Home | History | Annotate | Line # | Download | only in nfs
nfs_subs.c revision 1.78
      1 /*	$NetBSD: nfs_subs.c,v 1.78 2000/06/27 17:52:34 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     39  */
     40 
     41 #include "fs_nfs.h"
     42 #include "opt_nfsserver.h"
     43 #include "opt_iso.h"
     44 #include "opt_inet.h"
     45 
     46 /*
     47  * These functions support the macros and help fiddle mbuf chains for
     48  * the nfs op functions. They do things like create the rpc header and
     49  * copy data between mbuf chains and uio lists.
     50  */
     51 #include <sys/param.h>
     52 #include <sys/proc.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/mount.h>
     56 #include <sys/vnode.h>
     57 #include <sys/namei.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/socket.h>
     60 #include <sys/stat.h>
     61 #include <sys/malloc.h>
     62 #include <sys/time.h>
     63 #include <sys/dirent.h>
     64 
     65 #include <uvm/uvm_extern.h>
     66 
     67 #include <nfs/rpcv2.h>
     68 #include <nfs/nfsproto.h>
     69 #include <nfs/nfsnode.h>
     70 #include <nfs/nfs.h>
     71 #include <nfs/xdr_subs.h>
     72 #include <nfs/nfsm_subs.h>
     73 #include <nfs/nfsmount.h>
     74 #include <nfs/nqnfs.h>
     75 #include <nfs/nfsrtt.h>
     76 #include <nfs/nfs_var.h>
     77 
     78 #include <miscfs/specfs/specdev.h>
     79 
     80 #include <vm/vm.h>
     81 
     82 #include <netinet/in.h>
     83 #ifdef ISO
     84 #include <netiso/iso.h>
     85 #endif
     86 
     87 /*
     88  * Data items converted to xdr at startup, since they are constant
     89  * This is kinda hokey, but may save a little time doing byte swaps
     90  */
     91 u_int32_t nfs_xdrneg1;
     92 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
     93 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
     94 	rpc_auth_kerb;
     95 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
     96 
     97 /* And other global data */
     98 static u_int32_t nfs_xid = 0;
     99 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
    100 		      NFCHR, NFNON };
    101 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
    102 		      NFFIFO, NFNON };
    103 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    104 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    105 int nfs_ticks;
    106 
    107 /* NFS client/server stats. */
    108 struct nfsstats nfsstats;
    109 
    110 /*
    111  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    112  */
    113 int nfsv3_procid[NFS_NPROCS] = {
    114 	NFSPROC_NULL,
    115 	NFSPROC_GETATTR,
    116 	NFSPROC_SETATTR,
    117 	NFSPROC_NOOP,
    118 	NFSPROC_LOOKUP,
    119 	NFSPROC_READLINK,
    120 	NFSPROC_READ,
    121 	NFSPROC_NOOP,
    122 	NFSPROC_WRITE,
    123 	NFSPROC_CREATE,
    124 	NFSPROC_REMOVE,
    125 	NFSPROC_RENAME,
    126 	NFSPROC_LINK,
    127 	NFSPROC_SYMLINK,
    128 	NFSPROC_MKDIR,
    129 	NFSPROC_RMDIR,
    130 	NFSPROC_READDIR,
    131 	NFSPROC_FSSTAT,
    132 	NFSPROC_NOOP,
    133 	NFSPROC_NOOP,
    134 	NFSPROC_NOOP,
    135 	NFSPROC_NOOP,
    136 	NFSPROC_NOOP,
    137 	NFSPROC_NOOP,
    138 	NFSPROC_NOOP,
    139 	NFSPROC_NOOP
    140 };
    141 
    142 /*
    143  * and the reverse mapping from generic to Version 2 procedure numbers
    144  */
    145 int nfsv2_procid[NFS_NPROCS] = {
    146 	NFSV2PROC_NULL,
    147 	NFSV2PROC_GETATTR,
    148 	NFSV2PROC_SETATTR,
    149 	NFSV2PROC_LOOKUP,
    150 	NFSV2PROC_NOOP,
    151 	NFSV2PROC_READLINK,
    152 	NFSV2PROC_READ,
    153 	NFSV2PROC_WRITE,
    154 	NFSV2PROC_CREATE,
    155 	NFSV2PROC_MKDIR,
    156 	NFSV2PROC_SYMLINK,
    157 	NFSV2PROC_CREATE,
    158 	NFSV2PROC_REMOVE,
    159 	NFSV2PROC_RMDIR,
    160 	NFSV2PROC_RENAME,
    161 	NFSV2PROC_LINK,
    162 	NFSV2PROC_READDIR,
    163 	NFSV2PROC_NOOP,
    164 	NFSV2PROC_STATFS,
    165 	NFSV2PROC_NOOP,
    166 	NFSV2PROC_NOOP,
    167 	NFSV2PROC_NOOP,
    168 	NFSV2PROC_NOOP,
    169 	NFSV2PROC_NOOP,
    170 	NFSV2PROC_NOOP,
    171 	NFSV2PROC_NOOP,
    172 };
    173 
    174 /*
    175  * Maps errno values to nfs error numbers.
    176  * Use NFSERR_IO as the catch all for ones not specifically defined in
    177  * RFC 1094.
    178  */
    179 static u_char nfsrv_v2errmap[ELAST] = {
    180   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    181   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    182   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    183   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    184   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    185   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    186   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    187   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    188   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    189   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    190   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    191   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    192   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    193   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    194   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    195   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    196   NFSERR_IO,	NFSERR_IO,
    197 };
    198 
    199 /*
    200  * Maps errno values to nfs error numbers.
    201  * Although it is not obvious whether or not NFS clients really care if
    202  * a returned error value is in the specified list for the procedure, the
    203  * safest thing to do is filter them appropriately. For Version 2, the
    204  * X/Open XNFS document is the only specification that defines error values
    205  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    206  * so I have decided to not do this for Version 2.
    207  * The first entry is the default error return and the rest are the valid
    208  * errors for that RPC in increasing numeric order.
    209  */
    210 static short nfsv3err_null[] = {
    211 	0,
    212 	0,
    213 };
    214 
    215 static short nfsv3err_getattr[] = {
    216 	NFSERR_IO,
    217 	NFSERR_IO,
    218 	NFSERR_STALE,
    219 	NFSERR_BADHANDLE,
    220 	NFSERR_SERVERFAULT,
    221 	0,
    222 };
    223 
    224 static short nfsv3err_setattr[] = {
    225 	NFSERR_IO,
    226 	NFSERR_PERM,
    227 	NFSERR_IO,
    228 	NFSERR_ACCES,
    229 	NFSERR_INVAL,
    230 	NFSERR_NOSPC,
    231 	NFSERR_ROFS,
    232 	NFSERR_DQUOT,
    233 	NFSERR_STALE,
    234 	NFSERR_BADHANDLE,
    235 	NFSERR_NOT_SYNC,
    236 	NFSERR_SERVERFAULT,
    237 	0,
    238 };
    239 
    240 static short nfsv3err_lookup[] = {
    241 	NFSERR_IO,
    242 	NFSERR_NOENT,
    243 	NFSERR_IO,
    244 	NFSERR_ACCES,
    245 	NFSERR_NOTDIR,
    246 	NFSERR_NAMETOL,
    247 	NFSERR_STALE,
    248 	NFSERR_BADHANDLE,
    249 	NFSERR_SERVERFAULT,
    250 	0,
    251 };
    252 
    253 static short nfsv3err_access[] = {
    254 	NFSERR_IO,
    255 	NFSERR_IO,
    256 	NFSERR_STALE,
    257 	NFSERR_BADHANDLE,
    258 	NFSERR_SERVERFAULT,
    259 	0,
    260 };
    261 
    262 static short nfsv3err_readlink[] = {
    263 	NFSERR_IO,
    264 	NFSERR_IO,
    265 	NFSERR_ACCES,
    266 	NFSERR_INVAL,
    267 	NFSERR_STALE,
    268 	NFSERR_BADHANDLE,
    269 	NFSERR_NOTSUPP,
    270 	NFSERR_SERVERFAULT,
    271 	0,
    272 };
    273 
    274 static short nfsv3err_read[] = {
    275 	NFSERR_IO,
    276 	NFSERR_IO,
    277 	NFSERR_NXIO,
    278 	NFSERR_ACCES,
    279 	NFSERR_INVAL,
    280 	NFSERR_STALE,
    281 	NFSERR_BADHANDLE,
    282 	NFSERR_SERVERFAULT,
    283 	NFSERR_JUKEBOX,
    284 	0,
    285 };
    286 
    287 static short nfsv3err_write[] = {
    288 	NFSERR_IO,
    289 	NFSERR_IO,
    290 	NFSERR_ACCES,
    291 	NFSERR_INVAL,
    292 	NFSERR_FBIG,
    293 	NFSERR_NOSPC,
    294 	NFSERR_ROFS,
    295 	NFSERR_DQUOT,
    296 	NFSERR_STALE,
    297 	NFSERR_BADHANDLE,
    298 	NFSERR_SERVERFAULT,
    299 	NFSERR_JUKEBOX,
    300 	0,
    301 };
    302 
    303 static short nfsv3err_create[] = {
    304 	NFSERR_IO,
    305 	NFSERR_IO,
    306 	NFSERR_ACCES,
    307 	NFSERR_EXIST,
    308 	NFSERR_NOTDIR,
    309 	NFSERR_NOSPC,
    310 	NFSERR_ROFS,
    311 	NFSERR_NAMETOL,
    312 	NFSERR_DQUOT,
    313 	NFSERR_STALE,
    314 	NFSERR_BADHANDLE,
    315 	NFSERR_NOTSUPP,
    316 	NFSERR_SERVERFAULT,
    317 	0,
    318 };
    319 
    320 static short nfsv3err_mkdir[] = {
    321 	NFSERR_IO,
    322 	NFSERR_IO,
    323 	NFSERR_ACCES,
    324 	NFSERR_EXIST,
    325 	NFSERR_NOTDIR,
    326 	NFSERR_NOSPC,
    327 	NFSERR_ROFS,
    328 	NFSERR_NAMETOL,
    329 	NFSERR_DQUOT,
    330 	NFSERR_STALE,
    331 	NFSERR_BADHANDLE,
    332 	NFSERR_NOTSUPP,
    333 	NFSERR_SERVERFAULT,
    334 	0,
    335 };
    336 
    337 static short nfsv3err_symlink[] = {
    338 	NFSERR_IO,
    339 	NFSERR_IO,
    340 	NFSERR_ACCES,
    341 	NFSERR_EXIST,
    342 	NFSERR_NOTDIR,
    343 	NFSERR_NOSPC,
    344 	NFSERR_ROFS,
    345 	NFSERR_NAMETOL,
    346 	NFSERR_DQUOT,
    347 	NFSERR_STALE,
    348 	NFSERR_BADHANDLE,
    349 	NFSERR_NOTSUPP,
    350 	NFSERR_SERVERFAULT,
    351 	0,
    352 };
    353 
    354 static short nfsv3err_mknod[] = {
    355 	NFSERR_IO,
    356 	NFSERR_IO,
    357 	NFSERR_ACCES,
    358 	NFSERR_EXIST,
    359 	NFSERR_NOTDIR,
    360 	NFSERR_NOSPC,
    361 	NFSERR_ROFS,
    362 	NFSERR_NAMETOL,
    363 	NFSERR_DQUOT,
    364 	NFSERR_STALE,
    365 	NFSERR_BADHANDLE,
    366 	NFSERR_NOTSUPP,
    367 	NFSERR_SERVERFAULT,
    368 	NFSERR_BADTYPE,
    369 	0,
    370 };
    371 
    372 static short nfsv3err_remove[] = {
    373 	NFSERR_IO,
    374 	NFSERR_NOENT,
    375 	NFSERR_IO,
    376 	NFSERR_ACCES,
    377 	NFSERR_NOTDIR,
    378 	NFSERR_ROFS,
    379 	NFSERR_NAMETOL,
    380 	NFSERR_STALE,
    381 	NFSERR_BADHANDLE,
    382 	NFSERR_SERVERFAULT,
    383 	0,
    384 };
    385 
    386 static short nfsv3err_rmdir[] = {
    387 	NFSERR_IO,
    388 	NFSERR_NOENT,
    389 	NFSERR_IO,
    390 	NFSERR_ACCES,
    391 	NFSERR_EXIST,
    392 	NFSERR_NOTDIR,
    393 	NFSERR_INVAL,
    394 	NFSERR_ROFS,
    395 	NFSERR_NAMETOL,
    396 	NFSERR_NOTEMPTY,
    397 	NFSERR_STALE,
    398 	NFSERR_BADHANDLE,
    399 	NFSERR_NOTSUPP,
    400 	NFSERR_SERVERFAULT,
    401 	0,
    402 };
    403 
    404 static short nfsv3err_rename[] = {
    405 	NFSERR_IO,
    406 	NFSERR_NOENT,
    407 	NFSERR_IO,
    408 	NFSERR_ACCES,
    409 	NFSERR_EXIST,
    410 	NFSERR_XDEV,
    411 	NFSERR_NOTDIR,
    412 	NFSERR_ISDIR,
    413 	NFSERR_INVAL,
    414 	NFSERR_NOSPC,
    415 	NFSERR_ROFS,
    416 	NFSERR_MLINK,
    417 	NFSERR_NAMETOL,
    418 	NFSERR_NOTEMPTY,
    419 	NFSERR_DQUOT,
    420 	NFSERR_STALE,
    421 	NFSERR_BADHANDLE,
    422 	NFSERR_NOTSUPP,
    423 	NFSERR_SERVERFAULT,
    424 	0,
    425 };
    426 
    427 static short nfsv3err_link[] = {
    428 	NFSERR_IO,
    429 	NFSERR_IO,
    430 	NFSERR_ACCES,
    431 	NFSERR_EXIST,
    432 	NFSERR_XDEV,
    433 	NFSERR_NOTDIR,
    434 	NFSERR_INVAL,
    435 	NFSERR_NOSPC,
    436 	NFSERR_ROFS,
    437 	NFSERR_MLINK,
    438 	NFSERR_NAMETOL,
    439 	NFSERR_DQUOT,
    440 	NFSERR_STALE,
    441 	NFSERR_BADHANDLE,
    442 	NFSERR_NOTSUPP,
    443 	NFSERR_SERVERFAULT,
    444 	0,
    445 };
    446 
    447 static short nfsv3err_readdir[] = {
    448 	NFSERR_IO,
    449 	NFSERR_IO,
    450 	NFSERR_ACCES,
    451 	NFSERR_NOTDIR,
    452 	NFSERR_STALE,
    453 	NFSERR_BADHANDLE,
    454 	NFSERR_BAD_COOKIE,
    455 	NFSERR_TOOSMALL,
    456 	NFSERR_SERVERFAULT,
    457 	0,
    458 };
    459 
    460 static short nfsv3err_readdirplus[] = {
    461 	NFSERR_IO,
    462 	NFSERR_IO,
    463 	NFSERR_ACCES,
    464 	NFSERR_NOTDIR,
    465 	NFSERR_STALE,
    466 	NFSERR_BADHANDLE,
    467 	NFSERR_BAD_COOKIE,
    468 	NFSERR_NOTSUPP,
    469 	NFSERR_TOOSMALL,
    470 	NFSERR_SERVERFAULT,
    471 	0,
    472 };
    473 
    474 static short nfsv3err_fsstat[] = {
    475 	NFSERR_IO,
    476 	NFSERR_IO,
    477 	NFSERR_STALE,
    478 	NFSERR_BADHANDLE,
    479 	NFSERR_SERVERFAULT,
    480 	0,
    481 };
    482 
    483 static short nfsv3err_fsinfo[] = {
    484 	NFSERR_STALE,
    485 	NFSERR_STALE,
    486 	NFSERR_BADHANDLE,
    487 	NFSERR_SERVERFAULT,
    488 	0,
    489 };
    490 
    491 static short nfsv3err_pathconf[] = {
    492 	NFSERR_STALE,
    493 	NFSERR_STALE,
    494 	NFSERR_BADHANDLE,
    495 	NFSERR_SERVERFAULT,
    496 	0,
    497 };
    498 
    499 static short nfsv3err_commit[] = {
    500 	NFSERR_IO,
    501 	NFSERR_IO,
    502 	NFSERR_STALE,
    503 	NFSERR_BADHANDLE,
    504 	NFSERR_SERVERFAULT,
    505 	0,
    506 };
    507 
    508 static short *nfsrv_v3errmap[] = {
    509 	nfsv3err_null,
    510 	nfsv3err_getattr,
    511 	nfsv3err_setattr,
    512 	nfsv3err_lookup,
    513 	nfsv3err_access,
    514 	nfsv3err_readlink,
    515 	nfsv3err_read,
    516 	nfsv3err_write,
    517 	nfsv3err_create,
    518 	nfsv3err_mkdir,
    519 	nfsv3err_symlink,
    520 	nfsv3err_mknod,
    521 	nfsv3err_remove,
    522 	nfsv3err_rmdir,
    523 	nfsv3err_rename,
    524 	nfsv3err_link,
    525 	nfsv3err_readdir,
    526 	nfsv3err_readdirplus,
    527 	nfsv3err_fsstat,
    528 	nfsv3err_fsinfo,
    529 	nfsv3err_pathconf,
    530 	nfsv3err_commit,
    531 };
    532 
    533 extern struct nfsrtt nfsrtt;
    534 extern time_t nqnfsstarttime;
    535 extern int nqsrv_clockskew;
    536 extern int nqsrv_writeslack;
    537 extern int nqsrv_maxlease;
    538 extern int nqnfs_piggy[NFS_NPROCS];
    539 extern struct nfsnodehashhead *nfsnodehashtbl;
    540 extern u_long nfsnodehash;
    541 
    542 LIST_HEAD(nfsnodehashhead, nfsnode);
    543 u_long nfsdirhashmask;
    544 
    545 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
    546 
    547 /*
    548  * Create the header for an rpc request packet
    549  * The hsiz is the size of the rest of the nfs request header.
    550  * (just used to decide if a cluster is a good idea)
    551  */
    552 struct mbuf *
    553 nfsm_reqh(vp, procid, hsiz, bposp)
    554 	struct vnode *vp;
    555 	u_long procid;
    556 	int hsiz;
    557 	caddr_t *bposp;
    558 {
    559 	struct mbuf *mb;
    560 	u_int32_t *tl;
    561 	caddr_t bpos;
    562 	struct mbuf *mb2;
    563 	struct nfsmount *nmp;
    564 	int nqflag;
    565 
    566 	MGET(mb, M_WAIT, MT_DATA);
    567 	if (hsiz >= MINCLSIZE)
    568 		MCLGET(mb, M_WAIT);
    569 	mb->m_len = 0;
    570 	bpos = mtod(mb, caddr_t);
    571 
    572 	/*
    573 	 * For NQNFS, add lease request.
    574 	 */
    575 	if (vp) {
    576 		nmp = VFSTONFS(vp->v_mount);
    577 		if (nmp->nm_flag & NFSMNT_NQNFS) {
    578 			nqflag = NQNFS_NEEDLEASE(vp, procid);
    579 			if (nqflag) {
    580 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
    581 				*tl++ = txdr_unsigned(nqflag);
    582 				*tl = txdr_unsigned(nmp->nm_leaseterm);
    583 			} else {
    584 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
    585 				*tl = 0;
    586 			}
    587 		}
    588 	}
    589 	/* Finally, return values */
    590 	*bposp = bpos;
    591 	return (mb);
    592 }
    593 
    594 /*
    595  * Build the RPC header and fill in the authorization info.
    596  * The authorization string argument is only used when the credentials
    597  * come from outside of the kernel.
    598  * Returns the head of the mbuf list.
    599  */
    600 struct mbuf *
    601 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
    602 	verf_str, mrest, mrest_len, mbp, xidp)
    603 	struct ucred *cr;
    604 	int nmflag;
    605 	int procid;
    606 	int auth_type;
    607 	int auth_len;
    608 	char *auth_str;
    609 	int verf_len;
    610 	char *verf_str;
    611 	struct mbuf *mrest;
    612 	int mrest_len;
    613 	struct mbuf **mbp;
    614 	u_int32_t *xidp;
    615 {
    616 	struct mbuf *mb;
    617 	u_int32_t *tl;
    618 	caddr_t bpos;
    619 	int i;
    620 	struct mbuf *mreq, *mb2;
    621 	int siz, grpsiz, authsiz;
    622 	struct timeval tv;
    623 	static u_int32_t base;
    624 
    625 	authsiz = nfsm_rndup(auth_len);
    626 	MGETHDR(mb, M_WAIT, MT_DATA);
    627 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    628 		MCLGET(mb, M_WAIT);
    629 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    630 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
    631 	} else {
    632 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
    633 	}
    634 	mb->m_len = 0;
    635 	mreq = mb;
    636 	bpos = mtod(mb, caddr_t);
    637 
    638 	/*
    639 	 * First the RPC header.
    640 	 */
    641 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    642 
    643 	/*
    644 	 * derive initial xid from system time
    645 	 * XXX time is invalid if root not yet mounted
    646 	 */
    647 	if (!base && (rootvp)) {
    648 		microtime(&tv);
    649 		base = tv.tv_sec << 12;
    650 		nfs_xid = base;
    651 	}
    652 	/*
    653 	 * Skip zero xid if it should ever happen.
    654 	 */
    655 	if (++nfs_xid == 0)
    656 		nfs_xid++;
    657 
    658 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
    659 	*tl++ = rpc_call;
    660 	*tl++ = rpc_vers;
    661 	if (nmflag & NFSMNT_NQNFS) {
    662 		*tl++ = txdr_unsigned(NQNFS_PROG);
    663 		*tl++ = txdr_unsigned(NQNFS_VER3);
    664 	} else {
    665 		*tl++ = txdr_unsigned(NFS_PROG);
    666 		if (nmflag & NFSMNT_NFSV3)
    667 			*tl++ = txdr_unsigned(NFS_VER3);
    668 		else
    669 			*tl++ = txdr_unsigned(NFS_VER2);
    670 	}
    671 	if (nmflag & NFSMNT_NFSV3)
    672 		*tl++ = txdr_unsigned(procid);
    673 	else
    674 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    675 
    676 	/*
    677 	 * And then the authorization cred.
    678 	 */
    679 	*tl++ = txdr_unsigned(auth_type);
    680 	*tl = txdr_unsigned(authsiz);
    681 	switch (auth_type) {
    682 	case RPCAUTH_UNIX:
    683 		nfsm_build(tl, u_int32_t *, auth_len);
    684 		*tl++ = 0;		/* stamp ?? */
    685 		*tl++ = 0;		/* NULL hostname */
    686 		*tl++ = txdr_unsigned(cr->cr_uid);
    687 		*tl++ = txdr_unsigned(cr->cr_gid);
    688 		grpsiz = (auth_len >> 2) - 5;
    689 		*tl++ = txdr_unsigned(grpsiz);
    690 		for (i = 0; i < grpsiz; i++)
    691 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
    692 		break;
    693 	case RPCAUTH_KERB4:
    694 		siz = auth_len;
    695 		while (siz > 0) {
    696 			if (M_TRAILINGSPACE(mb) == 0) {
    697 				MGET(mb2, M_WAIT, MT_DATA);
    698 				if (siz >= MINCLSIZE)
    699 					MCLGET(mb2, M_WAIT);
    700 				mb->m_next = mb2;
    701 				mb = mb2;
    702 				mb->m_len = 0;
    703 				bpos = mtod(mb, caddr_t);
    704 			}
    705 			i = min(siz, M_TRAILINGSPACE(mb));
    706 			memcpy(bpos, auth_str, i);
    707 			mb->m_len += i;
    708 			auth_str += i;
    709 			bpos += i;
    710 			siz -= i;
    711 		}
    712 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    713 			for (i = 0; i < siz; i++)
    714 				*bpos++ = '\0';
    715 			mb->m_len += siz;
    716 		}
    717 		break;
    718 	};
    719 
    720 	/*
    721 	 * And the verifier...
    722 	 */
    723 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    724 	if (verf_str) {
    725 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    726 		*tl = txdr_unsigned(verf_len);
    727 		siz = verf_len;
    728 		while (siz > 0) {
    729 			if (M_TRAILINGSPACE(mb) == 0) {
    730 				MGET(mb2, M_WAIT, MT_DATA);
    731 				if (siz >= MINCLSIZE)
    732 					MCLGET(mb2, M_WAIT);
    733 				mb->m_next = mb2;
    734 				mb = mb2;
    735 				mb->m_len = 0;
    736 				bpos = mtod(mb, caddr_t);
    737 			}
    738 			i = min(siz, M_TRAILINGSPACE(mb));
    739 			memcpy(bpos, verf_str, i);
    740 			mb->m_len += i;
    741 			verf_str += i;
    742 			bpos += i;
    743 			siz -= i;
    744 		}
    745 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    746 			for (i = 0; i < siz; i++)
    747 				*bpos++ = '\0';
    748 			mb->m_len += siz;
    749 		}
    750 	} else {
    751 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    752 		*tl = 0;
    753 	}
    754 	mb->m_next = mrest;
    755 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    756 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
    757 	*mbp = mb;
    758 	return (mreq);
    759 }
    760 
    761 /*
    762  * copies mbuf chain to the uio scatter/gather list
    763  */
    764 int
    765 nfsm_mbuftouio(mrep, uiop, siz, dpos)
    766 	struct mbuf **mrep;
    767 	struct uio *uiop;
    768 	int siz;
    769 	caddr_t *dpos;
    770 {
    771 	char *mbufcp, *uiocp;
    772 	int xfer, left, len;
    773 	struct mbuf *mp;
    774 	long uiosiz, rem;
    775 	int error = 0;
    776 
    777 	mp = *mrep;
    778 	mbufcp = *dpos;
    779 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
    780 	rem = nfsm_rndup(siz)-siz;
    781 	while (siz > 0) {
    782 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    783 			return (EFBIG);
    784 		left = uiop->uio_iov->iov_len;
    785 		uiocp = uiop->uio_iov->iov_base;
    786 		if (left > siz)
    787 			left = siz;
    788 		uiosiz = left;
    789 		while (left > 0) {
    790 			while (len == 0) {
    791 				mp = mp->m_next;
    792 				if (mp == NULL)
    793 					return (EBADRPC);
    794 				mbufcp = mtod(mp, caddr_t);
    795 				len = mp->m_len;
    796 			}
    797 			xfer = (left > len) ? len : left;
    798 #ifdef notdef
    799 			/* Not Yet.. */
    800 			if (uiop->uio_iov->iov_op != NULL)
    801 				(*(uiop->uio_iov->iov_op))
    802 				(mbufcp, uiocp, xfer);
    803 			else
    804 #endif
    805 			if (uiop->uio_segflg == UIO_SYSSPACE)
    806 				memcpy(uiocp, mbufcp, xfer);
    807 			else
    808 				copyout(mbufcp, uiocp, xfer);
    809 			left -= xfer;
    810 			len -= xfer;
    811 			mbufcp += xfer;
    812 			uiocp += xfer;
    813 			uiop->uio_offset += xfer;
    814 			uiop->uio_resid -= xfer;
    815 		}
    816 		if (uiop->uio_iov->iov_len <= siz) {
    817 			uiop->uio_iovcnt--;
    818 			uiop->uio_iov++;
    819 		} else {
    820 			(caddr_t)uiop->uio_iov->iov_base += uiosiz;
    821 			uiop->uio_iov->iov_len -= uiosiz;
    822 		}
    823 		siz -= uiosiz;
    824 	}
    825 	*dpos = mbufcp;
    826 	*mrep = mp;
    827 	if (rem > 0) {
    828 		if (len < rem)
    829 			error = nfs_adv(mrep, dpos, rem, len);
    830 		else
    831 			*dpos += rem;
    832 	}
    833 	return (error);
    834 }
    835 
    836 /*
    837  * copies a uio scatter/gather list to an mbuf chain.
    838  * NOTE: can ony handle iovcnt == 1
    839  */
    840 int
    841 nfsm_uiotombuf(uiop, mq, siz, bpos)
    842 	struct uio *uiop;
    843 	struct mbuf **mq;
    844 	int siz;
    845 	caddr_t *bpos;
    846 {
    847 	char *uiocp;
    848 	struct mbuf *mp, *mp2;
    849 	int xfer, left, mlen;
    850 	int uiosiz, clflg, rem;
    851 	char *cp;
    852 
    853 #ifdef DIAGNOSTIC
    854 	if (uiop->uio_iovcnt != 1)
    855 		panic("nfsm_uiotombuf: iovcnt != 1");
    856 #endif
    857 
    858 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    859 		clflg = 1;
    860 	else
    861 		clflg = 0;
    862 	rem = nfsm_rndup(siz)-siz;
    863 	mp = mp2 = *mq;
    864 	while (siz > 0) {
    865 		left = uiop->uio_iov->iov_len;
    866 		uiocp = uiop->uio_iov->iov_base;
    867 		if (left > siz)
    868 			left = siz;
    869 		uiosiz = left;
    870 		while (left > 0) {
    871 			mlen = M_TRAILINGSPACE(mp);
    872 			if (mlen == 0) {
    873 				MGET(mp, M_WAIT, MT_DATA);
    874 				if (clflg)
    875 					MCLGET(mp, M_WAIT);
    876 				mp->m_len = 0;
    877 				mp2->m_next = mp;
    878 				mp2 = mp;
    879 				mlen = M_TRAILINGSPACE(mp);
    880 			}
    881 			xfer = (left > mlen) ? mlen : left;
    882 #ifdef notdef
    883 			/* Not Yet.. */
    884 			if (uiop->uio_iov->iov_op != NULL)
    885 				(*(uiop->uio_iov->iov_op))
    886 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    887 			else
    888 #endif
    889 			if (uiop->uio_segflg == UIO_SYSSPACE)
    890 				memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
    891 			else
    892 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    893 			mp->m_len += xfer;
    894 			left -= xfer;
    895 			uiocp += xfer;
    896 			uiop->uio_offset += xfer;
    897 			uiop->uio_resid -= xfer;
    898 		}
    899 		(caddr_t)uiop->uio_iov->iov_base += uiosiz;
    900 		uiop->uio_iov->iov_len -= uiosiz;
    901 		siz -= uiosiz;
    902 	}
    903 	if (rem > 0) {
    904 		if (rem > M_TRAILINGSPACE(mp)) {
    905 			MGET(mp, M_WAIT, MT_DATA);
    906 			mp->m_len = 0;
    907 			mp2->m_next = mp;
    908 		}
    909 		cp = mtod(mp, caddr_t)+mp->m_len;
    910 		for (left = 0; left < rem; left++)
    911 			*cp++ = '\0';
    912 		mp->m_len += rem;
    913 		*bpos = cp;
    914 	} else
    915 		*bpos = mtod(mp, caddr_t)+mp->m_len;
    916 	*mq = mp;
    917 	return (0);
    918 }
    919 
    920 /*
    921  * Get at least "siz" bytes of correctly aligned data.
    922  * When called the mbuf pointers are not necessarily correct,
    923  * dsosp points to what ought to be in m_data and left contains
    924  * what ought to be in m_len.
    925  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    926  * cases. (The macros use the vars. dpos and dpos2)
    927  */
    928 int
    929 nfsm_disct(mdp, dposp, siz, left, cp2)
    930 	struct mbuf **mdp;
    931 	caddr_t *dposp;
    932 	int siz;
    933 	int left;
    934 	caddr_t *cp2;
    935 {
    936 	struct mbuf *m1, *m2;
    937 	struct mbuf *havebuf = NULL;
    938 	caddr_t src = *dposp;
    939 	caddr_t dst;
    940 	int len;
    941 
    942 #ifdef DEBUG
    943 	if (left < 0)
    944 		panic("nfsm_disct: left < 0");
    945 #endif
    946 	m1 = *mdp;
    947 	/*
    948 	 * Skip through the mbuf chain looking for an mbuf with
    949 	 * some data. If the first mbuf found has enough data
    950 	 * and it is correctly aligned return it.
    951 	 */
    952 	while (left == 0) {
    953 		havebuf = m1;
    954 		*mdp = m1 = m1->m_next;
    955 		if (m1 == NULL)
    956 			return (EBADRPC);
    957 		src = mtod(m1, caddr_t);
    958 		left = m1->m_len;
    959 		/*
    960 		 * If we start a new mbuf and it is big enough
    961 		 * and correctly aligned just return it, don't
    962 		 * do any pull up.
    963 		 */
    964 		if (left >= siz && nfsm_aligned(src)) {
    965 			*cp2 = src;
    966 			*dposp = src + siz;
    967 			return (0);
    968 		}
    969 	}
    970 	if (m1->m_flags & M_EXT) {
    971 		if (havebuf) {
    972 			/* If the first mbuf with data has external data
    973 			 * and there is a previous empty mbuf use it
    974 			 * to move the data into.
    975 			 */
    976 			m2 = m1;
    977 			*mdp = m1 = havebuf;
    978 			if (m1->m_flags & M_EXT) {
    979 				MEXTREMOVE(m1);
    980 			}
    981 		} else {
    982 			/*
    983 			 * If the first mbuf has a external data
    984 			 * and there is no previous empty mbuf
    985 			 * allocate a new mbuf and move the external
    986 			 * data to the new mbuf. Also make the first
    987 			 * mbuf look empty.
    988 			 */
    989 			m2 = m_get(M_WAIT, MT_DATA);
    990 			m2->m_ext = m1->m_ext;
    991 			m2->m_data = src;
    992 			m2->m_len = left;
    993 			MCLADDREFERENCE(m1, m2);
    994 			MEXTREMOVE(m1);
    995 			m2->m_next = m1->m_next;
    996 			m1->m_next = m2;
    997 		}
    998 		m1->m_len = 0;
    999 		dst = m1->m_dat;
   1000 	} else {
   1001 		/*
   1002 		 * If the first mbuf has no external data
   1003 		 * move the data to the front of the mbuf.
   1004 		 */
   1005 		if ((dst = m1->m_dat) != src)
   1006 			memmove(dst, src, left);
   1007 		dst += left;
   1008 		m1->m_len = left;
   1009 		m2 = m1->m_next;
   1010 	}
   1011 	m1->m_flags &= ~M_PKTHDR;
   1012 	*cp2 = m1->m_data = m1->m_dat;   /* data is at beginning of buffer */
   1013 	*dposp = mtod(m1, caddr_t) + siz;
   1014 	/*
   1015 	 * Loop through mbufs pulling data up into first mbuf until
   1016 	 * the first mbuf is full or there is no more data to
   1017 	 * pullup.
   1018 	 */
   1019 	while ((len = (MLEN - m1->m_len)) != 0 && m2) {
   1020 		if ((len = min(len, m2->m_len)) != 0)
   1021 			memcpy(dst, m2->m_data, len);
   1022 		m1->m_len += len;
   1023 		dst += len;
   1024 		m2->m_data += len;
   1025 		m2->m_len -= len;
   1026 		m2 = m2->m_next;
   1027 	}
   1028 	if (m1->m_len < siz)
   1029 		return (EBADRPC);
   1030 	return (0);
   1031 }
   1032 
   1033 /*
   1034  * Advance the position in the mbuf chain.
   1035  */
   1036 int
   1037 nfs_adv(mdp, dposp, offs, left)
   1038 	struct mbuf **mdp;
   1039 	caddr_t *dposp;
   1040 	int offs;
   1041 	int left;
   1042 {
   1043 	struct mbuf *m;
   1044 	int s;
   1045 
   1046 	m = *mdp;
   1047 	s = left;
   1048 	while (s < offs) {
   1049 		offs -= s;
   1050 		m = m->m_next;
   1051 		if (m == NULL)
   1052 			return (EBADRPC);
   1053 		s = m->m_len;
   1054 	}
   1055 	*mdp = m;
   1056 	*dposp = mtod(m, caddr_t)+offs;
   1057 	return (0);
   1058 }
   1059 
   1060 /*
   1061  * Copy a string into mbufs for the hard cases...
   1062  */
   1063 int
   1064 nfsm_strtmbuf(mb, bpos, cp, siz)
   1065 	struct mbuf **mb;
   1066 	char **bpos;
   1067 	const char *cp;
   1068 	long siz;
   1069 {
   1070 	struct mbuf *m1 = NULL, *m2;
   1071 	long left, xfer, len, tlen;
   1072 	u_int32_t *tl;
   1073 	int putsize;
   1074 
   1075 	putsize = 1;
   1076 	m2 = *mb;
   1077 	left = M_TRAILINGSPACE(m2);
   1078 	if (left > 0) {
   1079 		tl = ((u_int32_t *)(*bpos));
   1080 		*tl++ = txdr_unsigned(siz);
   1081 		putsize = 0;
   1082 		left -= NFSX_UNSIGNED;
   1083 		m2->m_len += NFSX_UNSIGNED;
   1084 		if (left > 0) {
   1085 			memcpy((caddr_t) tl, cp, left);
   1086 			siz -= left;
   1087 			cp += left;
   1088 			m2->m_len += left;
   1089 			left = 0;
   1090 		}
   1091 	}
   1092 	/* Loop around adding mbufs */
   1093 	while (siz > 0) {
   1094 		MGET(m1, M_WAIT, MT_DATA);
   1095 		if (siz > MLEN)
   1096 			MCLGET(m1, M_WAIT);
   1097 		m1->m_len = NFSMSIZ(m1);
   1098 		m2->m_next = m1;
   1099 		m2 = m1;
   1100 		tl = mtod(m1, u_int32_t *);
   1101 		tlen = 0;
   1102 		if (putsize) {
   1103 			*tl++ = txdr_unsigned(siz);
   1104 			m1->m_len -= NFSX_UNSIGNED;
   1105 			tlen = NFSX_UNSIGNED;
   1106 			putsize = 0;
   1107 		}
   1108 		if (siz < m1->m_len) {
   1109 			len = nfsm_rndup(siz);
   1110 			xfer = siz;
   1111 			if (xfer < len)
   1112 				*(tl+(xfer>>2)) = 0;
   1113 		} else {
   1114 			xfer = len = m1->m_len;
   1115 		}
   1116 		memcpy((caddr_t) tl, cp, xfer);
   1117 		m1->m_len = len+tlen;
   1118 		siz -= xfer;
   1119 		cp += xfer;
   1120 	}
   1121 	*mb = m1;
   1122 	*bpos = mtod(m1, caddr_t)+m1->m_len;
   1123 	return (0);
   1124 }
   1125 
   1126 /*
   1127  * Directory caching routines. They work as follows:
   1128  * - a cache is maintained per VDIR nfsnode.
   1129  * - for each offset cookie that is exported to userspace, and can
   1130  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1131  *   information in the cache.
   1132  * - cached are:
   1133  *   - cookie itself
   1134  *   - blocknumber (essentially just a search key in the buffer cache)
   1135  *   - entry number in block.
   1136  *   - offset cookie of block in which this entry is stored
   1137  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1138  * - entries are looked up in a hash table
   1139  * - also maintained is an LRU list of entries, used to determine
   1140  *   which ones to delete if the cache grows too large.
   1141  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1142  *   the cache also functions as a translation table
   1143  * - in the translation case, invalidating the cache does not mean
   1144  *   flushing it, but just marking entries as invalid, except for
   1145  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1146  *   still be able to use the cache as a translation table.
   1147  * - 32 bit cookies are uniquely created by combining the hash table
   1148  *   entry value, and one generation count per hash table entry,
   1149  *   incremented each time an entry is appended to the chain.
   1150  * - the cache is invalidated each time a direcory is modified
   1151  * - sanity checks are also done; if an entry in a block turns
   1152  *   out not to have a matching cookie, the cache is invalidated
   1153  *   and a new block starting from the wanted offset is fetched from
   1154  *   the server.
   1155  * - directory entries as read from the server are extended to contain
   1156  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1157  *   the cache and exporting them to userspace through the cookie
   1158  *   argument to VOP_READDIR.
   1159  */
   1160 
   1161 u_long
   1162 nfs_dirhash(off)
   1163 	off_t off;
   1164 {
   1165 	int i;
   1166 	char *cp = (char *)&off;
   1167 	u_long sum = 0L;
   1168 
   1169 	for (i = 0 ; i < sizeof (off); i++)
   1170 		sum += *cp++;
   1171 
   1172 	return sum;
   1173 }
   1174 
   1175 void
   1176 nfs_initdircache(vp)
   1177 	struct vnode *vp;
   1178 {
   1179 	struct nfsnode *np = VTONFS(vp);
   1180 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1181 
   1182 	np->n_dircachesize = 0;
   1183 	np->n_dblkno = 1;
   1184 	np->n_dircache =
   1185 	    hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
   1186 	TAILQ_INIT(&np->n_dirchain);
   1187 	if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1188 		MALLOC(np->n_dirgens, unsigned *,
   1189 		    NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
   1190 		    M_WAITOK);
   1191 		memset((caddr_t)np->n_dirgens, 0,
   1192 		    NFS_DIRHASHSIZ * sizeof (unsigned));
   1193 	}
   1194 }
   1195 
   1196 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
   1197 
   1198 struct nfsdircache *
   1199 nfs_searchdircache(vp, off, do32, hashent)
   1200 	struct vnode *vp;
   1201 	off_t off;
   1202 	int do32;
   1203 	int *hashent;
   1204 {
   1205 	struct nfsdirhashhead *ndhp;
   1206 	struct nfsdircache *ndp = NULL;
   1207 	struct nfsnode *np = VTONFS(vp);
   1208 	unsigned ent;
   1209 
   1210 	/*
   1211 	 * Zero is always a valid cookie.
   1212 	 */
   1213 	if (off == 0)
   1214 		return &dzero;
   1215 
   1216 	/*
   1217 	 * We use a 32bit cookie as search key, directly reconstruct
   1218 	 * the hashentry. Else use the hashfunction.
   1219 	 */
   1220 	if (do32) {
   1221 		ent = (u_int32_t)off >> 24;
   1222 		if (ent >= NFS_DIRHASHSIZ)
   1223 			return NULL;
   1224 		ndhp = &np->n_dircache[ent];
   1225 	} else {
   1226 		ndhp = NFSDIRHASH(np, off);
   1227 	}
   1228 
   1229 	if (hashent)
   1230 		*hashent = (int)(ndhp - np->n_dircache);
   1231 	if (do32) {
   1232 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
   1233 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1234 				/*
   1235 				 * An invalidated entry will become the
   1236 				 * start of a new block fetched from
   1237 				 * the server.
   1238 				 */
   1239 				if (ndp->dc_blkno == -1) {
   1240 					ndp->dc_blkcookie = ndp->dc_cookie;
   1241 					ndp->dc_blkno = np->n_dblkno++;
   1242 					ndp->dc_entry = 0;
   1243 				}
   1244 				break;
   1245 			}
   1246 		}
   1247 	} else {
   1248 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
   1249 			if (ndp->dc_cookie == off)
   1250 				break;
   1251 	}
   1252 	return ndp;
   1253 }
   1254 
   1255 
   1256 struct nfsdircache *
   1257 nfs_enterdircache(vp, off, blkoff, en, blkno)
   1258 	struct vnode *vp;
   1259 	off_t off, blkoff;
   1260 	daddr_t blkno;
   1261 	int en;
   1262 {
   1263 	struct nfsnode *np = VTONFS(vp);
   1264 	struct nfsdirhashhead *ndhp;
   1265 	struct nfsdircache *ndp = NULL, *first;
   1266 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1267 	int hashent, gen, overwrite;
   1268 
   1269 	if (!np->n_dircache)
   1270 		/*
   1271 		 * XXX would like to do this in nfs_nget but vtype
   1272 		 * isn't known at that time.
   1273 		 */
   1274 		nfs_initdircache(vp);
   1275 
   1276 	/*
   1277 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1278 	 * cookie 0 for the '.' entry, making this necessary. This
   1279 	 * isn't so bad, as 0 is a special case anyway.
   1280 	 */
   1281 	if (off == 0)
   1282 		return &dzero;
   1283 
   1284 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1285 
   1286 	if (ndp && ndp->dc_blkno != -1) {
   1287 		/*
   1288 		 * Overwriting an old entry. Check if it's the same.
   1289 		 * If so, just return. If not, remove the old entry.
   1290 		 */
   1291 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1292 			return ndp;
   1293 		TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1294 		LIST_REMOVE(ndp, dc_hash);
   1295 		FREE(ndp, M_NFSDIROFF);
   1296 		ndp = 0;
   1297 	}
   1298 
   1299 	ndhp = &np->n_dircache[hashent];
   1300 
   1301 	if (!ndp) {
   1302 		MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
   1303 		    M_WAITOK);
   1304 		overwrite = 0;
   1305 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1306 			/*
   1307 			 * We're allocating a new entry, so bump the
   1308 			 * generation number.
   1309 			 */
   1310 			gen = ++np->n_dirgens[hashent];
   1311 			if (gen == 0) {
   1312 				np->n_dirgens[hashent]++;
   1313 				gen++;
   1314 			}
   1315 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1316 		}
   1317 	} else
   1318 		overwrite = 1;
   1319 
   1320 	/*
   1321 	 * If the entry number is 0, we are at the start of a new block, so
   1322 	 * allocate a new blocknumber.
   1323 	 */
   1324 	if (en == 0)
   1325 		ndp->dc_blkno = np->n_dblkno++;
   1326 	else
   1327 		ndp->dc_blkno = blkno;
   1328 
   1329 	ndp->dc_cookie = off;
   1330 	ndp->dc_blkcookie = blkoff;
   1331 	ndp->dc_entry = en;
   1332 
   1333 	if (overwrite)
   1334 		return ndp;
   1335 
   1336 	/*
   1337 	 * If the maximum directory cookie cache size has been reached
   1338 	 * for this node, take one off the front. The idea is that
   1339 	 * directories are typically read front-to-back once, so that
   1340 	 * the oldest entries can be thrown away without much performance
   1341 	 * loss.
   1342 	 */
   1343 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1344 		first = np->n_dirchain.tqh_first;
   1345 		TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
   1346 		LIST_REMOVE(first, dc_hash);
   1347 		FREE(first, M_NFSDIROFF);
   1348 	} else
   1349 		np->n_dircachesize++;
   1350 
   1351 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1352 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1353 	return ndp;
   1354 }
   1355 
   1356 void
   1357 nfs_invaldircache(vp, forcefree)
   1358 	struct vnode *vp;
   1359 	int forcefree;
   1360 {
   1361 	struct nfsnode *np = VTONFS(vp);
   1362 	struct nfsdircache *ndp = NULL;
   1363 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1364 
   1365 #ifdef DIAGNOSTIC
   1366 	if (vp->v_type != VDIR)
   1367 		panic("nfs: invaldircache: not dir");
   1368 #endif
   1369 
   1370 	if (!np->n_dircache)
   1371 		return;
   1372 
   1373 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1374 		while ((ndp = np->n_dirchain.tqh_first)) {
   1375 			TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1376 			LIST_REMOVE(ndp, dc_hash);
   1377 			FREE(ndp, M_NFSDIROFF);
   1378 		}
   1379 		np->n_dircachesize = 0;
   1380 		if (forcefree && np->n_dirgens) {
   1381 			FREE(np->n_dirgens, M_NFSDIROFF);
   1382 		}
   1383 	} else {
   1384 		for (ndp = np->n_dirchain.tqh_first; ndp;
   1385 		    ndp = ndp->dc_chain.tqe_next)
   1386 			ndp->dc_blkno = -1;
   1387 	}
   1388 
   1389 	np->n_dblkno = 1;
   1390 }
   1391 
   1392 /*
   1393  * Called once before VFS init to initialize shared and
   1394  * server-specific data structures.
   1395  */
   1396 void
   1397 nfs_init()
   1398 {
   1399 
   1400 #if !defined(alpha) && !defined(_LP64) && defined(DIAGNOSTIC)
   1401 	/*
   1402 	 * Check to see if major data structures haven't bloated.
   1403 	 */
   1404 	if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
   1405 		printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
   1406 		printf("Try reducing NFS_SMALLFH\n");
   1407 	}
   1408 	if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
   1409 		printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
   1410 		printf("Try reducing NFS_UIDHASHSIZ\n");
   1411 	}
   1412 	if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
   1413 		printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
   1414 		printf("Try unionizing the nu_nickname and nu_flag fields\n");
   1415 	}
   1416 #endif
   1417 
   1418 	nfsrtt.pos = 0;
   1419 	rpc_vers = txdr_unsigned(RPC_VER2);
   1420 	rpc_call = txdr_unsigned(RPC_CALL);
   1421 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1422 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1423 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1424 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1425 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1426 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1427 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1428 	nfs_prog = txdr_unsigned(NFS_PROG);
   1429 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
   1430 	nfs_true = txdr_unsigned(TRUE);
   1431 	nfs_false = txdr_unsigned(FALSE);
   1432 	nfs_xdrneg1 = txdr_unsigned(-1);
   1433 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1434 	if (nfs_ticks < 1)
   1435 		nfs_ticks = 1;
   1436 #ifdef NFSSERVER
   1437 	nfsrv_init(0);			/* Init server data structures */
   1438 	nfsrv_initcache();		/* Init the server request cache */
   1439 #endif /* NFSSERVER */
   1440 
   1441 	/*
   1442 	 * Initialize the nqnfs data structures.
   1443 	 */
   1444 	if (nqnfsstarttime == 0) {
   1445 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
   1446 			+ nqsrv_clockskew + nqsrv_writeslack;
   1447 		NQLOADNOVRAM(nqnfsstarttime);
   1448 		CIRCLEQ_INIT(&nqtimerhead);
   1449 		nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
   1450 	}
   1451 
   1452 	/*
   1453 	 * Initialize reply list and start timer
   1454 	 */
   1455 	TAILQ_INIT(&nfs_reqq);
   1456 	nfs_timer(NULL);
   1457 }
   1458 
   1459 #ifdef NFS
   1460 /*
   1461  * Called once at VFS init to initialize client-specific data structures.
   1462  */
   1463 void
   1464 nfs_vfs_init()
   1465 {
   1466 	int i;
   1467 
   1468 	/* Ensure async daemons disabled */
   1469 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
   1470 		nfs_iodwant[i] = (struct proc *)0;
   1471 		nfs_iodmount[i] = (struct nfsmount *)0;
   1472 	}
   1473 	nfs_nhinit();			/* Init the nfsnode table */
   1474 }
   1475 
   1476 void
   1477 nfs_vfs_done()
   1478 {
   1479 	nfs_nhdone();
   1480 }
   1481 
   1482 /*
   1483  * Attribute cache routines.
   1484  * nfs_loadattrcache() - loads or updates the cache contents from attributes
   1485  *	that are on the mbuf list
   1486  * nfs_getattrcache() - returns valid attributes if found in cache, returns
   1487  *	error otherwise
   1488  */
   1489 
   1490 /*
   1491  * Load the attribute cache (that lives in the nfsnode entry) with
   1492  * the values on the mbuf list and
   1493  * Iff vap not NULL
   1494  *    copy the attributes to *vaper
   1495  */
   1496 int
   1497 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
   1498 	struct vnode **vpp;
   1499 	struct mbuf **mdp;
   1500 	caddr_t *dposp;
   1501 	struct vattr *vaper;
   1502 {
   1503 	int32_t t1;
   1504 	caddr_t cp2;
   1505 	int error = 0;
   1506 	struct mbuf *md;
   1507 	int v3 = NFS_ISV3(*vpp);
   1508 
   1509 	md = *mdp;
   1510 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
   1511 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
   1512 	if (error)
   1513 		return (error);
   1514 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
   1515 }
   1516 
   1517 int
   1518 nfs_loadattrcache(vpp, fp, vaper)
   1519 	struct vnode **vpp;
   1520 	struct nfs_fattr *fp;
   1521 	struct vattr *vaper;
   1522 {
   1523 	struct vnode *vp = *vpp;
   1524 	struct vattr *vap;
   1525 	int v3 = NFS_ISV3(vp);
   1526 	enum vtype vtyp;
   1527 	u_short vmode;
   1528 	struct timespec mtime;
   1529 	struct vnode *nvp;
   1530 	int32_t rdev;
   1531 	struct nfsnode *np;
   1532 	extern int (**spec_nfsv2nodeop_p) __P((void *));
   1533 
   1534 	if (v3) {
   1535 		vtyp = nfsv3tov_type(fp->fa_type);
   1536 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1537 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
   1538 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
   1539 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
   1540 	} else {
   1541 		vtyp = nfsv2tov_type(fp->fa_type);
   1542 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1543 		if (vtyp == VNON || vtyp == VREG)
   1544 			vtyp = IFTOVT(vmode);
   1545 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
   1546 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
   1547 
   1548 		/*
   1549 		 * Really ugly NFSv2 kludge.
   1550 		 */
   1551 		if (vtyp == VCHR && rdev == 0xffffffff)
   1552 			vtyp = VFIFO;
   1553 	}
   1554 
   1555 	/*
   1556 	 * If v_type == VNON it is a new node, so fill in the v_type,
   1557 	 * n_mtime fields. Check to see if it represents a special
   1558 	 * device, and if so, check for a possible alias. Once the
   1559 	 * correct vnode has been obtained, fill in the rest of the
   1560 	 * information.
   1561 	 */
   1562 	np = VTONFS(vp);
   1563 	if (vp->v_type != vtyp) {
   1564 		vp->v_type = vtyp;
   1565 		if (vp->v_type == VFIFO) {
   1566 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
   1567 			vp->v_op = fifo_nfsv2nodeop_p;
   1568 		}
   1569 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
   1570 			vp->v_op = spec_nfsv2nodeop_p;
   1571 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
   1572 			if (nvp) {
   1573 				/*
   1574 				 * Discard unneeded vnode, but save its nfsnode.
   1575 				 * Since the nfsnode does not have a lock, its
   1576 				 * vnode lock has to be carried over.
   1577 				 */
   1578 				nvp->v_data = vp->v_data;
   1579 				vp->v_data = NULL;
   1580 				vp->v_op = spec_vnodeop_p;
   1581 				vput(vp);
   1582 				vgone(vp);
   1583 				/*
   1584 				 * XXX When nfs starts locking, we need to
   1585 				 * lock the new node here.
   1586 				 */
   1587 				/*
   1588 				 * Reinitialize aliased node.
   1589 				 */
   1590 				np->n_vnode = nvp;
   1591 				*vpp = vp = nvp;
   1592 			}
   1593 		}
   1594 		np->n_mtime = mtime.tv_sec;
   1595 	}
   1596 	vap = np->n_vattr;
   1597 	vap->va_type = vtyp;
   1598 	vap->va_mode = vmode & ALLPERMS;
   1599 	vap->va_rdev = (dev_t)rdev;
   1600 	vap->va_mtime = mtime;
   1601 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
   1602 	switch (vtyp) {
   1603 	case VDIR:
   1604 		vap->va_blocksize = NFS_DIRFRAGSIZ;
   1605 		break;
   1606 	case VBLK:
   1607 		vap->va_blocksize = BLKDEV_IOSIZE;
   1608 		break;
   1609 	case VCHR:
   1610 		vap->va_blocksize = MAXBSIZE;
   1611 		break;
   1612 	default:
   1613 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
   1614 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
   1615 		break;
   1616 	}
   1617 	if (v3) {
   1618 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1619 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1620 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1621 		vap->va_size = fxdr_hyper(&fp->fa3_size);
   1622 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
   1623 		vap->va_fileid = fxdr_unsigned(int32_t,
   1624 		    fp->fa3_fileid.nfsuquad[1]);
   1625 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
   1626 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
   1627 		vap->va_flags = 0;
   1628 		vap->va_filerev = 0;
   1629 	} else {
   1630 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1631 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1632 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1633 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
   1634 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
   1635 		    * NFS_FABLKSIZE;
   1636 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
   1637 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
   1638 		vap->va_flags = 0;
   1639 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
   1640 		    fp->fa2_ctime.nfsv2_sec);
   1641 		vap->va_ctime.tv_nsec = 0;
   1642 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
   1643 		vap->va_filerev = 0;
   1644 	}
   1645 	if (vap->va_size != np->n_size) {
   1646 		if (vap->va_type == VREG) {
   1647 			if (np->n_flag & NMODIFIED) {
   1648 				if (vap->va_size < np->n_size)
   1649 					vap->va_size = np->n_size;
   1650 				else
   1651 					np->n_size = vap->va_size;
   1652 			} else
   1653 				np->n_size = vap->va_size;
   1654 			uvm_vnp_setsize(vp, np->n_size);
   1655 		} else
   1656 			np->n_size = vap->va_size;
   1657 	}
   1658 	np->n_attrstamp = time.tv_sec;
   1659 	if (vaper != NULL) {
   1660 		memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
   1661 		if (np->n_flag & NCHG) {
   1662 			if (np->n_flag & NACC)
   1663 				vaper->va_atime = np->n_atim;
   1664 			if (np->n_flag & NUPD)
   1665 				vaper->va_mtime = np->n_mtim;
   1666 		}
   1667 	}
   1668 	return (0);
   1669 }
   1670 
   1671 /*
   1672  * Check the time stamp
   1673  * If the cache is valid, copy contents to *vap and return 0
   1674  * otherwise return an error
   1675  */
   1676 int
   1677 nfs_getattrcache(vp, vaper)
   1678 	struct vnode *vp;
   1679 	struct vattr *vaper;
   1680 {
   1681 	struct nfsnode *np = VTONFS(vp);
   1682 	struct vattr *vap;
   1683 
   1684 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
   1685 		nfsstats.attrcache_misses++;
   1686 		return (ENOENT);
   1687 	}
   1688 	nfsstats.attrcache_hits++;
   1689 	vap = np->n_vattr;
   1690 	if (vap->va_size != np->n_size) {
   1691 		if (vap->va_type == VREG) {
   1692 			if (np->n_flag & NMODIFIED) {
   1693 				if (vap->va_size < np->n_size)
   1694 					vap->va_size = np->n_size;
   1695 				else
   1696 					np->n_size = vap->va_size;
   1697 			} else
   1698 				np->n_size = vap->va_size;
   1699 			uvm_vnp_setsize(vp, np->n_size);
   1700 		} else
   1701 			np->n_size = vap->va_size;
   1702 	}
   1703 	memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
   1704 	if (np->n_flag & NCHG) {
   1705 		if (np->n_flag & NACC)
   1706 			vaper->va_atime = np->n_atim;
   1707 		if (np->n_flag & NUPD)
   1708 			vaper->va_mtime = np->n_mtim;
   1709 	}
   1710 	return (0);
   1711 }
   1712 
   1713 /*
   1714  * Heuristic to see if the server XDR encodes directory cookies or not.
   1715  * it is not supposed to, but a lot of servers may do this. Also, since
   1716  * most/all servers will implement V2 as well, it is expected that they
   1717  * may return just 32 bits worth of cookie information, so we need to
   1718  * find out in which 32 bits this information is available. We do this
   1719  * to avoid trouble with emulated binaries that can't handle 64 bit
   1720  * directory offsets.
   1721  */
   1722 
   1723 void
   1724 nfs_cookieheuristic(vp, flagp, p, cred)
   1725 	struct vnode *vp;
   1726 	int *flagp;
   1727 	struct proc *p;
   1728 	struct ucred *cred;
   1729 {
   1730 	struct uio auio;
   1731 	struct iovec aiov;
   1732 	caddr_t buf, cp;
   1733 	struct dirent *dp;
   1734 	off_t *cookies = NULL, *cop;
   1735 	int error, eof, nc, len;
   1736 
   1737 	MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
   1738 
   1739 	aiov.iov_base = buf;
   1740 	aiov.iov_len = NFS_DIRFRAGSIZ;
   1741 	auio.uio_iov = &aiov;
   1742 	auio.uio_iovcnt = 1;
   1743 	auio.uio_rw = UIO_READ;
   1744 	auio.uio_segflg = UIO_SYSSPACE;
   1745 	auio.uio_procp = p;
   1746 	auio.uio_resid = NFS_DIRFRAGSIZ;
   1747 	auio.uio_offset = 0;
   1748 
   1749 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
   1750 
   1751 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
   1752 	if (error || len == 0) {
   1753 		FREE(buf, M_TEMP);
   1754 		if (cookies)
   1755 			FREE(cookies, M_TEMP);
   1756 		return;
   1757 	}
   1758 
   1759 	/*
   1760 	 * Find the first valid entry and look at its offset cookie.
   1761 	 */
   1762 
   1763 	cp = buf;
   1764 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
   1765 		dp = (struct dirent *)cp;
   1766 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
   1767 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
   1768 				*flagp |= NFSMNT_SWAPCOOKIE;
   1769 				nfs_invaldircache(vp, 0);
   1770 				nfs_vinvalbuf(vp, 0, cred, p, 1);
   1771 			}
   1772 			break;
   1773 		}
   1774 		cop++;
   1775 		cp += dp->d_reclen;
   1776 	}
   1777 
   1778 	FREE(buf, M_TEMP);
   1779 	FREE(cookies, M_TEMP);
   1780 }
   1781 #endif /* NFS */
   1782 
   1783 /*
   1784  * Set up nameidata for a lookup() call and do it.
   1785  *
   1786  * If pubflag is set, this call is done for a lookup operation on the
   1787  * public filehandle. In that case we allow crossing mountpoints and
   1788  * absolute pathnames. However, the caller is expected to check that
   1789  * the lookup result is within the public fs, and deny access if
   1790  * it is not.
   1791  */
   1792 int
   1793 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
   1794 	struct nameidata *ndp;
   1795 	fhandle_t *fhp;
   1796 	int len;
   1797 	struct nfssvc_sock *slp;
   1798 	struct mbuf *nam;
   1799 	struct mbuf **mdp;
   1800 	caddr_t *dposp;
   1801 	struct vnode **retdirp;
   1802 	struct proc *p;
   1803 	int kerbflag, pubflag;
   1804 {
   1805 	int i, rem;
   1806 	struct mbuf *md;
   1807 	char *fromcp, *tocp, *cp;
   1808 	struct iovec aiov;
   1809 	struct uio auio;
   1810 	struct vnode *dp;
   1811 	int error, rdonly, linklen;
   1812 	struct componentname *cnp = &ndp->ni_cnd;
   1813 
   1814 	*retdirp = (struct vnode *)0;
   1815 	MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
   1816 	/*
   1817 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
   1818 	 * and set the various ndp fields appropriately.
   1819 	 */
   1820 	fromcp = *dposp;
   1821 	tocp = cnp->cn_pnbuf;
   1822 	md = *mdp;
   1823 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
   1824 	for (i = 0; i < len; i++) {
   1825 		while (rem == 0) {
   1826 			md = md->m_next;
   1827 			if (md == NULL) {
   1828 				error = EBADRPC;
   1829 				goto out;
   1830 			}
   1831 			fromcp = mtod(md, caddr_t);
   1832 			rem = md->m_len;
   1833 		}
   1834 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
   1835 			error = EACCES;
   1836 			goto out;
   1837 		}
   1838 		*tocp++ = *fromcp++;
   1839 		rem--;
   1840 	}
   1841 	*tocp = '\0';
   1842 	*mdp = md;
   1843 	*dposp = fromcp;
   1844 	len = nfsm_rndup(len)-len;
   1845 	if (len > 0) {
   1846 		if (rem >= len)
   1847 			*dposp += len;
   1848 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
   1849 			goto out;
   1850 	}
   1851 
   1852 	/*
   1853 	 * Extract and set starting directory.
   1854 	 */
   1855 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
   1856 	    nam, &rdonly, kerbflag, pubflag);
   1857 	if (error)
   1858 		goto out;
   1859 	if (dp->v_type != VDIR) {
   1860 		vrele(dp);
   1861 		error = ENOTDIR;
   1862 		goto out;
   1863 	}
   1864 
   1865 	if (rdonly)
   1866 		cnp->cn_flags |= RDONLY;
   1867 
   1868 	*retdirp = dp;
   1869 
   1870 	if (pubflag) {
   1871 		/*
   1872 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
   1873 		 * and the 'native path' indicator.
   1874 		 */
   1875 		MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
   1876 		fromcp = cnp->cn_pnbuf;
   1877 		tocp = cp;
   1878 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
   1879 			switch ((unsigned char)*fromcp) {
   1880 			case WEBNFS_NATIVE_CHAR:
   1881 				/*
   1882 				 * 'Native' path for us is the same
   1883 				 * as a path according to the NFS spec,
   1884 				 * just skip the escape char.
   1885 				 */
   1886 				fromcp++;
   1887 				break;
   1888 			/*
   1889 			 * More may be added in the future, range 0x80-0xff
   1890 			 */
   1891 			default:
   1892 				error = EIO;
   1893 				FREE(cp, M_NAMEI);
   1894 				goto out;
   1895 			}
   1896 		}
   1897 		/*
   1898 		 * Translate the '%' escapes, URL-style.
   1899 		 */
   1900 		while (*fromcp != '\0') {
   1901 			if (*fromcp == WEBNFS_ESC_CHAR) {
   1902 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
   1903 					fromcp++;
   1904 					*tocp++ = HEXSTRTOI(fromcp);
   1905 					fromcp += 2;
   1906 					continue;
   1907 				} else {
   1908 					error = ENOENT;
   1909 					FREE(cp, M_NAMEI);
   1910 					goto out;
   1911 				}
   1912 			} else
   1913 				*tocp++ = *fromcp++;
   1914 		}
   1915 		*tocp = '\0';
   1916 		FREE(cnp->cn_pnbuf, M_NAMEI);
   1917 		cnp->cn_pnbuf = cp;
   1918 	}
   1919 
   1920 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
   1921 	ndp->ni_segflg = UIO_SYSSPACE;
   1922 
   1923 	if (pubflag) {
   1924 		ndp->ni_rootdir = rootvnode;
   1925 		ndp->ni_loopcnt = 0;
   1926 		if (cnp->cn_pnbuf[0] == '/')
   1927 			dp = rootvnode;
   1928 	} else {
   1929 		cnp->cn_flags |= NOCROSSMOUNT;
   1930 	}
   1931 
   1932 	cnp->cn_proc = p;
   1933 	VREF(dp);
   1934 
   1935     for (;;) {
   1936 	cnp->cn_nameptr = cnp->cn_pnbuf;
   1937 	ndp->ni_startdir = dp;
   1938 	/*
   1939 	 * And call lookup() to do the real work
   1940 	 */
   1941 	error = lookup(ndp);
   1942 	if (error)
   1943 		break;
   1944 	/*
   1945 	 * Check for encountering a symbolic link
   1946 	 */
   1947 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
   1948 		if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
   1949 			cnp->cn_flags |= HASBUF;
   1950 			return (0);
   1951 		}
   1952 		break;
   1953 	} else {
   1954 		if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
   1955 			VOP_UNLOCK(ndp->ni_dvp, 0);
   1956 		if (!pubflag) {
   1957 			vrele(ndp->ni_dvp);
   1958 			vput(ndp->ni_vp);
   1959 			ndp->ni_vp = NULL;
   1960 			error = EINVAL;
   1961 			break;
   1962 		}
   1963 
   1964 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
   1965 			error = ELOOP;
   1966 			break;
   1967 		}
   1968 		if (ndp->ni_pathlen > 1)
   1969 			MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
   1970 		else
   1971 			cp = cnp->cn_pnbuf;
   1972 		aiov.iov_base = cp;
   1973 		aiov.iov_len = MAXPATHLEN;
   1974 		auio.uio_iov = &aiov;
   1975 		auio.uio_iovcnt = 1;
   1976 		auio.uio_offset = 0;
   1977 		auio.uio_rw = UIO_READ;
   1978 		auio.uio_segflg = UIO_SYSSPACE;
   1979 		auio.uio_procp = (struct proc *)0;
   1980 		auio.uio_resid = MAXPATHLEN;
   1981 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
   1982 		if (error) {
   1983 		badlink:
   1984 			if (ndp->ni_pathlen > 1)
   1985 				FREE(cp, M_NAMEI);
   1986 			break;
   1987 		}
   1988 		linklen = MAXPATHLEN - auio.uio_resid;
   1989 		if (linklen == 0) {
   1990 			error = ENOENT;
   1991 			goto badlink;
   1992 		}
   1993 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
   1994 			error = ENAMETOOLONG;
   1995 			goto badlink;
   1996 		}
   1997 		if (ndp->ni_pathlen > 1) {
   1998 			memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
   1999 			FREE(cnp->cn_pnbuf, M_NAMEI);
   2000 			cnp->cn_pnbuf = cp;
   2001 		} else
   2002 			cnp->cn_pnbuf[linklen] = '\0';
   2003 		ndp->ni_pathlen += linklen;
   2004 		vput(ndp->ni_vp);
   2005 		dp = ndp->ni_dvp;
   2006 		/*
   2007 		 * Check if root directory should replace current directory.
   2008 		 */
   2009 		if (cnp->cn_pnbuf[0] == '/') {
   2010 			vrele(dp);
   2011 			dp = ndp->ni_rootdir;
   2012 			VREF(dp);
   2013 		}
   2014 	}
   2015    }
   2016 out:
   2017 	FREE(cnp->cn_pnbuf, M_NAMEI);
   2018 	return (error);
   2019 }
   2020 
   2021 /*
   2022  * A fiddled version of m_adj() that ensures null fill to a long
   2023  * boundary and only trims off the back end
   2024  */
   2025 void
   2026 nfsm_adj(mp, len, nul)
   2027 	struct mbuf *mp;
   2028 	int len;
   2029 	int nul;
   2030 {
   2031 	struct mbuf *m;
   2032 	int count, i;
   2033 	char *cp;
   2034 
   2035 	/*
   2036 	 * Trim from tail.  Scan the mbuf chain,
   2037 	 * calculating its length and finding the last mbuf.
   2038 	 * If the adjustment only affects this mbuf, then just
   2039 	 * adjust and return.  Otherwise, rescan and truncate
   2040 	 * after the remaining size.
   2041 	 */
   2042 	count = 0;
   2043 	m = mp;
   2044 	for (;;) {
   2045 		count += m->m_len;
   2046 		if (m->m_next == (struct mbuf *)0)
   2047 			break;
   2048 		m = m->m_next;
   2049 	}
   2050 	if (m->m_len > len) {
   2051 		m->m_len -= len;
   2052 		if (nul > 0) {
   2053 			cp = mtod(m, caddr_t)+m->m_len-nul;
   2054 			for (i = 0; i < nul; i++)
   2055 				*cp++ = '\0';
   2056 		}
   2057 		return;
   2058 	}
   2059 	count -= len;
   2060 	if (count < 0)
   2061 		count = 0;
   2062 	/*
   2063 	 * Correct length for chain is "count".
   2064 	 * Find the mbuf with last data, adjust its length,
   2065 	 * and toss data from remaining mbufs on chain.
   2066 	 */
   2067 	for (m = mp; m; m = m->m_next) {
   2068 		if (m->m_len >= count) {
   2069 			m->m_len = count;
   2070 			if (nul > 0) {
   2071 				cp = mtod(m, caddr_t)+m->m_len-nul;
   2072 				for (i = 0; i < nul; i++)
   2073 					*cp++ = '\0';
   2074 			}
   2075 			break;
   2076 		}
   2077 		count -= m->m_len;
   2078 	}
   2079 	for (m = m->m_next;m;m = m->m_next)
   2080 		m->m_len = 0;
   2081 }
   2082 
   2083 /*
   2084  * Make these functions instead of macros, so that the kernel text size
   2085  * doesn't get too big...
   2086  */
   2087 void
   2088 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
   2089 	struct nfsrv_descript *nfsd;
   2090 	int before_ret;
   2091 	struct vattr *before_vap;
   2092 	int after_ret;
   2093 	struct vattr *after_vap;
   2094 	struct mbuf **mbp;
   2095 	char **bposp;
   2096 {
   2097 	struct mbuf *mb = *mbp, *mb2;
   2098 	char *bpos = *bposp;
   2099 	u_int32_t *tl;
   2100 
   2101 	if (before_ret) {
   2102 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2103 		*tl = nfs_false;
   2104 	} else {
   2105 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   2106 		*tl++ = nfs_true;
   2107 		txdr_hyper(before_vap->va_size, tl);
   2108 		tl += 2;
   2109 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   2110 		tl += 2;
   2111 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   2112 	}
   2113 	*bposp = bpos;
   2114 	*mbp = mb;
   2115 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   2116 }
   2117 
   2118 void
   2119 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
   2120 	struct nfsrv_descript *nfsd;
   2121 	int after_ret;
   2122 	struct vattr *after_vap;
   2123 	struct mbuf **mbp;
   2124 	char **bposp;
   2125 {
   2126 	struct mbuf *mb = *mbp, *mb2;
   2127 	char *bpos = *bposp;
   2128 	u_int32_t *tl;
   2129 	struct nfs_fattr *fp;
   2130 
   2131 	if (after_ret) {
   2132 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2133 		*tl = nfs_false;
   2134 	} else {
   2135 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   2136 		*tl++ = nfs_true;
   2137 		fp = (struct nfs_fattr *)tl;
   2138 		nfsm_srvfattr(nfsd, after_vap, fp);
   2139 	}
   2140 	*mbp = mb;
   2141 	*bposp = bpos;
   2142 }
   2143 
   2144 void
   2145 nfsm_srvfattr(nfsd, vap, fp)
   2146 	struct nfsrv_descript *nfsd;
   2147 	struct vattr *vap;
   2148 	struct nfs_fattr *fp;
   2149 {
   2150 
   2151 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   2152 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   2153 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   2154 	if (nfsd->nd_flag & ND_NFSV3) {
   2155 		fp->fa_type = vtonfsv3_type(vap->va_type);
   2156 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   2157 		txdr_hyper(vap->va_size, &fp->fa3_size);
   2158 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   2159 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   2160 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   2161 		fp->fa3_fsid.nfsuquad[0] = 0;
   2162 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   2163 		fp->fa3_fileid.nfsuquad[0] = 0;
   2164 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
   2165 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   2166 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   2167 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   2168 	} else {
   2169 		fp->fa_type = vtonfsv2_type(vap->va_type);
   2170 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   2171 		fp->fa2_size = txdr_unsigned(vap->va_size);
   2172 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
   2173 		if (vap->va_type == VFIFO)
   2174 			fp->fa2_rdev = 0xffffffff;
   2175 		else
   2176 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   2177 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   2178 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   2179 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   2180 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   2181 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   2182 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   2183 	}
   2184 }
   2185 
   2186 /*
   2187  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
   2188  * 	- look up fsid in mount list (if not found ret error)
   2189  *	- get vp and export rights by calling VFS_FHTOVP()
   2190  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
   2191  *	- if not lockflag unlock it with VOP_UNLOCK()
   2192  */
   2193 int
   2194 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
   2195 	fhandle_t *fhp;
   2196 	int lockflag;
   2197 	struct vnode **vpp;
   2198 	struct ucred *cred;
   2199 	struct nfssvc_sock *slp;
   2200 	struct mbuf *nam;
   2201 	int *rdonlyp;
   2202 	int kerbflag;
   2203 {
   2204 	struct mount *mp;
   2205 	int i;
   2206 	struct ucred *credanon;
   2207 	int error, exflags;
   2208 	struct sockaddr_in *saddr;
   2209 
   2210 	*vpp = (struct vnode *)0;
   2211 
   2212 	if (nfs_ispublicfh(fhp)) {
   2213 		if (!pubflag || !nfs_pub.np_valid)
   2214 			return (ESTALE);
   2215 		fhp = &nfs_pub.np_handle;
   2216 	}
   2217 
   2218 	mp = vfs_getvfs(&fhp->fh_fsid);
   2219 	if (!mp)
   2220 		return (ESTALE);
   2221 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
   2222 	if (error)
   2223 		return (error);
   2224 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
   2225 	if (error)
   2226 		return (error);
   2227 
   2228 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
   2229 		saddr = mtod(nam, struct sockaddr_in *);
   2230 		if ((saddr->sin_family == AF_INET) &&
   2231 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
   2232 			vput(*vpp);
   2233 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2234 		}
   2235 #ifdef INET6
   2236 		if ((saddr->sin_family == AF_INET6) &&
   2237 		    ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
   2238 			vput(*vpp);
   2239 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2240 		}
   2241 #endif
   2242 	}
   2243 	/*
   2244 	 * Check/setup credentials.
   2245 	 */
   2246 	if (exflags & MNT_EXKERB) {
   2247 		if (!kerbflag) {
   2248 			vput(*vpp);
   2249 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2250 		}
   2251 	} else if (kerbflag) {
   2252 		vput(*vpp);
   2253 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2254 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
   2255 		cred->cr_uid = credanon->cr_uid;
   2256 		cred->cr_gid = credanon->cr_gid;
   2257 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
   2258 			cred->cr_groups[i] = credanon->cr_groups[i];
   2259 		cred->cr_ngroups = i;
   2260 	}
   2261 	if (exflags & MNT_EXRDONLY)
   2262 		*rdonlyp = 1;
   2263 	else
   2264 		*rdonlyp = 0;
   2265 	if (!lockflag)
   2266 		VOP_UNLOCK(*vpp, 0);
   2267 	return (0);
   2268 }
   2269 
   2270 /*
   2271  * WebNFS: check if a filehandle is a public filehandle. For v3, this
   2272  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
   2273  * transformed this to all zeroes in both cases, so check for it.
   2274  */
   2275 int
   2276 nfs_ispublicfh(fhp)
   2277 	fhandle_t *fhp;
   2278 {
   2279 	char *cp = (char *)fhp;
   2280 	int i;
   2281 
   2282 	for (i = 0; i < NFSX_V3FH; i++)
   2283 		if (*cp++ != 0)
   2284 			return (FALSE);
   2285 	return (TRUE);
   2286 }
   2287 
   2288 /*
   2289  * This function compares two net addresses by family and returns TRUE
   2290  * if they are the same host.
   2291  * If there is any doubt, return FALSE.
   2292  * The AF_INET family is handled as a special case so that address mbufs
   2293  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   2294  */
   2295 int
   2296 netaddr_match(family, haddr, nam)
   2297 	int family;
   2298 	union nethostaddr *haddr;
   2299 	struct mbuf *nam;
   2300 {
   2301 	struct sockaddr_in *inetaddr;
   2302 
   2303 	switch (family) {
   2304 	case AF_INET:
   2305 		inetaddr = mtod(nam, struct sockaddr_in *);
   2306 		if (inetaddr->sin_family == AF_INET &&
   2307 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   2308 			return (1);
   2309 		break;
   2310 #ifdef INET6
   2311 	case AF_INET6:
   2312 	    {
   2313 		struct sockaddr_in6 *sin6_1, *sin6_2;
   2314 
   2315 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
   2316 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
   2317 		if (sin6_1->sin6_family == AF_INET6 &&
   2318 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
   2319 			return 1;
   2320 	    }
   2321 #endif
   2322 #ifdef ISO
   2323 	case AF_ISO:
   2324 	    {
   2325 		struct sockaddr_iso *isoaddr1, *isoaddr2;
   2326 
   2327 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
   2328 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
   2329 		if (isoaddr1->siso_family == AF_ISO &&
   2330 		    isoaddr1->siso_nlen > 0 &&
   2331 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
   2332 		    SAME_ISOADDR(isoaddr1, isoaddr2))
   2333 			return (1);
   2334 		break;
   2335 	    }
   2336 #endif	/* ISO */
   2337 	default:
   2338 		break;
   2339 	};
   2340 	return (0);
   2341 }
   2342 
   2343 
   2344 /*
   2345  * The write verifier has changed (probably due to a server reboot), so all
   2346  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
   2347  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
   2348  * flag. Once done the new write verifier can be set for the mount point.
   2349  */
   2350 void
   2351 nfs_clearcommit(mp)
   2352 	struct mount *mp;
   2353 {
   2354 	struct vnode *vp, *nvp;
   2355 	struct buf *bp, *nbp;
   2356 	int s;
   2357 
   2358 	s = splbio();
   2359 loop:
   2360 	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
   2361 		if (vp->v_mount != mp)	/* Paranoia */
   2362 			goto loop;
   2363 		nvp = vp->v_mntvnodes.le_next;
   2364 		for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
   2365 			nbp = bp->b_vnbufs.le_next;
   2366 			if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
   2367 				== (B_DELWRI | B_NEEDCOMMIT))
   2368 				bp->b_flags &= ~B_NEEDCOMMIT;
   2369 		}
   2370 	}
   2371 	splx(s);
   2372 }
   2373 
   2374 /*
   2375  * Map errnos to NFS error numbers. For Version 3 also filter out error
   2376  * numbers not specified for the associated procedure.
   2377  */
   2378 int
   2379 nfsrv_errmap(nd, err)
   2380 	struct nfsrv_descript *nd;
   2381 	int err;
   2382 {
   2383 	short *defaulterrp, *errp;
   2384 
   2385 	if (nd->nd_flag & ND_NFSV3) {
   2386 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   2387 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   2388 		while (*++errp) {
   2389 			if (*errp == err)
   2390 				return (err);
   2391 			else if (*errp > err)
   2392 				break;
   2393 		}
   2394 		return ((int)*defaulterrp);
   2395 	    } else
   2396 		return (err & 0xffff);
   2397 	}
   2398 	if (err <= ELAST)
   2399 		return ((int)nfsrv_v2errmap[err - 1]);
   2400 	return (NFSERR_IO);
   2401 }
   2402 
   2403 /*
   2404  * Sort the group list in increasing numerical order.
   2405  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
   2406  *  that used to be here.)
   2407  */
   2408 void
   2409 nfsrvw_sort(list, num)
   2410         gid_t *list;
   2411         int num;
   2412 {
   2413 	int i, j;
   2414 	gid_t v;
   2415 
   2416 	/* Insertion sort. */
   2417 	for (i = 1; i < num; i++) {
   2418 		v = list[i];
   2419 		/* find correct slot for value v, moving others up */
   2420 		for (j = i; --j >= 0 && v < list[j];)
   2421 			list[j + 1] = list[j];
   2422 		list[j + 1] = v;
   2423 	}
   2424 }
   2425 
   2426 /*
   2427  * copy credentials making sure that the result can be compared with memcmp().
   2428  */
   2429 void
   2430 nfsrv_setcred(incred, outcred)
   2431 	struct ucred *incred, *outcred;
   2432 {
   2433 	int i;
   2434 
   2435 	memset((caddr_t)outcred, 0, sizeof (struct ucred));
   2436 	outcred->cr_ref = 1;
   2437 	outcred->cr_uid = incred->cr_uid;
   2438 	outcred->cr_gid = incred->cr_gid;
   2439 	outcred->cr_ngroups = incred->cr_ngroups;
   2440 	for (i = 0; i < incred->cr_ngroups; i++)
   2441 		outcred->cr_groups[i] = incred->cr_groups[i];
   2442 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
   2443 }
   2444