranges that it leaves.
   1961 		 */
   1962 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
   1963 			np->n_pushhi = lo;
   1964 		else
   1965 			np->n_pushlo = hi;
   1966 	}
   1967 #ifdef NFS_DEBUG_COMMIT
   1968 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   1969 	    (unsigned)np->n_pushhi);
   1970 #endif
   1971 }
   1972 
   1973 /*
   1974  * Map errnos to NFS error numbers. For Version 3 also filter out error
   1975  * numbers not specified for the associated procedure.
   1976  */
   1977 int
   1978 nfsrv_errmap(struct nfsrv_descript *nd, int err)
   1979 {
   1980 	const short *defaulterrp, *errp;
   1981 
   1982 	if (nd->nd_flag & ND_NFSV3) {
   1983 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   1984 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   1985 		while (*++errp) {
   1986 			if (*errp == err)
   1987 				return (err);
   1988 			else if (*errp > err)
   1989 				break;
   1990 		}
   1991 		return ((int)*defaulterrp);
   1992 	    } else
   1993 		return (err & 0xffff);
   1994 	}
   1995 	if (err <= ELAST)
   1996 		return ((int)nfsrv_v2errmap[err - 1]);
   1997 	return (NFSERR_IO);
   1998 }
   1999 
   2000 u_int32_t
   2001 nfs_getxid(void)
   2002 {
   2003 	u_int32_t newxid;
   2004 
   2005 	if (__predict_false(nfs_xid == 0)) {
   2006 		nfs_xid = cprng_fast32();
   2007 	}
   2008 
   2009 	/* get next xid.  skip 0 */
   2010 	do {
   2011 		newxid = atomic_inc_32_nv(&nfs_xid);
   2012 	} while (__predict_false(newxid == 0));
   2013 
   2014 	return txdr_unsigned(newxid);
   2015 }
   2016 
   2017 /*
   2018  * assign a new xid for existing request.
   2019  * used for NFSERR_JUKEBOX handling.
   2020  */
   2021 void
   2022 nfs_renewxid(struct nfsreq *req)
   2023 {
   2024 	u_int32_t xid;
   2025 	int off;
   2026 
   2027 	xid = nfs_getxid();
   2028 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
   2029 		off = sizeof(u_int32_t); /* RPC record mark */
   2030 	else
   2031 		off = 0;
   2032 
   2033 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
   2034 	req->r_xid = xid;
   2035 }
   2036