nfs_subs.c revision 1.52 1 /* $NetBSD: nfs_subs.c,v 1.52 1998/02/06 08:22:54 mikel Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41
42 /*
43 * These functions support the macros and help fiddle mbuf chains for
44 * the nfs op functions. They do things like create the rpc header and
45 * copy data between mbuf chains and uio lists.
46 */
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/mount.h>
52 #include <sys/vnode.h>
53 #include <sys/namei.h>
54 #include <sys/mbuf.h>
55 #include <sys/socket.h>
56 #include <sys/stat.h>
57 #include <sys/malloc.h>
58 #include <sys/time.h>
59 #include <sys/dirent.h>
60
61 #include <vm/vm.h>
62
63 #if defined(UVM)
64 #include <uvm/uvm_extern.h>
65 #endif
66
67 #include <nfs/rpcv2.h>
68 #include <nfs/nfsproto.h>
69 #include <nfs/nfsnode.h>
70 #include <nfs/nfs.h>
71 #include <nfs/xdr_subs.h>
72 #include <nfs/nfsm_subs.h>
73 #include <nfs/nfsmount.h>
74 #include <nfs/nqnfs.h>
75 #include <nfs/nfsrtt.h>
76 #include <nfs/nfs_var.h>
77
78 #include <miscfs/specfs/specdev.h>
79
80 #include <vm/vm.h>
81
82 #include <netinet/in.h>
83 #ifdef ISO
84 #include <netiso/iso.h>
85 #endif
86
87 /*
88 * Data items converted to xdr at startup, since they are constant
89 * This is kinda hokey, but may save a little time doing byte swaps
90 */
91 u_int32_t nfs_xdrneg1;
92 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
93 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
94 rpc_auth_kerb;
95 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
96
97 /* And other global data */
98 static u_int32_t nfs_xid = 0;
99 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
100 NFCHR, NFNON };
101 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
102 NFFIFO, NFNON };
103 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
104 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
105 int nfs_ticks;
106 extern struct nfs_public nfs_pub;
107
108 /* NFS client/server stats. */
109 struct nfsstats nfsstats;
110
111 /*
112 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
113 */
114 int nfsv3_procid[NFS_NPROCS] = {
115 NFSPROC_NULL,
116 NFSPROC_GETATTR,
117 NFSPROC_SETATTR,
118 NFSPROC_NOOP,
119 NFSPROC_LOOKUP,
120 NFSPROC_READLINK,
121 NFSPROC_READ,
122 NFSPROC_NOOP,
123 NFSPROC_WRITE,
124 NFSPROC_CREATE,
125 NFSPROC_REMOVE,
126 NFSPROC_RENAME,
127 NFSPROC_LINK,
128 NFSPROC_SYMLINK,
129 NFSPROC_MKDIR,
130 NFSPROC_RMDIR,
131 NFSPROC_READDIR,
132 NFSPROC_FSSTAT,
133 NFSPROC_NOOP,
134 NFSPROC_NOOP,
135 NFSPROC_NOOP,
136 NFSPROC_NOOP,
137 NFSPROC_NOOP,
138 NFSPROC_NOOP,
139 NFSPROC_NOOP,
140 NFSPROC_NOOP
141 };
142
143 /*
144 * and the reverse mapping from generic to Version 2 procedure numbers
145 */
146 int nfsv2_procid[NFS_NPROCS] = {
147 NFSV2PROC_NULL,
148 NFSV2PROC_GETATTR,
149 NFSV2PROC_SETATTR,
150 NFSV2PROC_LOOKUP,
151 NFSV2PROC_NOOP,
152 NFSV2PROC_READLINK,
153 NFSV2PROC_READ,
154 NFSV2PROC_WRITE,
155 NFSV2PROC_CREATE,
156 NFSV2PROC_MKDIR,
157 NFSV2PROC_SYMLINK,
158 NFSV2PROC_CREATE,
159 NFSV2PROC_REMOVE,
160 NFSV2PROC_RMDIR,
161 NFSV2PROC_RENAME,
162 NFSV2PROC_LINK,
163 NFSV2PROC_READDIR,
164 NFSV2PROC_NOOP,
165 NFSV2PROC_STATFS,
166 NFSV2PROC_NOOP,
167 NFSV2PROC_NOOP,
168 NFSV2PROC_NOOP,
169 NFSV2PROC_NOOP,
170 NFSV2PROC_NOOP,
171 NFSV2PROC_NOOP,
172 NFSV2PROC_NOOP,
173 };
174
175 /*
176 * Maps errno values to nfs error numbers.
177 * Use NFSERR_IO as the catch all for ones not specifically defined in
178 * RFC 1094.
179 */
180 static u_char nfsrv_v2errmap[ELAST] = {
181 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
182 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
183 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
184 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
185 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
186 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
187 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
188 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
189 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
190 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
191 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
192 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
193 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
194 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
195 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
196 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
197 NFSERR_IO, NFSERR_IO,
198 };
199
200 /*
201 * Maps errno values to nfs error numbers.
202 * Although it is not obvious whether or not NFS clients really care if
203 * a returned error value is in the specified list for the procedure, the
204 * safest thing to do is filter them appropriately. For Version 2, the
205 * X/Open XNFS document is the only specification that defines error values
206 * for each RPC (The RFC simply lists all possible error values for all RPCs),
207 * so I have decided to not do this for Version 2.
208 * The first entry is the default error return and the rest are the valid
209 * errors for that RPC in increasing numeric order.
210 */
211 static short nfsv3err_null[] = {
212 0,
213 0,
214 };
215
216 static short nfsv3err_getattr[] = {
217 NFSERR_IO,
218 NFSERR_IO,
219 NFSERR_STALE,
220 NFSERR_BADHANDLE,
221 NFSERR_SERVERFAULT,
222 0,
223 };
224
225 static short nfsv3err_setattr[] = {
226 NFSERR_IO,
227 NFSERR_PERM,
228 NFSERR_IO,
229 NFSERR_ACCES,
230 NFSERR_INVAL,
231 NFSERR_NOSPC,
232 NFSERR_ROFS,
233 NFSERR_DQUOT,
234 NFSERR_STALE,
235 NFSERR_BADHANDLE,
236 NFSERR_NOT_SYNC,
237 NFSERR_SERVERFAULT,
238 0,
239 };
240
241 static short nfsv3err_lookup[] = {
242 NFSERR_IO,
243 NFSERR_NOENT,
244 NFSERR_IO,
245 NFSERR_ACCES,
246 NFSERR_NOTDIR,
247 NFSERR_NAMETOL,
248 NFSERR_STALE,
249 NFSERR_BADHANDLE,
250 NFSERR_SERVERFAULT,
251 0,
252 };
253
254 static short nfsv3err_access[] = {
255 NFSERR_IO,
256 NFSERR_IO,
257 NFSERR_STALE,
258 NFSERR_BADHANDLE,
259 NFSERR_SERVERFAULT,
260 0,
261 };
262
263 static short nfsv3err_readlink[] = {
264 NFSERR_IO,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_STALE,
269 NFSERR_BADHANDLE,
270 NFSERR_NOTSUPP,
271 NFSERR_SERVERFAULT,
272 0,
273 };
274
275 static short nfsv3err_read[] = {
276 NFSERR_IO,
277 NFSERR_IO,
278 NFSERR_NXIO,
279 NFSERR_ACCES,
280 NFSERR_INVAL,
281 NFSERR_STALE,
282 NFSERR_BADHANDLE,
283 NFSERR_SERVERFAULT,
284 0,
285 };
286
287 static short nfsv3err_write[] = {
288 NFSERR_IO,
289 NFSERR_IO,
290 NFSERR_ACCES,
291 NFSERR_INVAL,
292 NFSERR_FBIG,
293 NFSERR_NOSPC,
294 NFSERR_ROFS,
295 NFSERR_DQUOT,
296 NFSERR_STALE,
297 NFSERR_BADHANDLE,
298 NFSERR_SERVERFAULT,
299 0,
300 };
301
302 static short nfsv3err_create[] = {
303 NFSERR_IO,
304 NFSERR_IO,
305 NFSERR_ACCES,
306 NFSERR_EXIST,
307 NFSERR_NOTDIR,
308 NFSERR_NOSPC,
309 NFSERR_ROFS,
310 NFSERR_NAMETOL,
311 NFSERR_DQUOT,
312 NFSERR_STALE,
313 NFSERR_BADHANDLE,
314 NFSERR_NOTSUPP,
315 NFSERR_SERVERFAULT,
316 0,
317 };
318
319 static short nfsv3err_mkdir[] = {
320 NFSERR_IO,
321 NFSERR_IO,
322 NFSERR_ACCES,
323 NFSERR_EXIST,
324 NFSERR_NOTDIR,
325 NFSERR_NOSPC,
326 NFSERR_ROFS,
327 NFSERR_NAMETOL,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_NOTSUPP,
332 NFSERR_SERVERFAULT,
333 0,
334 };
335
336 static short nfsv3err_symlink[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static short nfsv3err_mknod[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 NFSERR_BADTYPE,
368 0,
369 };
370
371 static short nfsv3err_remove[] = {
372 NFSERR_IO,
373 NFSERR_NOENT,
374 NFSERR_IO,
375 NFSERR_ACCES,
376 NFSERR_NOTDIR,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_STALE,
380 NFSERR_BADHANDLE,
381 NFSERR_SERVERFAULT,
382 0,
383 };
384
385 static short nfsv3err_rmdir[] = {
386 NFSERR_IO,
387 NFSERR_NOENT,
388 NFSERR_IO,
389 NFSERR_ACCES,
390 NFSERR_EXIST,
391 NFSERR_NOTDIR,
392 NFSERR_INVAL,
393 NFSERR_ROFS,
394 NFSERR_NAMETOL,
395 NFSERR_NOTEMPTY,
396 NFSERR_STALE,
397 NFSERR_BADHANDLE,
398 NFSERR_NOTSUPP,
399 NFSERR_SERVERFAULT,
400 0,
401 };
402
403 static short nfsv3err_rename[] = {
404 NFSERR_IO,
405 NFSERR_NOENT,
406 NFSERR_IO,
407 NFSERR_ACCES,
408 NFSERR_EXIST,
409 NFSERR_XDEV,
410 NFSERR_NOTDIR,
411 NFSERR_ISDIR,
412 NFSERR_INVAL,
413 NFSERR_NOSPC,
414 NFSERR_ROFS,
415 NFSERR_MLINK,
416 NFSERR_NAMETOL,
417 NFSERR_NOTEMPTY,
418 NFSERR_DQUOT,
419 NFSERR_STALE,
420 NFSERR_BADHANDLE,
421 NFSERR_NOTSUPP,
422 NFSERR_SERVERFAULT,
423 0,
424 };
425
426 static short nfsv3err_link[] = {
427 NFSERR_IO,
428 NFSERR_IO,
429 NFSERR_ACCES,
430 NFSERR_EXIST,
431 NFSERR_XDEV,
432 NFSERR_NOTDIR,
433 NFSERR_INVAL,
434 NFSERR_NOSPC,
435 NFSERR_ROFS,
436 NFSERR_MLINK,
437 NFSERR_NAMETOL,
438 NFSERR_DQUOT,
439 NFSERR_STALE,
440 NFSERR_BADHANDLE,
441 NFSERR_NOTSUPP,
442 NFSERR_SERVERFAULT,
443 0,
444 };
445
446 static short nfsv3err_readdir[] = {
447 NFSERR_IO,
448 NFSERR_IO,
449 NFSERR_ACCES,
450 NFSERR_NOTDIR,
451 NFSERR_STALE,
452 NFSERR_BADHANDLE,
453 NFSERR_BAD_COOKIE,
454 NFSERR_TOOSMALL,
455 NFSERR_SERVERFAULT,
456 0,
457 };
458
459 static short nfsv3err_readdirplus[] = {
460 NFSERR_IO,
461 NFSERR_IO,
462 NFSERR_ACCES,
463 NFSERR_NOTDIR,
464 NFSERR_STALE,
465 NFSERR_BADHANDLE,
466 NFSERR_BAD_COOKIE,
467 NFSERR_NOTSUPP,
468 NFSERR_TOOSMALL,
469 NFSERR_SERVERFAULT,
470 0,
471 };
472
473 static short nfsv3err_fsstat[] = {
474 NFSERR_IO,
475 NFSERR_IO,
476 NFSERR_STALE,
477 NFSERR_BADHANDLE,
478 NFSERR_SERVERFAULT,
479 0,
480 };
481
482 static short nfsv3err_fsinfo[] = {
483 NFSERR_STALE,
484 NFSERR_STALE,
485 NFSERR_BADHANDLE,
486 NFSERR_SERVERFAULT,
487 0,
488 };
489
490 static short nfsv3err_pathconf[] = {
491 NFSERR_STALE,
492 NFSERR_STALE,
493 NFSERR_BADHANDLE,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static short nfsv3err_commit[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_STALE,
502 NFSERR_BADHANDLE,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static short *nfsrv_v3errmap[] = {
508 nfsv3err_null,
509 nfsv3err_getattr,
510 nfsv3err_setattr,
511 nfsv3err_lookup,
512 nfsv3err_access,
513 nfsv3err_readlink,
514 nfsv3err_read,
515 nfsv3err_write,
516 nfsv3err_create,
517 nfsv3err_mkdir,
518 nfsv3err_symlink,
519 nfsv3err_mknod,
520 nfsv3err_remove,
521 nfsv3err_rmdir,
522 nfsv3err_rename,
523 nfsv3err_link,
524 nfsv3err_readdir,
525 nfsv3err_readdirplus,
526 nfsv3err_fsstat,
527 nfsv3err_fsinfo,
528 nfsv3err_pathconf,
529 nfsv3err_commit,
530 };
531
532 extern struct nfsrtt nfsrtt;
533 extern time_t nqnfsstarttime;
534 extern int nqsrv_clockskew;
535 extern int nqsrv_writeslack;
536 extern int nqsrv_maxlease;
537 extern int nqnfs_piggy[NFS_NPROCS];
538 extern nfstype nfsv2_type[9];
539 extern nfstype nfsv3_type[9];
540 extern struct nfsnodehashhead *nfsnodehashtbl;
541 extern u_long nfsnodehash;
542
543 LIST_HEAD(nfsnodehashhead, nfsnode);
544 u_long nfsdirhashmask;
545
546 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
547
548 /*
549 * Create the header for an rpc request packet
550 * The hsiz is the size of the rest of the nfs request header.
551 * (just used to decide if a cluster is a good idea)
552 */
553 struct mbuf *
554 nfsm_reqh(vp, procid, hsiz, bposp)
555 struct vnode *vp;
556 u_long procid;
557 int hsiz;
558 caddr_t *bposp;
559 {
560 register struct mbuf *mb;
561 register u_int32_t *tl;
562 register caddr_t bpos;
563 struct mbuf *mb2;
564 struct nfsmount *nmp;
565 int nqflag;
566
567 MGET(mb, M_WAIT, MT_DATA);
568 if (hsiz >= MINCLSIZE)
569 MCLGET(mb, M_WAIT);
570 mb->m_len = 0;
571 bpos = mtod(mb, caddr_t);
572
573 /*
574 * For NQNFS, add lease request.
575 */
576 if (vp) {
577 nmp = VFSTONFS(vp->v_mount);
578 if (nmp->nm_flag & NFSMNT_NQNFS) {
579 nqflag = NQNFS_NEEDLEASE(vp, procid);
580 if (nqflag) {
581 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
582 *tl++ = txdr_unsigned(nqflag);
583 *tl = txdr_unsigned(nmp->nm_leaseterm);
584 } else {
585 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
586 *tl = 0;
587 }
588 }
589 }
590 /* Finally, return values */
591 *bposp = bpos;
592 return (mb);
593 }
594
595 /*
596 * Build the RPC header and fill in the authorization info.
597 * The authorization string argument is only used when the credentials
598 * come from outside of the kernel.
599 * Returns the head of the mbuf list.
600 */
601 struct mbuf *
602 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
603 verf_str, mrest, mrest_len, mbp, xidp)
604 register struct ucred *cr;
605 int nmflag;
606 int procid;
607 int auth_type;
608 int auth_len;
609 char *auth_str;
610 int verf_len;
611 char *verf_str;
612 struct mbuf *mrest;
613 int mrest_len;
614 struct mbuf **mbp;
615 u_int32_t *xidp;
616 {
617 register struct mbuf *mb;
618 register u_int32_t *tl;
619 register caddr_t bpos;
620 register int i;
621 struct mbuf *mreq, *mb2;
622 int siz, grpsiz, authsiz;
623 struct timeval tv;
624 static u_int32_t base;
625
626 authsiz = nfsm_rndup(auth_len);
627 MGETHDR(mb, M_WAIT, MT_DATA);
628 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
629 MCLGET(mb, M_WAIT);
630 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
631 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
632 } else {
633 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
634 }
635 mb->m_len = 0;
636 mreq = mb;
637 bpos = mtod(mb, caddr_t);
638
639 /*
640 * First the RPC header.
641 */
642 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
643
644 /*
645 * derive initial xid from system time
646 * XXX time is invalid if root not yet mounted
647 */
648 if (!base && (rootvp)) {
649 microtime(&tv);
650 base = tv.tv_sec << 12;
651 nfs_xid = base;
652 }
653 /*
654 * Skip zero xid if it should ever happen.
655 */
656 if (++nfs_xid == 0)
657 nfs_xid++;
658
659 *tl++ = *xidp = txdr_unsigned(nfs_xid);
660 *tl++ = rpc_call;
661 *tl++ = rpc_vers;
662 if (nmflag & NFSMNT_NQNFS) {
663 *tl++ = txdr_unsigned(NQNFS_PROG);
664 *tl++ = txdr_unsigned(NQNFS_VER3);
665 } else {
666 *tl++ = txdr_unsigned(NFS_PROG);
667 if (nmflag & NFSMNT_NFSV3)
668 *tl++ = txdr_unsigned(NFS_VER3);
669 else
670 *tl++ = txdr_unsigned(NFS_VER2);
671 }
672 if (nmflag & NFSMNT_NFSV3)
673 *tl++ = txdr_unsigned(procid);
674 else
675 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
676
677 /*
678 * And then the authorization cred.
679 */
680 *tl++ = txdr_unsigned(auth_type);
681 *tl = txdr_unsigned(authsiz);
682 switch (auth_type) {
683 case RPCAUTH_UNIX:
684 nfsm_build(tl, u_int32_t *, auth_len);
685 *tl++ = 0; /* stamp ?? */
686 *tl++ = 0; /* NULL hostname */
687 *tl++ = txdr_unsigned(cr->cr_uid);
688 *tl++ = txdr_unsigned(cr->cr_gid);
689 grpsiz = (auth_len >> 2) - 5;
690 *tl++ = txdr_unsigned(grpsiz);
691 for (i = 0; i < grpsiz; i++)
692 *tl++ = txdr_unsigned(cr->cr_groups[i]);
693 break;
694 case RPCAUTH_KERB4:
695 siz = auth_len;
696 while (siz > 0) {
697 if (M_TRAILINGSPACE(mb) == 0) {
698 MGET(mb2, M_WAIT, MT_DATA);
699 if (siz >= MINCLSIZE)
700 MCLGET(mb2, M_WAIT);
701 mb->m_next = mb2;
702 mb = mb2;
703 mb->m_len = 0;
704 bpos = mtod(mb, caddr_t);
705 }
706 i = min(siz, M_TRAILINGSPACE(mb));
707 bcopy(auth_str, bpos, i);
708 mb->m_len += i;
709 auth_str += i;
710 bpos += i;
711 siz -= i;
712 }
713 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
714 for (i = 0; i < siz; i++)
715 *bpos++ = '\0';
716 mb->m_len += siz;
717 }
718 break;
719 };
720
721 /*
722 * And the verifier...
723 */
724 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
725 if (verf_str) {
726 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
727 *tl = txdr_unsigned(verf_len);
728 siz = verf_len;
729 while (siz > 0) {
730 if (M_TRAILINGSPACE(mb) == 0) {
731 MGET(mb2, M_WAIT, MT_DATA);
732 if (siz >= MINCLSIZE)
733 MCLGET(mb2, M_WAIT);
734 mb->m_next = mb2;
735 mb = mb2;
736 mb->m_len = 0;
737 bpos = mtod(mb, caddr_t);
738 }
739 i = min(siz, M_TRAILINGSPACE(mb));
740 bcopy(verf_str, bpos, i);
741 mb->m_len += i;
742 verf_str += i;
743 bpos += i;
744 siz -= i;
745 }
746 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
747 for (i = 0; i < siz; i++)
748 *bpos++ = '\0';
749 mb->m_len += siz;
750 }
751 } else {
752 *tl++ = txdr_unsigned(RPCAUTH_NULL);
753 *tl = 0;
754 }
755 mb->m_next = mrest;
756 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
757 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
758 *mbp = mb;
759 return (mreq);
760 }
761
762 /*
763 * copies mbuf chain to the uio scatter/gather list
764 */
765 int
766 nfsm_mbuftouio(mrep, uiop, siz, dpos)
767 struct mbuf **mrep;
768 register struct uio *uiop;
769 int siz;
770 caddr_t *dpos;
771 {
772 register char *mbufcp, *uiocp;
773 register int xfer, left, len;
774 register struct mbuf *mp;
775 long uiosiz, rem;
776 int error = 0;
777
778 mp = *mrep;
779 mbufcp = *dpos;
780 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
781 rem = nfsm_rndup(siz)-siz;
782 while (siz > 0) {
783 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
784 return (EFBIG);
785 left = uiop->uio_iov->iov_len;
786 uiocp = uiop->uio_iov->iov_base;
787 if (left > siz)
788 left = siz;
789 uiosiz = left;
790 while (left > 0) {
791 while (len == 0) {
792 mp = mp->m_next;
793 if (mp == NULL)
794 return (EBADRPC);
795 mbufcp = mtod(mp, caddr_t);
796 len = mp->m_len;
797 }
798 xfer = (left > len) ? len : left;
799 #ifdef notdef
800 /* Not Yet.. */
801 if (uiop->uio_iov->iov_op != NULL)
802 (*(uiop->uio_iov->iov_op))
803 (mbufcp, uiocp, xfer);
804 else
805 #endif
806 if (uiop->uio_segflg == UIO_SYSSPACE)
807 bcopy(mbufcp, uiocp, xfer);
808 else
809 copyout(mbufcp, uiocp, xfer);
810 left -= xfer;
811 len -= xfer;
812 mbufcp += xfer;
813 uiocp += xfer;
814 uiop->uio_offset += xfer;
815 uiop->uio_resid -= xfer;
816 }
817 if (uiop->uio_iov->iov_len <= siz) {
818 uiop->uio_iovcnt--;
819 uiop->uio_iov++;
820 } else {
821 uiop->uio_iov->iov_base += uiosiz;
822 uiop->uio_iov->iov_len -= uiosiz;
823 }
824 siz -= uiosiz;
825 }
826 *dpos = mbufcp;
827 *mrep = mp;
828 if (rem > 0) {
829 if (len < rem)
830 error = nfs_adv(mrep, dpos, rem, len);
831 else
832 *dpos += rem;
833 }
834 return (error);
835 }
836
837 /*
838 * copies a uio scatter/gather list to an mbuf chain.
839 * NOTE: can ony handle iovcnt == 1
840 */
841 int
842 nfsm_uiotombuf(uiop, mq, siz, bpos)
843 register struct uio *uiop;
844 struct mbuf **mq;
845 int siz;
846 caddr_t *bpos;
847 {
848 register char *uiocp;
849 register struct mbuf *mp, *mp2;
850 register int xfer, left, mlen;
851 int uiosiz, clflg, rem;
852 char *cp;
853
854 #ifdef DIAGNOSTIC
855 if (uiop->uio_iovcnt != 1)
856 panic("nfsm_uiotombuf: iovcnt != 1");
857 #endif
858
859 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
860 clflg = 1;
861 else
862 clflg = 0;
863 rem = nfsm_rndup(siz)-siz;
864 mp = mp2 = *mq;
865 while (siz > 0) {
866 left = uiop->uio_iov->iov_len;
867 uiocp = uiop->uio_iov->iov_base;
868 if (left > siz)
869 left = siz;
870 uiosiz = left;
871 while (left > 0) {
872 mlen = M_TRAILINGSPACE(mp);
873 if (mlen == 0) {
874 MGET(mp, M_WAIT, MT_DATA);
875 if (clflg)
876 MCLGET(mp, M_WAIT);
877 mp->m_len = 0;
878 mp2->m_next = mp;
879 mp2 = mp;
880 mlen = M_TRAILINGSPACE(mp);
881 }
882 xfer = (left > mlen) ? mlen : left;
883 #ifdef notdef
884 /* Not Yet.. */
885 if (uiop->uio_iov->iov_op != NULL)
886 (*(uiop->uio_iov->iov_op))
887 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
888 else
889 #endif
890 if (uiop->uio_segflg == UIO_SYSSPACE)
891 bcopy(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
892 else
893 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
894 mp->m_len += xfer;
895 left -= xfer;
896 uiocp += xfer;
897 uiop->uio_offset += xfer;
898 uiop->uio_resid -= xfer;
899 }
900 uiop->uio_iov->iov_base += uiosiz;
901 uiop->uio_iov->iov_len -= uiosiz;
902 siz -= uiosiz;
903 }
904 if (rem > 0) {
905 if (rem > M_TRAILINGSPACE(mp)) {
906 MGET(mp, M_WAIT, MT_DATA);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 }
910 cp = mtod(mp, caddr_t)+mp->m_len;
911 for (left = 0; left < rem; left++)
912 *cp++ = '\0';
913 mp->m_len += rem;
914 *bpos = cp;
915 } else
916 *bpos = mtod(mp, caddr_t)+mp->m_len;
917 *mq = mp;
918 return (0);
919 }
920
921 /*
922 * Get at least "siz" bytes of correctly aligned data.
923 * When called the mbuf pointers are not necessarily correct,
924 * dsosp points to what ought to be in m_data and left contains
925 * what ought to be in m_len.
926 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
927 * cases. (The macros use the vars. dpos and dpos2)
928 */
929 int
930 nfsm_disct(mdp, dposp, siz, left, cp2)
931 struct mbuf **mdp;
932 caddr_t *dposp;
933 int siz;
934 int left;
935 caddr_t *cp2;
936 {
937 register struct mbuf *m1, *m2;
938 struct mbuf *havebuf = NULL;
939 caddr_t src = *dposp;
940 caddr_t dst;
941 int len;
942
943 #ifdef DEBUG
944 if (left < 0)
945 panic("nfsm_disct: left < 0");
946 #endif
947 m1 = *mdp;
948 /*
949 * Skip through the mbuf chain looking for an mbuf with
950 * some data. If the first mbuf found has enough data
951 * and it is correctly aligned return it.
952 */
953 while (left == 0) {
954 havebuf = m1;
955 *mdp = m1 = m1->m_next;
956 if (m1 == NULL)
957 return (EBADRPC);
958 src = mtod(m1, caddr_t);
959 left = m1->m_len;
960 /*
961 * If we start a new mbuf and it is big enough
962 * and correctly aligned just return it, don't
963 * do any pull up.
964 */
965 if (left >= siz && nfsm_aligned(src)) {
966 *cp2 = src;
967 *dposp = src + siz;
968 return (0);
969 }
970 }
971 if (m1->m_flags & M_EXT) {
972 if (havebuf) {
973 /* If the first mbuf with data has external data
974 * and there is a previous empty mbuf use it
975 * to move the data into.
976 */
977 m2 = m1;
978 *mdp = m1 = havebuf;
979 if (m1->m_flags & M_EXT) {
980 MEXTREMOVE(m1);
981 }
982 } else {
983 /*
984 * If the first mbuf has a external data
985 * and there is no previous empty mbuf
986 * allocate a new mbuf and move the external
987 * data to the new mbuf. Also make the first
988 * mbuf look empty.
989 */
990 m2 = m_get(M_WAIT, MT_DATA);
991 m2->m_ext = m1->m_ext;
992 m2->m_data = src;
993 m2->m_len = left;
994 MCLADDREFERENCE(m1, m2);
995 MEXTREMOVE(m1);
996 m2->m_next = m1->m_next;
997 m1->m_next = m2;
998 }
999 m1->m_len = 0;
1000 dst = m1->m_dat;
1001 } else {
1002 /*
1003 * If the first mbuf has no external data
1004 * move the data to the front of the mbuf.
1005 */
1006 if ((dst = m1->m_dat) != src)
1007 ovbcopy(src, dst, left);
1008 dst += left;
1009 m1->m_len = left;
1010 m2 = m1->m_next;
1011 }
1012 m1->m_flags &= ~M_PKTHDR;
1013 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1014 *dposp = mtod(m1, caddr_t) + siz;
1015 /*
1016 * Loop through mbufs pulling data up into first mbuf until
1017 * the first mbuf is full or there is no more data to
1018 * pullup.
1019 */
1020 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1021 if ((len = min(len, m2->m_len)) != 0)
1022 bcopy(m2->m_data, dst, len);
1023 m1->m_len += len;
1024 dst += len;
1025 m2->m_data += len;
1026 m2->m_len -= len;
1027 m2 = m2->m_next;
1028 }
1029 if (m1->m_len < siz)
1030 return (EBADRPC);
1031 return (0);
1032 }
1033
1034 /*
1035 * Advance the position in the mbuf chain.
1036 */
1037 int
1038 nfs_adv(mdp, dposp, offs, left)
1039 struct mbuf **mdp;
1040 caddr_t *dposp;
1041 int offs;
1042 int left;
1043 {
1044 register struct mbuf *m;
1045 register int s;
1046
1047 m = *mdp;
1048 s = left;
1049 while (s < offs) {
1050 offs -= s;
1051 m = m->m_next;
1052 if (m == NULL)
1053 return (EBADRPC);
1054 s = m->m_len;
1055 }
1056 *mdp = m;
1057 *dposp = mtod(m, caddr_t)+offs;
1058 return (0);
1059 }
1060
1061 /*
1062 * Copy a string into mbufs for the hard cases...
1063 */
1064 int
1065 nfsm_strtmbuf(mb, bpos, cp, siz)
1066 struct mbuf **mb;
1067 char **bpos;
1068 const char *cp;
1069 long siz;
1070 {
1071 register struct mbuf *m1 = NULL, *m2;
1072 long left, xfer, len, tlen;
1073 u_int32_t *tl;
1074 int putsize;
1075
1076 putsize = 1;
1077 m2 = *mb;
1078 left = M_TRAILINGSPACE(m2);
1079 if (left > 0) {
1080 tl = ((u_int32_t *)(*bpos));
1081 *tl++ = txdr_unsigned(siz);
1082 putsize = 0;
1083 left -= NFSX_UNSIGNED;
1084 m2->m_len += NFSX_UNSIGNED;
1085 if (left > 0) {
1086 bcopy(cp, (caddr_t) tl, left);
1087 siz -= left;
1088 cp += left;
1089 m2->m_len += left;
1090 left = 0;
1091 }
1092 }
1093 /* Loop around adding mbufs */
1094 while (siz > 0) {
1095 MGET(m1, M_WAIT, MT_DATA);
1096 if (siz > MLEN)
1097 MCLGET(m1, M_WAIT);
1098 m1->m_len = NFSMSIZ(m1);
1099 m2->m_next = m1;
1100 m2 = m1;
1101 tl = mtod(m1, u_int32_t *);
1102 tlen = 0;
1103 if (putsize) {
1104 *tl++ = txdr_unsigned(siz);
1105 m1->m_len -= NFSX_UNSIGNED;
1106 tlen = NFSX_UNSIGNED;
1107 putsize = 0;
1108 }
1109 if (siz < m1->m_len) {
1110 len = nfsm_rndup(siz);
1111 xfer = siz;
1112 if (xfer < len)
1113 *(tl+(xfer>>2)) = 0;
1114 } else {
1115 xfer = len = m1->m_len;
1116 }
1117 bcopy(cp, (caddr_t) tl, xfer);
1118 m1->m_len = len+tlen;
1119 siz -= xfer;
1120 cp += xfer;
1121 }
1122 *mb = m1;
1123 *bpos = mtod(m1, caddr_t)+m1->m_len;
1124 return (0);
1125 }
1126
1127 /*
1128 * Directory caching routines. They work as follows:
1129 * - a cache is maintained per VDIR nfsnode.
1130 * - for each offset cookie that is exported to userspace, and can
1131 * thus be thrown back at us as an offset to VOP_READDIR, store
1132 * information in the cache.
1133 * - cached are:
1134 * - cookie itself
1135 * - blocknumber (essentially just a search key in the buffer cache)
1136 * - entry number in block.
1137 * - offset cookie of block in which this entry is stored
1138 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1139 * - entries are looked up in a hash table
1140 * - also maintained is an LRU list of entries, used to determine
1141 * which ones to delete if the cache grows too large.
1142 * - if 32 <-> 64 translation mode is requested for a filesystem,
1143 * the cache also functions as a translation table
1144 * - in the translation case, invalidating the cache does not mean
1145 * flushing it, but just marking entries as invalid, except for
1146 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1147 * still be able to use the cache as a translation table.
1148 * - 32 bit cookies are uniquely created by combining the hash table
1149 * entry value, and one generation count per hash table entry,
1150 * incremented each time an entry is appended to the chain.
1151 * - the cache is invalidated each time a direcory is modified
1152 * - sanity checks are also done; if an entry in a block turns
1153 * out not to have a matching cookie, the cache is invalidated
1154 * and a new block starting from the wanted offset is fetched from
1155 * the server.
1156 * - directory entries as read from the server are extended to contain
1157 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1158 * the cache and exporting them to userspace through the cookie
1159 * argument to VOP_READDIR.
1160 */
1161
1162 u_long
1163 nfs_dirhash(off)
1164 off_t off;
1165 {
1166 int i;
1167 char *cp = (char *)&off;
1168 u_long sum = 0L;
1169
1170 for (i = 0 ; i < sizeof (off); i++)
1171 sum += *cp++;
1172
1173 return sum;
1174 }
1175
1176 void
1177 nfs_initdircache(vp)
1178 struct vnode *vp;
1179 {
1180 struct nfsnode *np = VTONFS(vp);
1181 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1182
1183 np->n_dircachesize = 0;
1184 np->n_dblkno = 1;
1185 np->n_dircache =
1186 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, &nfsdirhashmask);
1187 TAILQ_INIT(&np->n_dirchain);
1188 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1189 MALLOC(np->n_dirgens, unsigned *,
1190 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1191 M_WAITOK);
1192 bzero((caddr_t)np->n_dirgens,
1193 NFS_DIRHASHSIZ * sizeof (unsigned));
1194 }
1195 }
1196
1197 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1198
1199 struct nfsdircache *
1200 nfs_searchdircache(vp, off, do32, hashent)
1201 struct vnode *vp;
1202 off_t off;
1203 int do32;
1204 int *hashent;
1205 {
1206 struct nfsdirhashhead *ndhp;
1207 struct nfsdircache *ndp = NULL;
1208 struct nfsnode *np = VTONFS(vp);
1209 unsigned ent;
1210
1211 /*
1212 * Zero is always a valid cookie.
1213 */
1214 if (off == 0)
1215 return &dzero;
1216
1217 /*
1218 * We use a 32bit cookie as search key, directly reconstruct
1219 * the hashentry. Else use the hashfunction.
1220 */
1221 if (do32) {
1222 ent = (u_int32_t)off >> 24;
1223 if (ent >= NFS_DIRHASHSIZ)
1224 return NULL;
1225 ndhp = &np->n_dircache[ent];
1226 } else {
1227 ndhp = NFSDIRHASH(np, off);
1228 }
1229
1230 if (hashent)
1231 *hashent = (int)(ndhp - np->n_dircache);
1232 if (do32) {
1233 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1234 if (ndp->dc_cookie32 == (u_int32_t)off) {
1235 /*
1236 * An invalidated entry will become the
1237 * start of a new block fetched from
1238 * the server.
1239 */
1240 if (ndp->dc_blkno == -1) {
1241 ndp->dc_blkcookie = ndp->dc_cookie;
1242 ndp->dc_blkno = np->n_dblkno++;
1243 ndp->dc_entry = 0;
1244 }
1245 break;
1246 }
1247 }
1248 } else {
1249 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1250 if (ndp->dc_cookie == off)
1251 break;
1252 }
1253 return ndp;
1254 }
1255
1256
1257 struct nfsdircache *
1258 nfs_enterdircache(vp, off, blkoff, en, blkno)
1259 struct vnode *vp;
1260 off_t off, blkoff;
1261 daddr_t blkno;
1262 int en;
1263 {
1264 struct nfsnode *np = VTONFS(vp);
1265 struct nfsdirhashhead *ndhp;
1266 struct nfsdircache *ndp = NULL, *first;
1267 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1268 int hashent, gen, overwrite;
1269
1270 if (!np->n_dircache)
1271 /*
1272 * XXX would like to do this in nfs_nget but vtype
1273 * isn't known at that time.
1274 */
1275 nfs_initdircache(vp);
1276
1277 /*
1278 * XXX refuse entries for offset 0. amd(8) erroneously sets
1279 * cookie 0 for the '.' entry, making this necessary. This
1280 * isn't so bad, as 0 is a special case anyway.
1281 */
1282 if (off == 0)
1283 return &dzero;
1284
1285 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1286
1287 if (ndp && ndp->dc_blkno != -1) {
1288 /*
1289 * Overwriting an old entry. Check if it's the same.
1290 * If so, just return. If not, remove the old entry.
1291 */
1292 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1293 return ndp;
1294 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1295 LIST_REMOVE(ndp, dc_hash);
1296 FREE(ndp, M_NFSDIROFF);
1297 ndp = 0;
1298 }
1299
1300 ndhp = &np->n_dircache[hashent];
1301
1302 if (!ndp) {
1303 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1304 M_WAITOK);
1305 overwrite = 0;
1306 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1307 /*
1308 * We're allocating a new entry, so bump the
1309 * generation number.
1310 */
1311 gen = ++np->n_dirgens[hashent];
1312 if (gen == 0) {
1313 np->n_dirgens[hashent]++;
1314 gen++;
1315 }
1316 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1317 }
1318 } else
1319 overwrite = 1;
1320
1321 /*
1322 * If the entry number is 0, we are at the start of a new block, so
1323 * allocate a new blocknumber.
1324 */
1325 if (en == 0)
1326 ndp->dc_blkno = np->n_dblkno++;
1327 else
1328 ndp->dc_blkno = blkno;
1329
1330 ndp->dc_cookie = off;
1331 ndp->dc_blkcookie = blkoff;
1332 ndp->dc_entry = en;
1333
1334 if (overwrite)
1335 return ndp;
1336
1337 /*
1338 * If the maximum directory cookie cache size has been reached
1339 * for this node, take one off the front. The idea is that
1340 * directories are typically read front-to-back once, so that
1341 * the oldest entries can be thrown away without much performance
1342 * loss.
1343 */
1344 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1345 first = np->n_dirchain.tqh_first;
1346 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1347 LIST_REMOVE(first, dc_hash);
1348 FREE(first, M_NFSDIROFF);
1349 } else
1350 np->n_dircachesize++;
1351
1352 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1353 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1354 return ndp;
1355 }
1356
1357 void
1358 nfs_invaldircache(vp, forcefree)
1359 struct vnode *vp;
1360 int forcefree;
1361 {
1362 struct nfsnode *np = VTONFS(vp);
1363 struct nfsdircache *ndp = NULL;
1364 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1365
1366 #ifdef DIAGNOSTIC
1367 if (vp->v_type != VDIR)
1368 panic("nfs: invaldircache: not dir");
1369 #endif
1370
1371 if (!np->n_dircache)
1372 return;
1373
1374 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1375 while ((ndp = np->n_dirchain.tqh_first)) {
1376 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1377 LIST_REMOVE(ndp, dc_hash);
1378 FREE(ndp, M_NFSDIROFF);
1379 }
1380 np->n_dircachesize = 0;
1381 if (forcefree && np->n_dirgens) {
1382 FREE(np->n_dirgens, M_NFSDIROFF);
1383 }
1384 } else {
1385 for (ndp = np->n_dirchain.tqh_first; ndp;
1386 ndp = ndp->dc_chain.tqe_next)
1387 ndp->dc_blkno = -1;
1388 }
1389
1390 np->n_dblkno = 1;
1391 }
1392
1393 /*
1394 * Called once before VFS init to initialize shared and
1395 * server-specific data structures.
1396 */
1397 void
1398 nfs_init()
1399 {
1400
1401 #if !defined(alpha) && defined(DIAGNOSTIC)
1402 /*
1403 * Check to see if major data structures haven't bloated.
1404 */
1405 if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
1406 printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
1407 printf("Try reducing NFS_SMALLFH\n");
1408 }
1409 if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
1410 printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
1411 printf("Try reducing NFS_UIDHASHSIZ\n");
1412 }
1413 if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
1414 printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
1415 printf("Try unionizing the nu_nickname and nu_flag fields\n");
1416 }
1417 #endif
1418
1419 nfsrtt.pos = 0;
1420 rpc_vers = txdr_unsigned(RPC_VER2);
1421 rpc_call = txdr_unsigned(RPC_CALL);
1422 rpc_reply = txdr_unsigned(RPC_REPLY);
1423 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1424 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1425 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1426 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1427 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1428 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1429 nfs_prog = txdr_unsigned(NFS_PROG);
1430 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1431 nfs_true = txdr_unsigned(TRUE);
1432 nfs_false = txdr_unsigned(FALSE);
1433 nfs_xdrneg1 = txdr_unsigned(-1);
1434 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1435 if (nfs_ticks < 1)
1436 nfs_ticks = 1;
1437 #ifdef NFSSERVER
1438 nfsrv_init(0); /* Init server data structures */
1439 nfsrv_initcache(); /* Init the server request cache */
1440 #endif /* NFSSERVER */
1441
1442 /*
1443 * Initialize the nqnfs data structures.
1444 */
1445 if (nqnfsstarttime == 0) {
1446 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1447 + nqsrv_clockskew + nqsrv_writeslack;
1448 NQLOADNOVRAM(nqnfsstarttime);
1449 CIRCLEQ_INIT(&nqtimerhead);
1450 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, &nqfhhash);
1451 }
1452
1453 /*
1454 * Initialize reply list and start timer
1455 */
1456 TAILQ_INIT(&nfs_reqq);
1457 nfs_timer(NULL);
1458 }
1459
1460 #ifdef NFS
1461 /*
1462 * Called once at VFS init to initialize client-specific data structures.
1463 */
1464 void
1465 nfs_vfs_init()
1466 {
1467 register int i;
1468
1469 /* Ensure async daemons disabled */
1470 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1471 nfs_iodwant[i] = (struct proc *)0;
1472 nfs_iodmount[i] = (struct nfsmount *)0;
1473 }
1474 nfs_nhinit(); /* Init the nfsnode table */
1475 }
1476
1477 /*
1478 * Attribute cache routines.
1479 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1480 * that are on the mbuf list
1481 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1482 * error otherwise
1483 */
1484
1485 /*
1486 * Load the attribute cache (that lives in the nfsnode entry) with
1487 * the values on the mbuf list and
1488 * Iff vap not NULL
1489 * copy the attributes to *vaper
1490 */
1491 int
1492 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1493 struct vnode **vpp;
1494 struct mbuf **mdp;
1495 caddr_t *dposp;
1496 struct vattr *vaper;
1497 {
1498 register int32_t t1;
1499 caddr_t cp2;
1500 int error = 0;
1501 struct mbuf *md;
1502 int v3 = NFS_ISV3(*vpp);
1503
1504 md = *mdp;
1505 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1506 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1507 if (error)
1508 return (error);
1509 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1510 }
1511
1512 int
1513 nfs_loadattrcache(vpp, fp, vaper)
1514 struct vnode **vpp;
1515 struct nfs_fattr *fp;
1516 struct vattr *vaper;
1517 {
1518 register struct vnode *vp = *vpp;
1519 register struct vattr *vap;
1520 int v3 = NFS_ISV3(vp);
1521 enum vtype vtyp;
1522 u_short vmode;
1523 struct timespec mtime;
1524 struct vnode *nvp;
1525 int32_t rdev;
1526 register struct nfsnode *np;
1527 extern int (**spec_nfsv2nodeop_p) __P((void *));
1528
1529 if (v3) {
1530 vtyp = nfsv3tov_type(fp->fa_type);
1531 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1532 rdev = makedev(fxdr_unsigned(u_char, fp->fa3_rdev.specdata1),
1533 fxdr_unsigned(u_char, fp->fa3_rdev.specdata2));
1534 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1535 } else {
1536 vtyp = nfsv2tov_type(fp->fa_type);
1537 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1538 if (vtyp == VNON || vtyp == VREG)
1539 vtyp = IFTOVT(vmode);
1540 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1541 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1542
1543 /*
1544 * Really ugly NFSv2 kludge.
1545 */
1546 if (vtyp == VCHR && rdev == 0xffffffff)
1547 vtyp = VFIFO;
1548 }
1549
1550 /*
1551 * If v_type == VNON it is a new node, so fill in the v_type,
1552 * n_mtime fields. Check to see if it represents a special
1553 * device, and if so, check for a possible alias. Once the
1554 * correct vnode has been obtained, fill in the rest of the
1555 * information.
1556 */
1557 np = VTONFS(vp);
1558 if (vp->v_type != vtyp) {
1559 vp->v_type = vtyp;
1560 if (vp->v_type == VFIFO) {
1561 #ifndef FIFO
1562 return (EOPNOTSUPP);
1563 #else
1564 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1565 vp->v_op = fifo_nfsv2nodeop_p;
1566 #endif /* FIFO */
1567 }
1568 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1569 vp->v_op = spec_nfsv2nodeop_p;
1570 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1571 if (nvp) {
1572 /*
1573 * Discard unneeded vnode, but save its nfsnode.
1574 * Since the nfsnode does not have a lock, its
1575 * vnode lock has to be carried over.
1576 */
1577 #ifdef Lite2_integrated
1578 nvp->v_vnlock = vp->v_vnlock;
1579 vp->v_vnlock = NULL;
1580 #endif
1581 nvp->v_data = vp->v_data;
1582 vp->v_data = NULL;
1583 vp->v_op = spec_vnodeop_p;
1584 vrele(vp);
1585 vgone(vp);
1586 /*
1587 * Reinitialize aliased node.
1588 */
1589 np->n_vnode = nvp;
1590 *vpp = vp = nvp;
1591 }
1592 }
1593 np->n_mtime = mtime.tv_sec;
1594 }
1595 vap = np->n_vattr;
1596 vap->va_type = vtyp;
1597 vap->va_mode = vmode & ALLPERMS;
1598 vap->va_rdev = (dev_t)rdev;
1599 vap->va_mtime = mtime;
1600 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1601 if (v3) {
1602 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1603 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1604 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1605 fxdr_hyper(&fp->fa3_size, &vap->va_size);
1606 if (vtyp == VDIR)
1607 vap->va_blocksize = NFS_DIRFRAGSIZ;
1608 else
1609 vap->va_blocksize = NFS_FABLKSIZE;
1610 fxdr_hyper(&fp->fa3_used, &vap->va_bytes);
1611 vap->va_fileid = fxdr_unsigned(int32_t,
1612 fp->fa3_fileid.nfsuquad[1]);
1613 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1614 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1615 vap->va_flags = 0;
1616 vap->va_filerev = 0;
1617 } else {
1618 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1619 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1620 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1621 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1622 if (vtyp == VDIR)
1623 vap->va_blocksize = NFS_DIRFRAGSIZ;
1624 else
1625 vap->va_blocksize =
1626 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1627 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1628 * NFS_FABLKSIZE;
1629 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1630 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1631 vap->va_flags = 0;
1632 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1633 fp->fa2_ctime.nfsv2_sec);
1634 vap->va_ctime.tv_nsec = 0;
1635 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1636 vap->va_filerev = 0;
1637 }
1638 if (vap->va_size != np->n_size) {
1639 if (vap->va_type == VREG) {
1640 if (np->n_flag & NMODIFIED) {
1641 if (vap->va_size < np->n_size)
1642 vap->va_size = np->n_size;
1643 else
1644 np->n_size = vap->va_size;
1645 } else
1646 np->n_size = vap->va_size;
1647 #if defined(UVM)
1648 uvm_vnp_setsize(vp, np->n_size);
1649 #else
1650 vnode_pager_setsize(vp, np->n_size);
1651 #endif
1652 } else
1653 np->n_size = vap->va_size;
1654 }
1655 np->n_attrstamp = time.tv_sec;
1656 if (vaper != NULL) {
1657 bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(*vap));
1658 if (np->n_flag & NCHG) {
1659 if (np->n_flag & NACC)
1660 vaper->va_atime = np->n_atim;
1661 if (np->n_flag & NUPD)
1662 vaper->va_mtime = np->n_mtim;
1663 }
1664 }
1665 return (0);
1666 }
1667
1668 /*
1669 * Check the time stamp
1670 * If the cache is valid, copy contents to *vap and return 0
1671 * otherwise return an error
1672 */
1673 int
1674 nfs_getattrcache(vp, vaper)
1675 register struct vnode *vp;
1676 struct vattr *vaper;
1677 {
1678 register struct nfsnode *np = VTONFS(vp);
1679 register struct vattr *vap;
1680
1681 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1682 nfsstats.attrcache_misses++;
1683 return (ENOENT);
1684 }
1685 nfsstats.attrcache_hits++;
1686 vap = np->n_vattr;
1687 if (vap->va_size != np->n_size) {
1688 if (vap->va_type == VREG) {
1689 if (np->n_flag & NMODIFIED) {
1690 if (vap->va_size < np->n_size)
1691 vap->va_size = np->n_size;
1692 else
1693 np->n_size = vap->va_size;
1694 } else
1695 np->n_size = vap->va_size;
1696 #if defined(UVM)
1697 uvm_vnp_setsize(vp, np->n_size);
1698 #else
1699 vnode_pager_setsize(vp, np->n_size);
1700 #endif
1701 } else
1702 np->n_size = vap->va_size;
1703 }
1704 bcopy((caddr_t)vap, (caddr_t)vaper, sizeof(struct vattr));
1705 if (np->n_flag & NCHG) {
1706 if (np->n_flag & NACC)
1707 vaper->va_atime = np->n_atim;
1708 if (np->n_flag & NUPD)
1709 vaper->va_mtime = np->n_mtim;
1710 }
1711 return (0);
1712 }
1713
1714 /*
1715 * Heuristic to see if the server XDR encodes directory cookies or not.
1716 * it is not supposed to, but a lot of servers may do this. Also, since
1717 * most/all servers will implement V2 as well, it is expected that they
1718 * may return just 32 bits worth of cookie information, so we need to
1719 * find out in which 32 bits this information is available. We do this
1720 * to avoid trouble with emulated binaries that can't handle 64 bit
1721 * directory offsets.
1722 */
1723
1724 void
1725 nfs_cookieheuristic(vp, flagp, p, cred)
1726 struct vnode *vp;
1727 int *flagp;
1728 struct proc *p;
1729 struct ucred *cred;
1730 {
1731 struct uio auio;
1732 struct iovec aiov;
1733 caddr_t buf, cp;
1734 struct dirent *dp;
1735 off_t *cookies, *cop;
1736 int error, eof, nc, len;
1737
1738 nc = NFS_DIRFRAGSIZ / 16;
1739 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1740 MALLOC(cookies, off_t *, nc * sizeof (off_t), M_TEMP, M_WAITOK);
1741
1742 aiov.iov_base = buf;
1743 aiov.iov_len = NFS_DIRFRAGSIZ;
1744 auio.uio_iov = &aiov;
1745 auio.uio_iovcnt = 1;
1746 auio.uio_rw = UIO_READ;
1747 auio.uio_segflg = UIO_SYSSPACE;
1748 auio.uio_procp = p;
1749 auio.uio_resid = NFS_DIRFRAGSIZ;
1750 auio.uio_offset = 0;
1751
1752 error = VOP_READDIR(vp, &auio, cred, &eof, cookies, nc);
1753
1754 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1755 if (error || len == 0) {
1756 FREE(buf, M_TEMP);
1757 FREE(cookies, M_TEMP);
1758 return;
1759 }
1760
1761 /*
1762 * Find the first valid entry and look at its offset cookie.
1763 */
1764
1765 cp = buf;
1766 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1767 dp = (struct dirent *)cp;
1768 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1769 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1770 *flagp |= NFSMNT_SWAPCOOKIE;
1771 nfs_invaldircache(vp, 0);
1772 nfs_vinvalbuf(vp, 0, cred, p, 1);
1773 }
1774 break;
1775 }
1776 cop++;
1777 cp += dp->d_reclen;
1778 }
1779
1780 FREE(buf, M_TEMP);
1781 FREE(cookies, M_TEMP);
1782 }
1783 #endif /* NFS */
1784
1785 /*
1786 * Set up nameidata for a lookup() call and do it.
1787 *
1788 * If pubflag is set, this call is done for a lookup operation on the
1789 * public filehandle. In that case we allow crossing mountpoints and
1790 * absolute pathnames. However, the caller is expected to check that
1791 * the lookup result is within the public fs, and deny access if
1792 * it is not.
1793 */
1794 int
1795 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1796 register struct nameidata *ndp;
1797 fhandle_t *fhp;
1798 int len;
1799 struct nfssvc_sock *slp;
1800 struct mbuf *nam;
1801 struct mbuf **mdp;
1802 caddr_t *dposp;
1803 struct vnode **retdirp;
1804 struct proc *p;
1805 int kerbflag, pubflag;
1806 {
1807 register int i, rem;
1808 register struct mbuf *md;
1809 register char *fromcp, *tocp, *cp;
1810 struct iovec aiov;
1811 struct uio auio;
1812 struct vnode *dp;
1813 int error, rdonly, linklen;
1814 struct componentname *cnp = &ndp->ni_cnd;
1815
1816 *retdirp = (struct vnode *)0;
1817 MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
1818 /*
1819 * Copy the name from the mbuf list to ndp->ni_pnbuf
1820 * and set the various ndp fields appropriately.
1821 */
1822 fromcp = *dposp;
1823 tocp = cnp->cn_pnbuf;
1824 md = *mdp;
1825 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1826 for (i = 0; i < len; i++) {
1827 while (rem == 0) {
1828 md = md->m_next;
1829 if (md == NULL) {
1830 error = EBADRPC;
1831 goto out;
1832 }
1833 fromcp = mtod(md, caddr_t);
1834 rem = md->m_len;
1835 }
1836 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1837 error = EACCES;
1838 goto out;
1839 }
1840 *tocp++ = *fromcp++;
1841 rem--;
1842 }
1843 *tocp = '\0';
1844 *mdp = md;
1845 *dposp = fromcp;
1846 len = nfsm_rndup(len)-len;
1847 if (len > 0) {
1848 if (rem >= len)
1849 *dposp += len;
1850 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1851 goto out;
1852 }
1853
1854 /*
1855 * Extract and set starting directory.
1856 */
1857 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1858 nam, &rdonly, kerbflag, pubflag);
1859 if (error)
1860 goto out;
1861 if (dp->v_type != VDIR) {
1862 vrele(dp);
1863 error = ENOTDIR;
1864 goto out;
1865 }
1866
1867 if (rdonly)
1868 cnp->cn_flags |= RDONLY;
1869
1870 *retdirp = dp;
1871
1872 if (pubflag) {
1873 /*
1874 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1875 * and the 'native path' indicator.
1876 */
1877 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1878 fromcp = cnp->cn_pnbuf;
1879 tocp = cp;
1880 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1881 switch ((unsigned char)*fromcp) {
1882 case WEBNFS_NATIVE_CHAR:
1883 /*
1884 * 'Native' path for us is the same
1885 * as a path according to the NFS spec,
1886 * just skip the escape char.
1887 */
1888 fromcp++;
1889 break;
1890 /*
1891 * More may be added in the future, range 0x80-0xff
1892 */
1893 default:
1894 error = EIO;
1895 FREE(cp, M_NAMEI);
1896 goto out;
1897 }
1898 }
1899 /*
1900 * Translate the '%' escapes, URL-style.
1901 */
1902 while (*fromcp != '\0') {
1903 if (*fromcp == WEBNFS_ESC_CHAR) {
1904 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1905 fromcp++;
1906 *tocp++ = HEXSTRTOI(fromcp);
1907 fromcp += 2;
1908 continue;
1909 } else {
1910 error = ENOENT;
1911 FREE(cp, M_NAMEI);
1912 goto out;
1913 }
1914 } else
1915 *tocp++ = *fromcp++;
1916 }
1917 *tocp = '\0';
1918 FREE(cnp->cn_pnbuf, M_NAMEI);
1919 cnp->cn_pnbuf = cp;
1920 }
1921
1922 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1923 ndp->ni_segflg = UIO_SYSSPACE;
1924
1925 if (pubflag) {
1926 ndp->ni_rootdir = rootvnode;
1927 ndp->ni_loopcnt = 0;
1928 if (cnp->cn_pnbuf[0] == '/')
1929 dp = rootvnode;
1930 } else {
1931 cnp->cn_flags |= NOCROSSMOUNT;
1932 }
1933
1934 cnp->cn_proc = p;
1935 VREF(dp);
1936
1937 for (;;) {
1938 cnp->cn_nameptr = cnp->cn_pnbuf;
1939 ndp->ni_startdir = dp;
1940 /*
1941 * And call lookup() to do the real work
1942 */
1943 error = lookup(ndp);
1944 if (error)
1945 break;
1946 /*
1947 * Check for encountering a symbolic link
1948 */
1949 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1950 if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1951 cnp->cn_flags |= HASBUF;
1952 return (0);
1953 }
1954 break;
1955 } else {
1956 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1957 VOP_UNLOCK(ndp->ni_dvp);
1958 if (!pubflag) {
1959 vrele(ndp->ni_dvp);
1960 vput(ndp->ni_vp);
1961 ndp->ni_vp = NULL;
1962 error = EINVAL;
1963 break;
1964 }
1965
1966 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1967 error = ELOOP;
1968 break;
1969 }
1970 if (ndp->ni_pathlen > 1)
1971 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1972 else
1973 cp = cnp->cn_pnbuf;
1974 aiov.iov_base = cp;
1975 aiov.iov_len = MAXPATHLEN;
1976 auio.uio_iov = &aiov;
1977 auio.uio_iovcnt = 1;
1978 auio.uio_offset = 0;
1979 auio.uio_rw = UIO_READ;
1980 auio.uio_segflg = UIO_SYSSPACE;
1981 auio.uio_procp = (struct proc *)0;
1982 auio.uio_resid = MAXPATHLEN;
1983 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
1984 if (error) {
1985 badlink:
1986 if (ndp->ni_pathlen > 1)
1987 FREE(cp, M_NAMEI);
1988 break;
1989 }
1990 linklen = MAXPATHLEN - auio.uio_resid;
1991 if (linklen == 0) {
1992 error = ENOENT;
1993 goto badlink;
1994 }
1995 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
1996 error = ENAMETOOLONG;
1997 goto badlink;
1998 }
1999 if (ndp->ni_pathlen > 1) {
2000 bcopy(ndp->ni_next, cp + linklen, ndp->ni_pathlen);
2001 FREE(cnp->cn_pnbuf, M_NAMEI);
2002 cnp->cn_pnbuf = cp;
2003 } else
2004 cnp->cn_pnbuf[linklen] = '\0';
2005 ndp->ni_pathlen += linklen;
2006 vput(ndp->ni_vp);
2007 dp = ndp->ni_dvp;
2008 /*
2009 * Check if root directory should replace current directory.
2010 */
2011 if (cnp->cn_pnbuf[0] == '/') {
2012 vrele(dp);
2013 dp = ndp->ni_rootdir;
2014 VREF(dp);
2015 }
2016 }
2017 }
2018 out:
2019 FREE(cnp->cn_pnbuf, M_NAMEI);
2020 return (error);
2021 }
2022
2023 /*
2024 * A fiddled version of m_adj() that ensures null fill to a long
2025 * boundary and only trims off the back end
2026 */
2027 void
2028 nfsm_adj(mp, len, nul)
2029 struct mbuf *mp;
2030 register int len;
2031 int nul;
2032 {
2033 register struct mbuf *m;
2034 register int count, i;
2035 register char *cp;
2036
2037 /*
2038 * Trim from tail. Scan the mbuf chain,
2039 * calculating its length and finding the last mbuf.
2040 * If the adjustment only affects this mbuf, then just
2041 * adjust and return. Otherwise, rescan and truncate
2042 * after the remaining size.
2043 */
2044 count = 0;
2045 m = mp;
2046 for (;;) {
2047 count += m->m_len;
2048 if (m->m_next == (struct mbuf *)0)
2049 break;
2050 m = m->m_next;
2051 }
2052 if (m->m_len > len) {
2053 m->m_len -= len;
2054 if (nul > 0) {
2055 cp = mtod(m, caddr_t)+m->m_len-nul;
2056 for (i = 0; i < nul; i++)
2057 *cp++ = '\0';
2058 }
2059 return;
2060 }
2061 count -= len;
2062 if (count < 0)
2063 count = 0;
2064 /*
2065 * Correct length for chain is "count".
2066 * Find the mbuf with last data, adjust its length,
2067 * and toss data from remaining mbufs on chain.
2068 */
2069 for (m = mp; m; m = m->m_next) {
2070 if (m->m_len >= count) {
2071 m->m_len = count;
2072 if (nul > 0) {
2073 cp = mtod(m, caddr_t)+m->m_len-nul;
2074 for (i = 0; i < nul; i++)
2075 *cp++ = '\0';
2076 }
2077 break;
2078 }
2079 count -= m->m_len;
2080 }
2081 for (m = m->m_next;m;m = m->m_next)
2082 m->m_len = 0;
2083 }
2084
2085 /*
2086 * Make these functions instead of macros, so that the kernel text size
2087 * doesn't get too big...
2088 */
2089 void
2090 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2091 struct nfsrv_descript *nfsd;
2092 int before_ret;
2093 register struct vattr *before_vap;
2094 int after_ret;
2095 struct vattr *after_vap;
2096 struct mbuf **mbp;
2097 char **bposp;
2098 {
2099 register struct mbuf *mb = *mbp, *mb2;
2100 register char *bpos = *bposp;
2101 register u_int32_t *tl;
2102
2103 if (before_ret) {
2104 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2105 *tl = nfs_false;
2106 } else {
2107 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2108 *tl++ = nfs_true;
2109 txdr_hyper(&(before_vap->va_size), tl);
2110 tl += 2;
2111 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2112 tl += 2;
2113 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2114 }
2115 *bposp = bpos;
2116 *mbp = mb;
2117 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2118 }
2119
2120 void
2121 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2122 struct nfsrv_descript *nfsd;
2123 int after_ret;
2124 struct vattr *after_vap;
2125 struct mbuf **mbp;
2126 char **bposp;
2127 {
2128 register struct mbuf *mb = *mbp, *mb2;
2129 register char *bpos = *bposp;
2130 register u_int32_t *tl;
2131 register struct nfs_fattr *fp;
2132
2133 if (after_ret) {
2134 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2135 *tl = nfs_false;
2136 } else {
2137 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2138 *tl++ = nfs_true;
2139 fp = (struct nfs_fattr *)tl;
2140 nfsm_srvfattr(nfsd, after_vap, fp);
2141 }
2142 *mbp = mb;
2143 *bposp = bpos;
2144 }
2145
2146 void
2147 nfsm_srvfattr(nfsd, vap, fp)
2148 register struct nfsrv_descript *nfsd;
2149 register struct vattr *vap;
2150 register struct nfs_fattr *fp;
2151 {
2152
2153 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2154 fp->fa_uid = txdr_unsigned(vap->va_uid);
2155 fp->fa_gid = txdr_unsigned(vap->va_gid);
2156 if (nfsd->nd_flag & ND_NFSV3) {
2157 fp->fa_type = vtonfsv3_type(vap->va_type);
2158 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2159 txdr_hyper(&vap->va_size, &fp->fa3_size);
2160 txdr_hyper(&vap->va_bytes, &fp->fa3_used);
2161 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2162 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2163 fp->fa3_fsid.nfsuquad[0] = 0;
2164 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2165 fp->fa3_fileid.nfsuquad[0] = 0;
2166 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2167 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2168 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2169 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2170 } else {
2171 fp->fa_type = vtonfsv2_type(vap->va_type);
2172 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2173 fp->fa2_size = txdr_unsigned(vap->va_size);
2174 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2175 if (vap->va_type == VFIFO)
2176 fp->fa2_rdev = 0xffffffff;
2177 else
2178 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2179 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2180 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2181 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2182 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2183 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2184 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2185 }
2186 }
2187
2188 /*
2189 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2190 * - look up fsid in mount list (if not found ret error)
2191 * - get vp and export rights by calling VFS_FHTOVP()
2192 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2193 * - if not lockflag unlock it with VOP_UNLOCK()
2194 */
2195 int
2196 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2197 fhandle_t *fhp;
2198 int lockflag;
2199 struct vnode **vpp;
2200 struct ucred *cred;
2201 struct nfssvc_sock *slp;
2202 struct mbuf *nam;
2203 int *rdonlyp;
2204 int kerbflag;
2205 {
2206 #ifdef Lite2_integrated
2207 struct proc *p = curproc; /* XXX */
2208 #endif
2209 register struct mount *mp;
2210 register int i;
2211 struct ucred *credanon;
2212 int error, exflags;
2213 struct sockaddr_in *saddr;
2214
2215 *vpp = (struct vnode *)0;
2216
2217 if (nfs_ispublicfh(fhp)) {
2218 if (!pubflag || !nfs_pub.np_valid)
2219 return (ESTALE);
2220 fhp = &nfs_pub.np_handle;
2221 }
2222
2223 #ifdef Lite2_integrated
2224 mp = vfs_getvfs(&fhp->fh_fsid);
2225 #else
2226 mp = getvfs(&fhp->fh_fsid);
2227 #endif
2228 if (!mp)
2229 return (ESTALE);
2230 error = VFS_FHTOVP(mp, &fhp->fh_fid, nam, vpp, &exflags, &credanon);
2231 if (error)
2232 return (error);
2233
2234 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2235 saddr = mtod(nam, struct sockaddr_in *);
2236 if (saddr->sin_family == AF_INET &&
2237 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2238 vput(*vpp);
2239 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2240 }
2241 }
2242 /*
2243 * Check/setup credentials.
2244 */
2245 if (exflags & MNT_EXKERB) {
2246 if (!kerbflag) {
2247 vput(*vpp);
2248 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2249 }
2250 } else if (kerbflag) {
2251 vput(*vpp);
2252 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2253 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2254 cred->cr_uid = credanon->cr_uid;
2255 cred->cr_gid = credanon->cr_gid;
2256 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2257 cred->cr_groups[i] = credanon->cr_groups[i];
2258 cred->cr_ngroups = i;
2259 }
2260 if (exflags & MNT_EXRDONLY)
2261 *rdonlyp = 1;
2262 else
2263 *rdonlyp = 0;
2264 if (!lockflag)
2265 #ifdef Lite2_integrated
2266 VOP_UNLOCK(*vpp, 0, p);
2267 #else
2268 VOP_UNLOCK(*vpp);
2269 #endif
2270 return (0);
2271 }
2272
2273 /*
2274 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2275 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2276 * transformed this to all zeroes in both cases, so check for it.
2277 */
2278 int
2279 nfs_ispublicfh(fhp)
2280 fhandle_t *fhp;
2281 {
2282 char *cp = (char *)fhp;
2283 int i;
2284
2285 for (i = 0; i < NFSX_V3FH; i++)
2286 if (*cp++ != 0)
2287 return (FALSE);
2288 return (TRUE);
2289 }
2290
2291 /*
2292 * This function compares two net addresses by family and returns TRUE
2293 * if they are the same host.
2294 * If there is any doubt, return FALSE.
2295 * The AF_INET family is handled as a special case so that address mbufs
2296 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2297 */
2298 int
2299 netaddr_match(family, haddr, nam)
2300 int family;
2301 union nethostaddr *haddr;
2302 struct mbuf *nam;
2303 {
2304 register struct sockaddr_in *inetaddr;
2305
2306 switch (family) {
2307 case AF_INET:
2308 inetaddr = mtod(nam, struct sockaddr_in *);
2309 if (inetaddr->sin_family == AF_INET &&
2310 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2311 return (1);
2312 break;
2313 #ifdef ISO
2314 case AF_ISO:
2315 {
2316 register struct sockaddr_iso *isoaddr1, *isoaddr2;
2317
2318 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2319 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2320 if (isoaddr1->siso_family == AF_ISO &&
2321 isoaddr1->siso_nlen > 0 &&
2322 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2323 SAME_ISOADDR(isoaddr1, isoaddr2))
2324 return (1);
2325 break;
2326 }
2327 #endif /* ISO */
2328 default:
2329 break;
2330 };
2331 return (0);
2332 }
2333
2334
2335 /*
2336 * The write verifier has changed (probably due to a server reboot), so all
2337 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2338 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2339 * flag. Once done the new write verifier can be set for the mount point.
2340 */
2341 void
2342 nfs_clearcommit(mp)
2343 struct mount *mp;
2344 {
2345 register struct vnode *vp, *nvp;
2346 register struct buf *bp, *nbp;
2347 int s;
2348
2349 s = splbio();
2350 loop:
2351 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2352 if (vp->v_mount != mp) /* Paranoia */
2353 goto loop;
2354 nvp = vp->v_mntvnodes.le_next;
2355 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2356 nbp = bp->b_vnbufs.le_next;
2357 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2358 == (B_DELWRI | B_NEEDCOMMIT))
2359 bp->b_flags &= ~B_NEEDCOMMIT;
2360 }
2361 }
2362 splx(s);
2363 }
2364
2365 /*
2366 * Map errnos to NFS error numbers. For Version 3 also filter out error
2367 * numbers not specified for the associated procedure.
2368 */
2369 int
2370 nfsrv_errmap(nd, err)
2371 struct nfsrv_descript *nd;
2372 register int err;
2373 {
2374 register short *defaulterrp, *errp;
2375
2376 if (nd->nd_flag & ND_NFSV3) {
2377 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2378 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2379 while (*++errp) {
2380 if (*errp == err)
2381 return (err);
2382 else if (*errp > err)
2383 break;
2384 }
2385 return ((int)*defaulterrp);
2386 } else
2387 return (err & 0xffff);
2388 }
2389 if (err <= ELAST)
2390 return ((int)nfsrv_v2errmap[err - 1]);
2391 return (NFSERR_IO);
2392 }
2393
2394 /*
2395 * Sort the group list in increasing numerical order.
2396 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2397 * that used to be here.)
2398 */
2399 void
2400 nfsrvw_sort(list, num)
2401 register gid_t *list;
2402 register int num;
2403 {
2404 register int i, j;
2405 gid_t v;
2406
2407 /* Insertion sort. */
2408 for (i = 1; i < num; i++) {
2409 v = list[i];
2410 /* find correct slot for value v, moving others up */
2411 for (j = i; --j >= 0 && v < list[j];)
2412 list[j + 1] = list[j];
2413 list[j + 1] = v;
2414 }
2415 }
2416
2417 /*
2418 * copy credentials making sure that the result can be compared with bcmp().
2419 */
2420 void
2421 nfsrv_setcred(incred, outcred)
2422 register struct ucred *incred, *outcred;
2423 {
2424 register int i;
2425
2426 bzero((caddr_t)outcred, sizeof (struct ucred));
2427 outcred->cr_ref = 1;
2428 outcred->cr_uid = incred->cr_uid;
2429 outcred->cr_gid = incred->cr_gid;
2430 outcred->cr_ngroups = incred->cr_ngroups;
2431 for (i = 0; i < incred->cr_ngroups; i++)
2432 outcred->cr_groups[i] = incred->cr_groups[i];
2433 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2434 }
2435