Home | History | Annotate | Line # | Download | only in nfs
nfs_subs.c revision 1.67
      1 /*	$NetBSD: nfs_subs.c,v 1.67 1999/03/16 23:22:57 fvdl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     39  */
     40 
     41 #include "fs_nfs.h"
     42 #include "opt_nfsserver.h"
     43 #include "opt_iso.h"
     44 #include "opt_uvm.h"
     45 
     46 /*
     47  * These functions support the macros and help fiddle mbuf chains for
     48  * the nfs op functions. They do things like create the rpc header and
     49  * copy data between mbuf chains and uio lists.
     50  */
     51 #include <sys/param.h>
     52 #include <sys/proc.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/mount.h>
     56 #include <sys/vnode.h>
     57 #include <sys/namei.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/socket.h>
     60 #include <sys/stat.h>
     61 #include <sys/malloc.h>
     62 #include <sys/time.h>
     63 #include <sys/dirent.h>
     64 
     65 #include <vm/vm.h>
     66 
     67 #if defined(UVM)
     68 #include <uvm/uvm_extern.h>
     69 #endif
     70 
     71 #include <nfs/rpcv2.h>
     72 #include <nfs/nfsproto.h>
     73 #include <nfs/nfsnode.h>
     74 #include <nfs/nfs.h>
     75 #include <nfs/xdr_subs.h>
     76 #include <nfs/nfsm_subs.h>
     77 #include <nfs/nfsmount.h>
     78 #include <nfs/nqnfs.h>
     79 #include <nfs/nfsrtt.h>
     80 #include <nfs/nfs_var.h>
     81 
     82 #include <miscfs/specfs/specdev.h>
     83 
     84 #include <vm/vm.h>
     85 
     86 #include <netinet/in.h>
     87 #ifdef ISO
     88 #include <netiso/iso.h>
     89 #endif
     90 
     91 /*
     92  * Data items converted to xdr at startup, since they are constant
     93  * This is kinda hokey, but may save a little time doing byte swaps
     94  */
     95 u_int32_t nfs_xdrneg1;
     96 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
     97 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
     98 	rpc_auth_kerb;
     99 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
    100 
    101 /* And other global data */
    102 static u_int32_t nfs_xid = 0;
    103 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
    104 		      NFCHR, NFNON };
    105 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
    106 		      NFFIFO, NFNON };
    107 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    108 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    109 int nfs_ticks;
    110 extern struct nfs_public nfs_pub;
    111 
    112 /* NFS client/server stats. */
    113 struct nfsstats nfsstats;
    114 
    115 /*
    116  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    117  */
    118 int nfsv3_procid[NFS_NPROCS] = {
    119 	NFSPROC_NULL,
    120 	NFSPROC_GETATTR,
    121 	NFSPROC_SETATTR,
    122 	NFSPROC_NOOP,
    123 	NFSPROC_LOOKUP,
    124 	NFSPROC_READLINK,
    125 	NFSPROC_READ,
    126 	NFSPROC_NOOP,
    127 	NFSPROC_WRITE,
    128 	NFSPROC_CREATE,
    129 	NFSPROC_REMOVE,
    130 	NFSPROC_RENAME,
    131 	NFSPROC_LINK,
    132 	NFSPROC_SYMLINK,
    133 	NFSPROC_MKDIR,
    134 	NFSPROC_RMDIR,
    135 	NFSPROC_READDIR,
    136 	NFSPROC_FSSTAT,
    137 	NFSPROC_NOOP,
    138 	NFSPROC_NOOP,
    139 	NFSPROC_NOOP,
    140 	NFSPROC_NOOP,
    141 	NFSPROC_NOOP,
    142 	NFSPROC_NOOP,
    143 	NFSPROC_NOOP,
    144 	NFSPROC_NOOP
    145 };
    146 
    147 /*
    148  * and the reverse mapping from generic to Version 2 procedure numbers
    149  */
    150 int nfsv2_procid[NFS_NPROCS] = {
    151 	NFSV2PROC_NULL,
    152 	NFSV2PROC_GETATTR,
    153 	NFSV2PROC_SETATTR,
    154 	NFSV2PROC_LOOKUP,
    155 	NFSV2PROC_NOOP,
    156 	NFSV2PROC_READLINK,
    157 	NFSV2PROC_READ,
    158 	NFSV2PROC_WRITE,
    159 	NFSV2PROC_CREATE,
    160 	NFSV2PROC_MKDIR,
    161 	NFSV2PROC_SYMLINK,
    162 	NFSV2PROC_CREATE,
    163 	NFSV2PROC_REMOVE,
    164 	NFSV2PROC_RMDIR,
    165 	NFSV2PROC_RENAME,
    166 	NFSV2PROC_LINK,
    167 	NFSV2PROC_READDIR,
    168 	NFSV2PROC_NOOP,
    169 	NFSV2PROC_STATFS,
    170 	NFSV2PROC_NOOP,
    171 	NFSV2PROC_NOOP,
    172 	NFSV2PROC_NOOP,
    173 	NFSV2PROC_NOOP,
    174 	NFSV2PROC_NOOP,
    175 	NFSV2PROC_NOOP,
    176 	NFSV2PROC_NOOP,
    177 };
    178 
    179 /*
    180  * Maps errno values to nfs error numbers.
    181  * Use NFSERR_IO as the catch all for ones not specifically defined in
    182  * RFC 1094.
    183  */
    184 static u_char nfsrv_v2errmap[ELAST] = {
    185   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    186   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    187   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    188   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    189   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    190   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    191   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    192   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    193   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    194   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    195   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    196   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    197   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    198   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    199   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    200   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    201   NFSERR_IO,	NFSERR_IO,
    202 };
    203 
    204 /*
    205  * Maps errno values to nfs error numbers.
    206  * Although it is not obvious whether or not NFS clients really care if
    207  * a returned error value is in the specified list for the procedure, the
    208  * safest thing to do is filter them appropriately. For Version 2, the
    209  * X/Open XNFS document is the only specification that defines error values
    210  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    211  * so I have decided to not do this for Version 2.
    212  * The first entry is the default error return and the rest are the valid
    213  * errors for that RPC in increasing numeric order.
    214  */
    215 static short nfsv3err_null[] = {
    216 	0,
    217 	0,
    218 };
    219 
    220 static short nfsv3err_getattr[] = {
    221 	NFSERR_IO,
    222 	NFSERR_IO,
    223 	NFSERR_STALE,
    224 	NFSERR_BADHANDLE,
    225 	NFSERR_SERVERFAULT,
    226 	0,
    227 };
    228 
    229 static short nfsv3err_setattr[] = {
    230 	NFSERR_IO,
    231 	NFSERR_PERM,
    232 	NFSERR_IO,
    233 	NFSERR_ACCES,
    234 	NFSERR_INVAL,
    235 	NFSERR_NOSPC,
    236 	NFSERR_ROFS,
    237 	NFSERR_DQUOT,
    238 	NFSERR_STALE,
    239 	NFSERR_BADHANDLE,
    240 	NFSERR_NOT_SYNC,
    241 	NFSERR_SERVERFAULT,
    242 	0,
    243 };
    244 
    245 static short nfsv3err_lookup[] = {
    246 	NFSERR_IO,
    247 	NFSERR_NOENT,
    248 	NFSERR_IO,
    249 	NFSERR_ACCES,
    250 	NFSERR_NOTDIR,
    251 	NFSERR_NAMETOL,
    252 	NFSERR_STALE,
    253 	NFSERR_BADHANDLE,
    254 	NFSERR_SERVERFAULT,
    255 	0,
    256 };
    257 
    258 static short nfsv3err_access[] = {
    259 	NFSERR_IO,
    260 	NFSERR_IO,
    261 	NFSERR_STALE,
    262 	NFSERR_BADHANDLE,
    263 	NFSERR_SERVERFAULT,
    264 	0,
    265 };
    266 
    267 static short nfsv3err_readlink[] = {
    268 	NFSERR_IO,
    269 	NFSERR_IO,
    270 	NFSERR_ACCES,
    271 	NFSERR_INVAL,
    272 	NFSERR_STALE,
    273 	NFSERR_BADHANDLE,
    274 	NFSERR_NOTSUPP,
    275 	NFSERR_SERVERFAULT,
    276 	0,
    277 };
    278 
    279 static short nfsv3err_read[] = {
    280 	NFSERR_IO,
    281 	NFSERR_IO,
    282 	NFSERR_NXIO,
    283 	NFSERR_ACCES,
    284 	NFSERR_INVAL,
    285 	NFSERR_STALE,
    286 	NFSERR_BADHANDLE,
    287 	NFSERR_SERVERFAULT,
    288 	NFSERR_JUKEBOX,
    289 	0,
    290 };
    291 
    292 static short nfsv3err_write[] = {
    293 	NFSERR_IO,
    294 	NFSERR_IO,
    295 	NFSERR_ACCES,
    296 	NFSERR_INVAL,
    297 	NFSERR_FBIG,
    298 	NFSERR_NOSPC,
    299 	NFSERR_ROFS,
    300 	NFSERR_DQUOT,
    301 	NFSERR_STALE,
    302 	NFSERR_BADHANDLE,
    303 	NFSERR_SERVERFAULT,
    304 	0,
    305 };
    306 
    307 static short nfsv3err_create[] = {
    308 	NFSERR_IO,
    309 	NFSERR_IO,
    310 	NFSERR_ACCES,
    311 	NFSERR_EXIST,
    312 	NFSERR_NOTDIR,
    313 	NFSERR_NOSPC,
    314 	NFSERR_ROFS,
    315 	NFSERR_NAMETOL,
    316 	NFSERR_DQUOT,
    317 	NFSERR_STALE,
    318 	NFSERR_BADHANDLE,
    319 	NFSERR_NOTSUPP,
    320 	NFSERR_SERVERFAULT,
    321 	0,
    322 };
    323 
    324 static short nfsv3err_mkdir[] = {
    325 	NFSERR_IO,
    326 	NFSERR_IO,
    327 	NFSERR_ACCES,
    328 	NFSERR_EXIST,
    329 	NFSERR_NOTDIR,
    330 	NFSERR_NOSPC,
    331 	NFSERR_ROFS,
    332 	NFSERR_NAMETOL,
    333 	NFSERR_DQUOT,
    334 	NFSERR_STALE,
    335 	NFSERR_BADHANDLE,
    336 	NFSERR_NOTSUPP,
    337 	NFSERR_SERVERFAULT,
    338 	0,
    339 };
    340 
    341 static short nfsv3err_symlink[] = {
    342 	NFSERR_IO,
    343 	NFSERR_IO,
    344 	NFSERR_ACCES,
    345 	NFSERR_EXIST,
    346 	NFSERR_NOTDIR,
    347 	NFSERR_NOSPC,
    348 	NFSERR_ROFS,
    349 	NFSERR_NAMETOL,
    350 	NFSERR_DQUOT,
    351 	NFSERR_STALE,
    352 	NFSERR_BADHANDLE,
    353 	NFSERR_NOTSUPP,
    354 	NFSERR_SERVERFAULT,
    355 	0,
    356 };
    357 
    358 static short nfsv3err_mknod[] = {
    359 	NFSERR_IO,
    360 	NFSERR_IO,
    361 	NFSERR_ACCES,
    362 	NFSERR_EXIST,
    363 	NFSERR_NOTDIR,
    364 	NFSERR_NOSPC,
    365 	NFSERR_ROFS,
    366 	NFSERR_NAMETOL,
    367 	NFSERR_DQUOT,
    368 	NFSERR_STALE,
    369 	NFSERR_BADHANDLE,
    370 	NFSERR_NOTSUPP,
    371 	NFSERR_SERVERFAULT,
    372 	NFSERR_BADTYPE,
    373 	0,
    374 };
    375 
    376 static short nfsv3err_remove[] = {
    377 	NFSERR_IO,
    378 	NFSERR_NOENT,
    379 	NFSERR_IO,
    380 	NFSERR_ACCES,
    381 	NFSERR_NOTDIR,
    382 	NFSERR_ROFS,
    383 	NFSERR_NAMETOL,
    384 	NFSERR_STALE,
    385 	NFSERR_BADHANDLE,
    386 	NFSERR_SERVERFAULT,
    387 	0,
    388 };
    389 
    390 static short nfsv3err_rmdir[] = {
    391 	NFSERR_IO,
    392 	NFSERR_NOENT,
    393 	NFSERR_IO,
    394 	NFSERR_ACCES,
    395 	NFSERR_EXIST,
    396 	NFSERR_NOTDIR,
    397 	NFSERR_INVAL,
    398 	NFSERR_ROFS,
    399 	NFSERR_NAMETOL,
    400 	NFSERR_NOTEMPTY,
    401 	NFSERR_STALE,
    402 	NFSERR_BADHANDLE,
    403 	NFSERR_NOTSUPP,
    404 	NFSERR_SERVERFAULT,
    405 	0,
    406 };
    407 
    408 static short nfsv3err_rename[] = {
    409 	NFSERR_IO,
    410 	NFSERR_NOENT,
    411 	NFSERR_IO,
    412 	NFSERR_ACCES,
    413 	NFSERR_EXIST,
    414 	NFSERR_XDEV,
    415 	NFSERR_NOTDIR,
    416 	NFSERR_ISDIR,
    417 	NFSERR_INVAL,
    418 	NFSERR_NOSPC,
    419 	NFSERR_ROFS,
    420 	NFSERR_MLINK,
    421 	NFSERR_NAMETOL,
    422 	NFSERR_NOTEMPTY,
    423 	NFSERR_DQUOT,
    424 	NFSERR_STALE,
    425 	NFSERR_BADHANDLE,
    426 	NFSERR_NOTSUPP,
    427 	NFSERR_SERVERFAULT,
    428 	0,
    429 };
    430 
    431 static short nfsv3err_link[] = {
    432 	NFSERR_IO,
    433 	NFSERR_IO,
    434 	NFSERR_ACCES,
    435 	NFSERR_EXIST,
    436 	NFSERR_XDEV,
    437 	NFSERR_NOTDIR,
    438 	NFSERR_INVAL,
    439 	NFSERR_NOSPC,
    440 	NFSERR_ROFS,
    441 	NFSERR_MLINK,
    442 	NFSERR_NAMETOL,
    443 	NFSERR_DQUOT,
    444 	NFSERR_STALE,
    445 	NFSERR_BADHANDLE,
    446 	NFSERR_NOTSUPP,
    447 	NFSERR_SERVERFAULT,
    448 	0,
    449 };
    450 
    451 static short nfsv3err_readdir[] = {
    452 	NFSERR_IO,
    453 	NFSERR_IO,
    454 	NFSERR_ACCES,
    455 	NFSERR_NOTDIR,
    456 	NFSERR_STALE,
    457 	NFSERR_BADHANDLE,
    458 	NFSERR_BAD_COOKIE,
    459 	NFSERR_TOOSMALL,
    460 	NFSERR_SERVERFAULT,
    461 	0,
    462 };
    463 
    464 static short nfsv3err_readdirplus[] = {
    465 	NFSERR_IO,
    466 	NFSERR_IO,
    467 	NFSERR_ACCES,
    468 	NFSERR_NOTDIR,
    469 	NFSERR_STALE,
    470 	NFSERR_BADHANDLE,
    471 	NFSERR_BAD_COOKIE,
    472 	NFSERR_NOTSUPP,
    473 	NFSERR_TOOSMALL,
    474 	NFSERR_SERVERFAULT,
    475 	0,
    476 };
    477 
    478 static short nfsv3err_fsstat[] = {
    479 	NFSERR_IO,
    480 	NFSERR_IO,
    481 	NFSERR_STALE,
    482 	NFSERR_BADHANDLE,
    483 	NFSERR_SERVERFAULT,
    484 	0,
    485 };
    486 
    487 static short nfsv3err_fsinfo[] = {
    488 	NFSERR_STALE,
    489 	NFSERR_STALE,
    490 	NFSERR_BADHANDLE,
    491 	NFSERR_SERVERFAULT,
    492 	0,
    493 };
    494 
    495 static short nfsv3err_pathconf[] = {
    496 	NFSERR_STALE,
    497 	NFSERR_STALE,
    498 	NFSERR_BADHANDLE,
    499 	NFSERR_SERVERFAULT,
    500 	0,
    501 };
    502 
    503 static short nfsv3err_commit[] = {
    504 	NFSERR_IO,
    505 	NFSERR_IO,
    506 	NFSERR_STALE,
    507 	NFSERR_BADHANDLE,
    508 	NFSERR_SERVERFAULT,
    509 	0,
    510 };
    511 
    512 static short *nfsrv_v3errmap[] = {
    513 	nfsv3err_null,
    514 	nfsv3err_getattr,
    515 	nfsv3err_setattr,
    516 	nfsv3err_lookup,
    517 	nfsv3err_access,
    518 	nfsv3err_readlink,
    519 	nfsv3err_read,
    520 	nfsv3err_write,
    521 	nfsv3err_create,
    522 	nfsv3err_mkdir,
    523 	nfsv3err_symlink,
    524 	nfsv3err_mknod,
    525 	nfsv3err_remove,
    526 	nfsv3err_rmdir,
    527 	nfsv3err_rename,
    528 	nfsv3err_link,
    529 	nfsv3err_readdir,
    530 	nfsv3err_readdirplus,
    531 	nfsv3err_fsstat,
    532 	nfsv3err_fsinfo,
    533 	nfsv3err_pathconf,
    534 	nfsv3err_commit,
    535 };
    536 
    537 extern struct nfsrtt nfsrtt;
    538 extern time_t nqnfsstarttime;
    539 extern int nqsrv_clockskew;
    540 extern int nqsrv_writeslack;
    541 extern int nqsrv_maxlease;
    542 extern int nqnfs_piggy[NFS_NPROCS];
    543 extern nfstype nfsv2_type[9];
    544 extern nfstype nfsv3_type[9];
    545 extern struct nfsnodehashhead *nfsnodehashtbl;
    546 extern u_long nfsnodehash;
    547 
    548 LIST_HEAD(nfsnodehashhead, nfsnode);
    549 u_long nfsdirhashmask;
    550 
    551 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
    552 
    553 /*
    554  * Create the header for an rpc request packet
    555  * The hsiz is the size of the rest of the nfs request header.
    556  * (just used to decide if a cluster is a good idea)
    557  */
    558 struct mbuf *
    559 nfsm_reqh(vp, procid, hsiz, bposp)
    560 	struct vnode *vp;
    561 	u_long procid;
    562 	int hsiz;
    563 	caddr_t *bposp;
    564 {
    565 	register struct mbuf *mb;
    566 	register u_int32_t *tl;
    567 	register caddr_t bpos;
    568 	struct mbuf *mb2;
    569 	struct nfsmount *nmp;
    570 	int nqflag;
    571 
    572 	MGET(mb, M_WAIT, MT_DATA);
    573 	if (hsiz >= MINCLSIZE)
    574 		MCLGET(mb, M_WAIT);
    575 	mb->m_len = 0;
    576 	bpos = mtod(mb, caddr_t);
    577 
    578 	/*
    579 	 * For NQNFS, add lease request.
    580 	 */
    581 	if (vp) {
    582 		nmp = VFSTONFS(vp->v_mount);
    583 		if (nmp->nm_flag & NFSMNT_NQNFS) {
    584 			nqflag = NQNFS_NEEDLEASE(vp, procid);
    585 			if (nqflag) {
    586 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
    587 				*tl++ = txdr_unsigned(nqflag);
    588 				*tl = txdr_unsigned(nmp->nm_leaseterm);
    589 			} else {
    590 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
    591 				*tl = 0;
    592 			}
    593 		}
    594 	}
    595 	/* Finally, return values */
    596 	*bposp = bpos;
    597 	return (mb);
    598 }
    599 
    600 /*
    601  * Build the RPC header and fill in the authorization info.
    602  * The authorization string argument is only used when the credentials
    603  * come from outside of the kernel.
    604  * Returns the head of the mbuf list.
    605  */
    606 struct mbuf *
    607 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
    608 	verf_str, mrest, mrest_len, mbp, xidp)
    609 	register struct ucred *cr;
    610 	int nmflag;
    611 	int procid;
    612 	int auth_type;
    613 	int auth_len;
    614 	char *auth_str;
    615 	int verf_len;
    616 	char *verf_str;
    617 	struct mbuf *mrest;
    618 	int mrest_len;
    619 	struct mbuf **mbp;
    620 	u_int32_t *xidp;
    621 {
    622 	register struct mbuf *mb;
    623 	register u_int32_t *tl;
    624 	register caddr_t bpos;
    625 	register int i;
    626 	struct mbuf *mreq, *mb2;
    627 	int siz, grpsiz, authsiz;
    628 	struct timeval tv;
    629 	static u_int32_t base;
    630 
    631 	authsiz = nfsm_rndup(auth_len);
    632 	MGETHDR(mb, M_WAIT, MT_DATA);
    633 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    634 		MCLGET(mb, M_WAIT);
    635 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    636 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
    637 	} else {
    638 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
    639 	}
    640 	mb->m_len = 0;
    641 	mreq = mb;
    642 	bpos = mtod(mb, caddr_t);
    643 
    644 	/*
    645 	 * First the RPC header.
    646 	 */
    647 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    648 
    649 	/*
    650 	 * derive initial xid from system time
    651 	 * XXX time is invalid if root not yet mounted
    652 	 */
    653 	if (!base && (rootvp)) {
    654 		microtime(&tv);
    655 		base = tv.tv_sec << 12;
    656 		nfs_xid = base;
    657 	}
    658 	/*
    659 	 * Skip zero xid if it should ever happen.
    660 	 */
    661 	if (++nfs_xid == 0)
    662 		nfs_xid++;
    663 
    664 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
    665 	*tl++ = rpc_call;
    666 	*tl++ = rpc_vers;
    667 	if (nmflag & NFSMNT_NQNFS) {
    668 		*tl++ = txdr_unsigned(NQNFS_PROG);
    669 		*tl++ = txdr_unsigned(NQNFS_VER3);
    670 	} else {
    671 		*tl++ = txdr_unsigned(NFS_PROG);
    672 		if (nmflag & NFSMNT_NFSV3)
    673 			*tl++ = txdr_unsigned(NFS_VER3);
    674 		else
    675 			*tl++ = txdr_unsigned(NFS_VER2);
    676 	}
    677 	if (nmflag & NFSMNT_NFSV3)
    678 		*tl++ = txdr_unsigned(procid);
    679 	else
    680 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    681 
    682 	/*
    683 	 * And then the authorization cred.
    684 	 */
    685 	*tl++ = txdr_unsigned(auth_type);
    686 	*tl = txdr_unsigned(authsiz);
    687 	switch (auth_type) {
    688 	case RPCAUTH_UNIX:
    689 		nfsm_build(tl, u_int32_t *, auth_len);
    690 		*tl++ = 0;		/* stamp ?? */
    691 		*tl++ = 0;		/* NULL hostname */
    692 		*tl++ = txdr_unsigned(cr->cr_uid);
    693 		*tl++ = txdr_unsigned(cr->cr_gid);
    694 		grpsiz = (auth_len >> 2) - 5;
    695 		*tl++ = txdr_unsigned(grpsiz);
    696 		for (i = 0; i < grpsiz; i++)
    697 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
    698 		break;
    699 	case RPCAUTH_KERB4:
    700 		siz = auth_len;
    701 		while (siz > 0) {
    702 			if (M_TRAILINGSPACE(mb) == 0) {
    703 				MGET(mb2, M_WAIT, MT_DATA);
    704 				if (siz >= MINCLSIZE)
    705 					MCLGET(mb2, M_WAIT);
    706 				mb->m_next = mb2;
    707 				mb = mb2;
    708 				mb->m_len = 0;
    709 				bpos = mtod(mb, caddr_t);
    710 			}
    711 			i = min(siz, M_TRAILINGSPACE(mb));
    712 			memcpy(bpos, auth_str, i);
    713 			mb->m_len += i;
    714 			auth_str += i;
    715 			bpos += i;
    716 			siz -= i;
    717 		}
    718 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    719 			for (i = 0; i < siz; i++)
    720 				*bpos++ = '\0';
    721 			mb->m_len += siz;
    722 		}
    723 		break;
    724 	};
    725 
    726 	/*
    727 	 * And the verifier...
    728 	 */
    729 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    730 	if (verf_str) {
    731 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    732 		*tl = txdr_unsigned(verf_len);
    733 		siz = verf_len;
    734 		while (siz > 0) {
    735 			if (M_TRAILINGSPACE(mb) == 0) {
    736 				MGET(mb2, M_WAIT, MT_DATA);
    737 				if (siz >= MINCLSIZE)
    738 					MCLGET(mb2, M_WAIT);
    739 				mb->m_next = mb2;
    740 				mb = mb2;
    741 				mb->m_len = 0;
    742 				bpos = mtod(mb, caddr_t);
    743 			}
    744 			i = min(siz, M_TRAILINGSPACE(mb));
    745 			memcpy(bpos, verf_str, i);
    746 			mb->m_len += i;
    747 			verf_str += i;
    748 			bpos += i;
    749 			siz -= i;
    750 		}
    751 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    752 			for (i = 0; i < siz; i++)
    753 				*bpos++ = '\0';
    754 			mb->m_len += siz;
    755 		}
    756 	} else {
    757 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    758 		*tl = 0;
    759 	}
    760 	mb->m_next = mrest;
    761 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    762 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
    763 	*mbp = mb;
    764 	return (mreq);
    765 }
    766 
    767 /*
    768  * copies mbuf chain to the uio scatter/gather list
    769  */
    770 int
    771 nfsm_mbuftouio(mrep, uiop, siz, dpos)
    772 	struct mbuf **mrep;
    773 	register struct uio *uiop;
    774 	int siz;
    775 	caddr_t *dpos;
    776 {
    777 	register char *mbufcp, *uiocp;
    778 	register int xfer, left, len;
    779 	register struct mbuf *mp;
    780 	long uiosiz, rem;
    781 	int error = 0;
    782 
    783 	mp = *mrep;
    784 	mbufcp = *dpos;
    785 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
    786 	rem = nfsm_rndup(siz)-siz;
    787 	while (siz > 0) {
    788 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    789 			return (EFBIG);
    790 		left = uiop->uio_iov->iov_len;
    791 		uiocp = uiop->uio_iov->iov_base;
    792 		if (left > siz)
    793 			left = siz;
    794 		uiosiz = left;
    795 		while (left > 0) {
    796 			while (len == 0) {
    797 				mp = mp->m_next;
    798 				if (mp == NULL)
    799 					return (EBADRPC);
    800 				mbufcp = mtod(mp, caddr_t);
    801 				len = mp->m_len;
    802 			}
    803 			xfer = (left > len) ? len : left;
    804 #ifdef notdef
    805 			/* Not Yet.. */
    806 			if (uiop->uio_iov->iov_op != NULL)
    807 				(*(uiop->uio_iov->iov_op))
    808 				(mbufcp, uiocp, xfer);
    809 			else
    810 #endif
    811 			if (uiop->uio_segflg == UIO_SYSSPACE)
    812 				memcpy(uiocp, mbufcp, xfer);
    813 			else
    814 				copyout(mbufcp, uiocp, xfer);
    815 			left -= xfer;
    816 			len -= xfer;
    817 			mbufcp += xfer;
    818 			uiocp += xfer;
    819 			uiop->uio_offset += xfer;
    820 			uiop->uio_resid -= xfer;
    821 		}
    822 		if (uiop->uio_iov->iov_len <= siz) {
    823 			uiop->uio_iovcnt--;
    824 			uiop->uio_iov++;
    825 		} else {
    826 			(caddr_t)uiop->uio_iov->iov_base += uiosiz;
    827 			uiop->uio_iov->iov_len -= uiosiz;
    828 		}
    829 		siz -= uiosiz;
    830 	}
    831 	*dpos = mbufcp;
    832 	*mrep = mp;
    833 	if (rem > 0) {
    834 		if (len < rem)
    835 			error = nfs_adv(mrep, dpos, rem, len);
    836 		else
    837 			*dpos += rem;
    838 	}
    839 	return (error);
    840 }
    841 
    842 /*
    843  * copies a uio scatter/gather list to an mbuf chain.
    844  * NOTE: can ony handle iovcnt == 1
    845  */
    846 int
    847 nfsm_uiotombuf(uiop, mq, siz, bpos)
    848 	register struct uio *uiop;
    849 	struct mbuf **mq;
    850 	int siz;
    851 	caddr_t *bpos;
    852 {
    853 	register char *uiocp;
    854 	register struct mbuf *mp, *mp2;
    855 	register int xfer, left, mlen;
    856 	int uiosiz, clflg, rem;
    857 	char *cp;
    858 
    859 #ifdef DIAGNOSTIC
    860 	if (uiop->uio_iovcnt != 1)
    861 		panic("nfsm_uiotombuf: iovcnt != 1");
    862 #endif
    863 
    864 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    865 		clflg = 1;
    866 	else
    867 		clflg = 0;
    868 	rem = nfsm_rndup(siz)-siz;
    869 	mp = mp2 = *mq;
    870 	while (siz > 0) {
    871 		left = uiop->uio_iov->iov_len;
    872 		uiocp = uiop->uio_iov->iov_base;
    873 		if (left > siz)
    874 			left = siz;
    875 		uiosiz = left;
    876 		while (left > 0) {
    877 			mlen = M_TRAILINGSPACE(mp);
    878 			if (mlen == 0) {
    879 				MGET(mp, M_WAIT, MT_DATA);
    880 				if (clflg)
    881 					MCLGET(mp, M_WAIT);
    882 				mp->m_len = 0;
    883 				mp2->m_next = mp;
    884 				mp2 = mp;
    885 				mlen = M_TRAILINGSPACE(mp);
    886 			}
    887 			xfer = (left > mlen) ? mlen : left;
    888 #ifdef notdef
    889 			/* Not Yet.. */
    890 			if (uiop->uio_iov->iov_op != NULL)
    891 				(*(uiop->uio_iov->iov_op))
    892 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    893 			else
    894 #endif
    895 			if (uiop->uio_segflg == UIO_SYSSPACE)
    896 				memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
    897 			else
    898 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    899 			mp->m_len += xfer;
    900 			left -= xfer;
    901 			uiocp += xfer;
    902 			uiop->uio_offset += xfer;
    903 			uiop->uio_resid -= xfer;
    904 		}
    905 		(caddr_t)uiop->uio_iov->iov_base += uiosiz;
    906 		uiop->uio_iov->iov_len -= uiosiz;
    907 		siz -= uiosiz;
    908 	}
    909 	if (rem > 0) {
    910 		if (rem > M_TRAILINGSPACE(mp)) {
    911 			MGET(mp, M_WAIT, MT_DATA);
    912 			mp->m_len = 0;
    913 			mp2->m_next = mp;
    914 		}
    915 		cp = mtod(mp, caddr_t)+mp->m_len;
    916 		for (left = 0; left < rem; left++)
    917 			*cp++ = '\0';
    918 		mp->m_len += rem;
    919 		*bpos = cp;
    920 	} else
    921 		*bpos = mtod(mp, caddr_t)+mp->m_len;
    922 	*mq = mp;
    923 	return (0);
    924 }
    925 
    926 /*
    927  * Get at least "siz" bytes of correctly aligned data.
    928  * When called the mbuf pointers are not necessarily correct,
    929  * dsosp points to what ought to be in m_data and left contains
    930  * what ought to be in m_len.
    931  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    932  * cases. (The macros use the vars. dpos and dpos2)
    933  */
    934 int
    935 nfsm_disct(mdp, dposp, siz, left, cp2)
    936 	struct mbuf **mdp;
    937 	caddr_t *dposp;
    938 	int siz;
    939 	int left;
    940 	caddr_t *cp2;
    941 {
    942 	register struct mbuf *m1, *m2;
    943 	struct mbuf *havebuf = NULL;
    944 	caddr_t src = *dposp;
    945 	caddr_t dst;
    946 	int len;
    947 
    948 #ifdef DEBUG
    949 	if (left < 0)
    950 		panic("nfsm_disct: left < 0");
    951 #endif
    952 	m1 = *mdp;
    953 	/*
    954 	 * Skip through the mbuf chain looking for an mbuf with
    955 	 * some data. If the first mbuf found has enough data
    956 	 * and it is correctly aligned return it.
    957 	 */
    958 	while (left == 0) {
    959 		havebuf = m1;
    960 		*mdp = m1 = m1->m_next;
    961 		if (m1 == NULL)
    962 			return (EBADRPC);
    963 		src = mtod(m1, caddr_t);
    964 		left = m1->m_len;
    965 		/*
    966 		 * If we start a new mbuf and it is big enough
    967 		 * and correctly aligned just return it, don't
    968 		 * do any pull up.
    969 		 */
    970 		if (left >= siz && nfsm_aligned(src)) {
    971 			*cp2 = src;
    972 			*dposp = src + siz;
    973 			return (0);
    974 		}
    975 	}
    976 	if (m1->m_flags & M_EXT) {
    977 		if (havebuf) {
    978 			/* If the first mbuf with data has external data
    979 			 * and there is a previous empty mbuf use it
    980 			 * to move the data into.
    981 			 */
    982 			m2 = m1;
    983 			*mdp = m1 = havebuf;
    984 			if (m1->m_flags & M_EXT) {
    985 				MEXTREMOVE(m1);
    986 			}
    987 		} else {
    988 			/*
    989 			 * If the first mbuf has a external data
    990 			 * and there is no previous empty mbuf
    991 			 * allocate a new mbuf and move the external
    992 			 * data to the new mbuf. Also make the first
    993 			 * mbuf look empty.
    994 			 */
    995 			m2 = m_get(M_WAIT, MT_DATA);
    996 			m2->m_ext = m1->m_ext;
    997 			m2->m_data = src;
    998 			m2->m_len = left;
    999 			MCLADDREFERENCE(m1, m2);
   1000 			MEXTREMOVE(m1);
   1001 			m2->m_next = m1->m_next;
   1002 			m1->m_next = m2;
   1003 		}
   1004 		m1->m_len = 0;
   1005 		dst = m1->m_dat;
   1006 	} else {
   1007 		/*
   1008 		 * If the first mbuf has no external data
   1009 		 * move the data to the front of the mbuf.
   1010 		 */
   1011 		if ((dst = m1->m_dat) != src)
   1012 			memmove(dst, src, left);
   1013 		dst += left;
   1014 		m1->m_len = left;
   1015 		m2 = m1->m_next;
   1016 	}
   1017 	m1->m_flags &= ~M_PKTHDR;
   1018 	*cp2 = m1->m_data = m1->m_dat;   /* data is at beginning of buffer */
   1019 	*dposp = mtod(m1, caddr_t) + siz;
   1020 	/*
   1021 	 * Loop through mbufs pulling data up into first mbuf until
   1022 	 * the first mbuf is full or there is no more data to
   1023 	 * pullup.
   1024 	 */
   1025 	while ((len = (MLEN - m1->m_len)) != 0 && m2) {
   1026 		if ((len = min(len, m2->m_len)) != 0)
   1027 			memcpy(dst, m2->m_data, len);
   1028 		m1->m_len += len;
   1029 		dst += len;
   1030 		m2->m_data += len;
   1031 		m2->m_len -= len;
   1032 		m2 = m2->m_next;
   1033 	}
   1034 	if (m1->m_len < siz)
   1035 		return (EBADRPC);
   1036 	return (0);
   1037 }
   1038 
   1039 /*
   1040  * Advance the position in the mbuf chain.
   1041  */
   1042 int
   1043 nfs_adv(mdp, dposp, offs, left)
   1044 	struct mbuf **mdp;
   1045 	caddr_t *dposp;
   1046 	int offs;
   1047 	int left;
   1048 {
   1049 	register struct mbuf *m;
   1050 	register int s;
   1051 
   1052 	m = *mdp;
   1053 	s = left;
   1054 	while (s < offs) {
   1055 		offs -= s;
   1056 		m = m->m_next;
   1057 		if (m == NULL)
   1058 			return (EBADRPC);
   1059 		s = m->m_len;
   1060 	}
   1061 	*mdp = m;
   1062 	*dposp = mtod(m, caddr_t)+offs;
   1063 	return (0);
   1064 }
   1065 
   1066 /*
   1067  * Copy a string into mbufs for the hard cases...
   1068  */
   1069 int
   1070 nfsm_strtmbuf(mb, bpos, cp, siz)
   1071 	struct mbuf **mb;
   1072 	char **bpos;
   1073 	const char *cp;
   1074 	long siz;
   1075 {
   1076 	register struct mbuf *m1 = NULL, *m2;
   1077 	long left, xfer, len, tlen;
   1078 	u_int32_t *tl;
   1079 	int putsize;
   1080 
   1081 	putsize = 1;
   1082 	m2 = *mb;
   1083 	left = M_TRAILINGSPACE(m2);
   1084 	if (left > 0) {
   1085 		tl = ((u_int32_t *)(*bpos));
   1086 		*tl++ = txdr_unsigned(siz);
   1087 		putsize = 0;
   1088 		left -= NFSX_UNSIGNED;
   1089 		m2->m_len += NFSX_UNSIGNED;
   1090 		if (left > 0) {
   1091 			memcpy((caddr_t) tl, cp, left);
   1092 			siz -= left;
   1093 			cp += left;
   1094 			m2->m_len += left;
   1095 			left = 0;
   1096 		}
   1097 	}
   1098 	/* Loop around adding mbufs */
   1099 	while (siz > 0) {
   1100 		MGET(m1, M_WAIT, MT_DATA);
   1101 		if (siz > MLEN)
   1102 			MCLGET(m1, M_WAIT);
   1103 		m1->m_len = NFSMSIZ(m1);
   1104 		m2->m_next = m1;
   1105 		m2 = m1;
   1106 		tl = mtod(m1, u_int32_t *);
   1107 		tlen = 0;
   1108 		if (putsize) {
   1109 			*tl++ = txdr_unsigned(siz);
   1110 			m1->m_len -= NFSX_UNSIGNED;
   1111 			tlen = NFSX_UNSIGNED;
   1112 			putsize = 0;
   1113 		}
   1114 		if (siz < m1->m_len) {
   1115 			len = nfsm_rndup(siz);
   1116 			xfer = siz;
   1117 			if (xfer < len)
   1118 				*(tl+(xfer>>2)) = 0;
   1119 		} else {
   1120 			xfer = len = m1->m_len;
   1121 		}
   1122 		memcpy((caddr_t) tl, cp, xfer);
   1123 		m1->m_len = len+tlen;
   1124 		siz -= xfer;
   1125 		cp += xfer;
   1126 	}
   1127 	*mb = m1;
   1128 	*bpos = mtod(m1, caddr_t)+m1->m_len;
   1129 	return (0);
   1130 }
   1131 
   1132 /*
   1133  * Directory caching routines. They work as follows:
   1134  * - a cache is maintained per VDIR nfsnode.
   1135  * - for each offset cookie that is exported to userspace, and can
   1136  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1137  *   information in the cache.
   1138  * - cached are:
   1139  *   - cookie itself
   1140  *   - blocknumber (essentially just a search key in the buffer cache)
   1141  *   - entry number in block.
   1142  *   - offset cookie of block in which this entry is stored
   1143  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1144  * - entries are looked up in a hash table
   1145  * - also maintained is an LRU list of entries, used to determine
   1146  *   which ones to delete if the cache grows too large.
   1147  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1148  *   the cache also functions as a translation table
   1149  * - in the translation case, invalidating the cache does not mean
   1150  *   flushing it, but just marking entries as invalid, except for
   1151  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1152  *   still be able to use the cache as a translation table.
   1153  * - 32 bit cookies are uniquely created by combining the hash table
   1154  *   entry value, and one generation count per hash table entry,
   1155  *   incremented each time an entry is appended to the chain.
   1156  * - the cache is invalidated each time a direcory is modified
   1157  * - sanity checks are also done; if an entry in a block turns
   1158  *   out not to have a matching cookie, the cache is invalidated
   1159  *   and a new block starting from the wanted offset is fetched from
   1160  *   the server.
   1161  * - directory entries as read from the server are extended to contain
   1162  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1163  *   the cache and exporting them to userspace through the cookie
   1164  *   argument to VOP_READDIR.
   1165  */
   1166 
   1167 u_long
   1168 nfs_dirhash(off)
   1169 	off_t off;
   1170 {
   1171 	int i;
   1172 	char *cp = (char *)&off;
   1173 	u_long sum = 0L;
   1174 
   1175 	for (i = 0 ; i < sizeof (off); i++)
   1176 		sum += *cp++;
   1177 
   1178 	return sum;
   1179 }
   1180 
   1181 void
   1182 nfs_initdircache(vp)
   1183 	struct vnode *vp;
   1184 {
   1185 	struct nfsnode *np = VTONFS(vp);
   1186 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1187 
   1188 	np->n_dircachesize = 0;
   1189 	np->n_dblkno = 1;
   1190 	np->n_dircache =
   1191 	    hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
   1192 	TAILQ_INIT(&np->n_dirchain);
   1193 	if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1194 		MALLOC(np->n_dirgens, unsigned *,
   1195 		    NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
   1196 		    M_WAITOK);
   1197 		memset((caddr_t)np->n_dirgens, 0,
   1198 		    NFS_DIRHASHSIZ * sizeof (unsigned));
   1199 	}
   1200 }
   1201 
   1202 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
   1203 
   1204 struct nfsdircache *
   1205 nfs_searchdircache(vp, off, do32, hashent)
   1206 	struct vnode *vp;
   1207 	off_t off;
   1208 	int do32;
   1209 	int *hashent;
   1210 {
   1211 	struct nfsdirhashhead *ndhp;
   1212 	struct nfsdircache *ndp = NULL;
   1213 	struct nfsnode *np = VTONFS(vp);
   1214 	unsigned ent;
   1215 
   1216 	/*
   1217 	 * Zero is always a valid cookie.
   1218 	 */
   1219 	if (off == 0)
   1220 		return &dzero;
   1221 
   1222 	/*
   1223 	 * We use a 32bit cookie as search key, directly reconstruct
   1224 	 * the hashentry. Else use the hashfunction.
   1225 	 */
   1226 	if (do32) {
   1227 		ent = (u_int32_t)off >> 24;
   1228 		if (ent >= NFS_DIRHASHSIZ)
   1229 			return NULL;
   1230 		ndhp = &np->n_dircache[ent];
   1231 	} else {
   1232 		ndhp = NFSDIRHASH(np, off);
   1233 	}
   1234 
   1235 	if (hashent)
   1236 		*hashent = (int)(ndhp - np->n_dircache);
   1237 	if (do32) {
   1238 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
   1239 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1240 				/*
   1241 				 * An invalidated entry will become the
   1242 				 * start of a new block fetched from
   1243 				 * the server.
   1244 				 */
   1245 				if (ndp->dc_blkno == -1) {
   1246 					ndp->dc_blkcookie = ndp->dc_cookie;
   1247 					ndp->dc_blkno = np->n_dblkno++;
   1248 					ndp->dc_entry = 0;
   1249 				}
   1250 				break;
   1251 			}
   1252 		}
   1253 	} else {
   1254 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
   1255 			if (ndp->dc_cookie == off)
   1256 				break;
   1257 	}
   1258 	return ndp;
   1259 }
   1260 
   1261 
   1262 struct nfsdircache *
   1263 nfs_enterdircache(vp, off, blkoff, en, blkno)
   1264 	struct vnode *vp;
   1265 	off_t off, blkoff;
   1266 	daddr_t blkno;
   1267 	int en;
   1268 {
   1269 	struct nfsnode *np = VTONFS(vp);
   1270 	struct nfsdirhashhead *ndhp;
   1271 	struct nfsdircache *ndp = NULL, *first;
   1272 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1273 	int hashent, gen, overwrite;
   1274 
   1275 	if (!np->n_dircache)
   1276 		/*
   1277 		 * XXX would like to do this in nfs_nget but vtype
   1278 		 * isn't known at that time.
   1279 		 */
   1280 		nfs_initdircache(vp);
   1281 
   1282 	/*
   1283 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1284 	 * cookie 0 for the '.' entry, making this necessary. This
   1285 	 * isn't so bad, as 0 is a special case anyway.
   1286 	 */
   1287 	if (off == 0)
   1288 		return &dzero;
   1289 
   1290 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1291 
   1292 	if (ndp && ndp->dc_blkno != -1) {
   1293 		/*
   1294 		 * Overwriting an old entry. Check if it's the same.
   1295 		 * If so, just return. If not, remove the old entry.
   1296 		 */
   1297 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1298 			return ndp;
   1299 		TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1300 		LIST_REMOVE(ndp, dc_hash);
   1301 		FREE(ndp, M_NFSDIROFF);
   1302 		ndp = 0;
   1303 	}
   1304 
   1305 	ndhp = &np->n_dircache[hashent];
   1306 
   1307 	if (!ndp) {
   1308 		MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
   1309 		    M_WAITOK);
   1310 		overwrite = 0;
   1311 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1312 			/*
   1313 			 * We're allocating a new entry, so bump the
   1314 			 * generation number.
   1315 			 */
   1316 			gen = ++np->n_dirgens[hashent];
   1317 			if (gen == 0) {
   1318 				np->n_dirgens[hashent]++;
   1319 				gen++;
   1320 			}
   1321 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1322 		}
   1323 	} else
   1324 		overwrite = 1;
   1325 
   1326 	/*
   1327 	 * If the entry number is 0, we are at the start of a new block, so
   1328 	 * allocate a new blocknumber.
   1329 	 */
   1330 	if (en == 0)
   1331 		ndp->dc_blkno = np->n_dblkno++;
   1332 	else
   1333 		ndp->dc_blkno = blkno;
   1334 
   1335 	ndp->dc_cookie = off;
   1336 	ndp->dc_blkcookie = blkoff;
   1337 	ndp->dc_entry = en;
   1338 
   1339 	if (overwrite)
   1340 		return ndp;
   1341 
   1342 	/*
   1343 	 * If the maximum directory cookie cache size has been reached
   1344 	 * for this node, take one off the front. The idea is that
   1345 	 * directories are typically read front-to-back once, so that
   1346 	 * the oldest entries can be thrown away without much performance
   1347 	 * loss.
   1348 	 */
   1349 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1350 		first = np->n_dirchain.tqh_first;
   1351 		TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
   1352 		LIST_REMOVE(first, dc_hash);
   1353 		FREE(first, M_NFSDIROFF);
   1354 	} else
   1355 		np->n_dircachesize++;
   1356 
   1357 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1358 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1359 	return ndp;
   1360 }
   1361 
   1362 void
   1363 nfs_invaldircache(vp, forcefree)
   1364 	struct vnode *vp;
   1365 	int forcefree;
   1366 {
   1367 	struct nfsnode *np = VTONFS(vp);
   1368 	struct nfsdircache *ndp = NULL;
   1369 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1370 
   1371 #ifdef DIAGNOSTIC
   1372 	if (vp->v_type != VDIR)
   1373 		panic("nfs: invaldircache: not dir");
   1374 #endif
   1375 
   1376 	if (!np->n_dircache)
   1377 		return;
   1378 
   1379 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1380 		while ((ndp = np->n_dirchain.tqh_first)) {
   1381 			TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1382 			LIST_REMOVE(ndp, dc_hash);
   1383 			FREE(ndp, M_NFSDIROFF);
   1384 		}
   1385 		np->n_dircachesize = 0;
   1386 		if (forcefree && np->n_dirgens) {
   1387 			FREE(np->n_dirgens, M_NFSDIROFF);
   1388 		}
   1389 	} else {
   1390 		for (ndp = np->n_dirchain.tqh_first; ndp;
   1391 		    ndp = ndp->dc_chain.tqe_next)
   1392 			ndp->dc_blkno = -1;
   1393 	}
   1394 
   1395 	np->n_dblkno = 1;
   1396 }
   1397 
   1398 /*
   1399  * Called once before VFS init to initialize shared and
   1400  * server-specific data structures.
   1401  */
   1402 void
   1403 nfs_init()
   1404 {
   1405 
   1406 #if !defined(alpha) && defined(DIAGNOSTIC)
   1407 	/*
   1408 	 * Check to see if major data structures haven't bloated.
   1409 	 */
   1410 	if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
   1411 		printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
   1412 		printf("Try reducing NFS_SMALLFH\n");
   1413 	}
   1414 	if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
   1415 		printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
   1416 		printf("Try reducing NFS_UIDHASHSIZ\n");
   1417 	}
   1418 	if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
   1419 		printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
   1420 		printf("Try unionizing the nu_nickname and nu_flag fields\n");
   1421 	}
   1422 #endif
   1423 
   1424 	nfsrtt.pos = 0;
   1425 	rpc_vers = txdr_unsigned(RPC_VER2);
   1426 	rpc_call = txdr_unsigned(RPC_CALL);
   1427 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1428 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1429 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1430 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1431 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1432 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1433 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1434 	nfs_prog = txdr_unsigned(NFS_PROG);
   1435 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
   1436 	nfs_true = txdr_unsigned(TRUE);
   1437 	nfs_false = txdr_unsigned(FALSE);
   1438 	nfs_xdrneg1 = txdr_unsigned(-1);
   1439 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1440 	if (nfs_ticks < 1)
   1441 		nfs_ticks = 1;
   1442 #ifdef NFSSERVER
   1443 	nfsrv_init(0);			/* Init server data structures */
   1444 	nfsrv_initcache();		/* Init the server request cache */
   1445 #endif /* NFSSERVER */
   1446 
   1447 	/*
   1448 	 * Initialize the nqnfs data structures.
   1449 	 */
   1450 	if (nqnfsstarttime == 0) {
   1451 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
   1452 			+ nqsrv_clockskew + nqsrv_writeslack;
   1453 		NQLOADNOVRAM(nqnfsstarttime);
   1454 		CIRCLEQ_INIT(&nqtimerhead);
   1455 		nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
   1456 	}
   1457 
   1458 	/*
   1459 	 * Initialize reply list and start timer
   1460 	 */
   1461 	TAILQ_INIT(&nfs_reqq);
   1462 	nfs_timer(NULL);
   1463 }
   1464 
   1465 #ifdef NFS
   1466 /*
   1467  * Called once at VFS init to initialize client-specific data structures.
   1468  */
   1469 void
   1470 nfs_vfs_init()
   1471 {
   1472 	register int i;
   1473 
   1474 	/* Ensure async daemons disabled */
   1475 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
   1476 		nfs_iodwant[i] = (struct proc *)0;
   1477 		nfs_iodmount[i] = (struct nfsmount *)0;
   1478 	}
   1479 	nfs_nhinit();			/* Init the nfsnode table */
   1480 }
   1481 
   1482 /*
   1483  * Attribute cache routines.
   1484  * nfs_loadattrcache() - loads or updates the cache contents from attributes
   1485  *	that are on the mbuf list
   1486  * nfs_getattrcache() - returns valid attributes if found in cache, returns
   1487  *	error otherwise
   1488  */
   1489 
   1490 /*
   1491  * Load the attribute cache (that lives in the nfsnode entry) with
   1492  * the values on the mbuf list and
   1493  * Iff vap not NULL
   1494  *    copy the attributes to *vaper
   1495  */
   1496 int
   1497 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
   1498 	struct vnode **vpp;
   1499 	struct mbuf **mdp;
   1500 	caddr_t *dposp;
   1501 	struct vattr *vaper;
   1502 {
   1503 	register int32_t t1;
   1504 	caddr_t cp2;
   1505 	int error = 0;
   1506 	struct mbuf *md;
   1507 	int v3 = NFS_ISV3(*vpp);
   1508 
   1509 	md = *mdp;
   1510 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
   1511 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
   1512 	if (error)
   1513 		return (error);
   1514 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
   1515 }
   1516 
   1517 int
   1518 nfs_loadattrcache(vpp, fp, vaper)
   1519 	struct vnode **vpp;
   1520 	struct nfs_fattr *fp;
   1521 	struct vattr *vaper;
   1522 {
   1523 	register struct vnode *vp = *vpp;
   1524 	register struct vattr *vap;
   1525 	int v3 = NFS_ISV3(vp);
   1526 	enum vtype vtyp;
   1527 	u_short vmode;
   1528 	struct timespec mtime;
   1529 	struct vnode *nvp;
   1530 	int32_t rdev;
   1531 	register struct nfsnode *np;
   1532 	extern int (**spec_nfsv2nodeop_p) __P((void *));
   1533 
   1534 	if (v3) {
   1535 		vtyp = nfsv3tov_type(fp->fa_type);
   1536 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1537 		rdev = makedev(fxdr_unsigned(u_char, fp->fa3_rdev.specdata1),
   1538 			fxdr_unsigned(u_char, fp->fa3_rdev.specdata2));
   1539 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
   1540 	} else {
   1541 		vtyp = nfsv2tov_type(fp->fa_type);
   1542 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1543 		if (vtyp == VNON || vtyp == VREG)
   1544 			vtyp = IFTOVT(vmode);
   1545 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
   1546 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
   1547 
   1548 		/*
   1549 		 * Really ugly NFSv2 kludge.
   1550 		 */
   1551 		if (vtyp == VCHR && rdev == 0xffffffff)
   1552 			vtyp = VFIFO;
   1553 	}
   1554 
   1555 	/*
   1556 	 * If v_type == VNON it is a new node, so fill in the v_type,
   1557 	 * n_mtime fields. Check to see if it represents a special
   1558 	 * device, and if so, check for a possible alias. Once the
   1559 	 * correct vnode has been obtained, fill in the rest of the
   1560 	 * information.
   1561 	 */
   1562 	np = VTONFS(vp);
   1563 	if (vp->v_type != vtyp) {
   1564 		vp->v_type = vtyp;
   1565 		if (vp->v_type == VFIFO) {
   1566 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
   1567 			vp->v_op = fifo_nfsv2nodeop_p;
   1568 		}
   1569 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
   1570 			vp->v_op = spec_nfsv2nodeop_p;
   1571 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
   1572 			if (nvp) {
   1573 				/*
   1574 				 * Discard unneeded vnode, but save its nfsnode.
   1575 				 * Since the nfsnode does not have a lock, its
   1576 				 * vnode lock has to be carried over.
   1577 				 */
   1578 				nvp->v_vnlock = vp->v_vnlock;
   1579 				vp->v_vnlock = NULL;
   1580 				nvp->v_data = vp->v_data;
   1581 				vp->v_data = NULL;
   1582 				vp->v_op = spec_vnodeop_p;
   1583 				vrele(vp);
   1584 				vgone(vp);
   1585 				/*
   1586 				 * Reinitialize aliased node.
   1587 				 */
   1588 				np->n_vnode = nvp;
   1589 				*vpp = vp = nvp;
   1590 			}
   1591 		}
   1592 		np->n_mtime = mtime.tv_sec;
   1593 	}
   1594 	vap = np->n_vattr;
   1595 	vap->va_type = vtyp;
   1596 	vap->va_mode = vmode & ALLPERMS;
   1597 	vap->va_rdev = (dev_t)rdev;
   1598 	vap->va_mtime = mtime;
   1599 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
   1600 	if (v3) {
   1601 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1602 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1603 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1604 		vap->va_size = fxdr_hyper(&fp->fa3_size);
   1605 		if (vtyp == VDIR)
   1606 			vap->va_blocksize = NFS_DIRFRAGSIZ;
   1607 		else
   1608 			vap->va_blocksize = NFS_FABLKSIZE;
   1609 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
   1610 		vap->va_fileid = fxdr_unsigned(int32_t,
   1611 		    fp->fa3_fileid.nfsuquad[1]);
   1612 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
   1613 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
   1614 		vap->va_flags = 0;
   1615 		vap->va_filerev = 0;
   1616 	} else {
   1617 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1618 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1619 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1620 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
   1621 		if (vtyp == VDIR)
   1622 			vap->va_blocksize = NFS_DIRFRAGSIZ;
   1623 		else
   1624 			vap->va_blocksize =
   1625 				fxdr_unsigned(int32_t, fp->fa2_blocksize);
   1626 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
   1627 		    * NFS_FABLKSIZE;
   1628 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
   1629 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
   1630 		vap->va_flags = 0;
   1631 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
   1632 		    fp->fa2_ctime.nfsv2_sec);
   1633 		vap->va_ctime.tv_nsec = 0;
   1634 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
   1635 		vap->va_filerev = 0;
   1636 	}
   1637 	if (vap->va_size != np->n_size) {
   1638 		if (vap->va_type == VREG) {
   1639 			if (np->n_flag & NMODIFIED) {
   1640 				if (vap->va_size < np->n_size)
   1641 					vap->va_size = np->n_size;
   1642 				else
   1643 					np->n_size = vap->va_size;
   1644 			} else
   1645 				np->n_size = vap->va_size;
   1646 #if defined(UVM)
   1647 			uvm_vnp_setsize(vp, np->n_size);
   1648 #else
   1649 			vnode_pager_setsize(vp, np->n_size);
   1650 #endif
   1651 		} else
   1652 			np->n_size = vap->va_size;
   1653 	}
   1654 	np->n_attrstamp = time.tv_sec;
   1655 	if (vaper != NULL) {
   1656 		memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
   1657 		if (np->n_flag & NCHG) {
   1658 			if (np->n_flag & NACC)
   1659 				vaper->va_atime = np->n_atim;
   1660 			if (np->n_flag & NUPD)
   1661 				vaper->va_mtime = np->n_mtim;
   1662 		}
   1663 	}
   1664 	return (0);
   1665 }
   1666 
   1667 /*
   1668  * Check the time stamp
   1669  * If the cache is valid, copy contents to *vap and return 0
   1670  * otherwise return an error
   1671  */
   1672 int
   1673 nfs_getattrcache(vp, vaper)
   1674 	register struct vnode *vp;
   1675 	struct vattr *vaper;
   1676 {
   1677 	register struct nfsnode *np = VTONFS(vp);
   1678 	register struct vattr *vap;
   1679 
   1680 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
   1681 		nfsstats.attrcache_misses++;
   1682 		return (ENOENT);
   1683 	}
   1684 	nfsstats.attrcache_hits++;
   1685 	vap = np->n_vattr;
   1686 	if (vap->va_size != np->n_size) {
   1687 		if (vap->va_type == VREG) {
   1688 			if (np->n_flag & NMODIFIED) {
   1689 				if (vap->va_size < np->n_size)
   1690 					vap->va_size = np->n_size;
   1691 				else
   1692 					np->n_size = vap->va_size;
   1693 			} else
   1694 				np->n_size = vap->va_size;
   1695 #if defined(UVM)
   1696 			uvm_vnp_setsize(vp, np->n_size);
   1697 #else
   1698 			vnode_pager_setsize(vp, np->n_size);
   1699 #endif
   1700 		} else
   1701 			np->n_size = vap->va_size;
   1702 	}
   1703 	memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
   1704 	if (np->n_flag & NCHG) {
   1705 		if (np->n_flag & NACC)
   1706 			vaper->va_atime = np->n_atim;
   1707 		if (np->n_flag & NUPD)
   1708 			vaper->va_mtime = np->n_mtim;
   1709 	}
   1710 	return (0);
   1711 }
   1712 
   1713 /*
   1714  * Heuristic to see if the server XDR encodes directory cookies or not.
   1715  * it is not supposed to, but a lot of servers may do this. Also, since
   1716  * most/all servers will implement V2 as well, it is expected that they
   1717  * may return just 32 bits worth of cookie information, so we need to
   1718  * find out in which 32 bits this information is available. We do this
   1719  * to avoid trouble with emulated binaries that can't handle 64 bit
   1720  * directory offsets.
   1721  */
   1722 
   1723 void
   1724 nfs_cookieheuristic(vp, flagp, p, cred)
   1725 	struct vnode *vp;
   1726 	int *flagp;
   1727 	struct proc *p;
   1728 	struct ucred *cred;
   1729 {
   1730 	struct uio auio;
   1731 	struct iovec aiov;
   1732 	caddr_t buf, cp;
   1733 	struct dirent *dp;
   1734 	off_t *cookies = NULL, *cop;
   1735 	int error, eof, nc, len;
   1736 
   1737 	MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
   1738 
   1739 	aiov.iov_base = buf;
   1740 	aiov.iov_len = NFS_DIRFRAGSIZ;
   1741 	auio.uio_iov = &aiov;
   1742 	auio.uio_iovcnt = 1;
   1743 	auio.uio_rw = UIO_READ;
   1744 	auio.uio_segflg = UIO_SYSSPACE;
   1745 	auio.uio_procp = p;
   1746 	auio.uio_resid = NFS_DIRFRAGSIZ;
   1747 	auio.uio_offset = 0;
   1748 
   1749 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
   1750 
   1751 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
   1752 	if (error || len == 0) {
   1753 		FREE(buf, M_TEMP);
   1754 		if (cookies)
   1755 			FREE(cookies, M_TEMP);
   1756 		return;
   1757 	}
   1758 
   1759 	/*
   1760 	 * Find the first valid entry and look at its offset cookie.
   1761 	 */
   1762 
   1763 	cp = buf;
   1764 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
   1765 		dp = (struct dirent *)cp;
   1766 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
   1767 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
   1768 				*flagp |= NFSMNT_SWAPCOOKIE;
   1769 				nfs_invaldircache(vp, 0);
   1770 				nfs_vinvalbuf(vp, 0, cred, p, 1);
   1771 			}
   1772 			break;
   1773 		}
   1774 		cop++;
   1775 		cp += dp->d_reclen;
   1776 	}
   1777 
   1778 	FREE(buf, M_TEMP);
   1779 	FREE(cookies, M_TEMP);
   1780 }
   1781 #endif /* NFS */
   1782 
   1783 /*
   1784  * Set up nameidata for a lookup() call and do it.
   1785  *
   1786  * If pubflag is set, this call is done for a lookup operation on the
   1787  * public filehandle. In that case we allow crossing mountpoints and
   1788  * absolute pathnames. However, the caller is expected to check that
   1789  * the lookup result is within the public fs, and deny access if
   1790  * it is not.
   1791  */
   1792 int
   1793 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
   1794 	register struct nameidata *ndp;
   1795 	fhandle_t *fhp;
   1796 	int len;
   1797 	struct nfssvc_sock *slp;
   1798 	struct mbuf *nam;
   1799 	struct mbuf **mdp;
   1800 	caddr_t *dposp;
   1801 	struct vnode **retdirp;
   1802 	struct proc *p;
   1803 	int kerbflag, pubflag;
   1804 {
   1805 	register int i, rem;
   1806 	register struct mbuf *md;
   1807 	register char *fromcp, *tocp, *cp;
   1808 	struct iovec aiov;
   1809 	struct uio auio;
   1810 	struct vnode *dp;
   1811 	int error, rdonly, linklen;
   1812 	struct componentname *cnp = &ndp->ni_cnd;
   1813 
   1814 	*retdirp = (struct vnode *)0;
   1815 	MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
   1816 	/*
   1817 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
   1818 	 * and set the various ndp fields appropriately.
   1819 	 */
   1820 	fromcp = *dposp;
   1821 	tocp = cnp->cn_pnbuf;
   1822 	md = *mdp;
   1823 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
   1824 	for (i = 0; i < len; i++) {
   1825 		while (rem == 0) {
   1826 			md = md->m_next;
   1827 			if (md == NULL) {
   1828 				error = EBADRPC;
   1829 				goto out;
   1830 			}
   1831 			fromcp = mtod(md, caddr_t);
   1832 			rem = md->m_len;
   1833 		}
   1834 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
   1835 			error = EACCES;
   1836 			goto out;
   1837 		}
   1838 		*tocp++ = *fromcp++;
   1839 		rem--;
   1840 	}
   1841 	*tocp = '\0';
   1842 	*mdp = md;
   1843 	*dposp = fromcp;
   1844 	len = nfsm_rndup(len)-len;
   1845 	if (len > 0) {
   1846 		if (rem >= len)
   1847 			*dposp += len;
   1848 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
   1849 			goto out;
   1850 	}
   1851 
   1852 	/*
   1853 	 * Extract and set starting directory.
   1854 	 */
   1855 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
   1856 	    nam, &rdonly, kerbflag, pubflag);
   1857 	if (error)
   1858 		goto out;
   1859 	if (dp->v_type != VDIR) {
   1860 		vrele(dp);
   1861 		error = ENOTDIR;
   1862 		goto out;
   1863 	}
   1864 
   1865 	if (rdonly)
   1866 		cnp->cn_flags |= RDONLY;
   1867 
   1868 	*retdirp = dp;
   1869 
   1870 	if (pubflag) {
   1871 		/*
   1872 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
   1873 		 * and the 'native path' indicator.
   1874 		 */
   1875 		MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
   1876 		fromcp = cnp->cn_pnbuf;
   1877 		tocp = cp;
   1878 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
   1879 			switch ((unsigned char)*fromcp) {
   1880 			case WEBNFS_NATIVE_CHAR:
   1881 				/*
   1882 				 * 'Native' path for us is the same
   1883 				 * as a path according to the NFS spec,
   1884 				 * just skip the escape char.
   1885 				 */
   1886 				fromcp++;
   1887 				break;
   1888 			/*
   1889 			 * More may be added in the future, range 0x80-0xff
   1890 			 */
   1891 			default:
   1892 				error = EIO;
   1893 				FREE(cp, M_NAMEI);
   1894 				goto out;
   1895 			}
   1896 		}
   1897 		/*
   1898 		 * Translate the '%' escapes, URL-style.
   1899 		 */
   1900 		while (*fromcp != '\0') {
   1901 			if (*fromcp == WEBNFS_ESC_CHAR) {
   1902 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
   1903 					fromcp++;
   1904 					*tocp++ = HEXSTRTOI(fromcp);
   1905 					fromcp += 2;
   1906 					continue;
   1907 				} else {
   1908 					error = ENOENT;
   1909 					FREE(cp, M_NAMEI);
   1910 					goto out;
   1911 				}
   1912 			} else
   1913 				*tocp++ = *fromcp++;
   1914 		}
   1915 		*tocp = '\0';
   1916 		FREE(cnp->cn_pnbuf, M_NAMEI);
   1917 		cnp->cn_pnbuf = cp;
   1918 	}
   1919 
   1920 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
   1921 	ndp->ni_segflg = UIO_SYSSPACE;
   1922 
   1923 	if (pubflag) {
   1924 		ndp->ni_rootdir = rootvnode;
   1925 		ndp->ni_loopcnt = 0;
   1926 		if (cnp->cn_pnbuf[0] == '/')
   1927 			dp = rootvnode;
   1928 	} else {
   1929 		cnp->cn_flags |= NOCROSSMOUNT;
   1930 	}
   1931 
   1932 	cnp->cn_proc = p;
   1933 	VREF(dp);
   1934 
   1935     for (;;) {
   1936 	cnp->cn_nameptr = cnp->cn_pnbuf;
   1937 	ndp->ni_startdir = dp;
   1938 	/*
   1939 	 * And call lookup() to do the real work
   1940 	 */
   1941 	error = lookup(ndp);
   1942 	if (error)
   1943 		break;
   1944 	/*
   1945 	 * Check for encountering a symbolic link
   1946 	 */
   1947 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
   1948 		if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
   1949 			cnp->cn_flags |= HASBUF;
   1950 			return (0);
   1951 		}
   1952 		break;
   1953 	} else {
   1954 		if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
   1955 			VOP_UNLOCK(ndp->ni_dvp, 0);
   1956 		if (!pubflag) {
   1957 			vrele(ndp->ni_dvp);
   1958 			vput(ndp->ni_vp);
   1959 			ndp->ni_vp = NULL;
   1960 			error = EINVAL;
   1961 			break;
   1962 		}
   1963 
   1964 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
   1965 			error = ELOOP;
   1966 			break;
   1967 		}
   1968 		if (ndp->ni_pathlen > 1)
   1969 			MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
   1970 		else
   1971 			cp = cnp->cn_pnbuf;
   1972 		aiov.iov_base = cp;
   1973 		aiov.iov_len = MAXPATHLEN;
   1974 		auio.uio_iov = &aiov;
   1975 		auio.uio_iovcnt = 1;
   1976 		auio.uio_offset = 0;
   1977 		auio.uio_rw = UIO_READ;
   1978 		auio.uio_segflg = UIO_SYSSPACE;
   1979 		auio.uio_procp = (struct proc *)0;
   1980 		auio.uio_resid = MAXPATHLEN;
   1981 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
   1982 		if (error) {
   1983 		badlink:
   1984 			if (ndp->ni_pathlen > 1)
   1985 				FREE(cp, M_NAMEI);
   1986 			break;
   1987 		}
   1988 		linklen = MAXPATHLEN - auio.uio_resid;
   1989 		if (linklen == 0) {
   1990 			error = ENOENT;
   1991 			goto badlink;
   1992 		}
   1993 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
   1994 			error = ENAMETOOLONG;
   1995 			goto badlink;
   1996 		}
   1997 		if (ndp->ni_pathlen > 1) {
   1998 			memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
   1999 			FREE(cnp->cn_pnbuf, M_NAMEI);
   2000 			cnp->cn_pnbuf = cp;
   2001 		} else
   2002 			cnp->cn_pnbuf[linklen] = '\0';
   2003 		ndp->ni_pathlen += linklen;
   2004 		vput(ndp->ni_vp);
   2005 		dp = ndp->ni_dvp;
   2006 		/*
   2007 		 * Check if root directory should replace current directory.
   2008 		 */
   2009 		if (cnp->cn_pnbuf[0] == '/') {
   2010 			vrele(dp);
   2011 			dp = ndp->ni_rootdir;
   2012 			VREF(dp);
   2013 		}
   2014 	}
   2015    }
   2016 out:
   2017 	FREE(cnp->cn_pnbuf, M_NAMEI);
   2018 	return (error);
   2019 }
   2020 
   2021 /*
   2022  * A fiddled version of m_adj() that ensures null fill to a long
   2023  * boundary and only trims off the back end
   2024  */
   2025 void
   2026 nfsm_adj(mp, len, nul)
   2027 	struct mbuf *mp;
   2028 	register int len;
   2029 	int nul;
   2030 {
   2031 	register struct mbuf *m;
   2032 	register int count, i;
   2033 	register char *cp;
   2034 
   2035 	/*
   2036 	 * Trim from tail.  Scan the mbuf chain,
   2037 	 * calculating its length and finding the last mbuf.
   2038 	 * If the adjustment only affects this mbuf, then just
   2039 	 * adjust and return.  Otherwise, rescan and truncate
   2040 	 * after the remaining size.
   2041 	 */
   2042 	count = 0;
   2043 	m = mp;
   2044 	for (;;) {
   2045 		count += m->m_len;
   2046 		if (m->m_next == (struct mbuf *)0)
   2047 			break;
   2048 		m = m->m_next;
   2049 	}
   2050 	if (m->m_len > len) {
   2051 		m->m_len -= len;
   2052 		if (nul > 0) {
   2053 			cp = mtod(m, caddr_t)+m->m_len-nul;
   2054 			for (i = 0; i < nul; i++)
   2055 				*cp++ = '\0';
   2056 		}
   2057 		return;
   2058 	}
   2059 	count -= len;
   2060 	if (count < 0)
   2061 		count = 0;
   2062 	/*
   2063 	 * Correct length for chain is "count".
   2064 	 * Find the mbuf with last data, adjust its length,
   2065 	 * and toss data from remaining mbufs on chain.
   2066 	 */
   2067 	for (m = mp; m; m = m->m_next) {
   2068 		if (m->m_len >= count) {
   2069 			m->m_len = count;
   2070 			if (nul > 0) {
   2071 				cp = mtod(m, caddr_t)+m->m_len-nul;
   2072 				for (i = 0; i < nul; i++)
   2073 					*cp++ = '\0';
   2074 			}
   2075 			break;
   2076 		}
   2077 		count -= m->m_len;
   2078 	}
   2079 	for (m = m->m_next;m;m = m->m_next)
   2080 		m->m_len = 0;
   2081 }
   2082 
   2083 /*
   2084  * Make these functions instead of macros, so that the kernel text size
   2085  * doesn't get too big...
   2086  */
   2087 void
   2088 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
   2089 	struct nfsrv_descript *nfsd;
   2090 	int before_ret;
   2091 	register struct vattr *before_vap;
   2092 	int after_ret;
   2093 	struct vattr *after_vap;
   2094 	struct mbuf **mbp;
   2095 	char **bposp;
   2096 {
   2097 	register struct mbuf *mb = *mbp, *mb2;
   2098 	register char *bpos = *bposp;
   2099 	register u_int32_t *tl;
   2100 
   2101 	if (before_ret) {
   2102 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2103 		*tl = nfs_false;
   2104 	} else {
   2105 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   2106 		*tl++ = nfs_true;
   2107 		txdr_hyper(before_vap->va_size, tl);
   2108 		tl += 2;
   2109 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   2110 		tl += 2;
   2111 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   2112 	}
   2113 	*bposp = bpos;
   2114 	*mbp = mb;
   2115 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   2116 }
   2117 
   2118 void
   2119 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
   2120 	struct nfsrv_descript *nfsd;
   2121 	int after_ret;
   2122 	struct vattr *after_vap;
   2123 	struct mbuf **mbp;
   2124 	char **bposp;
   2125 {
   2126 	register struct mbuf *mb = *mbp, *mb2;
   2127 	register char *bpos = *bposp;
   2128 	register u_int32_t *tl;
   2129 	register struct nfs_fattr *fp;
   2130 
   2131 	if (after_ret) {
   2132 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2133 		*tl = nfs_false;
   2134 	} else {
   2135 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   2136 		*tl++ = nfs_true;
   2137 		fp = (struct nfs_fattr *)tl;
   2138 		nfsm_srvfattr(nfsd, after_vap, fp);
   2139 	}
   2140 	*mbp = mb;
   2141 	*bposp = bpos;
   2142 }
   2143 
   2144 void
   2145 nfsm_srvfattr(nfsd, vap, fp)
   2146 	register struct nfsrv_descript *nfsd;
   2147 	register struct vattr *vap;
   2148 	register struct nfs_fattr *fp;
   2149 {
   2150 
   2151 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   2152 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   2153 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   2154 	if (nfsd->nd_flag & ND_NFSV3) {
   2155 		fp->fa_type = vtonfsv3_type(vap->va_type);
   2156 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   2157 		txdr_hyper(vap->va_size, &fp->fa3_size);
   2158 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   2159 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   2160 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   2161 		fp->fa3_fsid.nfsuquad[0] = 0;
   2162 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   2163 		fp->fa3_fileid.nfsuquad[0] = 0;
   2164 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
   2165 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   2166 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   2167 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   2168 	} else {
   2169 		fp->fa_type = vtonfsv2_type(vap->va_type);
   2170 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   2171 		fp->fa2_size = txdr_unsigned(vap->va_size);
   2172 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
   2173 		if (vap->va_type == VFIFO)
   2174 			fp->fa2_rdev = 0xffffffff;
   2175 		else
   2176 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   2177 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   2178 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   2179 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   2180 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   2181 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   2182 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   2183 	}
   2184 }
   2185 
   2186 /*
   2187  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
   2188  * 	- look up fsid in mount list (if not found ret error)
   2189  *	- get vp and export rights by calling VFS_FHTOVP()
   2190  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
   2191  *	- if not lockflag unlock it with VOP_UNLOCK()
   2192  */
   2193 int
   2194 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
   2195 	fhandle_t *fhp;
   2196 	int lockflag;
   2197 	struct vnode **vpp;
   2198 	struct ucred *cred;
   2199 	struct nfssvc_sock *slp;
   2200 	struct mbuf *nam;
   2201 	int *rdonlyp;
   2202 	int kerbflag;
   2203 {
   2204 	register struct mount *mp;
   2205 	register int i;
   2206 	struct ucred *credanon;
   2207 	int error, exflags;
   2208 	struct sockaddr_in *saddr;
   2209 
   2210 	*vpp = (struct vnode *)0;
   2211 
   2212 	if (nfs_ispublicfh(fhp)) {
   2213 		if (!pubflag || !nfs_pub.np_valid)
   2214 			return (ESTALE);
   2215 		fhp = &nfs_pub.np_handle;
   2216 	}
   2217 
   2218 	mp = vfs_getvfs(&fhp->fh_fsid);
   2219 	if (!mp)
   2220 		return (ESTALE);
   2221 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
   2222 	if (error)
   2223 		return (error);
   2224 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
   2225 	if (error)
   2226 		return (error);
   2227 
   2228 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
   2229 		saddr = mtod(nam, struct sockaddr_in *);
   2230 		if (saddr->sin_family == AF_INET &&
   2231 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
   2232 			vput(*vpp);
   2233 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2234 		}
   2235 	}
   2236 	/*
   2237 	 * Check/setup credentials.
   2238 	 */
   2239 	if (exflags & MNT_EXKERB) {
   2240 		if (!kerbflag) {
   2241 			vput(*vpp);
   2242 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2243 		}
   2244 	} else if (kerbflag) {
   2245 		vput(*vpp);
   2246 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2247 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
   2248 		cred->cr_uid = credanon->cr_uid;
   2249 		cred->cr_gid = credanon->cr_gid;
   2250 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
   2251 			cred->cr_groups[i] = credanon->cr_groups[i];
   2252 		cred->cr_ngroups = i;
   2253 	}
   2254 	if (exflags & MNT_EXRDONLY)
   2255 		*rdonlyp = 1;
   2256 	else
   2257 		*rdonlyp = 0;
   2258 	if (!lockflag)
   2259 		VOP_UNLOCK(*vpp, 0);
   2260 	return (0);
   2261 }
   2262 
   2263 /*
   2264  * WebNFS: check if a filehandle is a public filehandle. For v3, this
   2265  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
   2266  * transformed this to all zeroes in both cases, so check for it.
   2267  */
   2268 int
   2269 nfs_ispublicfh(fhp)
   2270 	fhandle_t *fhp;
   2271 {
   2272 	char *cp = (char *)fhp;
   2273 	int i;
   2274 
   2275 	for (i = 0; i < NFSX_V3FH; i++)
   2276 		if (*cp++ != 0)
   2277 			return (FALSE);
   2278 	return (TRUE);
   2279 }
   2280 
   2281 /*
   2282  * This function compares two net addresses by family and returns TRUE
   2283  * if they are the same host.
   2284  * If there is any doubt, return FALSE.
   2285  * The AF_INET family is handled as a special case so that address mbufs
   2286  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   2287  */
   2288 int
   2289 netaddr_match(family, haddr, nam)
   2290 	int family;
   2291 	union nethostaddr *haddr;
   2292 	struct mbuf *nam;
   2293 {
   2294 	register struct sockaddr_in *inetaddr;
   2295 
   2296 	switch (family) {
   2297 	case AF_INET:
   2298 		inetaddr = mtod(nam, struct sockaddr_in *);
   2299 		if (inetaddr->sin_family == AF_INET &&
   2300 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   2301 			return (1);
   2302 		break;
   2303 #ifdef ISO
   2304 	case AF_ISO:
   2305 	    {
   2306 		register struct sockaddr_iso *isoaddr1, *isoaddr2;
   2307 
   2308 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
   2309 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
   2310 		if (isoaddr1->siso_family == AF_ISO &&
   2311 		    isoaddr1->siso_nlen > 0 &&
   2312 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
   2313 		    SAME_ISOADDR(isoaddr1, isoaddr2))
   2314 			return (1);
   2315 		break;
   2316 	    }
   2317 #endif	/* ISO */
   2318 	default:
   2319 		break;
   2320 	};
   2321 	return (0);
   2322 }
   2323 
   2324 
   2325 /*
   2326  * The write verifier has changed (probably due to a server reboot), so all
   2327  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
   2328  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
   2329  * flag. Once done the new write verifier can be set for the mount point.
   2330  */
   2331 void
   2332 nfs_clearcommit(mp)
   2333 	struct mount *mp;
   2334 {
   2335 	register struct vnode *vp, *nvp;
   2336 	register struct buf *bp, *nbp;
   2337 	int s;
   2338 
   2339 	s = splbio();
   2340 loop:
   2341 	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
   2342 		if (vp->v_mount != mp)	/* Paranoia */
   2343 			goto loop;
   2344 		nvp = vp->v_mntvnodes.le_next;
   2345 		for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
   2346 			nbp = bp->b_vnbufs.le_next;
   2347 			if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
   2348 				== (B_DELWRI | B_NEEDCOMMIT))
   2349 				bp->b_flags &= ~B_NEEDCOMMIT;
   2350 		}
   2351 	}
   2352 	splx(s);
   2353 }
   2354 
   2355 /*
   2356  * Map errnos to NFS error numbers. For Version 3 also filter out error
   2357  * numbers not specified for the associated procedure.
   2358  */
   2359 int
   2360 nfsrv_errmap(nd, err)
   2361 	struct nfsrv_descript *nd;
   2362 	register int err;
   2363 {
   2364 	register short *defaulterrp, *errp;
   2365 
   2366 	if (nd->nd_flag & ND_NFSV3) {
   2367 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   2368 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   2369 		while (*++errp) {
   2370 			if (*errp == err)
   2371 				return (err);
   2372 			else if (*errp > err)
   2373 				break;
   2374 		}
   2375 		return ((int)*defaulterrp);
   2376 	    } else
   2377 		return (err & 0xffff);
   2378 	}
   2379 	if (err <= ELAST)
   2380 		return ((int)nfsrv_v2errmap[err - 1]);
   2381 	return (NFSERR_IO);
   2382 }
   2383 
   2384 /*
   2385  * Sort the group list in increasing numerical order.
   2386  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
   2387  *  that used to be here.)
   2388  */
   2389 void
   2390 nfsrvw_sort(list, num)
   2391         register gid_t *list;
   2392         register int num;
   2393 {
   2394 	register int i, j;
   2395 	gid_t v;
   2396 
   2397 	/* Insertion sort. */
   2398 	for (i = 1; i < num; i++) {
   2399 		v = list[i];
   2400 		/* find correct slot for value v, moving others up */
   2401 		for (j = i; --j >= 0 && v < list[j];)
   2402 			list[j + 1] = list[j];
   2403 		list[j + 1] = v;
   2404 	}
   2405 }
   2406 
   2407 /*
   2408  * copy credentials making sure that the result can be compared with memcmp().
   2409  */
   2410 void
   2411 nfsrv_setcred(incred, outcred)
   2412 	register struct ucred *incred, *outcred;
   2413 {
   2414 	register int i;
   2415 
   2416 	memset((caddr_t)outcred, 0, sizeof (struct ucred));
   2417 	outcred->cr_ref = 1;
   2418 	outcred->cr_uid = incred->cr_uid;
   2419 	outcred->cr_gid = incred->cr_gid;
   2420 	outcred->cr_ngroups = incred->cr_ngroups;
   2421 	for (i = 0; i < incred->cr_ngroups; i++)
   2422 		outcred->cr_groups[i] = incred->cr_groups[i];
   2423 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
   2424 }
   2425