nfs_subs.c revision 1.230.2.2 1 /* $NetBSD: nfs_subs.c,v 1.230.2.2 2018/05/21 04:36:17 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.230.2.2 2018/05/21 04:36:17 pgoyette Exp $");
74
75 #ifdef _KERNEL_OPT
76 #include "opt_nfs.h"
77 #endif
78
79 /*
80 * These functions support the macros and help fiddle mbuf chains for
81 * the nfs op functions. They do things like create the rpc header and
82 * copy data between mbuf chains and uio lists.
83 */
84 #include <sys/param.h>
85 #include <sys/proc.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/kmem.h>
89 #include <sys/mount.h>
90 #include <sys/vnode.h>
91 #include <sys/namei.h>
92 #include <sys/mbuf.h>
93 #include <sys/socket.h>
94 #include <sys/stat.h>
95 #include <sys/filedesc.h>
96 #include <sys/time.h>
97 #include <sys/dirent.h>
98 #include <sys/once.h>
99 #include <sys/kauth.h>
100 #include <sys/atomic.h>
101 #include <sys/cprng.h>
102
103 #include <uvm/uvm.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118
119 static u_int32_t nfs_xid;
120
121 int nuidhash_max = NFS_MAXUIDHASH;
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145
146 /*
147 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148 */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 NFSPROC_NULL,
151 NFSPROC_GETATTR,
152 NFSPROC_SETATTR,
153 NFSPROC_NOOP,
154 NFSPROC_LOOKUP,
155 NFSPROC_READLINK,
156 NFSPROC_READ,
157 NFSPROC_NOOP,
158 NFSPROC_WRITE,
159 NFSPROC_CREATE,
160 NFSPROC_REMOVE,
161 NFSPROC_RENAME,
162 NFSPROC_LINK,
163 NFSPROC_SYMLINK,
164 NFSPROC_MKDIR,
165 NFSPROC_RMDIR,
166 NFSPROC_READDIR,
167 NFSPROC_FSSTAT,
168 NFSPROC_NOOP,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP
173 };
174
175 /*
176 * and the reverse mapping from generic to Version 2 procedure numbers
177 */
178 const int nfsv2_procid[NFS_NPROCS] = {
179 NFSV2PROC_NULL,
180 NFSV2PROC_GETATTR,
181 NFSV2PROC_SETATTR,
182 NFSV2PROC_LOOKUP,
183 NFSV2PROC_NOOP,
184 NFSV2PROC_READLINK,
185 NFSV2PROC_READ,
186 NFSV2PROC_WRITE,
187 NFSV2PROC_CREATE,
188 NFSV2PROC_MKDIR,
189 NFSV2PROC_SYMLINK,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_REMOVE,
192 NFSV2PROC_RMDIR,
193 NFSV2PROC_RENAME,
194 NFSV2PROC_LINK,
195 NFSV2PROC_READDIR,
196 NFSV2PROC_NOOP,
197 NFSV2PROC_STATFS,
198 NFSV2PROC_NOOP,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_NOOP,
202 };
203
204 /*
205 * Maps errno values to nfs error numbers.
206 * Use NFSERR_IO as the catch all for ones not specifically defined in
207 * RFC 1094.
208 */
209 static const u_char nfsrv_v2errmap[ELAST] = {
210 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
211 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
212 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
213 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
214 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
216 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
223 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO,
227 };
228
229 /*
230 * Maps errno values to nfs error numbers.
231 * Although it is not obvious whether or not NFS clients really care if
232 * a returned error value is in the specified list for the procedure, the
233 * safest thing to do is filter them appropriately. For Version 2, the
234 * X/Open XNFS document is the only specification that defines error values
235 * for each RPC (The RFC simply lists all possible error values for all RPCs),
236 * so I have decided to not do this for Version 2.
237 * The first entry is the default error return and the rest are the valid
238 * errors for that RPC in increasing numeric order.
239 */
240 static const short nfsv3err_null[] = {
241 0,
242 0,
243 };
244
245 static const short nfsv3err_getattr[] = {
246 NFSERR_IO,
247 NFSERR_IO,
248 NFSERR_STALE,
249 NFSERR_BADHANDLE,
250 NFSERR_SERVERFAULT,
251 0,
252 };
253
254 static const short nfsv3err_setattr[] = {
255 NFSERR_IO,
256 NFSERR_PERM,
257 NFSERR_IO,
258 NFSERR_ACCES,
259 NFSERR_INVAL,
260 NFSERR_NOSPC,
261 NFSERR_ROFS,
262 NFSERR_DQUOT,
263 NFSERR_STALE,
264 NFSERR_BADHANDLE,
265 NFSERR_NOT_SYNC,
266 NFSERR_SERVERFAULT,
267 0,
268 };
269
270 static const short nfsv3err_lookup[] = {
271 NFSERR_IO,
272 NFSERR_NOENT,
273 NFSERR_IO,
274 NFSERR_ACCES,
275 NFSERR_NOTDIR,
276 NFSERR_NAMETOL,
277 NFSERR_STALE,
278 NFSERR_BADHANDLE,
279 NFSERR_SERVERFAULT,
280 0,
281 };
282
283 static const short nfsv3err_access[] = {
284 NFSERR_IO,
285 NFSERR_IO,
286 NFSERR_STALE,
287 NFSERR_BADHANDLE,
288 NFSERR_SERVERFAULT,
289 0,
290 };
291
292 static const short nfsv3err_readlink[] = {
293 NFSERR_IO,
294 NFSERR_IO,
295 NFSERR_ACCES,
296 NFSERR_INVAL,
297 NFSERR_STALE,
298 NFSERR_BADHANDLE,
299 NFSERR_NOTSUPP,
300 NFSERR_SERVERFAULT,
301 0,
302 };
303
304 static const short nfsv3err_read[] = {
305 NFSERR_IO,
306 NFSERR_IO,
307 NFSERR_NXIO,
308 NFSERR_ACCES,
309 NFSERR_INVAL,
310 NFSERR_STALE,
311 NFSERR_BADHANDLE,
312 NFSERR_SERVERFAULT,
313 NFSERR_JUKEBOX,
314 0,
315 };
316
317 static const short nfsv3err_write[] = {
318 NFSERR_IO,
319 NFSERR_IO,
320 NFSERR_ACCES,
321 NFSERR_INVAL,
322 NFSERR_FBIG,
323 NFSERR_NOSPC,
324 NFSERR_ROFS,
325 NFSERR_DQUOT,
326 NFSERR_STALE,
327 NFSERR_BADHANDLE,
328 NFSERR_SERVERFAULT,
329 NFSERR_JUKEBOX,
330 0,
331 };
332
333 static const short nfsv3err_create[] = {
334 NFSERR_IO,
335 NFSERR_IO,
336 NFSERR_ACCES,
337 NFSERR_EXIST,
338 NFSERR_NOTDIR,
339 NFSERR_NOSPC,
340 NFSERR_ROFS,
341 NFSERR_NAMETOL,
342 NFSERR_DQUOT,
343 NFSERR_STALE,
344 NFSERR_BADHANDLE,
345 NFSERR_NOTSUPP,
346 NFSERR_SERVERFAULT,
347 0,
348 };
349
350 static const short nfsv3err_mkdir[] = {
351 NFSERR_IO,
352 NFSERR_IO,
353 NFSERR_ACCES,
354 NFSERR_EXIST,
355 NFSERR_NOTDIR,
356 NFSERR_NOSPC,
357 NFSERR_ROFS,
358 NFSERR_NAMETOL,
359 NFSERR_DQUOT,
360 NFSERR_STALE,
361 NFSERR_BADHANDLE,
362 NFSERR_NOTSUPP,
363 NFSERR_SERVERFAULT,
364 0,
365 };
366
367 static const short nfsv3err_symlink[] = {
368 NFSERR_IO,
369 NFSERR_IO,
370 NFSERR_ACCES,
371 NFSERR_EXIST,
372 NFSERR_NOTDIR,
373 NFSERR_NOSPC,
374 NFSERR_ROFS,
375 NFSERR_NAMETOL,
376 NFSERR_DQUOT,
377 NFSERR_STALE,
378 NFSERR_BADHANDLE,
379 NFSERR_NOTSUPP,
380 NFSERR_SERVERFAULT,
381 0,
382 };
383
384 static const short nfsv3err_mknod[] = {
385 NFSERR_IO,
386 NFSERR_IO,
387 NFSERR_ACCES,
388 NFSERR_EXIST,
389 NFSERR_NOTDIR,
390 NFSERR_NOSPC,
391 NFSERR_ROFS,
392 NFSERR_NAMETOL,
393 NFSERR_DQUOT,
394 NFSERR_STALE,
395 NFSERR_BADHANDLE,
396 NFSERR_NOTSUPP,
397 NFSERR_SERVERFAULT,
398 NFSERR_BADTYPE,
399 0,
400 };
401
402 static const short nfsv3err_remove[] = {
403 NFSERR_IO,
404 NFSERR_NOENT,
405 NFSERR_IO,
406 NFSERR_ACCES,
407 NFSERR_NOTDIR,
408 NFSERR_ROFS,
409 NFSERR_NAMETOL,
410 NFSERR_STALE,
411 NFSERR_BADHANDLE,
412 NFSERR_SERVERFAULT,
413 0,
414 };
415
416 static const short nfsv3err_rmdir[] = {
417 NFSERR_IO,
418 NFSERR_NOENT,
419 NFSERR_IO,
420 NFSERR_ACCES,
421 NFSERR_EXIST,
422 NFSERR_NOTDIR,
423 NFSERR_INVAL,
424 NFSERR_ROFS,
425 NFSERR_NAMETOL,
426 NFSERR_NOTEMPTY,
427 NFSERR_STALE,
428 NFSERR_BADHANDLE,
429 NFSERR_NOTSUPP,
430 NFSERR_SERVERFAULT,
431 0,
432 };
433
434 static const short nfsv3err_rename[] = {
435 NFSERR_IO,
436 NFSERR_NOENT,
437 NFSERR_IO,
438 NFSERR_ACCES,
439 NFSERR_EXIST,
440 NFSERR_XDEV,
441 NFSERR_NOTDIR,
442 NFSERR_ISDIR,
443 NFSERR_INVAL,
444 NFSERR_NOSPC,
445 NFSERR_ROFS,
446 NFSERR_MLINK,
447 NFSERR_NAMETOL,
448 NFSERR_NOTEMPTY,
449 NFSERR_DQUOT,
450 NFSERR_STALE,
451 NFSERR_BADHANDLE,
452 NFSERR_NOTSUPP,
453 NFSERR_SERVERFAULT,
454 0,
455 };
456
457 static const short nfsv3err_link[] = {
458 NFSERR_IO,
459 NFSERR_IO,
460 NFSERR_ACCES,
461 NFSERR_EXIST,
462 NFSERR_XDEV,
463 NFSERR_NOTDIR,
464 NFSERR_INVAL,
465 NFSERR_NOSPC,
466 NFSERR_ROFS,
467 NFSERR_MLINK,
468 NFSERR_NAMETOL,
469 NFSERR_DQUOT,
470 NFSERR_STALE,
471 NFSERR_BADHANDLE,
472 NFSERR_NOTSUPP,
473 NFSERR_SERVERFAULT,
474 0,
475 };
476
477 static const short nfsv3err_readdir[] = {
478 NFSERR_IO,
479 NFSERR_IO,
480 NFSERR_ACCES,
481 NFSERR_NOTDIR,
482 NFSERR_STALE,
483 NFSERR_BADHANDLE,
484 NFSERR_BAD_COOKIE,
485 NFSERR_TOOSMALL,
486 NFSERR_SERVERFAULT,
487 0,
488 };
489
490 static const short nfsv3err_readdirplus[] = {
491 NFSERR_IO,
492 NFSERR_IO,
493 NFSERR_ACCES,
494 NFSERR_NOTDIR,
495 NFSERR_STALE,
496 NFSERR_BADHANDLE,
497 NFSERR_BAD_COOKIE,
498 NFSERR_NOTSUPP,
499 NFSERR_TOOSMALL,
500 NFSERR_SERVERFAULT,
501 0,
502 };
503
504 static const short nfsv3err_fsstat[] = {
505 NFSERR_IO,
506 NFSERR_IO,
507 NFSERR_STALE,
508 NFSERR_BADHANDLE,
509 NFSERR_SERVERFAULT,
510 0,
511 };
512
513 static const short nfsv3err_fsinfo[] = {
514 NFSERR_STALE,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_pathconf[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_commit[] = {
530 NFSERR_IO,
531 NFSERR_IO,
532 NFSERR_STALE,
533 NFSERR_BADHANDLE,
534 NFSERR_SERVERFAULT,
535 0,
536 };
537
538 static const short * const nfsrv_v3errmap[] = {
539 nfsv3err_null,
540 nfsv3err_getattr,
541 nfsv3err_setattr,
542 nfsv3err_lookup,
543 nfsv3err_access,
544 nfsv3err_readlink,
545 nfsv3err_read,
546 nfsv3err_write,
547 nfsv3err_create,
548 nfsv3err_mkdir,
549 nfsv3err_symlink,
550 nfsv3err_mknod,
551 nfsv3err_remove,
552 nfsv3err_rmdir,
553 nfsv3err_rename,
554 nfsv3err_link,
555 nfsv3err_readdir,
556 nfsv3err_readdirplus,
557 nfsv3err_fsstat,
558 nfsv3err_fsinfo,
559 nfsv3err_pathconf,
560 nfsv3err_commit,
561 };
562
563 extern struct nfsrtt nfsrtt;
564
565 u_long nfsdirhashmask;
566
567 int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
568
569 /*
570 * Create the header for an rpc request packet
571 * The hsiz is the size of the rest of the nfs request header.
572 * (just used to decide if a cluster is a good idea)
573 */
574 struct mbuf *
575 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
576 {
577 struct mbuf *mb;
578 char *bpos;
579
580 mb = m_get(M_WAIT, MT_DATA);
581 MCLAIM(mb, &nfs_mowner);
582 if (hsiz >= MINCLSIZE)
583 m_clget(mb, M_WAIT);
584 mb->m_len = 0;
585 bpos = mtod(mb, void *);
586
587 /* Finally, return values */
588 *bposp = bpos;
589 return (mb);
590 }
591
592 /*
593 * Build the RPC header and fill in the authorization info.
594 * The authorization string argument is only used when the credentials
595 * come from outside of the kernel.
596 * Returns the head of the mbuf list.
597 */
598 struct mbuf *
599 nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
600 int auth_type, int auth_len, char *auth_str, int verf_len,
601 char *verf_str, struct mbuf *mrest, int mrest_len,
602 struct mbuf **mbp, uint32_t *xidp)
603 {
604 struct mbuf *mb;
605 u_int32_t *tl;
606 char *bpos;
607 int i;
608 struct mbuf *mreq;
609 int siz, grpsiz, authsiz;
610
611 authsiz = nfsm_rndup(auth_len);
612 mb = m_gethdr(M_WAIT, MT_DATA);
613 MCLAIM(mb, &nfs_mowner);
614 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
615 m_clget(mb, M_WAIT);
616 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
617 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
618 } else {
619 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
620 }
621 mb->m_len = 0;
622 mreq = mb;
623 bpos = mtod(mb, void *);
624
625 /*
626 * First the RPC header.
627 */
628 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
629
630 *tl++ = *xidp = nfs_getxid();
631 *tl++ = rpc_call;
632 *tl++ = rpc_vers;
633 *tl++ = txdr_unsigned(NFS_PROG);
634 if (nmflag & NFSMNT_NFSV3)
635 *tl++ = txdr_unsigned(NFS_VER3);
636 else
637 *tl++ = txdr_unsigned(NFS_VER2);
638 if (nmflag & NFSMNT_NFSV3)
639 *tl++ = txdr_unsigned(procid);
640 else
641 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
642
643 /*
644 * And then the authorization cred.
645 */
646 *tl++ = txdr_unsigned(auth_type);
647 *tl = txdr_unsigned(authsiz);
648 switch (auth_type) {
649 case RPCAUTH_UNIX:
650 nfsm_build(tl, u_int32_t *, auth_len);
651 *tl++ = 0; /* stamp ?? */
652 *tl++ = 0; /* NULL hostname */
653 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
654 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
655 grpsiz = (auth_len >> 2) - 5;
656 *tl++ = txdr_unsigned(grpsiz);
657 for (i = 0; i < grpsiz; i++)
658 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
659 break;
660 case RPCAUTH_KERB4:
661 siz = auth_len;
662 while (siz > 0) {
663 if (M_TRAILINGSPACE(mb) == 0) {
664 struct mbuf *mb2;
665 mb2 = m_get(M_WAIT, MT_DATA);
666 MCLAIM(mb2, &nfs_mowner);
667 if (siz >= MINCLSIZE)
668 m_clget(mb2, M_WAIT);
669 mb->m_next = mb2;
670 mb = mb2;
671 mb->m_len = 0;
672 bpos = mtod(mb, void *);
673 }
674 i = min(siz, M_TRAILINGSPACE(mb));
675 memcpy(bpos, auth_str, i);
676 mb->m_len += i;
677 auth_str += i;
678 bpos += i;
679 siz -= i;
680 }
681 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
682 for (i = 0; i < siz; i++)
683 *bpos++ = '\0';
684 mb->m_len += siz;
685 }
686 break;
687 };
688
689 /*
690 * And the verifier...
691 */
692 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
693 if (verf_str) {
694 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
695 *tl = txdr_unsigned(verf_len);
696 siz = verf_len;
697 while (siz > 0) {
698 if (M_TRAILINGSPACE(mb) == 0) {
699 struct mbuf *mb2;
700 mb2 = m_get(M_WAIT, MT_DATA);
701 MCLAIM(mb2, &nfs_mowner);
702 if (siz >= MINCLSIZE)
703 m_clget(mb2, M_WAIT);
704 mb->m_next = mb2;
705 mb = mb2;
706 mb->m_len = 0;
707 bpos = mtod(mb, void *);
708 }
709 i = min(siz, M_TRAILINGSPACE(mb));
710 memcpy(bpos, verf_str, i);
711 mb->m_len += i;
712 verf_str += i;
713 bpos += i;
714 siz -= i;
715 }
716 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
717 for (i = 0; i < siz; i++)
718 *bpos++ = '\0';
719 mb->m_len += siz;
720 }
721 } else {
722 *tl++ = txdr_unsigned(RPCAUTH_NULL);
723 *tl = 0;
724 }
725 mb->m_next = mrest;
726 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
727 m_reset_rcvif(mreq);
728 *mbp = mb;
729 return (mreq);
730 }
731
732 /*
733 * copies mbuf chain to the uio scatter/gather list
734 */
735 int
736 nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
737 {
738 char *mbufcp, *uiocp;
739 int xfer, left, len;
740 struct mbuf *mp;
741 long uiosiz, rem;
742 int error = 0;
743
744 mp = *mrep;
745 mbufcp = *dpos;
746 len = mtod(mp, char *) + mp->m_len - mbufcp;
747 rem = nfsm_rndup(siz)-siz;
748 while (siz > 0) {
749 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
750 return (EFBIG);
751 left = uiop->uio_iov->iov_len;
752 uiocp = uiop->uio_iov->iov_base;
753 if (left > siz)
754 left = siz;
755 uiosiz = left;
756 while (left > 0) {
757 while (len == 0) {
758 mp = mp->m_next;
759 if (mp == NULL)
760 return (EBADRPC);
761 mbufcp = mtod(mp, void *);
762 len = mp->m_len;
763 }
764 xfer = (left > len) ? len : left;
765 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
766 uiocp, xfer);
767 if (error) {
768 return error;
769 }
770 left -= xfer;
771 len -= xfer;
772 mbufcp += xfer;
773 uiocp += xfer;
774 uiop->uio_offset += xfer;
775 uiop->uio_resid -= xfer;
776 }
777 if (uiop->uio_iov->iov_len <= siz) {
778 uiop->uio_iovcnt--;
779 uiop->uio_iov++;
780 } else {
781 uiop->uio_iov->iov_base =
782 (char *)uiop->uio_iov->iov_base + uiosiz;
783 uiop->uio_iov->iov_len -= uiosiz;
784 }
785 siz -= uiosiz;
786 }
787 *dpos = mbufcp;
788 *mrep = mp;
789 if (rem > 0) {
790 if (len < rem)
791 error = nfs_adv(mrep, dpos, rem, len);
792 else
793 *dpos += rem;
794 }
795 return (error);
796 }
797
798 /*
799 * copies a uio scatter/gather list to an mbuf chain.
800 * NOTE: can ony handle iovcnt == 1
801 */
802 int
803 nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
804 {
805 char *uiocp;
806 struct mbuf *mp, *mp2;
807 int xfer, left, mlen;
808 int uiosiz, clflg, rem;
809 char *cp;
810 int error;
811
812 #ifdef DIAGNOSTIC
813 if (uiop->uio_iovcnt != 1)
814 panic("nfsm_uiotombuf: iovcnt != 1");
815 #endif
816
817 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
818 clflg = 1;
819 else
820 clflg = 0;
821 rem = nfsm_rndup(siz)-siz;
822 mp = mp2 = *mq;
823 while (siz > 0) {
824 left = uiop->uio_iov->iov_len;
825 uiocp = uiop->uio_iov->iov_base;
826 if (left > siz)
827 left = siz;
828 uiosiz = left;
829 while (left > 0) {
830 mlen = M_TRAILINGSPACE(mp);
831 if (mlen == 0) {
832 mp = m_get(M_WAIT, MT_DATA);
833 MCLAIM(mp, &nfs_mowner);
834 if (clflg)
835 m_clget(mp, M_WAIT);
836 mp->m_len = 0;
837 mp2->m_next = mp;
838 mp2 = mp;
839 mlen = M_TRAILINGSPACE(mp);
840 }
841 xfer = (left > mlen) ? mlen : left;
842 cp = mtod(mp, char *) + mp->m_len;
843 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
844 xfer);
845 if (error) {
846 /* XXX */
847 }
848 mp->m_len += xfer;
849 left -= xfer;
850 uiocp += xfer;
851 uiop->uio_offset += xfer;
852 uiop->uio_resid -= xfer;
853 }
854 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
855 uiosiz;
856 uiop->uio_iov->iov_len -= uiosiz;
857 siz -= uiosiz;
858 }
859 if (rem > 0) {
860 if (rem > M_TRAILINGSPACE(mp)) {
861 mp = m_get(M_WAIT, MT_DATA);
862 MCLAIM(mp, &nfs_mowner);
863 mp->m_len = 0;
864 mp2->m_next = mp;
865 }
866 cp = mtod(mp, char *) + mp->m_len;
867 for (left = 0; left < rem; left++)
868 *cp++ = '\0';
869 mp->m_len += rem;
870 *bpos = cp;
871 } else
872 *bpos = mtod(mp, char *) + mp->m_len;
873 *mq = mp;
874 return (0);
875 }
876
877 /*
878 * Get at least "siz" bytes of correctly aligned data.
879 * When called the mbuf pointers are not necessarily correct,
880 * dsosp points to what ought to be in m_data and left contains
881 * what ought to be in m_len.
882 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
883 * cases. (The macros use the vars. dpos and dpos2)
884 */
885 int
886 nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
887 {
888 struct mbuf *m1, *m2;
889 struct mbuf *havebuf = NULL;
890 char *src = *dposp;
891 char *dst;
892 int len;
893
894 #ifdef DEBUG
895 if (left < 0)
896 panic("nfsm_disct: left < 0");
897 #endif
898 m1 = *mdp;
899 /*
900 * Skip through the mbuf chain looking for an mbuf with
901 * some data. If the first mbuf found has enough data
902 * and it is correctly aligned return it.
903 */
904 while (left == 0) {
905 havebuf = m1;
906 *mdp = m1 = m1->m_next;
907 if (m1 == NULL)
908 return (EBADRPC);
909 src = mtod(m1, void *);
910 left = m1->m_len;
911 /*
912 * If we start a new mbuf and it is big enough
913 * and correctly aligned just return it, don't
914 * do any pull up.
915 */
916 if (left >= siz && nfsm_aligned(src)) {
917 *cp2 = src;
918 *dposp = src + siz;
919 return (0);
920 }
921 }
922 if ((m1->m_flags & M_EXT) != 0) {
923 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
924 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
925 /*
926 * If the first mbuf with data has external data
927 * and there is a previous mbuf with some trailing
928 * space, use it to move the data into.
929 */
930 m2 = m1;
931 *mdp = m1 = havebuf;
932 *cp2 = mtod(m1, char *) + m1->m_len;
933 } else if (havebuf) {
934 /*
935 * If the first mbuf has a external data
936 * and there is no previous empty mbuf
937 * allocate a new mbuf and move the external
938 * data to the new mbuf. Also make the first
939 * mbuf look empty.
940 */
941 m2 = m1;
942 *mdp = m1 = m_get(M_WAIT, MT_DATA);
943 MCLAIM(m1, m2->m_owner);
944 if ((m2->m_flags & M_PKTHDR) != 0) {
945 M_MOVE_PKTHDR(m1, m2);
946 }
947 if (havebuf) {
948 havebuf->m_next = m1;
949 }
950 m1->m_next = m2;
951 MRESETDATA(m1);
952 m1->m_len = 0;
953 m2->m_data = src;
954 m2->m_len = left;
955 *cp2 = mtod(m1, char *);
956 } else {
957 struct mbuf **nextp = &m1->m_next;
958
959 m1->m_len -= left;
960 do {
961 m2 = m_get(M_WAIT, MT_DATA);
962 MCLAIM(m2, m1->m_owner);
963 if (left >= MINCLSIZE) {
964 MCLGET(m2, M_WAIT);
965 }
966 m2->m_next = *nextp;
967 *nextp = m2;
968 nextp = &m2->m_next;
969 len = (m2->m_flags & M_EXT) != 0 ?
970 MCLBYTES : MLEN;
971 if (len > left) {
972 len = left;
973 }
974 memcpy(mtod(m2, char *), src, len);
975 m2->m_len = len;
976 src += len;
977 left -= len;
978 } while (left > 0);
979 *mdp = m1 = m1->m_next;
980 m2 = m1->m_next;
981 *cp2 = mtod(m1, char *);
982 }
983 } else {
984 /*
985 * If the first mbuf has no external data
986 * move the data to the front of the mbuf.
987 */
988 MRESETDATA(m1);
989 dst = mtod(m1, char *);
990 if (dst != src) {
991 memmove(dst, src, left);
992 }
993 m1->m_len = left;
994 m2 = m1->m_next;
995 *cp2 = m1->m_data;
996 }
997 *dposp = *cp2 + siz;
998 /*
999 * Loop through mbufs pulling data up into first mbuf until
1000 * the first mbuf is full or there is no more data to
1001 * pullup.
1002 */
1003 dst = mtod(m1, char *) + m1->m_len;
1004 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1005 if ((len = min(len, m2->m_len)) != 0) {
1006 memcpy(dst, mtod(m2, char *), len);
1007 }
1008 m1->m_len += len;
1009 dst += len;
1010 m2->m_data += len;
1011 m2->m_len -= len;
1012 m2 = m2->m_next;
1013 }
1014 if (m1->m_len < siz)
1015 return (EBADRPC);
1016 return (0);
1017 }
1018
1019 /*
1020 * Advance the position in the mbuf chain.
1021 */
1022 int
1023 nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
1024 {
1025 struct mbuf *m;
1026 int s;
1027
1028 m = *mdp;
1029 s = left;
1030 while (s < offs) {
1031 offs -= s;
1032 m = m->m_next;
1033 if (m == NULL)
1034 return (EBADRPC);
1035 s = m->m_len;
1036 }
1037 *mdp = m;
1038 *dposp = mtod(m, char *) + offs;
1039 return (0);
1040 }
1041
1042 /*
1043 * Copy a string into mbufs for the hard cases...
1044 */
1045 int
1046 nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
1047 {
1048 struct mbuf *m1 = NULL, *m2;
1049 long left, xfer, len, tlen;
1050 u_int32_t *tl;
1051 int putsize;
1052
1053 putsize = 1;
1054 m2 = *mb;
1055 left = M_TRAILINGSPACE(m2);
1056 if (left > 0) {
1057 tl = ((u_int32_t *)(*bpos));
1058 *tl++ = txdr_unsigned(siz);
1059 putsize = 0;
1060 left -= NFSX_UNSIGNED;
1061 m2->m_len += NFSX_UNSIGNED;
1062 if (left > 0) {
1063 memcpy((void *) tl, cp, left);
1064 siz -= left;
1065 cp += left;
1066 m2->m_len += left;
1067 left = 0;
1068 }
1069 }
1070 /* Loop around adding mbufs */
1071 while (siz > 0) {
1072 m1 = m_get(M_WAIT, MT_DATA);
1073 MCLAIM(m1, &nfs_mowner);
1074 if (siz > MLEN)
1075 m_clget(m1, M_WAIT);
1076 m1->m_len = NFSMSIZ(m1);
1077 m2->m_next = m1;
1078 m2 = m1;
1079 tl = mtod(m1, u_int32_t *);
1080 tlen = 0;
1081 if (putsize) {
1082 *tl++ = txdr_unsigned(siz);
1083 m1->m_len -= NFSX_UNSIGNED;
1084 tlen = NFSX_UNSIGNED;
1085 putsize = 0;
1086 }
1087 if (siz < m1->m_len) {
1088 len = nfsm_rndup(siz);
1089 xfer = siz;
1090 if (xfer < len)
1091 *(tl+(xfer>>2)) = 0;
1092 } else {
1093 xfer = len = m1->m_len;
1094 }
1095 memcpy((void *) tl, cp, xfer);
1096 m1->m_len = len+tlen;
1097 siz -= xfer;
1098 cp += xfer;
1099 }
1100 *mb = m1;
1101 *bpos = mtod(m1, char *) + m1->m_len;
1102 return (0);
1103 }
1104
1105 /*
1106 * Directory caching routines. They work as follows:
1107 * - a cache is maintained per VDIR nfsnode.
1108 * - for each offset cookie that is exported to userspace, and can
1109 * thus be thrown back at us as an offset to VOP_READDIR, store
1110 * information in the cache.
1111 * - cached are:
1112 * - cookie itself
1113 * - blocknumber (essentially just a search key in the buffer cache)
1114 * - entry number in block.
1115 * - offset cookie of block in which this entry is stored
1116 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1117 * - entries are looked up in a hash table
1118 * - also maintained is an LRU list of entries, used to determine
1119 * which ones to delete if the cache grows too large.
1120 * - if 32 <-> 64 translation mode is requested for a filesystem,
1121 * the cache also functions as a translation table
1122 * - in the translation case, invalidating the cache does not mean
1123 * flushing it, but just marking entries as invalid, except for
1124 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1125 * still be able to use the cache as a translation table.
1126 * - 32 bit cookies are uniquely created by combining the hash table
1127 * entry value, and one generation count per hash table entry,
1128 * incremented each time an entry is appended to the chain.
1129 * - the cache is invalidated each time a direcory is modified
1130 * - sanity checks are also done; if an entry in a block turns
1131 * out not to have a matching cookie, the cache is invalidated
1132 * and a new block starting from the wanted offset is fetched from
1133 * the server.
1134 * - directory entries as read from the server are extended to contain
1135 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1136 * the cache and exporting them to userspace through the cookie
1137 * argument to VOP_READDIR.
1138 */
1139
1140 u_long
1141 nfs_dirhash(off_t off)
1142 {
1143 int i;
1144 char *cp = (char *)&off;
1145 u_long sum = 0L;
1146
1147 for (i = 0 ; i < sizeof (off); i++)
1148 sum += *cp++;
1149
1150 return sum;
1151 }
1152
1153 #define _NFSDC_MTX(np) (NFSTOV(np)->v_interlock)
1154 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1155 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1156 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1157
1158 void
1159 nfs_initdircache(struct vnode *vp)
1160 {
1161 struct nfsnode *np = VTONFS(vp);
1162 struct nfsdirhashhead *dircache;
1163
1164 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1165 &nfsdirhashmask);
1166
1167 NFSDC_LOCK(np);
1168 if (np->n_dircache == NULL) {
1169 np->n_dircachesize = 0;
1170 np->n_dircache = dircache;
1171 dircache = NULL;
1172 TAILQ_INIT(&np->n_dirchain);
1173 }
1174 NFSDC_UNLOCK(np);
1175 if (dircache)
1176 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1177 }
1178
1179 void
1180 nfs_initdirxlatecookie(struct vnode *vp)
1181 {
1182 struct nfsnode *np = VTONFS(vp);
1183 unsigned *dirgens;
1184
1185 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1186
1187 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1188 NFSDC_LOCK(np);
1189 if (np->n_dirgens == NULL) {
1190 np->n_dirgens = dirgens;
1191 dirgens = NULL;
1192 }
1193 NFSDC_UNLOCK(np);
1194 if (dirgens)
1195 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1196 }
1197
1198 static const struct nfsdircache dzero;
1199
1200 static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
1201 static void nfs_putdircache_unlocked(struct nfsnode *,
1202 struct nfsdircache *);
1203
1204 static void
1205 nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
1206 {
1207
1208 NFSDC_ASSERT_LOCKED(np);
1209 KASSERT(ndp != &dzero);
1210
1211 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1212 return;
1213
1214 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1215 LIST_REMOVE(ndp, dc_hash);
1216 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1217
1218 nfs_putdircache_unlocked(np, ndp);
1219 }
1220
1221 void
1222 nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
1223 {
1224 int ref;
1225
1226 if (ndp == &dzero)
1227 return;
1228
1229 KASSERT(ndp->dc_refcnt > 0);
1230 NFSDC_LOCK(np);
1231 ref = --ndp->dc_refcnt;
1232 NFSDC_UNLOCK(np);
1233
1234 if (ref == 0)
1235 kmem_free(ndp, sizeof(*ndp));
1236 }
1237
1238 static void
1239 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1240 {
1241 int ref;
1242
1243 NFSDC_ASSERT_LOCKED(np);
1244
1245 if (ndp == &dzero)
1246 return;
1247
1248 KASSERT(ndp->dc_refcnt > 0);
1249 ref = --ndp->dc_refcnt;
1250 if (ref == 0)
1251 kmem_free(ndp, sizeof(*ndp));
1252 }
1253
1254 struct nfsdircache *
1255 nfs_searchdircache(struct vnode *vp, off_t off, int do32, int *hashent)
1256 {
1257 struct nfsdirhashhead *ndhp;
1258 struct nfsdircache *ndp = NULL;
1259 struct nfsnode *np = VTONFS(vp);
1260 unsigned ent;
1261
1262 /*
1263 * Zero is always a valid cookie.
1264 */
1265 if (off == 0)
1266 /* XXXUNCONST */
1267 return (struct nfsdircache *)__UNCONST(&dzero);
1268
1269 if (!np->n_dircache)
1270 return NULL;
1271
1272 /*
1273 * We use a 32bit cookie as search key, directly reconstruct
1274 * the hashentry. Else use the hashfunction.
1275 */
1276 if (do32) {
1277 ent = (u_int32_t)off >> 24;
1278 if (ent >= NFS_DIRHASHSIZ)
1279 return NULL;
1280 ndhp = &np->n_dircache[ent];
1281 } else {
1282 ndhp = NFSDIRHASH(np, off);
1283 }
1284
1285 if (hashent)
1286 *hashent = (int)(ndhp - np->n_dircache);
1287
1288 NFSDC_LOCK(np);
1289 if (do32) {
1290 LIST_FOREACH(ndp, ndhp, dc_hash) {
1291 if (ndp->dc_cookie32 == (u_int32_t)off) {
1292 /*
1293 * An invalidated entry will become the
1294 * start of a new block fetched from
1295 * the server.
1296 */
1297 if (ndp->dc_flags & NFSDC_INVALID) {
1298 ndp->dc_blkcookie = ndp->dc_cookie;
1299 ndp->dc_entry = 0;
1300 ndp->dc_flags &= ~NFSDC_INVALID;
1301 }
1302 break;
1303 }
1304 }
1305 } else {
1306 LIST_FOREACH(ndp, ndhp, dc_hash) {
1307 if (ndp->dc_cookie == off)
1308 break;
1309 }
1310 }
1311 if (ndp != NULL)
1312 ndp->dc_refcnt++;
1313 NFSDC_UNLOCK(np);
1314 return ndp;
1315 }
1316
1317
1318 struct nfsdircache *
1319 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1320 daddr_t blkno)
1321 {
1322 struct nfsnode *np = VTONFS(vp);
1323 struct nfsdirhashhead *ndhp;
1324 struct nfsdircache *ndp = NULL;
1325 struct nfsdircache *newndp = NULL;
1326 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1327 int hashent = 0, gen, overwrite; /* XXX: GCC */
1328
1329 /*
1330 * XXX refuse entries for offset 0. amd(8) erroneously sets
1331 * cookie 0 for the '.' entry, making this necessary. This
1332 * isn't so bad, as 0 is a special case anyway.
1333 */
1334 if (off == 0)
1335 /* XXXUNCONST */
1336 return (struct nfsdircache *)__UNCONST(&dzero);
1337
1338 if (!np->n_dircache)
1339 /*
1340 * XXX would like to do this in nfs_nget but vtype
1341 * isn't known at that time.
1342 */
1343 nfs_initdircache(vp);
1344
1345 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1346 nfs_initdirxlatecookie(vp);
1347
1348 retry:
1349 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1350
1351 NFSDC_LOCK(np);
1352 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1353 /*
1354 * Overwriting an old entry. Check if it's the same.
1355 * If so, just return. If not, remove the old entry.
1356 */
1357 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1358 goto done;
1359 nfs_unlinkdircache(np, ndp);
1360 nfs_putdircache_unlocked(np, ndp);
1361 ndp = NULL;
1362 }
1363
1364 ndhp = &np->n_dircache[hashent];
1365
1366 if (!ndp) {
1367 if (newndp == NULL) {
1368 NFSDC_UNLOCK(np);
1369 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1370 newndp->dc_refcnt = 1;
1371 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1372 goto retry;
1373 }
1374 ndp = newndp;
1375 newndp = NULL;
1376 overwrite = 0;
1377 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1378 /*
1379 * We're allocating a new entry, so bump the
1380 * generation number.
1381 */
1382 KASSERT(np->n_dirgens);
1383 gen = ++np->n_dirgens[hashent];
1384 if (gen == 0) {
1385 np->n_dirgens[hashent]++;
1386 gen++;
1387 }
1388 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1389 }
1390 } else
1391 overwrite = 1;
1392
1393 ndp->dc_cookie = off;
1394 ndp->dc_blkcookie = blkoff;
1395 ndp->dc_entry = en;
1396 ndp->dc_flags = 0;
1397
1398 if (overwrite)
1399 goto done;
1400
1401 /*
1402 * If the maximum directory cookie cache size has been reached
1403 * for this node, take one off the front. The idea is that
1404 * directories are typically read front-to-back once, so that
1405 * the oldest entries can be thrown away without much performance
1406 * loss.
1407 */
1408 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1409 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1410 } else
1411 np->n_dircachesize++;
1412
1413 KASSERT(ndp->dc_refcnt == 1);
1414 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1415 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1416 ndp->dc_refcnt++;
1417 done:
1418 KASSERT(ndp->dc_refcnt > 0);
1419 NFSDC_UNLOCK(np);
1420 if (newndp)
1421 nfs_putdircache(np, newndp);
1422 return ndp;
1423 }
1424
1425 void
1426 nfs_invaldircache(struct vnode *vp, int flags)
1427 {
1428 struct nfsnode *np = VTONFS(vp);
1429 struct nfsdircache *ndp = NULL;
1430 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1431 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1432
1433 #ifdef DIAGNOSTIC
1434 if (vp->v_type != VDIR)
1435 panic("nfs: invaldircache: not dir");
1436 #endif
1437
1438 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1439 np->n_flag &= ~NEOFVALID;
1440
1441 if (!np->n_dircache)
1442 return;
1443
1444 NFSDC_LOCK(np);
1445 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1446 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1447 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1448 nfs_unlinkdircache(np, ndp);
1449 }
1450 np->n_dircachesize = 0;
1451 if (forcefree && np->n_dirgens) {
1452 kmem_free(np->n_dirgens,
1453 NFS_DIRHASHSIZ * sizeof(unsigned));
1454 np->n_dirgens = NULL;
1455 }
1456 } else {
1457 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1458 ndp->dc_flags |= NFSDC_INVALID;
1459 }
1460
1461 NFSDC_UNLOCK(np);
1462 }
1463
1464 /*
1465 * Called once before VFS init to initialize shared and
1466 * server-specific data structures.
1467 */
1468 static int
1469 nfs_init0(void)
1470 {
1471
1472 nfsrtt.pos = 0;
1473 rpc_vers = txdr_unsigned(RPC_VER2);
1474 rpc_call = txdr_unsigned(RPC_CALL);
1475 rpc_reply = txdr_unsigned(RPC_REPLY);
1476 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1477 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1478 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1479 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1480 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1481 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1482 nfs_prog = txdr_unsigned(NFS_PROG);
1483 nfs_true = txdr_unsigned(true);
1484 nfs_false = txdr_unsigned(false);
1485 nfs_xdrneg1 = txdr_unsigned(-1);
1486 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1487 if (nfs_ticks < 1)
1488 nfs_ticks = 1;
1489 nfsdreq_init();
1490
1491 /*
1492 * Initialize reply list and start timer
1493 */
1494 TAILQ_INIT(&nfs_reqq);
1495 mutex_init(&nfs_reqq_lock, MUTEX_DEFAULT, IPL_NONE);
1496 nfs_timer_init();
1497 MOWNER_ATTACH(&nfs_mowner);
1498
1499 return 0;
1500 }
1501
1502 static volatile uint32_t nfs_mutex;
1503 static uint32_t nfs_refcount;
1504
1505 #define nfs_p() while (atomic_cas_32(&nfs_mutex, 0, 1) == 0) continue;
1506 #define nfs_v() while (atomic_cas_32(&nfs_mutex, 1, 0) == 1) continue;
1507
1508 /*
1509 * This is disgusting, but it must support both modular and monolothic
1510 * configurations, plus the code is shared between server and client.
1511 * For monolithic builds NFSSERVER may not imply NFS. Unfortunately we
1512 * can't use regular mutexes here that would require static initialization
1513 * and we can get initialized from multiple places, so we improvise.
1514 *
1515 * Yuck.
1516 */
1517 void
1518 nfs_init(void)
1519 {
1520
1521 nfs_p();
1522 if (nfs_refcount++ == 0)
1523 nfs_init0();
1524 nfs_v();
1525 }
1526
1527 void
1528 nfs_fini(void)
1529 {
1530
1531 nfs_p();
1532 if (--nfs_refcount == 0) {
1533 MOWNER_DETACH(&nfs_mowner);
1534 nfs_timer_fini();
1535 mutex_destroy(&nfs_reqq_lock);
1536 nfsdreq_fini();
1537 }
1538 nfs_v();
1539 }
1540
1541 /*
1542 * A fiddled version of m_adj() that ensures null fill to a 32-bit
1543 * boundary and only trims off the back end
1544 *
1545 * 1. trim off 'len' bytes as m_adj(mp, -len).
1546 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
1547 */
1548 void
1549 nfs_zeropad(struct mbuf *mp, int len, int nul)
1550 {
1551 struct mbuf *m;
1552 int count;
1553
1554 /*
1555 * Trim from tail. Scan the mbuf chain,
1556 * calculating its length and finding the last mbuf.
1557 * If the adjustment only affects this mbuf, then just
1558 * adjust and return. Otherwise, rescan and truncate
1559 * after the remaining size.
1560 */
1561 count = 0;
1562 m = mp;
1563 for (;;) {
1564 count += m->m_len;
1565 if (m->m_next == NULL)
1566 break;
1567 m = m->m_next;
1568 }
1569
1570 KDASSERT(count >= len);
1571
1572 if (m->m_len >= len) {
1573 m->m_len -= len;
1574 } else {
1575 count -= len;
1576 /*
1577 * Correct length for chain is "count".
1578 * Find the mbuf with last data, adjust its length,
1579 * and toss data from remaining mbufs on chain.
1580 */
1581 for (m = mp; m; m = m->m_next) {
1582 if (m->m_len >= count) {
1583 m->m_len = count;
1584 break;
1585 }
1586 count -= m->m_len;
1587 }
1588 KASSERT(m && m->m_next);
1589 m_freem(m->m_next);
1590 m->m_next = NULL;
1591 }
1592
1593 KDASSERT(m->m_next == NULL);
1594
1595 /*
1596 * zero-padding.
1597 */
1598 if (nul > 0) {
1599 char *cp;
1600 int i;
1601
1602 if (M_READONLY(m) || M_TRAILINGSPACE(m) < nul) {
1603 struct mbuf *n;
1604
1605 KDASSERT(MLEN >= nul);
1606 n = m_get(M_WAIT, MT_DATA);
1607 MCLAIM(n, &nfs_mowner);
1608 n->m_len = nul;
1609 n->m_next = NULL;
1610 m->m_next = n;
1611 cp = mtod(n, void *);
1612 } else {
1613 cp = mtod(m, char *) + m->m_len;
1614 m->m_len += nul;
1615 }
1616 for (i = 0; i < nul; i++)
1617 *cp++ = '\0';
1618 }
1619 return;
1620 }
1621
1622 /*
1623 * Make these functions instead of macros, so that the kernel text size
1624 * doesn't get too big...
1625 */
1626 void
1627 nfsm_srvwcc(struct nfsrv_descript *nfsd, int before_ret, struct vattr *before_vap, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
1628 {
1629 struct mbuf *mb = *mbp;
1630 char *bpos = *bposp;
1631 u_int32_t *tl;
1632
1633 if (before_ret) {
1634 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1635 *tl = nfs_false;
1636 } else {
1637 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
1638 *tl++ = nfs_true;
1639 txdr_hyper(before_vap->va_size, tl);
1640 tl += 2;
1641 txdr_nfsv3time(&(before_vap->va_mtime), tl);
1642 tl += 2;
1643 txdr_nfsv3time(&(before_vap->va_ctime), tl);
1644 }
1645 *bposp = bpos;
1646 *mbp = mb;
1647 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
1648 }
1649
1650 void
1651 nfsm_srvpostopattr(struct nfsrv_descript *nfsd, int after_ret, struct vattr *after_vap, struct mbuf **mbp, char **bposp)
1652 {
1653 struct mbuf *mb = *mbp;
1654 char *bpos = *bposp;
1655 u_int32_t *tl;
1656 struct nfs_fattr *fp;
1657
1658 if (after_ret) {
1659 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1660 *tl = nfs_false;
1661 } else {
1662 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
1663 *tl++ = nfs_true;
1664 fp = (struct nfs_fattr *)tl;
1665 nfsm_srvfattr(nfsd, after_vap, fp);
1666 }
1667 *mbp = mb;
1668 *bposp = bpos;
1669 }
1670
1671 void
1672 nfsm_srvfattr(struct nfsrv_descript *nfsd, struct vattr *vap, struct nfs_fattr *fp)
1673 {
1674
1675 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
1676 fp->fa_uid = txdr_unsigned(vap->va_uid);
1677 fp->fa_gid = txdr_unsigned(vap->va_gid);
1678 if (nfsd->nd_flag & ND_NFSV3) {
1679 fp->fa_type = vtonfsv3_type(vap->va_type);
1680 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
1681 txdr_hyper(vap->va_size, &fp->fa3_size);
1682 txdr_hyper(vap->va_bytes, &fp->fa3_used);
1683 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
1684 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
1685 fp->fa3_fsid.nfsuquad[0] = 0;
1686 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
1687 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
1688 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
1689 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
1690 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
1691 } else {
1692 fp->fa_type = vtonfsv2_type(vap->va_type);
1693 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1694 fp->fa2_size = txdr_unsigned(vap->va_size);
1695 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
1696 if (vap->va_type == VFIFO)
1697 fp->fa2_rdev = 0xffffffff;
1698 else
1699 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
1700 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
1701 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
1702 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
1703 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
1704 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
1705 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
1706 }
1707 }
1708
1709 /*
1710 * This function compares two net addresses by family and returns true
1711 * if they are the same host.
1712 * If there is any doubt, return false.
1713 * The AF_INET family is handled as a special case so that address mbufs
1714 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
1715 */
1716 int
1717 netaddr_match(int family, union nethostaddr *haddr, struct mbuf *nam)
1718 {
1719 struct sockaddr_in *inetaddr;
1720
1721 switch (family) {
1722 case AF_INET:
1723 inetaddr = mtod(nam, struct sockaddr_in *);
1724 if (inetaddr->sin_family == AF_INET &&
1725 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
1726 return (1);
1727 break;
1728 case AF_INET6:
1729 {
1730 struct sockaddr_in6 *sin6_1, *sin6_2;
1731
1732 sin6_1 = mtod(nam, struct sockaddr_in6 *);
1733 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
1734 if (sin6_1->sin6_family == AF_INET6 &&
1735 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
1736 return 1;
1737 }
1738 default:
1739 break;
1740 };
1741 return (0);
1742 }
1743
1744 struct nfs_clearcommit_ctx {
1745 struct mount *mp;
1746 };
1747
1748 static bool
1749 nfs_clearcommit_selector(void *cl, struct vnode *vp)
1750 {
1751 struct nfs_clearcommit_ctx *c = cl;
1752 struct nfsnode *np;
1753 struct vm_page *pg;
1754
1755 KASSERT(mutex_owned(vp->v_interlock));
1756
1757 np = VTONFS(vp);
1758 if (vp->v_type != VREG || vp->v_mount != c->mp || np == NULL)
1759 return false;
1760 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
1761 np->n_pushedhi = 0;
1762 np->n_commitflags &=
1763 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
1764 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
1765 pg->flags &= ~PG_NEEDCOMMIT;
1766 }
1767 return false;
1768 }
1769
1770 /*
1771 * The write verifier has changed (probably due to a server reboot), so all
1772 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
1773 * as dirty or are being written out just now, all this takes is clearing
1774 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
1775 * the mount point.
1776 */
1777 void
1778 nfs_clearcommit(struct mount *mp)
1779 {
1780 struct vnode *vp __diagused;
1781 struct vnode_iterator *marker;
1782 struct nfsmount *nmp = VFSTONFS(mp);
1783 struct nfs_clearcommit_ctx ctx;
1784
1785 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
1786 vfs_vnode_iterator_init(mp, &marker);
1787 ctx.mp = mp;
1788 vp = vfs_vnode_iterator_next(marker, nfs_clearcommit_selector, &ctx);
1789 KASSERT(vp == NULL);
1790 vfs_vnode_iterator_destroy(marker);
1791 mutex_enter(&nmp->nm_lock);
1792 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
1793 mutex_exit(&nmp->nm_lock);
1794 rw_exit(&nmp->nm_writeverflock);
1795 }
1796
1797 void
1798 nfs_merge_commit_ranges(struct vnode *vp)
1799 {
1800 struct nfsnode *np = VTONFS(vp);
1801
1802 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
1803
1804 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
1805 np->n_pushedlo = np->n_pushlo;
1806 np->n_pushedhi = np->n_pushhi;
1807 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
1808 } else {
1809 if (np->n_pushlo < np->n_pushedlo)
1810 np->n_pushedlo = np->n_pushlo;
1811 if (np->n_pushhi > np->n_pushedhi)
1812 np->n_pushedhi = np->n_pushhi;
1813 }
1814
1815 np->n_pushlo = np->n_pushhi = 0;
1816 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
1817
1818 #ifdef NFS_DEBUG_COMMIT
1819 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
1820 (unsigned)np->n_pushedhi);
1821 #endif
1822 }
1823
1824 int
1825 nfs_in_committed_range(struct vnode *vp, off_t off, off_t len)
1826 {
1827 struct nfsnode *np = VTONFS(vp);
1828 off_t lo, hi;
1829
1830 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
1831 return 0;
1832 lo = off;
1833 hi = lo + len;
1834
1835 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
1836 }
1837
1838 int
1839 nfs_in_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
1840 {
1841 struct nfsnode *np = VTONFS(vp);
1842 off_t lo, hi;
1843
1844 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
1845 return 0;
1846 lo = off;
1847 hi = lo + len;
1848
1849 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
1850 }
1851
1852 void
1853 nfs_add_committed_range(struct vnode *vp, off_t off, off_t len)
1854 {
1855 struct nfsnode *np = VTONFS(vp);
1856 off_t lo, hi;
1857
1858 lo = off;
1859 hi = lo + len;
1860
1861 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
1862 np->n_pushedlo = lo;
1863 np->n_pushedhi = hi;
1864 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
1865 } else {
1866 if (hi > np->n_pushedhi)
1867 np->n_pushedhi = hi;
1868 if (lo < np->n_pushedlo)
1869 np->n_pushedlo = lo;
1870 }
1871 #ifdef NFS_DEBUG_COMMIT
1872 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
1873 (unsigned)np->n_pushedhi);
1874 #endif
1875 }
1876
1877 void
1878 nfs_del_committed_range(struct vnode *vp, off_t off, off_t len)
1879 {
1880 struct nfsnode *np = VTONFS(vp);
1881 off_t lo, hi;
1882
1883 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
1884 return;
1885
1886 lo = off;
1887 hi = lo + len;
1888
1889 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
1890 return;
1891 if (lo <= np->n_pushedlo)
1892 np->n_pushedlo = hi;
1893 else if (hi >= np->n_pushedhi)
1894 np->n_pushedhi = lo;
1895 else {
1896 /*
1897 * XXX There's only one range. If the deleted range
1898 * is in the middle, pick the largest of the
1899 * contiguous ranges that it leaves.
1900 */
1901 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
1902 np->n_pushedhi = lo;
1903 else
1904 np->n_pushedlo = hi;
1905 }
1906 #ifdef NFS_DEBUG_COMMIT
1907 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
1908 (unsigned)np->n_pushedhi);
1909 #endif
1910 }
1911
1912 void
1913 nfs_add_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
1914 {
1915 struct nfsnode *np = VTONFS(vp);
1916 off_t lo, hi;
1917
1918 lo = off;
1919 hi = lo + len;
1920
1921 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
1922 np->n_pushlo = lo;
1923 np->n_pushhi = hi;
1924 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
1925 } else {
1926 if (lo < np->n_pushlo)
1927 np->n_pushlo = lo;
1928 if (hi > np->n_pushhi)
1929 np->n_pushhi = hi;
1930 }
1931 #ifdef NFS_DEBUG_COMMIT
1932 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
1933 (unsigned)np->n_pushhi);
1934 #endif
1935 }
1936
1937 void
1938 nfs_del_tobecommitted_range(struct vnode *vp, off_t off, off_t len)
1939 {
1940 struct nfsnode *np = VTONFS(vp);
1941 off_t lo, hi;
1942
1943 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
1944 return;
1945
1946 lo = off;
1947 hi = lo + len;
1948
1949 if (lo > np->n_pushhi || hi < np->n_pushlo)
1950 return;
1951
1952 if (lo <= np->n_pushlo)
1953 np->n_pushlo = hi;
1954 else if (hi >= np->n_pushhi)
1955 np->n_pushhi = lo;
1956 else {
1957 /*
1958 * XXX There's only one range. If the deleted range
1959 * is in the middle, pick the largest of the
1960 * contiguous ranges that it leaves.
1961 */
1962 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
1963 np->n_pushhi = lo;
1964 else
1965 np->n_pushlo = hi;
1966 }
1967 #ifdef NFS_DEBUG_COMMIT
1968 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
1969 (unsigned)np->n_pushhi);
1970 #endif
1971 }
1972
1973 /*
1974 * Map errnos to NFS error numbers. For Version 3 also filter out error
1975 * numbers not specified for the associated procedure.
1976 */
1977 int
1978 nfsrv_errmap(struct nfsrv_descript *nd, int err)
1979 {
1980 const short *defaulterrp, *errp;
1981
1982 if (nd->nd_flag & ND_NFSV3) {
1983 if (nd->nd_procnum <= NFSPROC_COMMIT) {
1984 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
1985 while (*++errp) {
1986 if (*errp == err)
1987 return (err);
1988 else if (*errp > err)
1989 break;
1990 }
1991 return ((int)*defaulterrp);
1992 } else
1993 return (err & 0xffff);
1994 }
1995 if (err <= ELAST)
1996 return ((int)nfsrv_v2errmap[err - 1]);
1997 return (NFSERR_IO);
1998 }
1999
2000 u_int32_t
2001 nfs_getxid(void)
2002 {
2003 u_int32_t newxid;
2004
2005 if (__predict_false(nfs_xid == 0)) {
2006 nfs_xid = cprng_fast32();
2007 }
2008
2009 /* get next xid. skip 0 */
2010 do {
2011 newxid = atomic_inc_32_nv(&nfs_xid);
2012 } while (__predict_false(newxid == 0));
2013
2014 return txdr_unsigned(newxid);
2015 }
2016
2017 /*
2018 * assign a new xid for existing request.
2019 * used for NFSERR_JUKEBOX handling.
2020 */
2021 void
2022 nfs_renewxid(struct nfsreq *req)
2023 {
2024 u_int32_t xid;
2025 int off;
2026
2027 xid = nfs_getxid();
2028 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2029 off = sizeof(u_int32_t); /* RPC record mark */
2030 else
2031 off = 0;
2032
2033 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2034 req->r_xid = xid;
2035 }
2036