nfs_subs.c revision 1.49 1 /* $NetBSD: nfs_subs.c,v 1.49 1997/10/19 01:46:32 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41
42 /*
43 * These functions support the macros and help fiddle mbuf chains for
44 * the nfs op functions. They do things like create the rpc header and
45 * copy data between mbuf chains and uio lists.
46 */
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/mount.h>
52 #include <sys/vnode.h>
53 #include <sys/namei.h>
54 #include <sys/mbuf.h>
55 #include <sys/socket.h>
56 #include <sys/stat.h>
57 #include <sys/malloc.h>
58 #include <sys/time.h>
59 #include <sys/dirent.h>
60
61 #include <vm/vm.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs.h>
67 #include <nfs/xdr_subs.h>
68 #include <nfs/nfsm_subs.h>
69 #include <nfs/nfsmount.h>
70 #include <nfs/nqnfs.h>
71 #include <nfs/nfsrtt.h>
72 #include <nfs/nfs_var.h>
73
74 #include <miscfs/specfs/specdev.h>
75
76 #include <vm/vm.h>
77
78 #include <netinet/in.h>
79 #ifdef ISO
80 #include <netiso/iso.h>
81 #endif
82
83 /*
84 * Data items converted to xdr at startup, since they are constant
85 * This is kinda hokey, but may save a little time doing byte swaps
86 */
87 u_int32_t nfs_xdrneg1;
88 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
89 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
90 rpc_auth_kerb;
91 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
92
93 /* And other global data */
94 static u_int32_t nfs_xid = 0;
95 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
96 NFCHR, NFNON };
97 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
98 NFFIFO, NFNON };
99 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
100 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
101 int nfs_ticks;
102 extern struct nfs_public nfs_pub;
103
104 /* NFS client/server stats. */
105 struct nfsstats nfsstats;
106
107 /*
108 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
109 */
110 int nfsv3_procid[NFS_NPROCS] = {
111 NFSPROC_NULL,
112 NFSPROC_GETATTR,
113 NFSPROC_SETATTR,
114 NFSPROC_NOOP,
115 NFSPROC_LOOKUP,
116 NFSPROC_READLINK,
117 NFSPROC_READ,
118 NFSPROC_NOOP,
119 NFSPROC_WRITE,
120 NFSPROC_CREATE,
121 NFSPROC_REMOVE,
122 NFSPROC_RENAME,
123 NFSPROC_LINK,
124 NFSPROC_SYMLINK,
125 NFSPROC_MKDIR,
126 NFSPROC_RMDIR,
127 NFSPROC_READDIR,
128 NFSPROC_FSSTAT,
129 NFSPROC_NOOP,
130 NFSPROC_NOOP,
131 NFSPROC_NOOP,
132 NFSPROC_NOOP,
133 NFSPROC_NOOP,
134 NFSPROC_NOOP,
135 NFSPROC_NOOP,
136 NFSPROC_NOOP
137 };
138
139 /*
140 * and the reverse mapping from generic to Version 2 procedure numbers
141 */
142 int nfsv2_procid[NFS_NPROCS] = {
143 NFSV2PROC_NULL,
144 NFSV2PROC_GETATTR,
145 NFSV2PROC_SETATTR,
146 NFSV2PROC_LOOKUP,
147 NFSV2PROC_NOOP,
148 NFSV2PROC_READLINK,
149 NFSV2PROC_READ,
150 NFSV2PROC_WRITE,
151 NFSV2PROC_CREATE,
152 NFSV2PROC_MKDIR,
153 NFSV2PROC_SYMLINK,
154 NFSV2PROC_CREATE,
155 NFSV2PROC_REMOVE,
156 NFSV2PROC_RMDIR,
157 NFSV2PROC_RENAME,
158 NFSV2PROC_LINK,
159 NFSV2PROC_READDIR,
160 NFSV2PROC_NOOP,
161 NFSV2PROC_STATFS,
162 NFSV2PROC_NOOP,
163 NFSV2PROC_NOOP,
164 NFSV2PROC_NOOP,
165 NFSV2PROC_NOOP,
166 NFSV2PROC_NOOP,
167 NFSV2PROC_NOOP,
168 NFSV2PROC_NOOP,
169 };
170
171 /*
172 * Maps errno values to nfs error numbers.
173 * Use NFSERR_IO as the catch all for ones not specifically defined in
174 * RFC 1094.
175 */
176 static u_char nfsrv_v2errmap[ELAST] = {
177 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
178 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
179 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
180 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
181 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
182 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
183 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
184 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
185 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
186 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
187 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
188 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
189 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
190 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
191 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
192 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
193 NFSERR_IO,
194 };
195
196 /*
197 * Maps errno values to nfs error numbers.
198 * Although it is not obvious whether or not NFS clients really care if
199 * a returned error value is in the specified list for the procedure, the
200 * safest thing to do is filter them appropriately. For Version 2, the
201 * X/Open XNFS document is the only specification that defines error values
202 * for each RPC (The RFC simply lists all possible error values for all RPCs),
203 * so I have decided to not do this for Version 2.
204 * The first entry is the default error return and the rest are the valid
205 * errors for that RPC in increasing numeric order.
206 */
207 static short nfsv3err_null[] = {
208 0,
209 0,
210 };
211
212 static short nfsv3err_getattr[] = {
213 NFSERR_IO,
214 NFSERR_IO,
215 NFSERR_STALE,
216 NFSERR_BADHANDLE,
217 NFSERR_SERVERFAULT,
218 0,
219 };
220
221 static short nfsv3err_setattr[] = {
222 NFSERR_IO,
223 NFSERR_PERM,
224 NFSERR_IO,
225 NFSERR_ACCES,
226 NFSERR_INVAL,
227 NFSERR_NOSPC,
228 NFSERR_ROFS,
229 NFSERR_DQUOT,
230 NFSERR_STALE,
231 NFSERR_BADHANDLE,
232 NFSERR_NOT_SYNC,
233 NFSERR_SERVERFAULT,
234 0,
235 };
236
237 static short nfsv3err_lookup[] = {
238 NFSERR_IO,
239 NFSERR_NOENT,
240 NFSERR_IO,
241 NFSERR_ACCES,
242 NFSERR_NOTDIR,
243 NFSERR_NAMETOL,
244 NFSERR_STALE,
245 NFSERR_BADHANDLE,
246 NFSERR_SERVERFAULT,
247 0,
248 };
249
250 static short nfsv3err_access[] = {
251 NFSERR_IO,
252 NFSERR_IO,
253 NFSERR_STALE,
254 NFSERR_BADHANDLE,
255 NFSERR_SERVERFAULT,
256 0,
257 };
258
259 static short nfsv3err_readlink[] = {
260 NFSERR_IO,
261 NFSERR_IO,
262 NFSERR_ACCES,
263 NFSERR_INVAL,
264 NFSERR_STALE,
265 NFSERR_BADHANDLE,
266 NFSERR_NOTSUPP,
267 NFSERR_SERVERFAULT,
268 0,
269 };
270
271 static short nfsv3err_read[] = {
272 NFSERR_IO,
273 NFSERR_IO,
274 NFSERR_NXIO,
275 NFSERR_ACCES,
276 NFSERR_INVAL,
277 NFSERR_STALE,
278 NFSERR_BADHANDLE,
279 NFSERR_SERVERFAULT,
280 0,
281 };
282
283 static short nfsv3err_write[] = {
284 NFSERR_IO,
285 NFSERR_IO,
286 NFSERR_ACCES,
287 NFSERR_INVAL,
288 NFSERR_FBIG,
289 NFSERR_NOSPC,
290 NFSERR_ROFS,
291 NFSERR_DQUOT,
292 NFSERR_STALE,
293 NFSERR_BADHANDLE,
294 NFSERR_SERVERFAULT,
295 0,
296 };
297
298 static short nfsv3err_create[] = {
299 NFSERR_IO,
300 NFSERR_IO,
301 NFSERR_ACCES,
302 NFSERR_EXIST,
303 NFSERR_NOTDIR,
304 NFSERR_NOSPC,
305 NFSERR_ROFS,
306 NFSERR_NAMETOL,
307 NFSERR_DQUOT,
308 NFSERR_STALE,
309 NFSERR_BADHANDLE,
310 NFSERR_NOTSUPP,
311 NFSERR_SERVERFAULT,
312 0,
313 };
314
315 static short nfsv3err_mkdir[] = {
316 NFSERR_IO,
317 NFSERR_IO,
318 NFSERR_ACCES,
319 NFSERR_EXIST,
320 NFSERR_NOTDIR,
321 NFSERR_NOSPC,
322 NFSERR_ROFS,
323 NFSERR_NAMETOL,
324 NFSERR_DQUOT,
325 NFSERR_STALE,
326 NFSERR_BADHANDLE,
327 NFSERR_NOTSUPP,
328 NFSERR_SERVERFAULT,
329 0,
330 };
331
332 static short nfsv3err_symlink[] = {
333 NFSERR_IO,
334 NFSERR_IO,
335 NFSERR_ACCES,
336 NFSERR_EXIST,
337 NFSERR_NOTDIR,
338 NFSERR_NOSPC,
339 NFSERR_ROFS,
340 NFSERR_NAMETOL,
341 NFSERR_DQUOT,
342 NFSERR_STALE,
343 NFSERR_BADHANDLE,
344 NFSERR_NOTSUPP,
345 NFSERR_SERVERFAULT,
346 0,
347 };
348
349 static short nfsv3err_mknod[] = {
350 NFSERR_IO,
351 NFSERR_IO,
352 NFSERR_ACCES,
353 NFSERR_EXIST,
354 NFSERR_NOTDIR,
355 NFSERR_NOSPC,
356 NFSERR_ROFS,
357 NFSERR_NAMETOL,
358 NFSERR_DQUOT,
359 NFSERR_STALE,
360 NFSERR_BADHANDLE,
361 NFSERR_NOTSUPP,
362 NFSERR_SERVERFAULT,
363 NFSERR_BADTYPE,
364 0,
365 };
366
367 static short nfsv3err_remove[] = {
368 NFSERR_IO,
369 NFSERR_NOENT,
370 NFSERR_IO,
371 NFSERR_ACCES,
372 NFSERR_NOTDIR,
373 NFSERR_ROFS,
374 NFSERR_NAMETOL,
375 NFSERR_STALE,
376 NFSERR_BADHANDLE,
377 NFSERR_SERVERFAULT,
378 0,
379 };
380
381 static short nfsv3err_rmdir[] = {
382 NFSERR_IO,
383 NFSERR_NOENT,
384 NFSERR_IO,
385 NFSERR_ACCES,
386 NFSERR_EXIST,
387 NFSERR_NOTDIR,
388 NFSERR_INVAL,
389 NFSERR_ROFS,
390 NFSERR_NAMETOL,
391 NFSERR_NOTEMPTY,
392 NFSERR_STALE,
393 NFSERR_BADHANDLE,
394 NFSERR_NOTSUPP,
395 NFSERR_SERVERFAULT,
396 0,
397 };
398
399 static short nfsv3err_rename[] = {
400 NFSERR_IO,
401 NFSERR_NOENT,
402 NFSERR_IO,
403 NFSERR_ACCES,
404 NFSERR_EXIST,
405 NFSERR_XDEV,
406 NFSERR_NOTDIR,
407 NFSERR_ISDIR,
408 NFSERR_INVAL,
409 NFSERR_NOSPC,
410 NFSERR_ROFS,
411 NFSERR_MLINK,
412 NFSERR_NAMETOL,
413 NFSERR_NOTEMPTY,
414 NFSERR_DQUOT,
415 NFSERR_STALE,
416 NFSERR_BADHANDLE,
417 NFSERR_NOTSUPP,
418 NFSERR_SERVERFAULT,
419 0,
420 };
421
422 static short nfsv3err_link[] = {
423 NFSERR_IO,
424 NFSERR_IO,
425 NFSERR_ACCES,
426 NFSERR_EXIST,
427 NFSERR_XDEV,
428 NFSERR_NOTDIR,
429 NFSERR_INVAL,
430 NFSERR_NOSPC,
431 NFSERR_ROFS,
432 NFSERR_MLINK,
433 NFSERR_NAMETOL,
434 NFSERR_DQUOT,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static short nfsv3err_readdir[] = {
443 NFSERR_IO,
444 NFSERR_IO,
445 NFSERR_ACCES,
446 NFSERR_NOTDIR,
447 NFSERR_STALE,
448 NFSERR_BADHANDLE,
449 NFSERR_BAD_COOKIE,
450 NFSERR_TOOSMALL,
451 NFSERR_SERVERFAULT,
452 0,
453 };
454
455 static short nfsv3err_readdirplus[] = {
456 NFSERR_IO,
457 NFSERR_IO,
458 NFSERR_ACCES,
459 NFSERR_NOTDIR,
460 NFSERR_STALE,
461 NFSERR_BADHANDLE,
462 NFSERR_BAD_COOKIE,
463 NFSERR_NOTSUPP,
464 NFSERR_TOOSMALL,
465 NFSERR_SERVERFAULT,
466 0,
467 };
468
469 static short nfsv3err_fsstat[] = {
470 NFSERR_IO,
471 NFSERR_IO,
472 NFSERR_STALE,
473 NFSERR_BADHANDLE,
474 NFSERR_SERVERFAULT,
475 0,
476 };
477
478 static short nfsv3err_fsinfo[] = {
479 NFSERR_STALE,
480 NFSERR_STALE,
481 NFSERR_BADHANDLE,
482 NFSERR_SERVERFAULT,
483 0,
484 };
485
486 static short nfsv3err_pathconf[] = {
487 NFSERR_STALE,
488 NFSERR_STALE,
489 NFSERR_BADHANDLE,
490 NFSERR_SERVERFAULT,
491 0,
492 };
493
494 static short nfsv3err_commit[] = {
495 NFSERR_IO,
496 NFSERR_IO,
497 NFSERR_STALE,
498 NFSERR_BADHANDLE,
499 NFSERR_SERVERFAULT,
500 0,
501 };
502
503 static short *nfsrv_v3errmap[] = {
504 nfsv3err_null,
505 nfsv3err_getattr,
506 nfsv3err_setattr,
507 nfsv3err_lookup,
508 nfsv3err_access,
509 nfsv3err_readlink,
510 nfsv3err_read,
511 nfsv3err_write,
512 nfsv3err_create,
513 nfsv3err_mkdir,
514 nfsv3err_symlink,
515 nfsv3err_mknod,
516 nfsv3err_remove,
517 nfsv3err_rmdir,
518 nfsv3err_rename,
519 nfsv3err_link,
520 nfsv3err_readdir,
521 nfsv3err_readdirplus,
522 nfsv3err_fsstat,
523 nfsv3err_fsinfo,
524 nfsv3err_pathconf,
525 nfsv3err_commit,
526 };
527
528 extern struct nfsrtt nfsrtt;
529 extern time_t nqnfsstarttime;
530 extern int nqsrv_clockskew;
531 extern int nqsrv_writeslack;
532 extern int nqsrv_maxlease;
533 extern int nqnfs_piggy[NFS_NPROCS];
534 extern nfstype nfsv2_type[9];
535 extern nfstype nfsv3_type[9];
536 extern struct nfsnodehashhead *nfsnodehashtbl;
537 extern u_long nfsnodehash;
538
539 LIST_HEAD(nfsnodehashhead, nfsnode);
540 u_long nfsdirhashmask;
541
542 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
543
544 /*
545 * Create the header for an rpc request packet
546 * The hsiz is the size of the rest of the nfs request header.
547 * (just used to decide if a cluster is a good idea)
548 */
549 struct mbuf *
550 nfsm_reqh(vp, procid, hsiz, bposp)
551 struct vnode *vp;
552 u_long procid;
553 int hsiz;
554 caddr_t *bposp;
555 {
556 register struct mbuf *mb;
557 register u_int32_t *tl;
558 register caddr_t bpos;
559 struct mbuf *mb2;
560 struct nfsmount *nmp;
561 int nqflag;
562
563 MGET(mb, M_WAIT, MT_DATA);
564 if (hsiz >= MINCLSIZE)
565 MCLGET(mb, M_WAIT);
566 mb->m_len = 0;
567 bpos = mtod(mb, caddr_t);
568
569 /*
570 * For NQNFS, add lease request.
571 */
572 if (vp) {
573 nmp = VFSTONFS(vp->v_mount);
574 if (nmp->nm_flag & NFSMNT_NQNFS) {
575 nqflag = NQNFS_NEEDLEASE(vp, procid);
576 if (nqflag) {
577 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
578 *tl++ = txdr_unsigned(nqflag);
579 *tl = txdr_unsigned(nmp->nm_leaseterm);
580 } else {
581 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
582 *tl = 0;
583 }
584 }
585 }
586 /* Finally, return values */
587 *bposp = bpos;
588 return (mb);
589 }
590
591 /*
592 * Build the RPC header and fill in the authorization info.
593 * The authorization string argument is only used when the credentials
594 * come from outside of the kernel.
595 * Returns the head of the mbuf list.
596 */
597 struct mbuf *
598 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
599 verf_str, mrest, mrest_len, mbp, xidp)
600 register struct ucred *cr;
601 int nmflag;
602 int procid;
603 int auth_type;
604 int auth_len;
605 char *auth_str;
606 int verf_len;
607 char *verf_str;
608 struct mbuf *mrest;
609 int mrest_len;
610 struct mbuf **mbp;
611 u_int32_t *xidp;
612 {
613 register struct mbuf *mb;
614 register u_int32_t *tl;
615 register caddr_t bpos;
616 register int i;
617 struct mbuf *mreq, *mb2;
618 int siz, grpsiz, authsiz;
619 struct timeval tv;
620 static u_int32_t base;
621
622 authsiz = nfsm_rndup(auth_len);
623 MGETHDR(mb, M_WAIT, MT_DATA);
624 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
625 MCLGET(mb, M_WAIT);
626 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
627 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
628 } else {
629 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
630 }
631 mb->m_len = 0;
632 mreq = mb;
633 bpos = mtod(mb, caddr_t);
634
635 /*
636 * First the RPC header.
637 */
638 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
639
640 /*
641 * derive initial xid from system time
642 * XXX time is invalid if root not yet mounted
643 */
644 if (!base && (rootvp)) {
645 microtime(&tv);
646 base = tv.tv_sec << 12;
647 nfs_xid = base;
648 }
649 /*
650 * Skip zero xid if it should ever happen.
651 */
652 if (++nfs_xid == 0)
653 nfs_xid++;
654
655 *tl++ = *xidp = txdr_unsigned(nfs_xid);
656 *tl++ = rpc_call;
657 *tl++ = rpc_vers;
658 if (nmflag & NFSMNT_NQNFS) {
659 *tl++ = txdr_unsigned(NQNFS_PROG);
660 *tl++ = txdr_unsigned(NQNFS_VER3);
661 } else {
662 *tl++ = txdr_unsigned(NFS_PROG);
663 if (nmflag & NFSMNT_NFSV3)
664 *tl++ = txdr_unsigned(NFS_VER3);
665 else
666 *tl++ = txdr_unsigned(NFS_VER2);
667 }
668 if (nmflag & NFSMNT_NFSV3)
669 *tl++ = txdr_unsigned(procid);
670 else
671 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
672
673 /*
674 * And then the authorization cred.
675 */
676 *tl++ = txdr_unsigned(auth_type);
677 *tl = txdr_unsigned(authsiz);
678 switch (auth_type) {
679 case RPCAUTH_UNIX:
680 nfsm_build(tl, u_int32_t *, auth_len);
681 *tl++ = 0; /* stamp ?? */
682 *tl++ = 0; /* NULL hostname */
683 *tl++ = txdr_unsigned(cr->cr_uid);
684 *tl++ = txdr_unsigned(cr->cr_gid);
685 grpsiz = (auth_len >> 2) - 5;
686 *tl++ = txdr_unsigned(grpsiz);
687 for (i = 0; i < grpsiz; i++)
688 *tl++ = txdr_unsigned(cr->cr_groups[i]);
689 break;
690 case RPCAUTH_KERB4:
691 siz = auth_len;
692 while (siz > 0) {
693 if (M_TRAILINGSPACE(mb) == 0) {
694 MGET(mb2, M_WAIT, MT_DATA);
695 if (siz >= MINCLSIZE)
696 MCLGET(mb2, M_WAIT);
697 mb->m_next = mb2;
698 mb = mb2;
699 mb->m_len = 0;
700 bpos = mtod(mb, caddr_t);
701 }
702 i = min(siz, M_TRAILINGSPACE(mb));
703 bcopy(auth_str, bpos, i);
704 mb->m_len += i;
705 auth_str += i;
706 bpos += i;
707 siz -= i;
708 }
709 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
710 for (i = 0; i < siz; i++)
711 *bpos++ = '\0';
712 mb->m_len += siz;
713 }
714 break;
715 };
716
717 /*
718 * And the verifier...
719 */
720 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
721 if (verf_str) {
722 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
723 *tl = txdr_unsigned(verf_len);
724 siz = verf_len;
725 while (siz > 0) {
726 if (M_TRAILINGSPACE(mb) == 0) {
727 MGET(mb2, M_WAIT, MT_DATA);
728 if (siz >= MINCLSIZE)
729 MCLGET(mb2, M_WAIT);
730 mb->m_next = mb2;
731 mb = mb2;
732 mb->m_len = 0;
733 bpos = mtod(mb, caddr_t);
734 }
735 i = min(siz, M_TRAILINGSPACE(mb));
736 bcopy(verf_str, bpos, i);
737 mb->m_len += i;
738 verf_str += i;
739 bpos += i;
740 siz -= i;
741 }
742 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
743 for (i = 0; i < siz; i++)
744 *bpos++ = '\0';
745 mb->m_len += siz;
746 }
747 } else {
748 *tl++ = txdr_unsigned(RPCAUTH_NULL);
749 *tl = 0;
750 }
751 mb->m_next = mrest;
752 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
753 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
754 *mbp = mb;
755 return (mreq);
756 }
757
758 /*
759 * copies mbuf chain to the uio scatter/gather list
760 */
761 int
762 nfsm_mbuftouio(mrep, uiop, siz, dpos)
763 struct mbuf **mrep;
764 register struct uio *uiop;
765 int siz;
766 caddr_t *dpos;
767 {
768 register char *mbufcp, *uiocp;
769 register int xfer, left, len;
770 register struct mbuf *mp;
771 long uiosiz, rem;
772 int error = 0;
773
774 mp = *mrep;
775 mbufcp = *dpos;
776 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
777 rem = nfsm_rndup(siz)-siz;
778 while (siz > 0) {
779 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
780 return (EFBIG);
781 left = uiop->uio_iov->iov_len;
782 uiocp = uiop->uio_iov->iov_base;
783 if (left > siz)
784 left = siz;
785 uiosiz = left;
786 while (left > 0) {
787 while (len == 0) {
788 mp = mp->m_next;
789 if (mp == NULL)
790 return (EBADRPC);
791 mbufcp = mtod(mp, caddr_t);
792 len = mp->m_len;
793 }
794 xfer = (left > len) ? len : left;
795 #ifdef notdef
796 /* Not Yet.. */
797 if (uiop->uio_iov->iov_op != NULL)
798 (*(uiop->uio_iov->iov_op))
799 (mbufcp, uiocp, xfer);
800 else
801 #endif
802 if (uiop->uio_segflg == UIO_SYSSPACE)
803 bcopy(mbufcp, uiocp, xfer);
804 else
805 copyout(mbufcp, uiocp, xfer);
806 left -= xfer;
807 len -= xfer;
808 mbufcp += xfer;
809 uiocp += xfer;
810 uiop->uio_offset += xfer;
811 uiop->uio_resid -= xfer;
812 }
813 if (uiop->uio_iov->iov_len <= siz) {
814 uiop->uio_iovcnt--;
815 uiop->uio_iov++;
816 } else {
817 uiop->uio_iov->iov_base += uiosiz;
818 uiop->uio_iov->iov_len -= uiosiz;
819 }
820 siz -= uiosiz;
821 }
822 *dpos = mbufcp;
823 *mrep = mp;
824 if (rem > 0) {
825 if (len < rem)
826 error = nfs_adv(mrep, dpos, rem, len);
827 else
828 *dpos += rem;
829 }
830 return (error);
831 }
832
833 /*
834 * copies a uio scatter/gather list to an mbuf chain.
835 * NOTE: can ony handle iovcnt == 1
836 */
837 int
838 nfsm_uiotombuf(uiop, mq, siz, bpos)
839 register struct uio *uiop;
840 struct mbuf **mq;
841 int siz;
842 caddr_t *bpos;
843 {
844 register char *uiocp;
845 register struct mbuf *mp, *mp2;
846 register int xfer, left, mlen;
847 int uiosiz, clflg, rem;
848 char *cp;
849
850 #ifdef DIAGNOSTIC
851 if (uiop->uio_iovcnt != 1)
852 panic("nfsm_uiotombuf: iovcnt != 1");
853 #endif
854
855 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
856 clflg = 1;
857 else
858 clflg = 0;
859 rem = nfsm_rndup(siz)-siz;
860 mp = mp2 = *mq;
861 while (siz > 0) {
862 left = uiop->uio_iov->iov_len;
863 uiocp = uiop->uio_iov->iov_base;
864 if (left > siz)
865 left = siz;
866 uiosiz = left;
867 while (left > 0) {
868 mlen = M_TRAILINGSPACE(mp);
869 if (mlen == 0) {
870 MGET(mp, M_WAIT, MT_DATA);
871 if (clflg)
872 MCLGET(mp, M_WAIT);
873 mp->m_len = 0;
874 mp2->m_next = mp;
875 mp2 = mp;
876 mlen = M_TRAILINGSPACE(mp);
877 }
878 xfer = (left > mlen) ? mlen : left;
879 #ifdef notdef
880 /* Not Yet.. */
881 if (uiop->uio_iov->iov_op != NULL)
882 (*(uiop->uio_iov->iov_op))
883 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
884 else
885 #endif
886 if (uiop->uio_segflg == UIO_SYSSPACE)
887 bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
888 else
889 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
890 mp->m_len += xfer;
891 left -= xfer;
892 uiocp += xfer;
893 uiop->uio_offset += xfer;
894 uiop->uio_resid -= xfer;
895 }
896 uiop->uio_iov->iov_base += uiosiz;
897 uiop->uio_iov->iov_len -= uiosiz;
898 siz -= uiosiz;
899 }
900 if (rem > 0) {
901 if (rem > M_TRAILINGSPACE(mp)) {
902 MGET(mp, M_WAIT, MT_DATA);
903 mp->m_len = 0;
904 mp2->m_next = mp;
905 }
906 cp = mtod(mp, caddr_t)+mp->m_len;
907 for (left = 0; left < rem; left++)
908 *cp++ = '\0';
909 mp->m_len += rem;
910 *bpos = cp;
911 } else
912 *bpos = mtod(mp, caddr_t)+mp->m_len;
913 *mq = mp;
914 return (0);
915 }
916
917 /*
918 * Get at least "siz" bytes of correctly aligned data.
919 * When called the mbuf pointers are not necessarily correct,
920 * dsosp points to what ought to be in m_data and left contains
921 * what ought to be in m_len.
922 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
923 * cases. (The macros use the vars. dpos and dpos2)
924 */
925 int
926 nfsm_disct(mdp, dposp, siz, left, cp2)
927 struct mbuf **mdp;
928 caddr_t *dposp;
929 int siz;
930 int left;
931 caddr_t *cp2;
932 {
933 register struct mbuf *m1, *m2;
934 struct mbuf *havebuf = NULL;
935 caddr_t src = *dposp;
936 caddr_t dst;
937 int len;
938
939 #ifdef DEBUG
940 if (left < 0)
941 panic("nfsm_disct: left < 0");
942 #endif
943 m1 = *mdp;
944 /*
945 * Skip through the mbuf chain looking for an mbuf with
946 * some data. If the first mbuf found has enough data
947 * and it is correctly aligned return it.
948 */
949 while (left == 0) {
950 havebuf = m1;
951 *mdp = m1 = m1->m_next;
952 if (m1 == NULL)
953 return (EBADRPC);
954 src = mtod(m1, caddr_t);
955 left = m1->m_len;
956 /*
957 * If we start a new mbuf and it is big enough
958 * and correctly aligned just return it, don't
959 * do any pull up.
960 */
961 if (left >= siz && nfsm_aligned(src)) {
962 *cp2 = src;
963 *dposp = src + siz;
964 return (0);
965 }
966 }
967 if (m1->m_flags & M_EXT) {
968 if (havebuf) {
969 /* If the first mbuf with data has external data
970 * and there is a previous empty mbuf use it
971 * to move the data into.
972 */
973 m2 = m1;
974 *mdp = m1 = havebuf;
975 if (m1->m_flags & M_EXT) {
976 MEXTREMOVE(m1);
977 }
978 } else {
979 /*
980 * If the first mbuf has a external data
981 * and there is no previous empty mbuf
982 * allocate a new mbuf and move the external
983 * data to the new mbuf. Also make the first
984 * mbuf look empty.
985 */
986 m2 = m_get(M_WAIT, MT_DATA);
987 m2->m_ext = m1->m_ext;
988 m2->m_data = src;
989 m2->m_len = left;
990 MCLADDREFERENCE(m1, m2);
991 MEXTREMOVE(m1);
992 m2->m_next = m1->m_next;
993 m1->m_next = m2;
994 }
995 m1->m_len = 0;
996 dst = m1->m_dat;
997 } else {
998 /*
999 * If the first mbuf has no external data
1000 * move the data to the front of the mbuf.
1001 */
1002 if ((dst = m1->m_dat) != src)
1003 ovbcopy(src, dst, left);
1004 dst += left;
1005 m1->m_len = left;
1006 m2 = m1->m_next;
1007 }
1008 m1->m_flags &= ~M_PKTHDR;
1009 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1010 *dposp = mtod(m1, caddr_t) + siz;
1011 /*
1012 * Loop through mbufs pulling data up into first mbuf until
1013 * the first mbuf is full or there is no more data to
1014 * pullup.
1015 */
1016 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1017 if ((len = min(len, m2->m_len)) != 0)
1018 bcopy(m2->m_data, dst, len);
1019 m1->m_len += len;
1020 dst += len;
1021 m2->m_data += len;
1022 m2->m_len -= len;
1023 m2 = m2->m_next;
1024 }
1025 if (m1->m_len < siz)
1026 return (EBADRPC);
1027 return (0);
1028 }
1029
1030 /*
1031 * Advance the position in the mbuf chain.
1032 */
1033 int
1034 nfs_adv(mdp, dposp, offs, left)
1035 struct mbuf **mdp;
1036 caddr_t *dposp;
1037 int offs;
1038 int left;
1039 {
1040 register struct mbuf *m;
1041 register int s;
1042
1043 m = *mdp;
1044 s = left;
1045 while (s < offs) {
1046 offs -= s;
1047 m = m->m_next;
1048 if (m == NULL)
1049 return (EBADRPC);
1050 s = m->m_len;
1051 }
1052 *mdp = m;
1053 *dposp = mtod(m, caddr_t)+offs;
1054 return (0);
1055 }
1056
1057 /*
1058 * Copy a string into mbufs for the hard cases...
1059 */
1060 int
1061 nfsm_strtmbuf(mb, bpos, cp, siz)
1062 struct mbuf **mb;
1063 char **bpos;
1064 const char *cp;
1065 long siz;
1066 {
1067 register struct mbuf *m1 = NULL, *m2;
1068 long left, xfer, len, tlen;
1069 u_int32_t *tl;
1070 int putsize;
1071
1072 putsize = 1;
1073 m2 = *mb;
1074 left = M_TRAILINGSPACE(m2);
1075 if (left > 0) {
1076 tl = ((u_int32_t *)(*bpos));
1077 *tl++ = txdr_unsigned(siz);
1078 putsize = 0;
1079 left -= NFSX_UNSIGNED;
1080 m2->m_len += NFSX_UNSIGNED;
1081 if (left > 0) {
1082 bcopy(cp, (caddr_t) tl, left);
1083 siz -= left;
1084 cp += left;
1085 m2->m_len += left;
1086 left = 0;
1087 }
1088 }
1089 /* Loop around adding mbufs */
1090 while (siz > 0) {
1091 MGET(m1, M_WAIT, MT_DATA);
1092 if (siz > MLEN)
1093 MCLGET(m1, M_WAIT);
1094 m1->m_len = NFSMSIZ(m1);
1095 m2->m_next = m1;
1096 m2 = m1;
1097 tl = mtod(m1, u_int32_t *);
1098 tlen = 0;
1099 if (putsize) {
1100 *tl++ = txdr_unsigned(siz);
1101 m1->m_len -= NFSX_UNSIGNED;
1102 tlen = NFSX_UNSIGNED;
1103 putsize = 0;
1104 }
1105 if (siz < m1->m_len) {
1106 len = nfsm_rndup(siz);
1107 xfer = siz;
1108 if (xfer < len)
1109 *(tl+(xfer>>2)) = 0;
1110 } else {
1111 xfer = len = m1->m_len;
1112 }
1113 bcopy(cp, (caddr_t) tl, xfer);
1114 m1->m_len = len+tlen;
1115 siz -= xfer;
1116 cp += xfer;
1117 }
1118 *mb = m1;
1119 *bpos = mtod(m1, caddr_t)+m1->m_len;
1120 return (0);
1121 }
1122
1123 /*
1124 * Directory caching routines. They work as follows:
1125 * - a cache is maintained per VDIR nfsnode.
1126 * - for each offset cookie that is exported to userspace, and can
1127 * thus be thrown back at us as an offset to VOP_READDIR, store
1128 * information in the cache.
1129 * - cached are:
1130 * - cookie itself
1131 * - blocknumber (essentially just a search key in the buffer cache)
1132 * - entry number in block.
1133 * - offset cookie of block in which this entry is stored
1134 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1135 * - entries are looked up in a hash table
1136 * - also maintained is an LRU list of entries, used to determine
1137 * which ones to delete if the cache grows too large.
1138 * - if 32 <-> 64 translation mode is requested for a filesystem,
1139 * the cache also functions as a translation table
1140 * - in the translation case, invalidating the cache does not mean
1141 * flushing it, but just marking entries as invalid, except for
1142 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1143 * still be able to use the cache as a translation table.
1144 * - 32 bit cookies are uniquely created by combining the hash table
1145 * entry value, and one generation count per hash table entry,
1146 * incremented each time an entry is appended to the chain.
1147 * - the cache is invalidated each time a direcory is modified
1148 * - sanity checks are also done; if an entry in a block turns
1149 * out not to have a matching cookie, the cache is invalidated
1150 * and a new block starting from the wanted offset is fetched from
1151 * the server.
1152 * - directory entries as read from the server are extended to contain
1153 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1154 * the cache and exporting them to userspace through the cookie
1155 * argument to VOP_READDIR.
1156 */
1157
1158 u_long
1159 nfs_dirhash(off)
1160 off_t off;
1161 {
1162 int i;
1163 char *cp = (char *)&off;
1164 u_long sum = 0L;
1165
1166 for (i = 0 ; i < sizeof (off); i++)
1167 sum += *cp++;
1168
1169 return sum;
1170 }
1171
1172 void
1173 nfs_initdircache(vp)
1174 struct vnode *vp;
1175 {
1176 struct nfsnode *np = VTONFS(vp);
1177 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1178
1179 np->n_dircachesize = 0;
1180 np->n_dblkno = 1;
1181 np->n_dircache =
1182 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, &nfsdirhashmask);
1183 TAILQ_INIT(&np->n_dirchain);
1184 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1185 MALLOC(np->n_dirgens, unsigned *,
1186 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1187 M_WAITOK);
1188 bzero((caddr_t)np->n_dirgens,
1189 NFS_DIRHASHSIZ * sizeof (unsigned));
1190 }
1191 }
1192
1193 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1194
1195 struct nfsdircache *
1196 nfs_searchdircache(vp, off, do32, hashent)
1197 struct vnode *vp;
1198 off_t off;
1199 int do32;
1200 int *hashent;
1201 {
1202 struct nfsdirhashhead *ndhp;
1203 struct nfsdircache *ndp = NULL;
1204 struct nfsnode *np = VTONFS(vp);
1205 unsigned ent;
1206
1207 /*
1208 * Zero is always a valid cookie.
1209 */
1210 if (off == 0)
1211 return &dzero;
1212
1213 /*
1214 * We use a 32bit cookie as search key, directly reconstruct
1215 * the hashentry. Else use the hashfunction.
1216 */
1217 if (do32) {
1218 ent = (u_int32_t)off >> 24;
1219 if (ent >= NFS_DIRHASHSIZ)
1220 return NULL;
1221 ndhp = &np->n_dircache[ent];
1222 } else {
1223 ndhp = NFSDIRHASH(np, off);
1224 }
1225
1226 if (hashent)
1227 *hashent = (int)(ndhp - np->n_dircache);
1228 if (do32) {
1229 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1230 if (ndp->dc_cookie32 == (u_int32_t)off) {
1231 /*
1232 * An invalidated entry will become the
1233 * start of a new block fetched from
1234 * the server.
1235 */
1236 if (ndp->dc_blkno == -1) {
1237 ndp->dc_blkcookie = ndp->dc_cookie;
1238 ndp->dc_blkno = np->n_dblkno++;
1239 ndp->dc_entry = 0;
1240 }
1241 break;
1242 }
1243 }
1244 } else {
1245 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1246 if (ndp->dc_cookie == off)
1247 break;
1248 }
1249 return ndp;
1250 }
1251
1252
1253 struct nfsdircache *
1254 nfs_enterdircache(vp, off, blkoff, en, blkno)
1255 struct vnode *vp;
1256 off_t off, blkoff;
1257 daddr_t blkno;
1258 int en;
1259 {
1260 struct nfsnode *np = VTONFS(vp);
1261 struct nfsdirhashhead *ndhp;
1262 struct nfsdircache *ndp = NULL, *first;
1263 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1264 int hashent, gen, overwrite;
1265
1266 if (!np->n_dircache)
1267 /*
1268 * XXX would like to do this in nfs_nget but vtype
1269 * isn't known at that time.
1270 */
1271 nfs_initdircache(vp);
1272
1273 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1274
1275 if (ndp && ndp->dc_blkno != -1) {
1276 /*
1277 * Overwriting an old entry. Check if it's the same.
1278 * If so, just return. If not, remove the old entry.
1279 */
1280 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1281 return ndp;
1282 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1283 LIST_REMOVE(ndp, dc_hash);
1284 FREE(ndp, M_NFSDIROFF);
1285 ndp = 0;
1286 }
1287
1288 ndhp = &np->n_dircache[hashent];
1289
1290 if (!ndp) {
1291 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1292 M_WAITOK);
1293 overwrite = 0;
1294 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1295 /*
1296 * We're allocating a new entry, so bump the
1297 * generation number.
1298 */
1299 gen = ++np->n_dirgens[hashent];
1300 if (gen == 0) {
1301 np->n_dirgens[hashent]++;
1302 gen++;
1303 }
1304 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1305 }
1306 } else
1307 overwrite = 1;
1308
1309 /*
1310 * If the entry number is 0, we are at the start of a new block, so
1311 * allocate a new blocknumber.
1312 */
1313 if (en == 0)
1314 ndp->dc_blkno = np->n_dblkno++;
1315 else
1316 ndp->dc_blkno = blkno;
1317
1318 ndp->dc_cookie = off;
1319 ndp->dc_blkcookie = blkoff;
1320 ndp->dc_entry = en;
1321
1322 if (overwrite)
1323 return ndp;
1324
1325 /*
1326 * If the maximum directory cookie cache size has been reached
1327 * for this node, take one off the front. The idea is that
1328 * directories are typically read front-to-back once, so that
1329 * the oldest entries can be thrown away without much performance
1330 * loss.
1331 */
1332 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1333 first = np->n_dirchain.tqh_first;
1334 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1335 LIST_REMOVE(first, dc_hash);
1336 FREE(first, M_NFSDIROFF);
1337 } else
1338 np->n_dircachesize++;
1339
1340 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1341 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1342 return ndp;
1343 }
1344
1345 void
1346 nfs_invaldircache(vp, forcefree)
1347 struct vnode *vp;
1348 int forcefree;
1349 {
1350 struct nfsnode *np = VTONFS(vp);
1351 struct nfsdircache *ndp = NULL;
1352 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1353
1354 #ifdef DIAGNOSTIC
1355 if (vp->v_type != VDIR)
1356 panic("nfs: invaldircache: not dir");
1357 #endif
1358
1359 if (!np->n_dircache)
1360 return;
1361
1362 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1363 while ((ndp = np->n_dirchain.tqh_first)) {
1364 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1365 LIST_REMOVE(ndp, dc_hash);
1366 FREE(ndp, M_NFSDIROFF);
1367 }
1368 np->n_dircachesize = 0;
1369 if (forcefree && np->n_dirgens) {
1370 FREE(np->n_dirgens, M_NFSDIROFF);
1371 }
1372 } else {
1373 for (ndp = np->n_dirchain.tqh_first; ndp;
1374 ndp = ndp->dc_chain.tqe_next)
1375 ndp->dc_blkno = -1;
1376 }
1377
1378 np->n_dblkno = 1;
1379 }
1380
1381 /*
1382 * Called once before VFS init to initialize shared and
1383 * server-specific data structures.
1384 */
1385 void
1386 nfs_init()
1387 {
1388
1389 #if !defined(alpha) && defined(DIAGNOSTIC)
1390 /*
1391 * Check to see if major data structures haven't bloated.
1392 */
1393 if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
1394 printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
1395 printf("Try reducing NFS_SMALLFH\n");
1396 }
1397 if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
1398 printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
1399 printf("Try reducing NFS_UIDHASHSIZ\n");
1400 }
1401 if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
1402 printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
1403 printf("Try unionizing the nu_nickname and nu_flag fields\n");
1404 }
1405 #endif
1406
1407 nfsrtt.pos = 0;
1408 rpc_vers = txdr_unsigned(RPC_VER2);
1409 rpc_call = txdr_unsigned(RPC_CALL);
1410 rpc_reply = txdr_unsigned(RPC_REPLY);
1411 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1412 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1413 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1414 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1415 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1416 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1417 nfs_prog = txdr_unsigned(NFS_PROG);
1418 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1419 nfs_true = txdr_unsigned(TRUE);
1420 nfs_false = txdr_unsigned(FALSE);
1421 nfs_xdrneg1 = txdr_unsigned(-1);
1422 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1423 if (nfs_ticks < 1)
1424 nfs_ticks = 1;
1425 #ifdef NFSSERVER
1426 nfsrv_init(0); /* Init server data structures */
1427 nfsrv_initcache(); /* Init the server request cache */
1428 #endif /* NFSSERVER */
1429
1430 /*
1431 * Initialize the nqnfs data structures.
1432 */
1433 if (nqnfsstarttime == 0) {
1434 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1435 + nqsrv_clockskew + nqsrv_writeslack;
1436 NQLOADNOVRAM(nqnfsstarttime);
1437 CIRCLEQ_INIT(&nqtimerhead);
1438 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, &nqfhhash);
1439 }
1440
1441 /*
1442 * Initialize reply list and start timer
1443 */
1444 TAILQ_INIT(&nfs_reqq);
1445 nfs_timer(NULL);
1446 }
1447
1448 #ifdef NFS
1449 /*
1450 * Called once at VFS init to initialize client-specific data structures.
1451 */
1452 void
1453 nfs_vfs_init()
1454 {
1455 register int i;
1456
1457 /* Ensure async daemons disabled */
1458 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1459 nfs_iodwant[i] = (struct proc *)0;
1460 nfs_iodmount[i] = (struct nfsmount *)0;
1461 }
1462 nfs_nhinit(); /* Init the nfsnode table */
1463 }
1464
1465 /*
1466 * Attribute cache routines.
1467 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1468 * that are on the mbuf list
1469 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1470 * error otherwise
1471 */
1472
1473 /*
1474 * Load the attribute cache (that lives in the nfsnode entry) with
1475 * the values on the mbuf list and
1476 * Iff vap not NULL
1477 * copy the attributes to *vaper
1478 */
1479 int
1480 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1481 struct vnode **vpp;
1482 struct mbuf **mdp;
1483 caddr_t *dposp;
1484 struct vattr *vaper;
1485 {
1486 register int32_t t1;
1487 caddr_t cp2;
1488 int error = 0;
1489 struct mbuf *md;
1490 int v3 = NFS_ISV3(*vpp);
1491
1492 md = *mdp;
1493 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1494 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1495 if (error)
1496 return (error);
1497 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1498 }
1499
1500 int
1501 nfs_loadattrcache(vpp, fp, vaper)
1502 struct vnode **vpp;
1503 struct nfs_fattr *fp;
1504 struct vattr *vaper;
1505 {
1506 register struct vnode *vp = *vpp;
1507 register struct vattr *vap;
1508 int v3 = NFS_ISV3(vp);
1509 enum vtype vtyp;
1510 u_short vmode;
1511 struct timespec mtime;
1512 struct vnode *nvp;
1513 int32_t rdev;
1514 register struct nfsnode *np;
1515 extern int (**spec_nfsv2nodeop_p) __P((void *));
1516
1517 if (v3) {
1518 vtyp = nfsv3tov_type(fp->fa_type);
1519 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1520 rdev = makedev(fxdr_unsigned(u_char, fp->fa3_rdev.specdata1),
1521 fxdr_unsigned(u_char, fp->fa3_rdev.specdata2));
1522 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1523 } else {
1524 vtyp = nfsv2tov_type(fp->fa_type);
1525 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1526 if (vtyp == VNON || vtyp == VREG)
1527 vtyp = IFTOVT(vmode);
1528 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1529 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1530
1531 /*
1532 * Really ugly NFSv2 kludge.
1533 */
1534 if (vtyp == VCHR && rdev == 0xffffffff)
1535 vtyp = VFIFO;
1536 }
1537
1538 /*
1539 * If v_type == VNON it is a new node, so fill in the v_type,
1540 * n_mtime fields. Check to see if it represents a special
1541 * device, and if so, check for a possible alias. Once the
1542 * correct vnode has been obtained, fill in the rest of the
1543 * information.
1544 */
1545 np = VTONFS(vp);
1546 if (vp->v_type != vtyp) {
1547 vp->v_type = vtyp;
1548 if (vp->v_type == VFIFO) {
1549 #ifndef FIFO
1550 return (EOPNOTSUPP);
1551 #else
1552 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1553 vp->v_op = fifo_nfsv2nodeop_p;
1554 #endif /* FIFO */
1555 }
1556 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1557 vp->v_op = spec_nfsv2nodeop_p;
1558 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1559 if (nvp) {
1560 /*
1561 * Discard unneeded vnode, but save its nfsnode.
1562 * Since the nfsnode does not have a lock, its
1563 * vnode lock has to be carried over.
1564 */
1565 #ifdef Lite2_integrated
1566 nvp->v_vnlock = vp->v_vnlock;
1567 vp->v_vnlock = NULL;
1568 #endif
1569 nvp->v_data = vp->v_data;
1570 vp->v_data = NULL;
1571 vp->v_op = spec_vnodeop_p;
1572 vrele(vp);
1573 vgone(vp);
1574 /*
1575 * Reinitialize aliased node.
1576 */
1577 np->n_vnode = nvp;
1578 *vpp = vp = nvp;
1579 }
1580 }
1581 np->n_mtime = mtime.tv_sec;
1582 }
1583 vap = np->n_vattr;
1584 vap->va_type = vtyp;
1585 vap->va_mode = vmode & ALLPERMS;
1586 vap->va_rdev = (dev_t)rdev;
1587 vap->va_mtime = mtime;
1588 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1589 if (v3) {
1590 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1591 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1592 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1593 fxdr_hyper(&fp->fa3_size, &vap->va_size);
1594 if (vtyp == VDIR)
1595 vap->va_blocksize = NFS_DIRFRAGSIZ;
1596 else
1597 vap->va_blocksize = NFS_FABLKSIZE;
1598 fxdr_hyper(&fp->fa3_used, &vap->va_bytes);
1599 vap->va_fileid = fxdr_unsigned(int32_t,
1600 fp->fa3_fileid.nfsuquad[1]);
1601 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1602 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1603 vap->va_flags = 0;
1604 vap->va_filerev = 0;
1605 } else {
1606 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1607 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1608 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1609 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1610 if (vtyp == VDIR)
1611 vap->va_blocksize = NFS_DIRFRAGSIZ;
1612 else
1613 vap->va_blocksize =
1614 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1615 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1616 * NFS_FABLKSIZE;
1617 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1618 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1619 vap->va_flags = 0;
1620 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1621 fp->fa2_ctime.nfsv2_sec);
1622 vap->va_ctime.tv_nsec = 0;
1623 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1624 vap->va_filerev = 0;
1625 }
1626 if (vap->va_size != np->n_size) {
1627 if (vap->va_type == VREG) {
1628 if (np->n_flag & NMODIFIED) {
1629 if (vap->va_size < np->n_size)
1630 vap->va_size = np->n_size;
1631 else
1632 np->n_size = vap->va_size;
1633 } else
1634 np->n_size = vap->va_size;
1635 vnode_pager_setsize(vp, np->n_size);
1636 } else
1637 np->n_size = vap->va_size;
1638 }
1639 np->n_attrstamp = time.tv_sec;
1640 if (vaper != NULL) {
1641 bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
1642 if (np->n_flag & NCHG) {
1643 if (np->n_flag & NACC)
1644 vaper->va_atime = np->n_atim;
1645 if (np->n_flag & NUPD)
1646 vaper->va_mtime = np->n_mtim;
1647 }
1648 }
1649 return (0);
1650 }
1651
1652 /*
1653 * Check the time stamp
1654 * If the cache is valid, copy contents to *vap and return 0
1655 * otherwise return an error
1656 */
1657 int
1658 nfs_getattrcache(vp, vaper)
1659 register struct vnode *vp;
1660 struct vattr *vaper;
1661 {
1662 register struct nfsnode *np = VTONFS(vp);
1663 register struct vattr *vap;
1664
1665 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1666 nfsstats.attrcache_misses++;
1667 return (ENOENT);
1668 }
1669 nfsstats.attrcache_hits++;
1670 vap = np->n_vattr;
1671 if (vap->va_size != np->n_size) {
1672 if (vap->va_type == VREG) {
1673 if (np->n_flag & NMODIFIED) {
1674 if (vap->va_size < np->n_size)
1675 vap->va_size = np->n_size;
1676 else
1677 np->n_size = vap->va_size;
1678 } else
1679 np->n_size = vap->va_size;
1680 vnode_pager_setsize(vp, np->n_size);
1681 } else
1682 np->n_size = vap->va_size;
1683 }
1684 bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr));
1685 if (np->n_flag & NCHG) {
1686 if (np->n_flag & NACC)
1687 vaper->va_atime = np->n_atim;
1688 if (np->n_flag & NUPD)
1689 vaper->va_mtime = np->n_mtim;
1690 }
1691 return (0);
1692 }
1693
1694 /*
1695 * Heuristic to see if the server XDR encodes directory cookies or not.
1696 * it is not supposed to, but a lot of servers may do this. Also, since
1697 * most/all servers will implement V2 as well, it is expected that they
1698 * may return just 32 bits worth of cookie information, so we need to
1699 * find out in which 32 bits this information is available. We do this
1700 * to avoid trouble with emulated binaries that can't handle 64 bit
1701 * directory offsets.
1702 */
1703
1704 void
1705 nfs_cookieheuristic(vp, flagp, p, cred)
1706 struct vnode *vp;
1707 int *flagp;
1708 struct proc *p;
1709 struct ucred *cred;
1710 {
1711 struct uio auio;
1712 struct iovec aiov;
1713 caddr_t buf, cp;
1714 struct dirent *dp;
1715 off_t *cookies, *cop;
1716 int error, eof, nc, len;
1717
1718 nc = NFS_DIRFRAGSIZ / 16;
1719 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1720 MALLOC(cookies, off_t *, nc * sizeof (off_t), M_TEMP, M_WAITOK);
1721
1722 aiov.iov_base = buf;
1723 aiov.iov_len = NFS_DIRFRAGSIZ;
1724 auio.uio_iov = &aiov;
1725 auio.uio_iovcnt = 1;
1726 auio.uio_rw = UIO_READ;
1727 auio.uio_segflg = UIO_SYSSPACE;
1728 auio.uio_procp = p;
1729 auio.uio_resid = NFS_DIRFRAGSIZ;
1730 auio.uio_offset = 0;
1731
1732 error = VOP_READDIR(vp, &auio, cred, &eof, cookies, nc);
1733
1734 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1735 if (error || len == 0) {
1736 FREE(buf, M_TEMP);
1737 FREE(cookies, M_TEMP);
1738 return;
1739 }
1740
1741 /*
1742 * Find the first valid entry and look at its offset cookie.
1743 */
1744
1745 cp = buf;
1746 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1747 dp = (struct dirent *)cp;
1748 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1749 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1750 *flagp |= NFSMNT_SWAPCOOKIE;
1751 nfs_invaldircache(vp, 0);
1752 nfs_vinvalbuf(vp, 0, cred, p, 1);
1753 }
1754 break;
1755 }
1756 cop++;
1757 cp += dp->d_reclen;
1758 }
1759
1760 FREE(buf, M_TEMP);
1761 FREE(cookies, M_TEMP);
1762 }
1763 #endif /* NFS */
1764
1765 /*
1766 * Set up nameidata for a lookup() call and do it.
1767 *
1768 * If pubflag is set, this call is done for a lookup operation on the
1769 * public filehandle. In that case we allow crossing mountpoints and
1770 * absolute pathnames. However, the caller is expected to check that
1771 * the lookup result is within the public fs, and deny access if
1772 * it is not.
1773 */
1774 int
1775 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1776 register struct nameidata *ndp;
1777 fhandle_t *fhp;
1778 int len;
1779 struct nfssvc_sock *slp;
1780 struct mbuf *nam;
1781 struct mbuf **mdp;
1782 caddr_t *dposp;
1783 struct vnode **retdirp;
1784 struct proc *p;
1785 int kerbflag, pubflag;
1786 {
1787 register int i, rem;
1788 register struct mbuf *md;
1789 register char *fromcp, *tocp, *cp;
1790 struct iovec aiov;
1791 struct uio auio;
1792 struct vnode *dp;
1793 int error, rdonly, linklen;
1794 struct componentname *cnp = &ndp->ni_cnd;
1795
1796 *retdirp = (struct vnode *)0;
1797 MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
1798 /*
1799 * Copy the name from the mbuf list to ndp->ni_pnbuf
1800 * and set the various ndp fields appropriately.
1801 */
1802 fromcp = *dposp;
1803 tocp = cnp->cn_pnbuf;
1804 md = *mdp;
1805 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1806 for (i = 0; i < len; i++) {
1807 while (rem == 0) {
1808 md = md->m_next;
1809 if (md == NULL) {
1810 error = EBADRPC;
1811 goto out;
1812 }
1813 fromcp = mtod(md, caddr_t);
1814 rem = md->m_len;
1815 }
1816 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1817 error = EACCES;
1818 goto out;
1819 }
1820 *tocp++ = *fromcp++;
1821 rem--;
1822 }
1823 *tocp = '\0';
1824 *mdp = md;
1825 *dposp = fromcp;
1826 len = nfsm_rndup(len)-len;
1827 if (len > 0) {
1828 if (rem >= len)
1829 *dposp += len;
1830 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1831 goto out;
1832 }
1833
1834 /*
1835 * Extract and set starting directory.
1836 */
1837 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1838 nam, &rdonly, kerbflag, pubflag);
1839 if (error)
1840 goto out;
1841 if (dp->v_type != VDIR) {
1842 vrele(dp);
1843 error = ENOTDIR;
1844 goto out;
1845 }
1846
1847 if (rdonly)
1848 cnp->cn_flags |= RDONLY;
1849
1850 *retdirp = dp;
1851
1852 if (pubflag) {
1853 /*
1854 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1855 * and the 'native path' indicator.
1856 */
1857 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1858 fromcp = cnp->cn_pnbuf;
1859 tocp = cp;
1860 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1861 switch ((unsigned char)*fromcp) {
1862 case WEBNFS_NATIVE_CHAR:
1863 /*
1864 * 'Native' path for us is the same
1865 * as a path according to the NFS spec,
1866 * just skip the escape char.
1867 */
1868 fromcp++;
1869 break;
1870 /*
1871 * More may be added in the future, range 0x80-0xff
1872 */
1873 default:
1874 error = EIO;
1875 FREE(cp, M_NAMEI);
1876 goto out;
1877 }
1878 }
1879 /*
1880 * Translate the '%' escapes, URL-style.
1881 */
1882 while (*fromcp != '\0') {
1883 if (*fromcp == WEBNFS_ESC_CHAR) {
1884 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1885 fromcp++;
1886 *tocp++ = HEXSTRTOI(fromcp);
1887 fromcp += 2;
1888 continue;
1889 } else {
1890 error = ENOENT;
1891 FREE(cp, M_NAMEI);
1892 goto out;
1893 }
1894 } else
1895 *tocp++ = *fromcp++;
1896 }
1897 *tocp = '\0';
1898 FREE(cnp->cn_pnbuf, M_NAMEI);
1899 cnp->cn_pnbuf = cp;
1900 }
1901
1902 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1903 ndp->ni_segflg = UIO_SYSSPACE;
1904
1905 if (pubflag) {
1906 ndp->ni_rootdir = rootvnode;
1907 ndp->ni_loopcnt = 0;
1908 if (cnp->cn_pnbuf[0] == '/')
1909 dp = rootvnode;
1910 } else {
1911 cnp->cn_flags |= NOCROSSMOUNT;
1912 }
1913
1914 cnp->cn_proc = p;
1915 VREF(dp);
1916
1917 for (;;) {
1918 cnp->cn_nameptr = cnp->cn_pnbuf;
1919 ndp->ni_startdir = dp;
1920 /*
1921 * And call lookup() to do the real work
1922 */
1923 error = lookup(ndp);
1924 if (error)
1925 break;
1926 /*
1927 * Check for encountering a symbolic link
1928 */
1929 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1930 if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1931 cnp->cn_flags |= HASBUF;
1932 return (0);
1933 }
1934 break;
1935 } else {
1936 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1937 VOP_UNLOCK(ndp->ni_dvp);
1938 if (!pubflag) {
1939 vrele(ndp->ni_dvp);
1940 vput(ndp->ni_vp);
1941 ndp->ni_vp = NULL;
1942 error = EINVAL;
1943 break;
1944 }
1945
1946 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1947 error = ELOOP;
1948 break;
1949 }
1950 if (ndp->ni_pathlen > 1)
1951 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1952 else
1953 cp = cnp->cn_pnbuf;
1954 aiov.iov_base = cp;
1955 aiov.iov_len = MAXPATHLEN;
1956 auio.uio_iov = &aiov;
1957 auio.uio_iovcnt = 1;
1958 auio.uio_offset = 0;
1959 auio.uio_rw = UIO_READ;
1960 auio.uio_segflg = UIO_SYSSPACE;
1961 auio.uio_procp = (struct proc *)0;
1962 auio.uio_resid = MAXPATHLEN;
1963 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
1964 if (error) {
1965 badlink:
1966 if (ndp->ni_pathlen > 1)
1967 FREE(cp, M_NAMEI);
1968 break;
1969 }
1970 linklen = MAXPATHLEN - auio.uio_resid;
1971 if (linklen == 0) {
1972 error = ENOENT;
1973 goto badlink;
1974 }
1975 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
1976 error = ENAMETOOLONG;
1977 goto badlink;
1978 }
1979 if (ndp->ni_pathlen > 1) {
1980 bcopy(ndp->ni_next, cp + linklen, ndp->ni_pathlen);
1981 FREE(cnp->cn_pnbuf, M_NAMEI);
1982 cnp->cn_pnbuf = cp;
1983 } else
1984 cnp->cn_pnbuf[linklen] = '\0';
1985 ndp->ni_pathlen += linklen;
1986 vput(ndp->ni_vp);
1987 dp = ndp->ni_dvp;
1988 /*
1989 * Check if root directory should replace current directory.
1990 */
1991 if (cnp->cn_pnbuf[0] == '/') {
1992 vrele(dp);
1993 dp = ndp->ni_rootdir;
1994 VREF(dp);
1995 }
1996 }
1997 }
1998 out:
1999 FREE(cnp->cn_pnbuf, M_NAMEI);
2000 return (error);
2001 }
2002
2003 /*
2004 * A fiddled version of m_adj() that ensures null fill to a long
2005 * boundary and only trims off the back end
2006 */
2007 void
2008 nfsm_adj(mp, len, nul)
2009 struct mbuf *mp;
2010 register int len;
2011 int nul;
2012 {
2013 register struct mbuf *m;
2014 register int count, i;
2015 register char *cp;
2016
2017 /*
2018 * Trim from tail. Scan the mbuf chain,
2019 * calculating its length and finding the last mbuf.
2020 * If the adjustment only affects this mbuf, then just
2021 * adjust and return. Otherwise, rescan and truncate
2022 * after the remaining size.
2023 */
2024 count = 0;
2025 m = mp;
2026 for (;;) {
2027 count += m->m_len;
2028 if (m->m_next == (struct mbuf *)0)
2029 break;
2030 m = m->m_next;
2031 }
2032 if (m->m_len > len) {
2033 m->m_len -= len;
2034 if (nul > 0) {
2035 cp = mtod(m, caddr_t)+m->m_len-nul;
2036 for (i = 0; i < nul; i++)
2037 *cp++ = '\0';
2038 }
2039 return;
2040 }
2041 count -= len;
2042 if (count < 0)
2043 count = 0;
2044 /*
2045 * Correct length for chain is "count".
2046 * Find the mbuf with last data, adjust its length,
2047 * and toss data from remaining mbufs on chain.
2048 */
2049 for (m = mp; m; m = m->m_next) {
2050 if (m->m_len >= count) {
2051 m->m_len = count;
2052 if (nul > 0) {
2053 cp = mtod(m, caddr_t)+m->m_len-nul;
2054 for (i = 0; i < nul; i++)
2055 *cp++ = '\0';
2056 }
2057 break;
2058 }
2059 count -= m->m_len;
2060 }
2061 for (m = m->m_next;m;m = m->m_next)
2062 m->m_len = 0;
2063 }
2064
2065 /*
2066 * Make these functions instead of macros, so that the kernel text size
2067 * doesn't get too big...
2068 */
2069 void
2070 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2071 struct nfsrv_descript *nfsd;
2072 int before_ret;
2073 register struct vattr *before_vap;
2074 int after_ret;
2075 struct vattr *after_vap;
2076 struct mbuf **mbp;
2077 char **bposp;
2078 {
2079 register struct mbuf *mb = *mbp, *mb2;
2080 register char *bpos = *bposp;
2081 register u_int32_t *tl;
2082
2083 if (before_ret) {
2084 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2085 *tl = nfs_false;
2086 } else {
2087 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2088 *tl++ = nfs_true;
2089 txdr_hyper(&(before_vap->va_size), tl);
2090 tl += 2;
2091 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2092 tl += 2;
2093 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2094 }
2095 *bposp = bpos;
2096 *mbp = mb;
2097 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2098 }
2099
2100 void
2101 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2102 struct nfsrv_descript *nfsd;
2103 int after_ret;
2104 struct vattr *after_vap;
2105 struct mbuf **mbp;
2106 char **bposp;
2107 {
2108 register struct mbuf *mb = *mbp, *mb2;
2109 register char *bpos = *bposp;
2110 register u_int32_t *tl;
2111 register struct nfs_fattr *fp;
2112
2113 if (after_ret) {
2114 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2115 *tl = nfs_false;
2116 } else {
2117 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2118 *tl++ = nfs_true;
2119 fp = (struct nfs_fattr *)tl;
2120 nfsm_srvfattr(nfsd, after_vap, fp);
2121 }
2122 *mbp = mb;
2123 *bposp = bpos;
2124 }
2125
2126 void
2127 nfsm_srvfattr(nfsd, vap, fp)
2128 register struct nfsrv_descript *nfsd;
2129 register struct vattr *vap;
2130 register struct nfs_fattr *fp;
2131 {
2132
2133 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2134 fp->fa_uid = txdr_unsigned(vap->va_uid);
2135 fp->fa_gid = txdr_unsigned(vap->va_gid);
2136 if (nfsd->nd_flag & ND_NFSV3) {
2137 fp->fa_type = vtonfsv3_type(vap->va_type);
2138 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2139 txdr_hyper(&vap->va_size, &fp->fa3_size);
2140 txdr_hyper(&vap->va_bytes, &fp->fa3_used);
2141 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2142 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2143 fp->fa3_fsid.nfsuquad[0] = 0;
2144 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2145 fp->fa3_fileid.nfsuquad[0] = 0;
2146 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2147 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2148 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2149 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2150 } else {
2151 fp->fa_type = vtonfsv2_type(vap->va_type);
2152 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2153 fp->fa2_size = txdr_unsigned(vap->va_size);
2154 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2155 if (vap->va_type == VFIFO)
2156 fp->fa2_rdev = 0xffffffff;
2157 else
2158 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2159 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2160 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2161 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2162 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2163 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2164 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2165 }
2166 }
2167
2168 /*
2169 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2170 * - look up fsid in mount list (if not found ret error)
2171 * - get vp and export rights by calling VFS_FHTOVP()
2172 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2173 * - if not lockflag unlock it with VOP_UNLOCK()
2174 */
2175 int
2176 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2177 fhandle_t *fhp;
2178 int lockflag;
2179 struct vnode **vpp;
2180 struct ucred *cred;
2181 struct nfssvc_sock *slp;
2182 struct mbuf *nam;
2183 int *rdonlyp;
2184 int kerbflag;
2185 {
2186 #ifdef Lite2_integrated
2187 struct proc *p = curproc; /* XXX */
2188 #endif
2189 register struct mount *mp;
2190 register int i;
2191 struct ucred *credanon;
2192 int error, exflags;
2193 struct sockaddr_in *saddr;
2194
2195 *vpp = (struct vnode *)0;
2196
2197 if (nfs_ispublicfh(fhp)) {
2198 if (!pubflag || !nfs_pub.np_valid)
2199 return (ESTALE);
2200 fhp = &nfs_pub.np_handle;
2201 }
2202
2203 #ifdef Lite2_integrated
2204 mp = vfs_getvfs(&fhp->fh_fsid);
2205 #else
2206 mp = getvfs(&fhp->fh_fsid);
2207 #endif
2208 if (!mp)
2209 return (ESTALE);
2210 error = VFS_FHTOVP(mp, &fhp->fh_fid, nam, vpp, &exflags, &credanon);
2211 if (error)
2212 return (error);
2213
2214 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2215 saddr = mtod(nam, struct sockaddr_in *);
2216 if (saddr->sin_family == AF_INET &&
2217 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2218 vput(*vpp);
2219 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2220 }
2221 }
2222 /*
2223 * Check/setup credentials.
2224 */
2225 if (exflags & MNT_EXKERB) {
2226 if (!kerbflag) {
2227 vput(*vpp);
2228 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2229 }
2230 } else if (kerbflag) {
2231 vput(*vpp);
2232 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2233 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2234 cred->cr_uid = credanon->cr_uid;
2235 cred->cr_gid = credanon->cr_gid;
2236 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2237 cred->cr_groups[i] = credanon->cr_groups[i];
2238 cred->cr_ngroups = i;
2239 }
2240 if (exflags & MNT_EXRDONLY)
2241 *rdonlyp = 1;
2242 else
2243 *rdonlyp = 0;
2244 if (!lockflag)
2245 #ifdef Lite2_integrated
2246 VOP_UNLOCK(*vpp, 0, p);
2247 #else
2248 VOP_UNLOCK(*vpp);
2249 #endif
2250 return (0);
2251 }
2252
2253 /*
2254 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2255 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2256 * transformed this to all zeroes in both cases, so check for it.
2257 */
2258 int
2259 nfs_ispublicfh(fhp)
2260 fhandle_t *fhp;
2261 {
2262 char *cp = (char *)fhp;
2263 int i;
2264
2265 for (i = 0; i < NFSX_V3FH; i++)
2266 if (*cp++ != 0)
2267 return (FALSE);
2268 return (TRUE);
2269 }
2270
2271 /*
2272 * This function compares two net addresses by family and returns TRUE
2273 * if they are the same host.
2274 * If there is any doubt, return FALSE.
2275 * The AF_INET family is handled as a special case so that address mbufs
2276 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2277 */
2278 int
2279 netaddr_match(family, haddr, nam)
2280 int family;
2281 union nethostaddr *haddr;
2282 struct mbuf *nam;
2283 {
2284 register struct sockaddr_in *inetaddr;
2285
2286 switch (family) {
2287 case AF_INET:
2288 inetaddr = mtod(nam, struct sockaddr_in *);
2289 if (inetaddr->sin_family == AF_INET &&
2290 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2291 return (1);
2292 break;
2293 #ifdef ISO
2294 case AF_ISO:
2295 {
2296 register struct sockaddr_iso *isoaddr1, *isoaddr2;
2297
2298 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2299 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2300 if (isoaddr1->siso_family == AF_ISO &&
2301 isoaddr1->siso_nlen > 0 &&
2302 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2303 SAME_ISOADDR(isoaddr1, isoaddr2))
2304 return (1);
2305 break;
2306 }
2307 #endif /* ISO */
2308 default:
2309 break;
2310 };
2311 return (0);
2312 }
2313
2314
2315 /*
2316 * The write verifier has changed (probably due to a server reboot), so all
2317 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2318 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2319 * flag. Once done the new write verifier can be set for the mount point.
2320 */
2321 void
2322 nfs_clearcommit(mp)
2323 struct mount *mp;
2324 {
2325 register struct vnode *vp, *nvp;
2326 register struct buf *bp, *nbp;
2327 int s;
2328
2329 s = splbio();
2330 loop:
2331 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2332 if (vp->v_mount != mp) /* Paranoia */
2333 goto loop;
2334 nvp = vp->v_mntvnodes.le_next;
2335 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2336 nbp = bp->b_vnbufs.le_next;
2337 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2338 == (B_DELWRI | B_NEEDCOMMIT))
2339 bp->b_flags &= ~B_NEEDCOMMIT;
2340 }
2341 }
2342 splx(s);
2343 }
2344
2345 /*
2346 * Map errnos to NFS error numbers. For Version 3 also filter out error
2347 * numbers not specified for the associated procedure.
2348 */
2349 int
2350 nfsrv_errmap(nd, err)
2351 struct nfsrv_descript *nd;
2352 register int err;
2353 {
2354 register short *defaulterrp, *errp;
2355
2356 if (nd->nd_flag & ND_NFSV3) {
2357 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2358 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2359 while (*++errp) {
2360 if (*errp == err)
2361 return (err);
2362 else if (*errp > err)
2363 break;
2364 }
2365 return ((int)*defaulterrp);
2366 } else
2367 return (err & 0xffff);
2368 }
2369 if (err <= ELAST)
2370 return ((int)nfsrv_v2errmap[err - 1]);
2371 return (NFSERR_IO);
2372 }
2373
2374 /*
2375 * Sort the group list in increasing numerical order.
2376 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2377 * that used to be here.)
2378 */
2379 void
2380 nfsrvw_sort(list, num)
2381 register gid_t *list;
2382 register int num;
2383 {
2384 register int i, j;
2385 gid_t v;
2386
2387 /* Insertion sort. */
2388 for (i = 1; i < num; i++) {
2389 v = list[i];
2390 /* find correct slot for value v, moving others up */
2391 for (j = i; --j >= 0 && v < list[j];)
2392 list[j + 1] = list[j];
2393 list[j + 1] = v;
2394 }
2395 }
2396
2397 /*
2398 * copy credentials making sure that the result can be compared with bcmp().
2399 */
2400 void
2401 nfsrv_setcred(incred, outcred)
2402 register struct ucred *incred, *outcred;
2403 {
2404 register int i;
2405
2406 bzero((caddr_t)outcred, sizeof (struct ucred));
2407 outcred->cr_ref = 1;
2408 outcred->cr_uid = incred->cr_uid;
2409 outcred->cr_gid = incred->cr_gid;
2410 outcred->cr_ngroups = incred->cr_ngroups;
2411 for (i = 0; i < incred->cr_ngroups; i++)
2412 outcred->cr_groups[i] = incred->cr_groups[i];
2413 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2414 }
2415