nfs_subs.c revision 1.77.2.3 1 /* $NetBSD: nfs_subs.c,v 1.77.2.3 2000/12/14 23:37:09 he Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include "fs_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/time.h>
98 #include <sys/dirent.h>
99
100 #include <vm/vm.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <nfs/rpcv2.h>
105 #include <nfs/nfsproto.h>
106 #include <nfs/nfsnode.h>
107 #include <nfs/nfs.h>
108 #include <nfs/xdr_subs.h>
109 #include <nfs/nfsm_subs.h>
110 #include <nfs/nfsmount.h>
111 #include <nfs/nqnfs.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <vm/vm.h>
118
119 #include <netinet/in.h>
120 #ifdef ISO
121 #include <netiso/iso.h>
122 #endif
123
124 /*
125 * Data items converted to xdr at startup, since they are constant
126 * This is kinda hokey, but may save a little time doing byte swaps
127 */
128 u_int32_t nfs_xdrneg1;
129 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
130 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
131 rpc_auth_kerb;
132 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
133
134 /* And other global data */
135 static u_int32_t nfs_xid = 0;
136 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
137 NFCHR, NFNON };
138 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
139 NFFIFO, NFNON };
140 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
141 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
142 int nfs_ticks;
143
144 /* NFS client/server stats. */
145 struct nfsstats nfsstats;
146
147 /*
148 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
149 */
150 int nfsv3_procid[NFS_NPROCS] = {
151 NFSPROC_NULL,
152 NFSPROC_GETATTR,
153 NFSPROC_SETATTR,
154 NFSPROC_NOOP,
155 NFSPROC_LOOKUP,
156 NFSPROC_READLINK,
157 NFSPROC_READ,
158 NFSPROC_NOOP,
159 NFSPROC_WRITE,
160 NFSPROC_CREATE,
161 NFSPROC_REMOVE,
162 NFSPROC_RENAME,
163 NFSPROC_LINK,
164 NFSPROC_SYMLINK,
165 NFSPROC_MKDIR,
166 NFSPROC_RMDIR,
167 NFSPROC_READDIR,
168 NFSPROC_FSSTAT,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP
177 };
178
179 /*
180 * and the reverse mapping from generic to Version 2 procedure numbers
181 */
182 int nfsv2_procid[NFS_NPROCS] = {
183 NFSV2PROC_NULL,
184 NFSV2PROC_GETATTR,
185 NFSV2PROC_SETATTR,
186 NFSV2PROC_LOOKUP,
187 NFSV2PROC_NOOP,
188 NFSV2PROC_READLINK,
189 NFSV2PROC_READ,
190 NFSV2PROC_WRITE,
191 NFSV2PROC_CREATE,
192 NFSV2PROC_MKDIR,
193 NFSV2PROC_SYMLINK,
194 NFSV2PROC_CREATE,
195 NFSV2PROC_REMOVE,
196 NFSV2PROC_RMDIR,
197 NFSV2PROC_RENAME,
198 NFSV2PROC_LINK,
199 NFSV2PROC_READDIR,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_STATFS,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 };
210
211 /*
212 * Maps errno values to nfs error numbers.
213 * Use NFSERR_IO as the catch all for ones not specifically defined in
214 * RFC 1094.
215 */
216 static u_char nfsrv_v2errmap[ELAST] = {
217 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
221 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
230 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO,
234 };
235
236 /*
237 * Maps errno values to nfs error numbers.
238 * Although it is not obvious whether or not NFS clients really care if
239 * a returned error value is in the specified list for the procedure, the
240 * safest thing to do is filter them appropriately. For Version 2, the
241 * X/Open XNFS document is the only specification that defines error values
242 * for each RPC (The RFC simply lists all possible error values for all RPCs),
243 * so I have decided to not do this for Version 2.
244 * The first entry is the default error return and the rest are the valid
245 * errors for that RPC in increasing numeric order.
246 */
247 static short nfsv3err_null[] = {
248 0,
249 0,
250 };
251
252 static short nfsv3err_getattr[] = {
253 NFSERR_IO,
254 NFSERR_IO,
255 NFSERR_STALE,
256 NFSERR_BADHANDLE,
257 NFSERR_SERVERFAULT,
258 0,
259 };
260
261 static short nfsv3err_setattr[] = {
262 NFSERR_IO,
263 NFSERR_PERM,
264 NFSERR_IO,
265 NFSERR_ACCES,
266 NFSERR_INVAL,
267 NFSERR_NOSPC,
268 NFSERR_ROFS,
269 NFSERR_DQUOT,
270 NFSERR_STALE,
271 NFSERR_BADHANDLE,
272 NFSERR_NOT_SYNC,
273 NFSERR_SERVERFAULT,
274 0,
275 };
276
277 static short nfsv3err_lookup[] = {
278 NFSERR_IO,
279 NFSERR_NOENT,
280 NFSERR_IO,
281 NFSERR_ACCES,
282 NFSERR_NOTDIR,
283 NFSERR_NAMETOL,
284 NFSERR_STALE,
285 NFSERR_BADHANDLE,
286 NFSERR_SERVERFAULT,
287 0,
288 };
289
290 static short nfsv3err_access[] = {
291 NFSERR_IO,
292 NFSERR_IO,
293 NFSERR_STALE,
294 NFSERR_BADHANDLE,
295 NFSERR_SERVERFAULT,
296 0,
297 };
298
299 static short nfsv3err_readlink[] = {
300 NFSERR_IO,
301 NFSERR_IO,
302 NFSERR_ACCES,
303 NFSERR_INVAL,
304 NFSERR_STALE,
305 NFSERR_BADHANDLE,
306 NFSERR_NOTSUPP,
307 NFSERR_SERVERFAULT,
308 0,
309 };
310
311 static short nfsv3err_read[] = {
312 NFSERR_IO,
313 NFSERR_IO,
314 NFSERR_NXIO,
315 NFSERR_ACCES,
316 NFSERR_INVAL,
317 NFSERR_STALE,
318 NFSERR_BADHANDLE,
319 NFSERR_SERVERFAULT,
320 NFSERR_JUKEBOX,
321 0,
322 };
323
324 static short nfsv3err_write[] = {
325 NFSERR_IO,
326 NFSERR_IO,
327 NFSERR_ACCES,
328 NFSERR_INVAL,
329 NFSERR_FBIG,
330 NFSERR_NOSPC,
331 NFSERR_ROFS,
332 NFSERR_DQUOT,
333 NFSERR_STALE,
334 NFSERR_BADHANDLE,
335 NFSERR_SERVERFAULT,
336 NFSERR_JUKEBOX,
337 0,
338 };
339
340 static short nfsv3err_create[] = {
341 NFSERR_IO,
342 NFSERR_IO,
343 NFSERR_ACCES,
344 NFSERR_EXIST,
345 NFSERR_NOTDIR,
346 NFSERR_NOSPC,
347 NFSERR_ROFS,
348 NFSERR_NAMETOL,
349 NFSERR_DQUOT,
350 NFSERR_STALE,
351 NFSERR_BADHANDLE,
352 NFSERR_NOTSUPP,
353 NFSERR_SERVERFAULT,
354 0,
355 };
356
357 static short nfsv3err_mkdir[] = {
358 NFSERR_IO,
359 NFSERR_IO,
360 NFSERR_ACCES,
361 NFSERR_EXIST,
362 NFSERR_NOTDIR,
363 NFSERR_NOSPC,
364 NFSERR_ROFS,
365 NFSERR_NAMETOL,
366 NFSERR_DQUOT,
367 NFSERR_STALE,
368 NFSERR_BADHANDLE,
369 NFSERR_NOTSUPP,
370 NFSERR_SERVERFAULT,
371 0,
372 };
373
374 static short nfsv3err_symlink[] = {
375 NFSERR_IO,
376 NFSERR_IO,
377 NFSERR_ACCES,
378 NFSERR_EXIST,
379 NFSERR_NOTDIR,
380 NFSERR_NOSPC,
381 NFSERR_ROFS,
382 NFSERR_NAMETOL,
383 NFSERR_DQUOT,
384 NFSERR_STALE,
385 NFSERR_BADHANDLE,
386 NFSERR_NOTSUPP,
387 NFSERR_SERVERFAULT,
388 0,
389 };
390
391 static short nfsv3err_mknod[] = {
392 NFSERR_IO,
393 NFSERR_IO,
394 NFSERR_ACCES,
395 NFSERR_EXIST,
396 NFSERR_NOTDIR,
397 NFSERR_NOSPC,
398 NFSERR_ROFS,
399 NFSERR_NAMETOL,
400 NFSERR_DQUOT,
401 NFSERR_STALE,
402 NFSERR_BADHANDLE,
403 NFSERR_NOTSUPP,
404 NFSERR_SERVERFAULT,
405 NFSERR_BADTYPE,
406 0,
407 };
408
409 static short nfsv3err_remove[] = {
410 NFSERR_IO,
411 NFSERR_NOENT,
412 NFSERR_IO,
413 NFSERR_ACCES,
414 NFSERR_NOTDIR,
415 NFSERR_ROFS,
416 NFSERR_NAMETOL,
417 NFSERR_STALE,
418 NFSERR_BADHANDLE,
419 NFSERR_SERVERFAULT,
420 0,
421 };
422
423 static short nfsv3err_rmdir[] = {
424 NFSERR_IO,
425 NFSERR_NOENT,
426 NFSERR_IO,
427 NFSERR_ACCES,
428 NFSERR_EXIST,
429 NFSERR_NOTDIR,
430 NFSERR_INVAL,
431 NFSERR_ROFS,
432 NFSERR_NAMETOL,
433 NFSERR_NOTEMPTY,
434 NFSERR_STALE,
435 NFSERR_BADHANDLE,
436 NFSERR_NOTSUPP,
437 NFSERR_SERVERFAULT,
438 0,
439 };
440
441 static short nfsv3err_rename[] = {
442 NFSERR_IO,
443 NFSERR_NOENT,
444 NFSERR_IO,
445 NFSERR_ACCES,
446 NFSERR_EXIST,
447 NFSERR_XDEV,
448 NFSERR_NOTDIR,
449 NFSERR_ISDIR,
450 NFSERR_INVAL,
451 NFSERR_NOSPC,
452 NFSERR_ROFS,
453 NFSERR_MLINK,
454 NFSERR_NAMETOL,
455 NFSERR_NOTEMPTY,
456 NFSERR_DQUOT,
457 NFSERR_STALE,
458 NFSERR_BADHANDLE,
459 NFSERR_NOTSUPP,
460 NFSERR_SERVERFAULT,
461 0,
462 };
463
464 static short nfsv3err_link[] = {
465 NFSERR_IO,
466 NFSERR_IO,
467 NFSERR_ACCES,
468 NFSERR_EXIST,
469 NFSERR_XDEV,
470 NFSERR_NOTDIR,
471 NFSERR_INVAL,
472 NFSERR_NOSPC,
473 NFSERR_ROFS,
474 NFSERR_MLINK,
475 NFSERR_NAMETOL,
476 NFSERR_DQUOT,
477 NFSERR_STALE,
478 NFSERR_BADHANDLE,
479 NFSERR_NOTSUPP,
480 NFSERR_SERVERFAULT,
481 0,
482 };
483
484 static short nfsv3err_readdir[] = {
485 NFSERR_IO,
486 NFSERR_IO,
487 NFSERR_ACCES,
488 NFSERR_NOTDIR,
489 NFSERR_STALE,
490 NFSERR_BADHANDLE,
491 NFSERR_BAD_COOKIE,
492 NFSERR_TOOSMALL,
493 NFSERR_SERVERFAULT,
494 0,
495 };
496
497 static short nfsv3err_readdirplus[] = {
498 NFSERR_IO,
499 NFSERR_IO,
500 NFSERR_ACCES,
501 NFSERR_NOTDIR,
502 NFSERR_STALE,
503 NFSERR_BADHANDLE,
504 NFSERR_BAD_COOKIE,
505 NFSERR_NOTSUPP,
506 NFSERR_TOOSMALL,
507 NFSERR_SERVERFAULT,
508 0,
509 };
510
511 static short nfsv3err_fsstat[] = {
512 NFSERR_IO,
513 NFSERR_IO,
514 NFSERR_STALE,
515 NFSERR_BADHANDLE,
516 NFSERR_SERVERFAULT,
517 0,
518 };
519
520 static short nfsv3err_fsinfo[] = {
521 NFSERR_STALE,
522 NFSERR_STALE,
523 NFSERR_BADHANDLE,
524 NFSERR_SERVERFAULT,
525 0,
526 };
527
528 static short nfsv3err_pathconf[] = {
529 NFSERR_STALE,
530 NFSERR_STALE,
531 NFSERR_BADHANDLE,
532 NFSERR_SERVERFAULT,
533 0,
534 };
535
536 static short nfsv3err_commit[] = {
537 NFSERR_IO,
538 NFSERR_IO,
539 NFSERR_STALE,
540 NFSERR_BADHANDLE,
541 NFSERR_SERVERFAULT,
542 0,
543 };
544
545 static short *nfsrv_v3errmap[] = {
546 nfsv3err_null,
547 nfsv3err_getattr,
548 nfsv3err_setattr,
549 nfsv3err_lookup,
550 nfsv3err_access,
551 nfsv3err_readlink,
552 nfsv3err_read,
553 nfsv3err_write,
554 nfsv3err_create,
555 nfsv3err_mkdir,
556 nfsv3err_symlink,
557 nfsv3err_mknod,
558 nfsv3err_remove,
559 nfsv3err_rmdir,
560 nfsv3err_rename,
561 nfsv3err_link,
562 nfsv3err_readdir,
563 nfsv3err_readdirplus,
564 nfsv3err_fsstat,
565 nfsv3err_fsinfo,
566 nfsv3err_pathconf,
567 nfsv3err_commit,
568 };
569
570 extern struct nfsrtt nfsrtt;
571 extern time_t nqnfsstarttime;
572 extern int nqsrv_clockskew;
573 extern int nqsrv_writeslack;
574 extern int nqsrv_maxlease;
575 extern int nqnfs_piggy[NFS_NPROCS];
576 extern struct nfsnodehashhead *nfsnodehashtbl;
577 extern u_long nfsnodehash;
578
579 LIST_HEAD(nfsnodehashhead, nfsnode);
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(vp, procid, hsiz, bposp)
591 struct vnode *vp;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 u_int32_t *tl;
598 caddr_t bpos;
599 struct mbuf *mb2;
600 struct nfsmount *nmp;
601 int nqflag;
602
603 MGET(mb, M_WAIT, MT_DATA);
604 if (hsiz >= MINCLSIZE)
605 MCLGET(mb, M_WAIT);
606 mb->m_len = 0;
607 bpos = mtod(mb, caddr_t);
608
609 /*
610 * For NQNFS, add lease request.
611 */
612 if (vp) {
613 nmp = VFSTONFS(vp->v_mount);
614 if (nmp->nm_flag & NFSMNT_NQNFS) {
615 nqflag = NQNFS_NEEDLEASE(vp, procid);
616 if (nqflag) {
617 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
618 *tl++ = txdr_unsigned(nqflag);
619 *tl = txdr_unsigned(nmp->nm_leaseterm);
620 } else {
621 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
622 *tl = 0;
623 }
624 }
625 }
626 /* Finally, return values */
627 *bposp = bpos;
628 return (mb);
629 }
630
631 /*
632 * Build the RPC header and fill in the authorization info.
633 * The authorization string argument is only used when the credentials
634 * come from outside of the kernel.
635 * Returns the head of the mbuf list.
636 */
637 struct mbuf *
638 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
639 verf_str, mrest, mrest_len, mbp, xidp)
640 struct ucred *cr;
641 int nmflag;
642 int procid;
643 int auth_type;
644 int auth_len;
645 char *auth_str;
646 int verf_len;
647 char *verf_str;
648 struct mbuf *mrest;
649 int mrest_len;
650 struct mbuf **mbp;
651 u_int32_t *xidp;
652 {
653 struct mbuf *mb;
654 u_int32_t *tl;
655 caddr_t bpos;
656 int i;
657 struct mbuf *mreq, *mb2;
658 int siz, grpsiz, authsiz;
659 struct timeval tv;
660 static u_int32_t base;
661
662 authsiz = nfsm_rndup(auth_len);
663 MGETHDR(mb, M_WAIT, MT_DATA);
664 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
665 MCLGET(mb, M_WAIT);
666 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
667 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
668 } else {
669 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
670 }
671 mb->m_len = 0;
672 mreq = mb;
673 bpos = mtod(mb, caddr_t);
674
675 /*
676 * First the RPC header.
677 */
678 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
679
680 /*
681 * derive initial xid from system time
682 * XXX time is invalid if root not yet mounted
683 */
684 if (!base && (rootvp)) {
685 microtime(&tv);
686 base = tv.tv_sec << 12;
687 nfs_xid = base;
688 }
689 /*
690 * Skip zero xid if it should ever happen.
691 */
692 if (++nfs_xid == 0)
693 nfs_xid++;
694
695 *tl++ = *xidp = txdr_unsigned(nfs_xid);
696 *tl++ = rpc_call;
697 *tl++ = rpc_vers;
698 if (nmflag & NFSMNT_NQNFS) {
699 *tl++ = txdr_unsigned(NQNFS_PROG);
700 *tl++ = txdr_unsigned(NQNFS_VER3);
701 } else {
702 *tl++ = txdr_unsigned(NFS_PROG);
703 if (nmflag & NFSMNT_NFSV3)
704 *tl++ = txdr_unsigned(NFS_VER3);
705 else
706 *tl++ = txdr_unsigned(NFS_VER2);
707 }
708 if (nmflag & NFSMNT_NFSV3)
709 *tl++ = txdr_unsigned(procid);
710 else
711 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
712
713 /*
714 * And then the authorization cred.
715 */
716 *tl++ = txdr_unsigned(auth_type);
717 *tl = txdr_unsigned(authsiz);
718 switch (auth_type) {
719 case RPCAUTH_UNIX:
720 nfsm_build(tl, u_int32_t *, auth_len);
721 *tl++ = 0; /* stamp ?? */
722 *tl++ = 0; /* NULL hostname */
723 *tl++ = txdr_unsigned(cr->cr_uid);
724 *tl++ = txdr_unsigned(cr->cr_gid);
725 grpsiz = (auth_len >> 2) - 5;
726 *tl++ = txdr_unsigned(grpsiz);
727 for (i = 0; i < grpsiz; i++)
728 *tl++ = txdr_unsigned(cr->cr_groups[i]);
729 break;
730 case RPCAUTH_KERB4:
731 siz = auth_len;
732 while (siz > 0) {
733 if (M_TRAILINGSPACE(mb) == 0) {
734 MGET(mb2, M_WAIT, MT_DATA);
735 if (siz >= MINCLSIZE)
736 MCLGET(mb2, M_WAIT);
737 mb->m_next = mb2;
738 mb = mb2;
739 mb->m_len = 0;
740 bpos = mtod(mb, caddr_t);
741 }
742 i = min(siz, M_TRAILINGSPACE(mb));
743 memcpy(bpos, auth_str, i);
744 mb->m_len += i;
745 auth_str += i;
746 bpos += i;
747 siz -= i;
748 }
749 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
750 for (i = 0; i < siz; i++)
751 *bpos++ = '\0';
752 mb->m_len += siz;
753 }
754 break;
755 };
756
757 /*
758 * And the verifier...
759 */
760 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
761 if (verf_str) {
762 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
763 *tl = txdr_unsigned(verf_len);
764 siz = verf_len;
765 while (siz > 0) {
766 if (M_TRAILINGSPACE(mb) == 0) {
767 MGET(mb2, M_WAIT, MT_DATA);
768 if (siz >= MINCLSIZE)
769 MCLGET(mb2, M_WAIT);
770 mb->m_next = mb2;
771 mb = mb2;
772 mb->m_len = 0;
773 bpos = mtod(mb, caddr_t);
774 }
775 i = min(siz, M_TRAILINGSPACE(mb));
776 memcpy(bpos, verf_str, i);
777 mb->m_len += i;
778 verf_str += i;
779 bpos += i;
780 siz -= i;
781 }
782 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
783 for (i = 0; i < siz; i++)
784 *bpos++ = '\0';
785 mb->m_len += siz;
786 }
787 } else {
788 *tl++ = txdr_unsigned(RPCAUTH_NULL);
789 *tl = 0;
790 }
791 mb->m_next = mrest;
792 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
793 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
794 *mbp = mb;
795 return (mreq);
796 }
797
798 /*
799 * copies mbuf chain to the uio scatter/gather list
800 */
801 int
802 nfsm_mbuftouio(mrep, uiop, siz, dpos)
803 struct mbuf **mrep;
804 struct uio *uiop;
805 int siz;
806 caddr_t *dpos;
807 {
808 char *mbufcp, *uiocp;
809 int xfer, left, len;
810 struct mbuf *mp;
811 long uiosiz, rem;
812 int error = 0;
813
814 mp = *mrep;
815 mbufcp = *dpos;
816 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
817 rem = nfsm_rndup(siz)-siz;
818 while (siz > 0) {
819 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
820 return (EFBIG);
821 left = uiop->uio_iov->iov_len;
822 uiocp = uiop->uio_iov->iov_base;
823 if (left > siz)
824 left = siz;
825 uiosiz = left;
826 while (left > 0) {
827 while (len == 0) {
828 mp = mp->m_next;
829 if (mp == NULL)
830 return (EBADRPC);
831 mbufcp = mtod(mp, caddr_t);
832 len = mp->m_len;
833 }
834 xfer = (left > len) ? len : left;
835 #ifdef notdef
836 /* Not Yet.. */
837 if (uiop->uio_iov->iov_op != NULL)
838 (*(uiop->uio_iov->iov_op))
839 (mbufcp, uiocp, xfer);
840 else
841 #endif
842 if (uiop->uio_segflg == UIO_SYSSPACE)
843 memcpy(uiocp, mbufcp, xfer);
844 else
845 copyout(mbufcp, uiocp, xfer);
846 left -= xfer;
847 len -= xfer;
848 mbufcp += xfer;
849 uiocp += xfer;
850 uiop->uio_offset += xfer;
851 uiop->uio_resid -= xfer;
852 }
853 if (uiop->uio_iov->iov_len <= siz) {
854 uiop->uio_iovcnt--;
855 uiop->uio_iov++;
856 } else {
857 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
858 uiop->uio_iov->iov_len -= uiosiz;
859 }
860 siz -= uiosiz;
861 }
862 *dpos = mbufcp;
863 *mrep = mp;
864 if (rem > 0) {
865 if (len < rem)
866 error = nfs_adv(mrep, dpos, rem, len);
867 else
868 *dpos += rem;
869 }
870 return (error);
871 }
872
873 /*
874 * copies a uio scatter/gather list to an mbuf chain.
875 * NOTE: can ony handle iovcnt == 1
876 */
877 int
878 nfsm_uiotombuf(uiop, mq, siz, bpos)
879 struct uio *uiop;
880 struct mbuf **mq;
881 int siz;
882 caddr_t *bpos;
883 {
884 char *uiocp;
885 struct mbuf *mp, *mp2;
886 int xfer, left, mlen;
887 int uiosiz, clflg, rem;
888 char *cp;
889
890 #ifdef DIAGNOSTIC
891 if (uiop->uio_iovcnt != 1)
892 panic("nfsm_uiotombuf: iovcnt != 1");
893 #endif
894
895 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
896 clflg = 1;
897 else
898 clflg = 0;
899 rem = nfsm_rndup(siz)-siz;
900 mp = mp2 = *mq;
901 while (siz > 0) {
902 left = uiop->uio_iov->iov_len;
903 uiocp = uiop->uio_iov->iov_base;
904 if (left > siz)
905 left = siz;
906 uiosiz = left;
907 while (left > 0) {
908 mlen = M_TRAILINGSPACE(mp);
909 if (mlen == 0) {
910 MGET(mp, M_WAIT, MT_DATA);
911 if (clflg)
912 MCLGET(mp, M_WAIT);
913 mp->m_len = 0;
914 mp2->m_next = mp;
915 mp2 = mp;
916 mlen = M_TRAILINGSPACE(mp);
917 }
918 xfer = (left > mlen) ? mlen : left;
919 #ifdef notdef
920 /* Not Yet.. */
921 if (uiop->uio_iov->iov_op != NULL)
922 (*(uiop->uio_iov->iov_op))
923 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 else
925 #endif
926 if (uiop->uio_segflg == UIO_SYSSPACE)
927 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
928 else
929 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
930 mp->m_len += xfer;
931 left -= xfer;
932 uiocp += xfer;
933 uiop->uio_offset += xfer;
934 uiop->uio_resid -= xfer;
935 }
936 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
937 uiop->uio_iov->iov_len -= uiosiz;
938 siz -= uiosiz;
939 }
940 if (rem > 0) {
941 if (rem > M_TRAILINGSPACE(mp)) {
942 MGET(mp, M_WAIT, MT_DATA);
943 mp->m_len = 0;
944 mp2->m_next = mp;
945 }
946 cp = mtod(mp, caddr_t)+mp->m_len;
947 for (left = 0; left < rem; left++)
948 *cp++ = '\0';
949 mp->m_len += rem;
950 *bpos = cp;
951 } else
952 *bpos = mtod(mp, caddr_t)+mp->m_len;
953 *mq = mp;
954 return (0);
955 }
956
957 /*
958 * Get at least "siz" bytes of correctly aligned data.
959 * When called the mbuf pointers are not necessarily correct,
960 * dsosp points to what ought to be in m_data and left contains
961 * what ought to be in m_len.
962 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
963 * cases. (The macros use the vars. dpos and dpos2)
964 */
965 int
966 nfsm_disct(mdp, dposp, siz, left, cp2)
967 struct mbuf **mdp;
968 caddr_t *dposp;
969 int siz;
970 int left;
971 caddr_t *cp2;
972 {
973 struct mbuf *m1, *m2;
974 struct mbuf *havebuf = NULL;
975 caddr_t src = *dposp;
976 caddr_t dst;
977 int len;
978
979 #ifdef DEBUG
980 if (left < 0)
981 panic("nfsm_disct: left < 0");
982 #endif
983 m1 = *mdp;
984 /*
985 * Skip through the mbuf chain looking for an mbuf with
986 * some data. If the first mbuf found has enough data
987 * and it is correctly aligned return it.
988 */
989 while (left == 0) {
990 havebuf = m1;
991 *mdp = m1 = m1->m_next;
992 if (m1 == NULL)
993 return (EBADRPC);
994 src = mtod(m1, caddr_t);
995 left = m1->m_len;
996 /*
997 * If we start a new mbuf and it is big enough
998 * and correctly aligned just return it, don't
999 * do any pull up.
1000 */
1001 if (left >= siz && nfsm_aligned(src)) {
1002 *cp2 = src;
1003 *dposp = src + siz;
1004 return (0);
1005 }
1006 }
1007 if (m1->m_flags & M_EXT) {
1008 if (havebuf) {
1009 /* If the first mbuf with data has external data
1010 * and there is a previous empty mbuf use it
1011 * to move the data into.
1012 */
1013 m2 = m1;
1014 *mdp = m1 = havebuf;
1015 if (m1->m_flags & M_EXT) {
1016 MEXTREMOVE(m1);
1017 }
1018 } else {
1019 /*
1020 * If the first mbuf has a external data
1021 * and there is no previous empty mbuf
1022 * allocate a new mbuf and move the external
1023 * data to the new mbuf. Also make the first
1024 * mbuf look empty.
1025 */
1026 m2 = m_get(M_WAIT, MT_DATA);
1027 m2->m_ext = m1->m_ext;
1028 m2->m_data = src;
1029 m2->m_len = left;
1030 MCLADDREFERENCE(m1, m2);
1031 MEXTREMOVE(m1);
1032 m2->m_next = m1->m_next;
1033 m1->m_next = m2;
1034 }
1035 m1->m_len = 0;
1036 dst = m1->m_dat;
1037 } else {
1038 /*
1039 * If the first mbuf has no external data
1040 * move the data to the front of the mbuf.
1041 */
1042 if ((dst = m1->m_dat) != src)
1043 memmove(dst, src, left);
1044 dst += left;
1045 m1->m_len = left;
1046 m2 = m1->m_next;
1047 }
1048 m1->m_flags &= ~M_PKTHDR;
1049 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1050 *dposp = mtod(m1, caddr_t) + siz;
1051 /*
1052 * Loop through mbufs pulling data up into first mbuf until
1053 * the first mbuf is full or there is no more data to
1054 * pullup.
1055 */
1056 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1057 if ((len = min(len, m2->m_len)) != 0)
1058 memcpy(dst, m2->m_data, len);
1059 m1->m_len += len;
1060 dst += len;
1061 m2->m_data += len;
1062 m2->m_len -= len;
1063 m2 = m2->m_next;
1064 }
1065 if (m1->m_len < siz)
1066 return (EBADRPC);
1067 return (0);
1068 }
1069
1070 /*
1071 * Advance the position in the mbuf chain.
1072 */
1073 int
1074 nfs_adv(mdp, dposp, offs, left)
1075 struct mbuf **mdp;
1076 caddr_t *dposp;
1077 int offs;
1078 int left;
1079 {
1080 struct mbuf *m;
1081 int s;
1082
1083 m = *mdp;
1084 s = left;
1085 while (s < offs) {
1086 offs -= s;
1087 m = m->m_next;
1088 if (m == NULL)
1089 return (EBADRPC);
1090 s = m->m_len;
1091 }
1092 *mdp = m;
1093 *dposp = mtod(m, caddr_t)+offs;
1094 return (0);
1095 }
1096
1097 /*
1098 * Copy a string into mbufs for the hard cases...
1099 */
1100 int
1101 nfsm_strtmbuf(mb, bpos, cp, siz)
1102 struct mbuf **mb;
1103 char **bpos;
1104 const char *cp;
1105 long siz;
1106 {
1107 struct mbuf *m1 = NULL, *m2;
1108 long left, xfer, len, tlen;
1109 u_int32_t *tl;
1110 int putsize;
1111
1112 putsize = 1;
1113 m2 = *mb;
1114 left = M_TRAILINGSPACE(m2);
1115 if (left > 0) {
1116 tl = ((u_int32_t *)(*bpos));
1117 *tl++ = txdr_unsigned(siz);
1118 putsize = 0;
1119 left -= NFSX_UNSIGNED;
1120 m2->m_len += NFSX_UNSIGNED;
1121 if (left > 0) {
1122 memcpy((caddr_t) tl, cp, left);
1123 siz -= left;
1124 cp += left;
1125 m2->m_len += left;
1126 left = 0;
1127 }
1128 }
1129 /* Loop around adding mbufs */
1130 while (siz > 0) {
1131 MGET(m1, M_WAIT, MT_DATA);
1132 if (siz > MLEN)
1133 MCLGET(m1, M_WAIT);
1134 m1->m_len = NFSMSIZ(m1);
1135 m2->m_next = m1;
1136 m2 = m1;
1137 tl = mtod(m1, u_int32_t *);
1138 tlen = 0;
1139 if (putsize) {
1140 *tl++ = txdr_unsigned(siz);
1141 m1->m_len -= NFSX_UNSIGNED;
1142 tlen = NFSX_UNSIGNED;
1143 putsize = 0;
1144 }
1145 if (siz < m1->m_len) {
1146 len = nfsm_rndup(siz);
1147 xfer = siz;
1148 if (xfer < len)
1149 *(tl+(xfer>>2)) = 0;
1150 } else {
1151 xfer = len = m1->m_len;
1152 }
1153 memcpy((caddr_t) tl, cp, xfer);
1154 m1->m_len = len+tlen;
1155 siz -= xfer;
1156 cp += xfer;
1157 }
1158 *mb = m1;
1159 *bpos = mtod(m1, caddr_t)+m1->m_len;
1160 return (0);
1161 }
1162
1163 /*
1164 * Directory caching routines. They work as follows:
1165 * - a cache is maintained per VDIR nfsnode.
1166 * - for each offset cookie that is exported to userspace, and can
1167 * thus be thrown back at us as an offset to VOP_READDIR, store
1168 * information in the cache.
1169 * - cached are:
1170 * - cookie itself
1171 * - blocknumber (essentially just a search key in the buffer cache)
1172 * - entry number in block.
1173 * - offset cookie of block in which this entry is stored
1174 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1175 * - entries are looked up in a hash table
1176 * - also maintained is an LRU list of entries, used to determine
1177 * which ones to delete if the cache grows too large.
1178 * - if 32 <-> 64 translation mode is requested for a filesystem,
1179 * the cache also functions as a translation table
1180 * - in the translation case, invalidating the cache does not mean
1181 * flushing it, but just marking entries as invalid, except for
1182 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1183 * still be able to use the cache as a translation table.
1184 * - 32 bit cookies are uniquely created by combining the hash table
1185 * entry value, and one generation count per hash table entry,
1186 * incremented each time an entry is appended to the chain.
1187 * - the cache is invalidated each time a direcory is modified
1188 * - sanity checks are also done; if an entry in a block turns
1189 * out not to have a matching cookie, the cache is invalidated
1190 * and a new block starting from the wanted offset is fetched from
1191 * the server.
1192 * - directory entries as read from the server are extended to contain
1193 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1194 * the cache and exporting them to userspace through the cookie
1195 * argument to VOP_READDIR.
1196 */
1197
1198 u_long
1199 nfs_dirhash(off)
1200 off_t off;
1201 {
1202 int i;
1203 char *cp = (char *)&off;
1204 u_long sum = 0L;
1205
1206 for (i = 0 ; i < sizeof (off); i++)
1207 sum += *cp++;
1208
1209 return sum;
1210 }
1211
1212 void
1213 nfs_initdircache(vp)
1214 struct vnode *vp;
1215 {
1216 struct nfsnode *np = VTONFS(vp);
1217 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1218
1219 np->n_dircachesize = 0;
1220 np->n_dblkno = 1;
1221 np->n_dircache =
1222 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
1223 TAILQ_INIT(&np->n_dirchain);
1224 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1225 MALLOC(np->n_dirgens, unsigned *,
1226 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1227 M_WAITOK);
1228 memset((caddr_t)np->n_dirgens, 0,
1229 NFS_DIRHASHSIZ * sizeof (unsigned));
1230 }
1231 }
1232
1233 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1234
1235 struct nfsdircache *
1236 nfs_searchdircache(vp, off, do32, hashent)
1237 struct vnode *vp;
1238 off_t off;
1239 int do32;
1240 int *hashent;
1241 {
1242 struct nfsdirhashhead *ndhp;
1243 struct nfsdircache *ndp = NULL;
1244 struct nfsnode *np = VTONFS(vp);
1245 unsigned ent;
1246
1247 /*
1248 * Zero is always a valid cookie.
1249 */
1250 if (off == 0)
1251 return &dzero;
1252
1253 /*
1254 * We use a 32bit cookie as search key, directly reconstruct
1255 * the hashentry. Else use the hashfunction.
1256 */
1257 if (do32) {
1258 ent = (u_int32_t)off >> 24;
1259 if (ent >= NFS_DIRHASHSIZ)
1260 return NULL;
1261 ndhp = &np->n_dircache[ent];
1262 } else {
1263 ndhp = NFSDIRHASH(np, off);
1264 }
1265
1266 if (hashent)
1267 *hashent = (int)(ndhp - np->n_dircache);
1268 if (do32) {
1269 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1270 if (ndp->dc_cookie32 == (u_int32_t)off) {
1271 /*
1272 * An invalidated entry will become the
1273 * start of a new block fetched from
1274 * the server.
1275 */
1276 if (ndp->dc_blkno == -1) {
1277 ndp->dc_blkcookie = ndp->dc_cookie;
1278 ndp->dc_blkno = np->n_dblkno++;
1279 ndp->dc_entry = 0;
1280 }
1281 break;
1282 }
1283 }
1284 } else {
1285 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1286 if (ndp->dc_cookie == off)
1287 break;
1288 }
1289 return ndp;
1290 }
1291
1292
1293 struct nfsdircache *
1294 nfs_enterdircache(vp, off, blkoff, en, blkno)
1295 struct vnode *vp;
1296 off_t off, blkoff;
1297 daddr_t blkno;
1298 int en;
1299 {
1300 struct nfsnode *np = VTONFS(vp);
1301 struct nfsdirhashhead *ndhp;
1302 struct nfsdircache *ndp = NULL, *first;
1303 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1304 int hashent, gen, overwrite;
1305
1306 if (!np->n_dircache)
1307 /*
1308 * XXX would like to do this in nfs_nget but vtype
1309 * isn't known at that time.
1310 */
1311 nfs_initdircache(vp);
1312
1313 /*
1314 * XXX refuse entries for offset 0. amd(8) erroneously sets
1315 * cookie 0 for the '.' entry, making this necessary. This
1316 * isn't so bad, as 0 is a special case anyway.
1317 */
1318 if (off == 0)
1319 return &dzero;
1320
1321 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1322
1323 if (ndp && ndp->dc_blkno != -1) {
1324 /*
1325 * Overwriting an old entry. Check if it's the same.
1326 * If so, just return. If not, remove the old entry.
1327 */
1328 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1329 return ndp;
1330 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1331 LIST_REMOVE(ndp, dc_hash);
1332 FREE(ndp, M_NFSDIROFF);
1333 ndp = 0;
1334 }
1335
1336 ndhp = &np->n_dircache[hashent];
1337
1338 if (!ndp) {
1339 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1340 M_WAITOK);
1341 overwrite = 0;
1342 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1343 /*
1344 * We're allocating a new entry, so bump the
1345 * generation number.
1346 */
1347 gen = ++np->n_dirgens[hashent];
1348 if (gen == 0) {
1349 np->n_dirgens[hashent]++;
1350 gen++;
1351 }
1352 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1353 }
1354 } else
1355 overwrite = 1;
1356
1357 /*
1358 * If the entry number is 0, we are at the start of a new block, so
1359 * allocate a new blocknumber.
1360 */
1361 if (en == 0)
1362 ndp->dc_blkno = np->n_dblkno++;
1363 else
1364 ndp->dc_blkno = blkno;
1365
1366 ndp->dc_cookie = off;
1367 ndp->dc_blkcookie = blkoff;
1368 ndp->dc_entry = en;
1369
1370 if (overwrite)
1371 return ndp;
1372
1373 /*
1374 * If the maximum directory cookie cache size has been reached
1375 * for this node, take one off the front. The idea is that
1376 * directories are typically read front-to-back once, so that
1377 * the oldest entries can be thrown away without much performance
1378 * loss.
1379 */
1380 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1381 first = np->n_dirchain.tqh_first;
1382 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1383 LIST_REMOVE(first, dc_hash);
1384 FREE(first, M_NFSDIROFF);
1385 } else
1386 np->n_dircachesize++;
1387
1388 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1389 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1390 return ndp;
1391 }
1392
1393 void
1394 nfs_invaldircache(vp, forcefree)
1395 struct vnode *vp;
1396 int forcefree;
1397 {
1398 struct nfsnode *np = VTONFS(vp);
1399 struct nfsdircache *ndp = NULL;
1400 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1401
1402 #ifdef DIAGNOSTIC
1403 if (vp->v_type != VDIR)
1404 panic("nfs: invaldircache: not dir");
1405 #endif
1406
1407 if (!np->n_dircache)
1408 return;
1409
1410 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1411 while ((ndp = np->n_dirchain.tqh_first)) {
1412 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1413 LIST_REMOVE(ndp, dc_hash);
1414 FREE(ndp, M_NFSDIROFF);
1415 }
1416 np->n_dircachesize = 0;
1417 if (forcefree && np->n_dirgens) {
1418 FREE(np->n_dirgens, M_NFSDIROFF);
1419 }
1420 } else {
1421 for (ndp = np->n_dirchain.tqh_first; ndp;
1422 ndp = ndp->dc_chain.tqe_next)
1423 ndp->dc_blkno = -1;
1424 }
1425
1426 np->n_dblkno = 1;
1427 }
1428
1429 /*
1430 * Called once before VFS init to initialize shared and
1431 * server-specific data structures.
1432 */
1433 void
1434 nfs_init()
1435 {
1436 nfsrtt.pos = 0;
1437 rpc_vers = txdr_unsigned(RPC_VER2);
1438 rpc_call = txdr_unsigned(RPC_CALL);
1439 rpc_reply = txdr_unsigned(RPC_REPLY);
1440 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1441 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1442 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1443 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1444 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1445 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1446 nfs_prog = txdr_unsigned(NFS_PROG);
1447 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1448 nfs_true = txdr_unsigned(TRUE);
1449 nfs_false = txdr_unsigned(FALSE);
1450 nfs_xdrneg1 = txdr_unsigned(-1);
1451 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1452 if (nfs_ticks < 1)
1453 nfs_ticks = 1;
1454 #ifdef NFSSERVER
1455 nfsrv_init(0); /* Init server data structures */
1456 nfsrv_initcache(); /* Init the server request cache */
1457 #endif /* NFSSERVER */
1458
1459 /*
1460 * Initialize the nqnfs data structures.
1461 */
1462 if (nqnfsstarttime == 0) {
1463 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1464 + nqsrv_clockskew + nqsrv_writeslack;
1465 NQLOADNOVRAM(nqnfsstarttime);
1466 CIRCLEQ_INIT(&nqtimerhead);
1467 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
1468 }
1469
1470 /*
1471 * Initialize reply list and start timer
1472 */
1473 TAILQ_INIT(&nfs_reqq);
1474 nfs_timer(NULL);
1475 }
1476
1477 #ifdef NFS
1478 /*
1479 * Called once at VFS init to initialize client-specific data structures.
1480 */
1481 void
1482 nfs_vfs_init()
1483 {
1484 int i;
1485
1486 /* Ensure async daemons disabled */
1487 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1488 nfs_iodwant[i] = (struct proc *)0;
1489 nfs_iodmount[i] = (struct nfsmount *)0;
1490 }
1491 nfs_nhinit(); /* Init the nfsnode table */
1492 }
1493
1494 void
1495 nfs_vfs_done()
1496 {
1497 nfs_nhdone();
1498 }
1499
1500 /*
1501 * Attribute cache routines.
1502 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1503 * that are on the mbuf list
1504 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1505 * error otherwise
1506 */
1507
1508 /*
1509 * Load the attribute cache (that lives in the nfsnode entry) with
1510 * the values on the mbuf list and
1511 * Iff vap not NULL
1512 * copy the attributes to *vaper
1513 */
1514 int
1515 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1516 struct vnode **vpp;
1517 struct mbuf **mdp;
1518 caddr_t *dposp;
1519 struct vattr *vaper;
1520 {
1521 int32_t t1;
1522 caddr_t cp2;
1523 int error = 0;
1524 struct mbuf *md;
1525 int v3 = NFS_ISV3(*vpp);
1526
1527 md = *mdp;
1528 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1529 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1530 if (error)
1531 return (error);
1532 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1533 }
1534
1535 int
1536 nfs_loadattrcache(vpp, fp, vaper)
1537 struct vnode **vpp;
1538 struct nfs_fattr *fp;
1539 struct vattr *vaper;
1540 {
1541 struct vnode *vp = *vpp;
1542 struct vattr *vap;
1543 int v3 = NFS_ISV3(vp);
1544 enum vtype vtyp;
1545 u_short vmode;
1546 struct timespec mtime;
1547 struct vnode *nvp;
1548 int32_t rdev;
1549 struct nfsnode *np;
1550 extern int (**spec_nfsv2nodeop_p) __P((void *));
1551
1552 if (v3) {
1553 vtyp = nfsv3tov_type(fp->fa_type);
1554 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1555 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1556 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1557 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1558 } else {
1559 vtyp = nfsv2tov_type(fp->fa_type);
1560 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1561 if (vtyp == VNON || vtyp == VREG)
1562 vtyp = IFTOVT(vmode);
1563 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1564 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1565
1566 /*
1567 * Really ugly NFSv2 kludge.
1568 */
1569 if (vtyp == VCHR && rdev == 0xffffffff)
1570 vtyp = VFIFO;
1571 }
1572
1573 /*
1574 * If v_type == VNON it is a new node, so fill in the v_type,
1575 * n_mtime fields. Check to see if it represents a special
1576 * device, and if so, check for a possible alias. Once the
1577 * correct vnode has been obtained, fill in the rest of the
1578 * information.
1579 */
1580 np = VTONFS(vp);
1581 if (vp->v_type == VNON) {
1582 vp->v_type = vtyp;
1583 if (vp->v_type == VFIFO) {
1584 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1585 vp->v_op = fifo_nfsv2nodeop_p;
1586 }
1587 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1588 vp->v_op = spec_nfsv2nodeop_p;
1589 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1590 if (nvp) {
1591 /*
1592 * Discard unneeded vnode, but save its nfsnode.
1593 * Since the nfsnode does not have a lock, its
1594 * vnode lock has to be carried over.
1595 */
1596 nvp->v_data = vp->v_data;
1597 vp->v_data = NULL;
1598 vp->v_op = spec_vnodeop_p;
1599 vput(vp);
1600 vgone(vp);
1601 /*
1602 * XXX When nfs starts locking, we need to
1603 * lock the new node here.
1604 */
1605 /*
1606 * Reinitialize aliased node.
1607 */
1608 np->n_vnode = nvp;
1609 *vpp = vp = nvp;
1610 }
1611 }
1612 np->n_mtime = mtime.tv_sec;
1613 }
1614 vap = np->n_vattr;
1615 vap->va_type = vtyp;
1616 vap->va_mode = vmode & ALLPERMS;
1617 vap->va_rdev = (dev_t)rdev;
1618 vap->va_mtime = mtime;
1619 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1620 switch (vtyp) {
1621 case VDIR:
1622 vap->va_blocksize = NFS_DIRFRAGSIZ;
1623 break;
1624 case VBLK:
1625 vap->va_blocksize = BLKDEV_IOSIZE;
1626 break;
1627 case VCHR:
1628 vap->va_blocksize = MAXBSIZE;
1629 break;
1630 default:
1631 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1632 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1633 break;
1634 }
1635 if (v3) {
1636 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1637 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1638 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1639 vap->va_size = fxdr_hyper(&fp->fa3_size);
1640 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1641 vap->va_fileid = fxdr_unsigned(int32_t,
1642 fp->fa3_fileid.nfsuquad[1]);
1643 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1644 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1645 vap->va_flags = 0;
1646 vap->va_filerev = 0;
1647 } else {
1648 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1649 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1650 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1651 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1652 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1653 * NFS_FABLKSIZE;
1654 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1655 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1656 vap->va_flags = 0;
1657 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1658 fp->fa2_ctime.nfsv2_sec);
1659 vap->va_ctime.tv_nsec = 0;
1660 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1661 vap->va_filerev = 0;
1662 }
1663 if (vap->va_size != np->n_size) {
1664 if (vap->va_type == VREG) {
1665 if (np->n_flag & NMODIFIED) {
1666 if (vap->va_size < np->n_size)
1667 vap->va_size = np->n_size;
1668 else
1669 np->n_size = vap->va_size;
1670 } else
1671 np->n_size = vap->va_size;
1672 uvm_vnp_setsize(vp, np->n_size);
1673 } else
1674 np->n_size = vap->va_size;
1675 }
1676 np->n_attrstamp = time.tv_sec;
1677 if (vaper != NULL) {
1678 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1679 if (np->n_flag & NCHG) {
1680 if (np->n_flag & NACC)
1681 vaper->va_atime = np->n_atim;
1682 if (np->n_flag & NUPD)
1683 vaper->va_mtime = np->n_mtim;
1684 }
1685 }
1686 return (0);
1687 }
1688
1689 /*
1690 * Check the time stamp
1691 * If the cache is valid, copy contents to *vap and return 0
1692 * otherwise return an error
1693 */
1694 int
1695 nfs_getattrcache(vp, vaper)
1696 struct vnode *vp;
1697 struct vattr *vaper;
1698 {
1699 struct nfsnode *np = VTONFS(vp);
1700 struct vattr *vap;
1701
1702 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1703 nfsstats.attrcache_misses++;
1704 return (ENOENT);
1705 }
1706 nfsstats.attrcache_hits++;
1707 vap = np->n_vattr;
1708 if (vap->va_size != np->n_size) {
1709 if (vap->va_type == VREG) {
1710 if (np->n_flag & NMODIFIED) {
1711 if (vap->va_size < np->n_size)
1712 vap->va_size = np->n_size;
1713 else
1714 np->n_size = vap->va_size;
1715 } else
1716 np->n_size = vap->va_size;
1717 uvm_vnp_setsize(vp, np->n_size);
1718 } else
1719 np->n_size = vap->va_size;
1720 }
1721 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1722 if (np->n_flag & NCHG) {
1723 if (np->n_flag & NACC)
1724 vaper->va_atime = np->n_atim;
1725 if (np->n_flag & NUPD)
1726 vaper->va_mtime = np->n_mtim;
1727 }
1728 return (0);
1729 }
1730
1731 /*
1732 * Heuristic to see if the server XDR encodes directory cookies or not.
1733 * it is not supposed to, but a lot of servers may do this. Also, since
1734 * most/all servers will implement V2 as well, it is expected that they
1735 * may return just 32 bits worth of cookie information, so we need to
1736 * find out in which 32 bits this information is available. We do this
1737 * to avoid trouble with emulated binaries that can't handle 64 bit
1738 * directory offsets.
1739 */
1740
1741 void
1742 nfs_cookieheuristic(vp, flagp, p, cred)
1743 struct vnode *vp;
1744 int *flagp;
1745 struct proc *p;
1746 struct ucred *cred;
1747 {
1748 struct uio auio;
1749 struct iovec aiov;
1750 caddr_t buf, cp;
1751 struct dirent *dp;
1752 off_t *cookies = NULL, *cop;
1753 int error, eof, nc, len;
1754
1755 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1756
1757 aiov.iov_base = buf;
1758 aiov.iov_len = NFS_DIRFRAGSIZ;
1759 auio.uio_iov = &aiov;
1760 auio.uio_iovcnt = 1;
1761 auio.uio_rw = UIO_READ;
1762 auio.uio_segflg = UIO_SYSSPACE;
1763 auio.uio_procp = p;
1764 auio.uio_resid = NFS_DIRFRAGSIZ;
1765 auio.uio_offset = 0;
1766
1767 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1768
1769 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1770 if (error || len == 0) {
1771 FREE(buf, M_TEMP);
1772 if (cookies)
1773 FREE(cookies, M_TEMP);
1774 return;
1775 }
1776
1777 /*
1778 * Find the first valid entry and look at its offset cookie.
1779 */
1780
1781 cp = buf;
1782 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1783 dp = (struct dirent *)cp;
1784 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1785 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1786 *flagp |= NFSMNT_SWAPCOOKIE;
1787 nfs_invaldircache(vp, 0);
1788 nfs_vinvalbuf(vp, 0, cred, p, 1);
1789 }
1790 break;
1791 }
1792 cop++;
1793 cp += dp->d_reclen;
1794 }
1795
1796 FREE(buf, M_TEMP);
1797 FREE(cookies, M_TEMP);
1798 }
1799 #endif /* NFS */
1800
1801 /*
1802 * Set up nameidata for a lookup() call and do it.
1803 *
1804 * If pubflag is set, this call is done for a lookup operation on the
1805 * public filehandle. In that case we allow crossing mountpoints and
1806 * absolute pathnames. However, the caller is expected to check that
1807 * the lookup result is within the public fs, and deny access if
1808 * it is not.
1809 */
1810 int
1811 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1812 struct nameidata *ndp;
1813 fhandle_t *fhp;
1814 int len;
1815 struct nfssvc_sock *slp;
1816 struct mbuf *nam;
1817 struct mbuf **mdp;
1818 caddr_t *dposp;
1819 struct vnode **retdirp;
1820 struct proc *p;
1821 int kerbflag, pubflag;
1822 {
1823 int i, rem;
1824 struct mbuf *md;
1825 char *fromcp, *tocp, *cp;
1826 struct iovec aiov;
1827 struct uio auio;
1828 struct vnode *dp;
1829 int error, rdonly, linklen;
1830 struct componentname *cnp = &ndp->ni_cnd;
1831
1832 *retdirp = (struct vnode *)0;
1833 MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
1834 /*
1835 * Copy the name from the mbuf list to ndp->ni_pnbuf
1836 * and set the various ndp fields appropriately.
1837 */
1838 fromcp = *dposp;
1839 tocp = cnp->cn_pnbuf;
1840 md = *mdp;
1841 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1842 for (i = 0; i < len; i++) {
1843 while (rem == 0) {
1844 md = md->m_next;
1845 if (md == NULL) {
1846 error = EBADRPC;
1847 goto out;
1848 }
1849 fromcp = mtod(md, caddr_t);
1850 rem = md->m_len;
1851 }
1852 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1853 error = EACCES;
1854 goto out;
1855 }
1856 *tocp++ = *fromcp++;
1857 rem--;
1858 }
1859 *tocp = '\0';
1860 *mdp = md;
1861 *dposp = fromcp;
1862 len = nfsm_rndup(len)-len;
1863 if (len > 0) {
1864 if (rem >= len)
1865 *dposp += len;
1866 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1867 goto out;
1868 }
1869
1870 /*
1871 * Extract and set starting directory.
1872 */
1873 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1874 nam, &rdonly, kerbflag, pubflag);
1875 if (error)
1876 goto out;
1877 if (dp->v_type != VDIR) {
1878 vrele(dp);
1879 error = ENOTDIR;
1880 goto out;
1881 }
1882
1883 if (rdonly)
1884 cnp->cn_flags |= RDONLY;
1885
1886 *retdirp = dp;
1887
1888 if (pubflag) {
1889 /*
1890 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1891 * and the 'native path' indicator.
1892 */
1893 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1894 fromcp = cnp->cn_pnbuf;
1895 tocp = cp;
1896 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1897 switch ((unsigned char)*fromcp) {
1898 case WEBNFS_NATIVE_CHAR:
1899 /*
1900 * 'Native' path for us is the same
1901 * as a path according to the NFS spec,
1902 * just skip the escape char.
1903 */
1904 fromcp++;
1905 break;
1906 /*
1907 * More may be added in the future, range 0x80-0xff
1908 */
1909 default:
1910 error = EIO;
1911 FREE(cp, M_NAMEI);
1912 goto out;
1913 }
1914 }
1915 /*
1916 * Translate the '%' escapes, URL-style.
1917 */
1918 while (*fromcp != '\0') {
1919 if (*fromcp == WEBNFS_ESC_CHAR) {
1920 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1921 fromcp++;
1922 *tocp++ = HEXSTRTOI(fromcp);
1923 fromcp += 2;
1924 continue;
1925 } else {
1926 error = ENOENT;
1927 FREE(cp, M_NAMEI);
1928 goto out;
1929 }
1930 } else
1931 *tocp++ = *fromcp++;
1932 }
1933 *tocp = '\0';
1934 FREE(cnp->cn_pnbuf, M_NAMEI);
1935 cnp->cn_pnbuf = cp;
1936 }
1937
1938 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1939 ndp->ni_segflg = UIO_SYSSPACE;
1940
1941 if (pubflag) {
1942 ndp->ni_rootdir = rootvnode;
1943 ndp->ni_loopcnt = 0;
1944 if (cnp->cn_pnbuf[0] == '/')
1945 dp = rootvnode;
1946 } else {
1947 cnp->cn_flags |= NOCROSSMOUNT;
1948 }
1949
1950 cnp->cn_proc = p;
1951 VREF(dp);
1952
1953 for (;;) {
1954 cnp->cn_nameptr = cnp->cn_pnbuf;
1955 ndp->ni_startdir = dp;
1956 /*
1957 * And call lookup() to do the real work
1958 */
1959 error = lookup(ndp);
1960 if (error)
1961 break;
1962 /*
1963 * Check for encountering a symbolic link
1964 */
1965 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1966 if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1967 cnp->cn_flags |= HASBUF;
1968 return (0);
1969 }
1970 break;
1971 } else {
1972 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1973 VOP_UNLOCK(ndp->ni_dvp, 0);
1974 if (!pubflag) {
1975 vrele(ndp->ni_dvp);
1976 vput(ndp->ni_vp);
1977 ndp->ni_vp = NULL;
1978 error = EINVAL;
1979 break;
1980 }
1981
1982 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1983 error = ELOOP;
1984 break;
1985 }
1986 if (ndp->ni_pathlen > 1)
1987 MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
1988 else
1989 cp = cnp->cn_pnbuf;
1990 aiov.iov_base = cp;
1991 aiov.iov_len = MAXPATHLEN;
1992 auio.uio_iov = &aiov;
1993 auio.uio_iovcnt = 1;
1994 auio.uio_offset = 0;
1995 auio.uio_rw = UIO_READ;
1996 auio.uio_segflg = UIO_SYSSPACE;
1997 auio.uio_procp = (struct proc *)0;
1998 auio.uio_resid = MAXPATHLEN;
1999 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2000 if (error) {
2001 badlink:
2002 if (ndp->ni_pathlen > 1)
2003 FREE(cp, M_NAMEI);
2004 break;
2005 }
2006 linklen = MAXPATHLEN - auio.uio_resid;
2007 if (linklen == 0) {
2008 error = ENOENT;
2009 goto badlink;
2010 }
2011 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2012 error = ENAMETOOLONG;
2013 goto badlink;
2014 }
2015 if (ndp->ni_pathlen > 1) {
2016 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2017 FREE(cnp->cn_pnbuf, M_NAMEI);
2018 cnp->cn_pnbuf = cp;
2019 } else
2020 cnp->cn_pnbuf[linklen] = '\0';
2021 ndp->ni_pathlen += linklen;
2022 vput(ndp->ni_vp);
2023 dp = ndp->ni_dvp;
2024 /*
2025 * Check if root directory should replace current directory.
2026 */
2027 if (cnp->cn_pnbuf[0] == '/') {
2028 vrele(dp);
2029 dp = ndp->ni_rootdir;
2030 VREF(dp);
2031 }
2032 }
2033 }
2034 out:
2035 FREE(cnp->cn_pnbuf, M_NAMEI);
2036 return (error);
2037 }
2038
2039 /*
2040 * A fiddled version of m_adj() that ensures null fill to a long
2041 * boundary and only trims off the back end
2042 */
2043 void
2044 nfsm_adj(mp, len, nul)
2045 struct mbuf *mp;
2046 int len;
2047 int nul;
2048 {
2049 struct mbuf *m;
2050 int count, i;
2051 char *cp;
2052
2053 /*
2054 * Trim from tail. Scan the mbuf chain,
2055 * calculating its length and finding the last mbuf.
2056 * If the adjustment only affects this mbuf, then just
2057 * adjust and return. Otherwise, rescan and truncate
2058 * after the remaining size.
2059 */
2060 count = 0;
2061 m = mp;
2062 for (;;) {
2063 count += m->m_len;
2064 if (m->m_next == (struct mbuf *)0)
2065 break;
2066 m = m->m_next;
2067 }
2068 if (m->m_len > len) {
2069 m->m_len -= len;
2070 if (nul > 0) {
2071 cp = mtod(m, caddr_t)+m->m_len-nul;
2072 for (i = 0; i < nul; i++)
2073 *cp++ = '\0';
2074 }
2075 return;
2076 }
2077 count -= len;
2078 if (count < 0)
2079 count = 0;
2080 /*
2081 * Correct length for chain is "count".
2082 * Find the mbuf with last data, adjust its length,
2083 * and toss data from remaining mbufs on chain.
2084 */
2085 for (m = mp; m; m = m->m_next) {
2086 if (m->m_len >= count) {
2087 m->m_len = count;
2088 if (nul > 0) {
2089 cp = mtod(m, caddr_t)+m->m_len-nul;
2090 for (i = 0; i < nul; i++)
2091 *cp++ = '\0';
2092 }
2093 break;
2094 }
2095 count -= m->m_len;
2096 }
2097 for (m = m->m_next;m;m = m->m_next)
2098 m->m_len = 0;
2099 }
2100
2101 /*
2102 * Make these functions instead of macros, so that the kernel text size
2103 * doesn't get too big...
2104 */
2105 void
2106 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2107 struct nfsrv_descript *nfsd;
2108 int before_ret;
2109 struct vattr *before_vap;
2110 int after_ret;
2111 struct vattr *after_vap;
2112 struct mbuf **mbp;
2113 char **bposp;
2114 {
2115 struct mbuf *mb = *mbp, *mb2;
2116 char *bpos = *bposp;
2117 u_int32_t *tl;
2118
2119 if (before_ret) {
2120 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2121 *tl = nfs_false;
2122 } else {
2123 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2124 *tl++ = nfs_true;
2125 txdr_hyper(before_vap->va_size, tl);
2126 tl += 2;
2127 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2128 tl += 2;
2129 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2130 }
2131 *bposp = bpos;
2132 *mbp = mb;
2133 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2134 }
2135
2136 void
2137 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2138 struct nfsrv_descript *nfsd;
2139 int after_ret;
2140 struct vattr *after_vap;
2141 struct mbuf **mbp;
2142 char **bposp;
2143 {
2144 struct mbuf *mb = *mbp, *mb2;
2145 char *bpos = *bposp;
2146 u_int32_t *tl;
2147 struct nfs_fattr *fp;
2148
2149 if (after_ret) {
2150 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2151 *tl = nfs_false;
2152 } else {
2153 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2154 *tl++ = nfs_true;
2155 fp = (struct nfs_fattr *)tl;
2156 nfsm_srvfattr(nfsd, after_vap, fp);
2157 }
2158 *mbp = mb;
2159 *bposp = bpos;
2160 }
2161
2162 void
2163 nfsm_srvfattr(nfsd, vap, fp)
2164 struct nfsrv_descript *nfsd;
2165 struct vattr *vap;
2166 struct nfs_fattr *fp;
2167 {
2168
2169 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2170 fp->fa_uid = txdr_unsigned(vap->va_uid);
2171 fp->fa_gid = txdr_unsigned(vap->va_gid);
2172 if (nfsd->nd_flag & ND_NFSV3) {
2173 fp->fa_type = vtonfsv3_type(vap->va_type);
2174 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2175 txdr_hyper(vap->va_size, &fp->fa3_size);
2176 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2177 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2178 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2179 fp->fa3_fsid.nfsuquad[0] = 0;
2180 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2181 fp->fa3_fileid.nfsuquad[0] = 0;
2182 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2183 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2184 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2185 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2186 } else {
2187 fp->fa_type = vtonfsv2_type(vap->va_type);
2188 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2189 fp->fa2_size = txdr_unsigned(vap->va_size);
2190 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2191 if (vap->va_type == VFIFO)
2192 fp->fa2_rdev = 0xffffffff;
2193 else
2194 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2195 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2196 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2197 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2198 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2199 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2200 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2201 }
2202 }
2203
2204 /*
2205 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2206 * - look up fsid in mount list (if not found ret error)
2207 * - get vp and export rights by calling VFS_FHTOVP()
2208 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2209 * - if not lockflag unlock it with VOP_UNLOCK()
2210 */
2211 int
2212 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2213 fhandle_t *fhp;
2214 int lockflag;
2215 struct vnode **vpp;
2216 struct ucred *cred;
2217 struct nfssvc_sock *slp;
2218 struct mbuf *nam;
2219 int *rdonlyp;
2220 int kerbflag;
2221 {
2222 struct mount *mp;
2223 int i;
2224 struct ucred *credanon;
2225 int error, exflags;
2226 struct sockaddr_in *saddr;
2227
2228 *vpp = (struct vnode *)0;
2229
2230 if (nfs_ispublicfh(fhp)) {
2231 if (!pubflag || !nfs_pub.np_valid)
2232 return (ESTALE);
2233 fhp = &nfs_pub.np_handle;
2234 }
2235
2236 mp = vfs_getvfs(&fhp->fh_fsid);
2237 if (!mp)
2238 return (ESTALE);
2239 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2240 if (error)
2241 return (error);
2242 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2243 if (error)
2244 return (error);
2245
2246 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2247 saddr = mtod(nam, struct sockaddr_in *);
2248 if ((saddr->sin_family == AF_INET) &&
2249 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2250 vput(*vpp);
2251 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2252 }
2253 #ifdef INET6
2254 if ((saddr->sin_family == AF_INET6) &&
2255 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2256 vput(*vpp);
2257 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2258 }
2259 #endif
2260 }
2261 /*
2262 * Check/setup credentials.
2263 */
2264 if (exflags & MNT_EXKERB) {
2265 if (!kerbflag) {
2266 vput(*vpp);
2267 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2268 }
2269 } else if (kerbflag) {
2270 vput(*vpp);
2271 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2272 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2273 cred->cr_uid = credanon->cr_uid;
2274 cred->cr_gid = credanon->cr_gid;
2275 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2276 cred->cr_groups[i] = credanon->cr_groups[i];
2277 cred->cr_ngroups = i;
2278 }
2279 if (exflags & MNT_EXRDONLY)
2280 *rdonlyp = 1;
2281 else
2282 *rdonlyp = 0;
2283 if (!lockflag)
2284 VOP_UNLOCK(*vpp, 0);
2285 return (0);
2286 }
2287
2288 /*
2289 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2290 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2291 * transformed this to all zeroes in both cases, so check for it.
2292 */
2293 int
2294 nfs_ispublicfh(fhp)
2295 fhandle_t *fhp;
2296 {
2297 char *cp = (char *)fhp;
2298 int i;
2299
2300 for (i = 0; i < NFSX_V3FH; i++)
2301 if (*cp++ != 0)
2302 return (FALSE);
2303 return (TRUE);
2304 }
2305
2306 /*
2307 * This function compares two net addresses by family and returns TRUE
2308 * if they are the same host.
2309 * If there is any doubt, return FALSE.
2310 * The AF_INET family is handled as a special case so that address mbufs
2311 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2312 */
2313 int
2314 netaddr_match(family, haddr, nam)
2315 int family;
2316 union nethostaddr *haddr;
2317 struct mbuf *nam;
2318 {
2319 struct sockaddr_in *inetaddr;
2320
2321 switch (family) {
2322 case AF_INET:
2323 inetaddr = mtod(nam, struct sockaddr_in *);
2324 if (inetaddr->sin_family == AF_INET &&
2325 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2326 return (1);
2327 break;
2328 #ifdef INET6
2329 case AF_INET6:
2330 {
2331 struct sockaddr_in6 *sin6_1, *sin6_2;
2332
2333 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2334 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2335 if (sin6_1->sin6_family == AF_INET6 &&
2336 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2337 return 1;
2338 }
2339 #endif
2340 #ifdef ISO
2341 case AF_ISO:
2342 {
2343 struct sockaddr_iso *isoaddr1, *isoaddr2;
2344
2345 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2346 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2347 if (isoaddr1->siso_family == AF_ISO &&
2348 isoaddr1->siso_nlen > 0 &&
2349 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2350 SAME_ISOADDR(isoaddr1, isoaddr2))
2351 return (1);
2352 break;
2353 }
2354 #endif /* ISO */
2355 default:
2356 break;
2357 };
2358 return (0);
2359 }
2360
2361
2362 /*
2363 * The write verifier has changed (probably due to a server reboot), so all
2364 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2365 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2366 * flag. Once done the new write verifier can be set for the mount point.
2367 */
2368 void
2369 nfs_clearcommit(mp)
2370 struct mount *mp;
2371 {
2372 struct vnode *vp, *nvp;
2373 struct buf *bp, *nbp;
2374 struct nfsnode *np;
2375 int s;
2376
2377 s = splbio();
2378 loop:
2379 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2380 if (vp->v_mount != mp) /* Paranoia */
2381 goto loop;
2382 nvp = vp->v_mntvnodes.le_next;
2383 if (vp->v_type == VNON)
2384 continue;
2385 np = VTONFS(vp);
2386 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2387 np->n_pushedhi = 0;
2388 np->n_commitflags &=
2389 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2390 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2391 nbp = bp->b_vnbufs.le_next;
2392 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2393 == (B_DELWRI | B_NEEDCOMMIT))
2394 bp->b_flags &= ~B_NEEDCOMMIT;
2395 }
2396 }
2397 splx(s);
2398 }
2399
2400 void
2401 nfs_merge_commit_ranges(vp)
2402 struct vnode *vp;
2403 {
2404 struct nfsnode *np = VTONFS(vp);
2405
2406 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2407 np->n_pushedlo = np->n_pushlo;
2408 np->n_pushedhi = np->n_pushhi;
2409 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2410 } else {
2411 if (np->n_pushlo < np->n_pushedlo)
2412 np->n_pushedlo = np->n_pushlo;
2413 if (np->n_pushhi > np->n_pushedhi)
2414 np->n_pushedhi = np->n_pushhi;
2415 }
2416
2417 np->n_pushlo = np->n_pushhi = 0;
2418 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2419
2420 #ifdef fvdl_debug
2421 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2422 (unsigned)np->n_pushedhi);
2423 #endif
2424 }
2425
2426 int
2427 nfs_in_committed_range(vp, bp)
2428 struct vnode *vp;
2429 struct buf *bp;
2430 {
2431 struct nfsnode *np = VTONFS(vp);
2432 off_t lo, hi;
2433
2434 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2435 return 0;
2436 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2437 hi = lo + bp->b_dirtyend;
2438
2439 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2440 }
2441
2442 int
2443 nfs_in_tobecommitted_range(vp, bp)
2444 struct vnode *vp;
2445 struct buf *bp;
2446 {
2447 struct nfsnode *np = VTONFS(vp);
2448 off_t lo, hi;
2449
2450 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2451 return 0;
2452 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2453 hi = lo + bp->b_dirtyend;
2454
2455 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2456 }
2457
2458 void
2459 nfs_add_committed_range(vp, bp)
2460 struct vnode *vp;
2461 struct buf *bp;
2462 {
2463 struct nfsnode *np = VTONFS(vp);
2464 off_t lo, hi;
2465
2466 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2467 hi = lo + bp->b_dirtyend;
2468
2469 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2470 np->n_pushedlo = lo;
2471 np->n_pushedhi = hi;
2472 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2473 } else {
2474 if (hi > np->n_pushedhi)
2475 np->n_pushedhi = hi;
2476 if (lo < np->n_pushedlo)
2477 np->n_pushedlo = lo;
2478 }
2479 #ifdef fvdl_debug
2480 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2481 (unsigned)np->n_pushedhi);
2482 #endif
2483 }
2484
2485 void
2486 nfs_del_committed_range(vp, bp)
2487 struct vnode *vp;
2488 struct buf *bp;
2489 {
2490 struct nfsnode *np = VTONFS(vp);
2491 off_t lo, hi;
2492
2493 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2494 return;
2495
2496 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2497 hi = lo + bp->b_dirtyend;
2498
2499 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2500 return;
2501 if (lo <= np->n_pushedlo)
2502 np->n_pushedlo = hi;
2503 else if (hi >= np->n_pushedhi)
2504 np->n_pushedhi = lo;
2505 else {
2506 /*
2507 * XXX There's only one range. If the deleted range
2508 * is in the middle, pick the largest of the
2509 * contiguous ranges that it leaves.
2510 */
2511 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2512 np->n_pushedhi = lo;
2513 else
2514 np->n_pushedlo = hi;
2515 }
2516 #ifdef fvdl_debug
2517 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2518 (unsigned)np->n_pushedhi);
2519 #endif
2520 }
2521
2522 void
2523 nfs_add_tobecommitted_range(vp, bp)
2524 struct vnode *vp;
2525 struct buf *bp;
2526 {
2527 struct nfsnode *np = VTONFS(vp);
2528 off_t lo, hi;
2529
2530 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2531 hi = lo + bp->b_dirtyend;
2532
2533 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2534 np->n_pushlo = lo;
2535 np->n_pushhi = hi;
2536 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2537 } else {
2538 if (lo < np->n_pushlo)
2539 np->n_pushlo = lo;
2540 if (hi > np->n_pushhi)
2541 np->n_pushhi = hi;
2542 }
2543 #ifdef fvdl_debug
2544 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2545 (unsigned)np->n_pushhi);
2546 #endif
2547 }
2548
2549 void
2550 nfs_del_tobecommitted_range(vp, bp)
2551 struct vnode *vp;
2552 struct buf *bp;
2553 {
2554 struct nfsnode *np = VTONFS(vp);
2555 off_t lo, hi;
2556
2557 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2558 return;
2559
2560 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2561 hi = lo + bp->b_dirtyend;
2562
2563 if (lo > np->n_pushhi || hi < np->n_pushlo)
2564 return;
2565
2566 if (lo <= np->n_pushlo)
2567 np->n_pushlo = hi;
2568 else if (hi >= np->n_pushhi)
2569 np->n_pushhi = lo;
2570 else {
2571 /*
2572 * XXX There's only one range. If the deleted range
2573 * is in the middle, pick the largest of the
2574 * contiguous ranges that it leaves.
2575 */
2576 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2577 np->n_pushhi = lo;
2578 else
2579 np->n_pushlo = hi;
2580 }
2581 #ifdef fvdl_debug
2582 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2583 (unsigned)np->n_pushhi);
2584 #endif
2585 }
2586
2587 /*
2588 * Map errnos to NFS error numbers. For Version 3 also filter out error
2589 * numbers not specified for the associated procedure.
2590 */
2591 int
2592 nfsrv_errmap(nd, err)
2593 struct nfsrv_descript *nd;
2594 int err;
2595 {
2596 short *defaulterrp, *errp;
2597
2598 if (nd->nd_flag & ND_NFSV3) {
2599 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2600 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2601 while (*++errp) {
2602 if (*errp == err)
2603 return (err);
2604 else if (*errp > err)
2605 break;
2606 }
2607 return ((int)*defaulterrp);
2608 } else
2609 return (err & 0xffff);
2610 }
2611 if (err <= ELAST)
2612 return ((int)nfsrv_v2errmap[err - 1]);
2613 return (NFSERR_IO);
2614 }
2615
2616 /*
2617 * Sort the group list in increasing numerical order.
2618 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2619 * that used to be here.)
2620 */
2621 void
2622 nfsrvw_sort(list, num)
2623 gid_t *list;
2624 int num;
2625 {
2626 int i, j;
2627 gid_t v;
2628
2629 /* Insertion sort. */
2630 for (i = 1; i < num; i++) {
2631 v = list[i];
2632 /* find correct slot for value v, moving others up */
2633 for (j = i; --j >= 0 && v < list[j];)
2634 list[j + 1] = list[j];
2635 list[j + 1] = v;
2636 }
2637 }
2638
2639 /*
2640 * copy credentials making sure that the result can be compared with memcmp().
2641 */
2642 void
2643 nfsrv_setcred(incred, outcred)
2644 struct ucred *incred, *outcred;
2645 {
2646 int i;
2647
2648 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2649 outcred->cr_ref = 1;
2650 outcred->cr_uid = incred->cr_uid;
2651 outcred->cr_gid = incred->cr_gid;
2652 outcred->cr_ngroups = incred->cr_ngroups;
2653 for (i = 0; i < incred->cr_ngroups; i++)
2654 outcred->cr_groups[i] = incred->cr_groups[i];
2655 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2656 }
2657