Home | History | Annotate | Line # | Download | only in nfs
nfs_subs.c revision 1.80
      1 /*	$NetBSD: nfs_subs.c,v 1.80 2000/08/03 06:15:05 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     39  */
     40 
     41 #include "fs_nfs.h"
     42 #include "opt_nfsserver.h"
     43 #include "opt_iso.h"
     44 #include "opt_inet.h"
     45 
     46 /*
     47  * These functions support the macros and help fiddle mbuf chains for
     48  * the nfs op functions. They do things like create the rpc header and
     49  * copy data between mbuf chains and uio lists.
     50  */
     51 #include <sys/param.h>
     52 #include <sys/proc.h>
     53 #include <sys/systm.h>
     54 #include <sys/kernel.h>
     55 #include <sys/mount.h>
     56 #include <sys/vnode.h>
     57 #include <sys/namei.h>
     58 #include <sys/mbuf.h>
     59 #include <sys/socket.h>
     60 #include <sys/stat.h>
     61 #include <sys/malloc.h>
     62 #include <sys/time.h>
     63 #include <sys/dirent.h>
     64 
     65 #include <uvm/uvm_extern.h>
     66 
     67 #include <nfs/rpcv2.h>
     68 #include <nfs/nfsproto.h>
     69 #include <nfs/nfsnode.h>
     70 #include <nfs/nfs.h>
     71 #include <nfs/xdr_subs.h>
     72 #include <nfs/nfsm_subs.h>
     73 #include <nfs/nfsmount.h>
     74 #include <nfs/nqnfs.h>
     75 #include <nfs/nfsrtt.h>
     76 #include <nfs/nfs_var.h>
     77 
     78 #include <miscfs/specfs/specdev.h>
     79 
     80 #include <netinet/in.h>
     81 #ifdef ISO
     82 #include <netiso/iso.h>
     83 #endif
     84 
     85 /*
     86  * Data items converted to xdr at startup, since they are constant
     87  * This is kinda hokey, but may save a little time doing byte swaps
     88  */
     89 u_int32_t nfs_xdrneg1;
     90 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
     91 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
     92 	rpc_auth_kerb;
     93 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
     94 
     95 /* And other global data */
     96 static u_int32_t nfs_xid = 0;
     97 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
     98 		      NFCHR, NFNON };
     99 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
    100 		      NFFIFO, NFNON };
    101 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    102 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    103 int nfs_ticks;
    104 
    105 /* NFS client/server stats. */
    106 struct nfsstats nfsstats;
    107 
    108 /*
    109  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    110  */
    111 int nfsv3_procid[NFS_NPROCS] = {
    112 	NFSPROC_NULL,
    113 	NFSPROC_GETATTR,
    114 	NFSPROC_SETATTR,
    115 	NFSPROC_NOOP,
    116 	NFSPROC_LOOKUP,
    117 	NFSPROC_READLINK,
    118 	NFSPROC_READ,
    119 	NFSPROC_NOOP,
    120 	NFSPROC_WRITE,
    121 	NFSPROC_CREATE,
    122 	NFSPROC_REMOVE,
    123 	NFSPROC_RENAME,
    124 	NFSPROC_LINK,
    125 	NFSPROC_SYMLINK,
    126 	NFSPROC_MKDIR,
    127 	NFSPROC_RMDIR,
    128 	NFSPROC_READDIR,
    129 	NFSPROC_FSSTAT,
    130 	NFSPROC_NOOP,
    131 	NFSPROC_NOOP,
    132 	NFSPROC_NOOP,
    133 	NFSPROC_NOOP,
    134 	NFSPROC_NOOP,
    135 	NFSPROC_NOOP,
    136 	NFSPROC_NOOP,
    137 	NFSPROC_NOOP
    138 };
    139 
    140 /*
    141  * and the reverse mapping from generic to Version 2 procedure numbers
    142  */
    143 int nfsv2_procid[NFS_NPROCS] = {
    144 	NFSV2PROC_NULL,
    145 	NFSV2PROC_GETATTR,
    146 	NFSV2PROC_SETATTR,
    147 	NFSV2PROC_LOOKUP,
    148 	NFSV2PROC_NOOP,
    149 	NFSV2PROC_READLINK,
    150 	NFSV2PROC_READ,
    151 	NFSV2PROC_WRITE,
    152 	NFSV2PROC_CREATE,
    153 	NFSV2PROC_MKDIR,
    154 	NFSV2PROC_SYMLINK,
    155 	NFSV2PROC_CREATE,
    156 	NFSV2PROC_REMOVE,
    157 	NFSV2PROC_RMDIR,
    158 	NFSV2PROC_RENAME,
    159 	NFSV2PROC_LINK,
    160 	NFSV2PROC_READDIR,
    161 	NFSV2PROC_NOOP,
    162 	NFSV2PROC_STATFS,
    163 	NFSV2PROC_NOOP,
    164 	NFSV2PROC_NOOP,
    165 	NFSV2PROC_NOOP,
    166 	NFSV2PROC_NOOP,
    167 	NFSV2PROC_NOOP,
    168 	NFSV2PROC_NOOP,
    169 	NFSV2PROC_NOOP,
    170 };
    171 
    172 /*
    173  * Maps errno values to nfs error numbers.
    174  * Use NFSERR_IO as the catch all for ones not specifically defined in
    175  * RFC 1094.
    176  */
    177 static u_char nfsrv_v2errmap[ELAST] = {
    178   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    179   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    180   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    181   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    182   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    183   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    184   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    185   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    186   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    187   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    188   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    189   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    190   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    191   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    192   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    193   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    194   NFSERR_IO,	NFSERR_IO,
    195 };
    196 
    197 /*
    198  * Maps errno values to nfs error numbers.
    199  * Although it is not obvious whether or not NFS clients really care if
    200  * a returned error value is in the specified list for the procedure, the
    201  * safest thing to do is filter them appropriately. For Version 2, the
    202  * X/Open XNFS document is the only specification that defines error values
    203  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    204  * so I have decided to not do this for Version 2.
    205  * The first entry is the default error return and the rest are the valid
    206  * errors for that RPC in increasing numeric order.
    207  */
    208 static short nfsv3err_null[] = {
    209 	0,
    210 	0,
    211 };
    212 
    213 static short nfsv3err_getattr[] = {
    214 	NFSERR_IO,
    215 	NFSERR_IO,
    216 	NFSERR_STALE,
    217 	NFSERR_BADHANDLE,
    218 	NFSERR_SERVERFAULT,
    219 	0,
    220 };
    221 
    222 static short nfsv3err_setattr[] = {
    223 	NFSERR_IO,
    224 	NFSERR_PERM,
    225 	NFSERR_IO,
    226 	NFSERR_ACCES,
    227 	NFSERR_INVAL,
    228 	NFSERR_NOSPC,
    229 	NFSERR_ROFS,
    230 	NFSERR_DQUOT,
    231 	NFSERR_STALE,
    232 	NFSERR_BADHANDLE,
    233 	NFSERR_NOT_SYNC,
    234 	NFSERR_SERVERFAULT,
    235 	0,
    236 };
    237 
    238 static short nfsv3err_lookup[] = {
    239 	NFSERR_IO,
    240 	NFSERR_NOENT,
    241 	NFSERR_IO,
    242 	NFSERR_ACCES,
    243 	NFSERR_NOTDIR,
    244 	NFSERR_NAMETOL,
    245 	NFSERR_STALE,
    246 	NFSERR_BADHANDLE,
    247 	NFSERR_SERVERFAULT,
    248 	0,
    249 };
    250 
    251 static short nfsv3err_access[] = {
    252 	NFSERR_IO,
    253 	NFSERR_IO,
    254 	NFSERR_STALE,
    255 	NFSERR_BADHANDLE,
    256 	NFSERR_SERVERFAULT,
    257 	0,
    258 };
    259 
    260 static short nfsv3err_readlink[] = {
    261 	NFSERR_IO,
    262 	NFSERR_IO,
    263 	NFSERR_ACCES,
    264 	NFSERR_INVAL,
    265 	NFSERR_STALE,
    266 	NFSERR_BADHANDLE,
    267 	NFSERR_NOTSUPP,
    268 	NFSERR_SERVERFAULT,
    269 	0,
    270 };
    271 
    272 static short nfsv3err_read[] = {
    273 	NFSERR_IO,
    274 	NFSERR_IO,
    275 	NFSERR_NXIO,
    276 	NFSERR_ACCES,
    277 	NFSERR_INVAL,
    278 	NFSERR_STALE,
    279 	NFSERR_BADHANDLE,
    280 	NFSERR_SERVERFAULT,
    281 	NFSERR_JUKEBOX,
    282 	0,
    283 };
    284 
    285 static short nfsv3err_write[] = {
    286 	NFSERR_IO,
    287 	NFSERR_IO,
    288 	NFSERR_ACCES,
    289 	NFSERR_INVAL,
    290 	NFSERR_FBIG,
    291 	NFSERR_NOSPC,
    292 	NFSERR_ROFS,
    293 	NFSERR_DQUOT,
    294 	NFSERR_STALE,
    295 	NFSERR_BADHANDLE,
    296 	NFSERR_SERVERFAULT,
    297 	NFSERR_JUKEBOX,
    298 	0,
    299 };
    300 
    301 static short nfsv3err_create[] = {
    302 	NFSERR_IO,
    303 	NFSERR_IO,
    304 	NFSERR_ACCES,
    305 	NFSERR_EXIST,
    306 	NFSERR_NOTDIR,
    307 	NFSERR_NOSPC,
    308 	NFSERR_ROFS,
    309 	NFSERR_NAMETOL,
    310 	NFSERR_DQUOT,
    311 	NFSERR_STALE,
    312 	NFSERR_BADHANDLE,
    313 	NFSERR_NOTSUPP,
    314 	NFSERR_SERVERFAULT,
    315 	0,
    316 };
    317 
    318 static short nfsv3err_mkdir[] = {
    319 	NFSERR_IO,
    320 	NFSERR_IO,
    321 	NFSERR_ACCES,
    322 	NFSERR_EXIST,
    323 	NFSERR_NOTDIR,
    324 	NFSERR_NOSPC,
    325 	NFSERR_ROFS,
    326 	NFSERR_NAMETOL,
    327 	NFSERR_DQUOT,
    328 	NFSERR_STALE,
    329 	NFSERR_BADHANDLE,
    330 	NFSERR_NOTSUPP,
    331 	NFSERR_SERVERFAULT,
    332 	0,
    333 };
    334 
    335 static short nfsv3err_symlink[] = {
    336 	NFSERR_IO,
    337 	NFSERR_IO,
    338 	NFSERR_ACCES,
    339 	NFSERR_EXIST,
    340 	NFSERR_NOTDIR,
    341 	NFSERR_NOSPC,
    342 	NFSERR_ROFS,
    343 	NFSERR_NAMETOL,
    344 	NFSERR_DQUOT,
    345 	NFSERR_STALE,
    346 	NFSERR_BADHANDLE,
    347 	NFSERR_NOTSUPP,
    348 	NFSERR_SERVERFAULT,
    349 	0,
    350 };
    351 
    352 static short nfsv3err_mknod[] = {
    353 	NFSERR_IO,
    354 	NFSERR_IO,
    355 	NFSERR_ACCES,
    356 	NFSERR_EXIST,
    357 	NFSERR_NOTDIR,
    358 	NFSERR_NOSPC,
    359 	NFSERR_ROFS,
    360 	NFSERR_NAMETOL,
    361 	NFSERR_DQUOT,
    362 	NFSERR_STALE,
    363 	NFSERR_BADHANDLE,
    364 	NFSERR_NOTSUPP,
    365 	NFSERR_SERVERFAULT,
    366 	NFSERR_BADTYPE,
    367 	0,
    368 };
    369 
    370 static short nfsv3err_remove[] = {
    371 	NFSERR_IO,
    372 	NFSERR_NOENT,
    373 	NFSERR_IO,
    374 	NFSERR_ACCES,
    375 	NFSERR_NOTDIR,
    376 	NFSERR_ROFS,
    377 	NFSERR_NAMETOL,
    378 	NFSERR_STALE,
    379 	NFSERR_BADHANDLE,
    380 	NFSERR_SERVERFAULT,
    381 	0,
    382 };
    383 
    384 static short nfsv3err_rmdir[] = {
    385 	NFSERR_IO,
    386 	NFSERR_NOENT,
    387 	NFSERR_IO,
    388 	NFSERR_ACCES,
    389 	NFSERR_EXIST,
    390 	NFSERR_NOTDIR,
    391 	NFSERR_INVAL,
    392 	NFSERR_ROFS,
    393 	NFSERR_NAMETOL,
    394 	NFSERR_NOTEMPTY,
    395 	NFSERR_STALE,
    396 	NFSERR_BADHANDLE,
    397 	NFSERR_NOTSUPP,
    398 	NFSERR_SERVERFAULT,
    399 	0,
    400 };
    401 
    402 static short nfsv3err_rename[] = {
    403 	NFSERR_IO,
    404 	NFSERR_NOENT,
    405 	NFSERR_IO,
    406 	NFSERR_ACCES,
    407 	NFSERR_EXIST,
    408 	NFSERR_XDEV,
    409 	NFSERR_NOTDIR,
    410 	NFSERR_ISDIR,
    411 	NFSERR_INVAL,
    412 	NFSERR_NOSPC,
    413 	NFSERR_ROFS,
    414 	NFSERR_MLINK,
    415 	NFSERR_NAMETOL,
    416 	NFSERR_NOTEMPTY,
    417 	NFSERR_DQUOT,
    418 	NFSERR_STALE,
    419 	NFSERR_BADHANDLE,
    420 	NFSERR_NOTSUPP,
    421 	NFSERR_SERVERFAULT,
    422 	0,
    423 };
    424 
    425 static short nfsv3err_link[] = {
    426 	NFSERR_IO,
    427 	NFSERR_IO,
    428 	NFSERR_ACCES,
    429 	NFSERR_EXIST,
    430 	NFSERR_XDEV,
    431 	NFSERR_NOTDIR,
    432 	NFSERR_INVAL,
    433 	NFSERR_NOSPC,
    434 	NFSERR_ROFS,
    435 	NFSERR_MLINK,
    436 	NFSERR_NAMETOL,
    437 	NFSERR_DQUOT,
    438 	NFSERR_STALE,
    439 	NFSERR_BADHANDLE,
    440 	NFSERR_NOTSUPP,
    441 	NFSERR_SERVERFAULT,
    442 	0,
    443 };
    444 
    445 static short nfsv3err_readdir[] = {
    446 	NFSERR_IO,
    447 	NFSERR_IO,
    448 	NFSERR_ACCES,
    449 	NFSERR_NOTDIR,
    450 	NFSERR_STALE,
    451 	NFSERR_BADHANDLE,
    452 	NFSERR_BAD_COOKIE,
    453 	NFSERR_TOOSMALL,
    454 	NFSERR_SERVERFAULT,
    455 	0,
    456 };
    457 
    458 static short nfsv3err_readdirplus[] = {
    459 	NFSERR_IO,
    460 	NFSERR_IO,
    461 	NFSERR_ACCES,
    462 	NFSERR_NOTDIR,
    463 	NFSERR_STALE,
    464 	NFSERR_BADHANDLE,
    465 	NFSERR_BAD_COOKIE,
    466 	NFSERR_NOTSUPP,
    467 	NFSERR_TOOSMALL,
    468 	NFSERR_SERVERFAULT,
    469 	0,
    470 };
    471 
    472 static short nfsv3err_fsstat[] = {
    473 	NFSERR_IO,
    474 	NFSERR_IO,
    475 	NFSERR_STALE,
    476 	NFSERR_BADHANDLE,
    477 	NFSERR_SERVERFAULT,
    478 	0,
    479 };
    480 
    481 static short nfsv3err_fsinfo[] = {
    482 	NFSERR_STALE,
    483 	NFSERR_STALE,
    484 	NFSERR_BADHANDLE,
    485 	NFSERR_SERVERFAULT,
    486 	0,
    487 };
    488 
    489 static short nfsv3err_pathconf[] = {
    490 	NFSERR_STALE,
    491 	NFSERR_STALE,
    492 	NFSERR_BADHANDLE,
    493 	NFSERR_SERVERFAULT,
    494 	0,
    495 };
    496 
    497 static short nfsv3err_commit[] = {
    498 	NFSERR_IO,
    499 	NFSERR_IO,
    500 	NFSERR_STALE,
    501 	NFSERR_BADHANDLE,
    502 	NFSERR_SERVERFAULT,
    503 	0,
    504 };
    505 
    506 static short *nfsrv_v3errmap[] = {
    507 	nfsv3err_null,
    508 	nfsv3err_getattr,
    509 	nfsv3err_setattr,
    510 	nfsv3err_lookup,
    511 	nfsv3err_access,
    512 	nfsv3err_readlink,
    513 	nfsv3err_read,
    514 	nfsv3err_write,
    515 	nfsv3err_create,
    516 	nfsv3err_mkdir,
    517 	nfsv3err_symlink,
    518 	nfsv3err_mknod,
    519 	nfsv3err_remove,
    520 	nfsv3err_rmdir,
    521 	nfsv3err_rename,
    522 	nfsv3err_link,
    523 	nfsv3err_readdir,
    524 	nfsv3err_readdirplus,
    525 	nfsv3err_fsstat,
    526 	nfsv3err_fsinfo,
    527 	nfsv3err_pathconf,
    528 	nfsv3err_commit,
    529 };
    530 
    531 extern struct nfsrtt nfsrtt;
    532 extern time_t nqnfsstarttime;
    533 extern int nqsrv_clockskew;
    534 extern int nqsrv_writeslack;
    535 extern int nqsrv_maxlease;
    536 extern int nqnfs_piggy[NFS_NPROCS];
    537 extern struct nfsnodehashhead *nfsnodehashtbl;
    538 extern u_long nfsnodehash;
    539 
    540 LIST_HEAD(nfsnodehashhead, nfsnode);
    541 u_long nfsdirhashmask;
    542 
    543 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
    544 
    545 /*
    546  * Create the header for an rpc request packet
    547  * The hsiz is the size of the rest of the nfs request header.
    548  * (just used to decide if a cluster is a good idea)
    549  */
    550 struct mbuf *
    551 nfsm_reqh(vp, procid, hsiz, bposp)
    552 	struct vnode *vp;
    553 	u_long procid;
    554 	int hsiz;
    555 	caddr_t *bposp;
    556 {
    557 	struct mbuf *mb;
    558 	u_int32_t *tl;
    559 	caddr_t bpos;
    560 	struct mbuf *mb2;
    561 	struct nfsmount *nmp;
    562 	int nqflag;
    563 
    564 	MGET(mb, M_WAIT, MT_DATA);
    565 	if (hsiz >= MINCLSIZE)
    566 		MCLGET(mb, M_WAIT);
    567 	mb->m_len = 0;
    568 	bpos = mtod(mb, caddr_t);
    569 
    570 	/*
    571 	 * For NQNFS, add lease request.
    572 	 */
    573 	if (vp) {
    574 		nmp = VFSTONFS(vp->v_mount);
    575 		if (nmp->nm_flag & NFSMNT_NQNFS) {
    576 			nqflag = NQNFS_NEEDLEASE(vp, procid);
    577 			if (nqflag) {
    578 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
    579 				*tl++ = txdr_unsigned(nqflag);
    580 				*tl = txdr_unsigned(nmp->nm_leaseterm);
    581 			} else {
    582 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
    583 				*tl = 0;
    584 			}
    585 		}
    586 	}
    587 	/* Finally, return values */
    588 	*bposp = bpos;
    589 	return (mb);
    590 }
    591 
    592 /*
    593  * Build the RPC header and fill in the authorization info.
    594  * The authorization string argument is only used when the credentials
    595  * come from outside of the kernel.
    596  * Returns the head of the mbuf list.
    597  */
    598 struct mbuf *
    599 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
    600 	verf_str, mrest, mrest_len, mbp, xidp)
    601 	struct ucred *cr;
    602 	int nmflag;
    603 	int procid;
    604 	int auth_type;
    605 	int auth_len;
    606 	char *auth_str;
    607 	int verf_len;
    608 	char *verf_str;
    609 	struct mbuf *mrest;
    610 	int mrest_len;
    611 	struct mbuf **mbp;
    612 	u_int32_t *xidp;
    613 {
    614 	struct mbuf *mb;
    615 	u_int32_t *tl;
    616 	caddr_t bpos;
    617 	int i;
    618 	struct mbuf *mreq, *mb2;
    619 	int siz, grpsiz, authsiz;
    620 	struct timeval tv;
    621 	static u_int32_t base;
    622 
    623 	authsiz = nfsm_rndup(auth_len);
    624 	MGETHDR(mb, M_WAIT, MT_DATA);
    625 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    626 		MCLGET(mb, M_WAIT);
    627 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    628 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
    629 	} else {
    630 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
    631 	}
    632 	mb->m_len = 0;
    633 	mreq = mb;
    634 	bpos = mtod(mb, caddr_t);
    635 
    636 	/*
    637 	 * First the RPC header.
    638 	 */
    639 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    640 
    641 	/*
    642 	 * derive initial xid from system time
    643 	 * XXX time is invalid if root not yet mounted
    644 	 */
    645 	if (!base && (rootvp)) {
    646 		microtime(&tv);
    647 		base = tv.tv_sec << 12;
    648 		nfs_xid = base;
    649 	}
    650 	/*
    651 	 * Skip zero xid if it should ever happen.
    652 	 */
    653 	if (++nfs_xid == 0)
    654 		nfs_xid++;
    655 
    656 	*tl++ = *xidp = txdr_unsigned(nfs_xid);
    657 	*tl++ = rpc_call;
    658 	*tl++ = rpc_vers;
    659 	if (nmflag & NFSMNT_NQNFS) {
    660 		*tl++ = txdr_unsigned(NQNFS_PROG);
    661 		*tl++ = txdr_unsigned(NQNFS_VER3);
    662 	} else {
    663 		*tl++ = txdr_unsigned(NFS_PROG);
    664 		if (nmflag & NFSMNT_NFSV3)
    665 			*tl++ = txdr_unsigned(NFS_VER3);
    666 		else
    667 			*tl++ = txdr_unsigned(NFS_VER2);
    668 	}
    669 	if (nmflag & NFSMNT_NFSV3)
    670 		*tl++ = txdr_unsigned(procid);
    671 	else
    672 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    673 
    674 	/*
    675 	 * And then the authorization cred.
    676 	 */
    677 	*tl++ = txdr_unsigned(auth_type);
    678 	*tl = txdr_unsigned(authsiz);
    679 	switch (auth_type) {
    680 	case RPCAUTH_UNIX:
    681 		nfsm_build(tl, u_int32_t *, auth_len);
    682 		*tl++ = 0;		/* stamp ?? */
    683 		*tl++ = 0;		/* NULL hostname */
    684 		*tl++ = txdr_unsigned(cr->cr_uid);
    685 		*tl++ = txdr_unsigned(cr->cr_gid);
    686 		grpsiz = (auth_len >> 2) - 5;
    687 		*tl++ = txdr_unsigned(grpsiz);
    688 		for (i = 0; i < grpsiz; i++)
    689 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
    690 		break;
    691 	case RPCAUTH_KERB4:
    692 		siz = auth_len;
    693 		while (siz > 0) {
    694 			if (M_TRAILINGSPACE(mb) == 0) {
    695 				MGET(mb2, M_WAIT, MT_DATA);
    696 				if (siz >= MINCLSIZE)
    697 					MCLGET(mb2, M_WAIT);
    698 				mb->m_next = mb2;
    699 				mb = mb2;
    700 				mb->m_len = 0;
    701 				bpos = mtod(mb, caddr_t);
    702 			}
    703 			i = min(siz, M_TRAILINGSPACE(mb));
    704 			memcpy(bpos, auth_str, i);
    705 			mb->m_len += i;
    706 			auth_str += i;
    707 			bpos += i;
    708 			siz -= i;
    709 		}
    710 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    711 			for (i = 0; i < siz; i++)
    712 				*bpos++ = '\0';
    713 			mb->m_len += siz;
    714 		}
    715 		break;
    716 	};
    717 
    718 	/*
    719 	 * And the verifier...
    720 	 */
    721 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    722 	if (verf_str) {
    723 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    724 		*tl = txdr_unsigned(verf_len);
    725 		siz = verf_len;
    726 		while (siz > 0) {
    727 			if (M_TRAILINGSPACE(mb) == 0) {
    728 				MGET(mb2, M_WAIT, MT_DATA);
    729 				if (siz >= MINCLSIZE)
    730 					MCLGET(mb2, M_WAIT);
    731 				mb->m_next = mb2;
    732 				mb = mb2;
    733 				mb->m_len = 0;
    734 				bpos = mtod(mb, caddr_t);
    735 			}
    736 			i = min(siz, M_TRAILINGSPACE(mb));
    737 			memcpy(bpos, verf_str, i);
    738 			mb->m_len += i;
    739 			verf_str += i;
    740 			bpos += i;
    741 			siz -= i;
    742 		}
    743 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    744 			for (i = 0; i < siz; i++)
    745 				*bpos++ = '\0';
    746 			mb->m_len += siz;
    747 		}
    748 	} else {
    749 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    750 		*tl = 0;
    751 	}
    752 	mb->m_next = mrest;
    753 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    754 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
    755 	*mbp = mb;
    756 	return (mreq);
    757 }
    758 
    759 /*
    760  * copies mbuf chain to the uio scatter/gather list
    761  */
    762 int
    763 nfsm_mbuftouio(mrep, uiop, siz, dpos)
    764 	struct mbuf **mrep;
    765 	struct uio *uiop;
    766 	int siz;
    767 	caddr_t *dpos;
    768 {
    769 	char *mbufcp, *uiocp;
    770 	int xfer, left, len;
    771 	struct mbuf *mp;
    772 	long uiosiz, rem;
    773 	int error = 0;
    774 
    775 	mp = *mrep;
    776 	mbufcp = *dpos;
    777 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
    778 	rem = nfsm_rndup(siz)-siz;
    779 	while (siz > 0) {
    780 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    781 			return (EFBIG);
    782 		left = uiop->uio_iov->iov_len;
    783 		uiocp = uiop->uio_iov->iov_base;
    784 		if (left > siz)
    785 			left = siz;
    786 		uiosiz = left;
    787 		while (left > 0) {
    788 			while (len == 0) {
    789 				mp = mp->m_next;
    790 				if (mp == NULL)
    791 					return (EBADRPC);
    792 				mbufcp = mtod(mp, caddr_t);
    793 				len = mp->m_len;
    794 			}
    795 			xfer = (left > len) ? len : left;
    796 #ifdef notdef
    797 			/* Not Yet.. */
    798 			if (uiop->uio_iov->iov_op != NULL)
    799 				(*(uiop->uio_iov->iov_op))
    800 				(mbufcp, uiocp, xfer);
    801 			else
    802 #endif
    803 			if (uiop->uio_segflg == UIO_SYSSPACE)
    804 				memcpy(uiocp, mbufcp, xfer);
    805 			else
    806 				copyout(mbufcp, uiocp, xfer);
    807 			left -= xfer;
    808 			len -= xfer;
    809 			mbufcp += xfer;
    810 			uiocp += xfer;
    811 			uiop->uio_offset += xfer;
    812 			uiop->uio_resid -= xfer;
    813 		}
    814 		if (uiop->uio_iov->iov_len <= siz) {
    815 			uiop->uio_iovcnt--;
    816 			uiop->uio_iov++;
    817 		} else {
    818 			(caddr_t)uiop->uio_iov->iov_base += uiosiz;
    819 			uiop->uio_iov->iov_len -= uiosiz;
    820 		}
    821 		siz -= uiosiz;
    822 	}
    823 	*dpos = mbufcp;
    824 	*mrep = mp;
    825 	if (rem > 0) {
    826 		if (len < rem)
    827 			error = nfs_adv(mrep, dpos, rem, len);
    828 		else
    829 			*dpos += rem;
    830 	}
    831 	return (error);
    832 }
    833 
    834 /*
    835  * copies a uio scatter/gather list to an mbuf chain.
    836  * NOTE: can ony handle iovcnt == 1
    837  */
    838 int
    839 nfsm_uiotombuf(uiop, mq, siz, bpos)
    840 	struct uio *uiop;
    841 	struct mbuf **mq;
    842 	int siz;
    843 	caddr_t *bpos;
    844 {
    845 	char *uiocp;
    846 	struct mbuf *mp, *mp2;
    847 	int xfer, left, mlen;
    848 	int uiosiz, clflg, rem;
    849 	char *cp;
    850 
    851 #ifdef DIAGNOSTIC
    852 	if (uiop->uio_iovcnt != 1)
    853 		panic("nfsm_uiotombuf: iovcnt != 1");
    854 #endif
    855 
    856 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    857 		clflg = 1;
    858 	else
    859 		clflg = 0;
    860 	rem = nfsm_rndup(siz)-siz;
    861 	mp = mp2 = *mq;
    862 	while (siz > 0) {
    863 		left = uiop->uio_iov->iov_len;
    864 		uiocp = uiop->uio_iov->iov_base;
    865 		if (left > siz)
    866 			left = siz;
    867 		uiosiz = left;
    868 		while (left > 0) {
    869 			mlen = M_TRAILINGSPACE(mp);
    870 			if (mlen == 0) {
    871 				MGET(mp, M_WAIT, MT_DATA);
    872 				if (clflg)
    873 					MCLGET(mp, M_WAIT);
    874 				mp->m_len = 0;
    875 				mp2->m_next = mp;
    876 				mp2 = mp;
    877 				mlen = M_TRAILINGSPACE(mp);
    878 			}
    879 			xfer = (left > mlen) ? mlen : left;
    880 #ifdef notdef
    881 			/* Not Yet.. */
    882 			if (uiop->uio_iov->iov_op != NULL)
    883 				(*(uiop->uio_iov->iov_op))
    884 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    885 			else
    886 #endif
    887 			if (uiop->uio_segflg == UIO_SYSSPACE)
    888 				memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
    889 			else
    890 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    891 			mp->m_len += xfer;
    892 			left -= xfer;
    893 			uiocp += xfer;
    894 			uiop->uio_offset += xfer;
    895 			uiop->uio_resid -= xfer;
    896 		}
    897 		(caddr_t)uiop->uio_iov->iov_base += uiosiz;
    898 		uiop->uio_iov->iov_len -= uiosiz;
    899 		siz -= uiosiz;
    900 	}
    901 	if (rem > 0) {
    902 		if (rem > M_TRAILINGSPACE(mp)) {
    903 			MGET(mp, M_WAIT, MT_DATA);
    904 			mp->m_len = 0;
    905 			mp2->m_next = mp;
    906 		}
    907 		cp = mtod(mp, caddr_t)+mp->m_len;
    908 		for (left = 0; left < rem; left++)
    909 			*cp++ = '\0';
    910 		mp->m_len += rem;
    911 		*bpos = cp;
    912 	} else
    913 		*bpos = mtod(mp, caddr_t)+mp->m_len;
    914 	*mq = mp;
    915 	return (0);
    916 }
    917 
    918 /*
    919  * Get at least "siz" bytes of correctly aligned data.
    920  * When called the mbuf pointers are not necessarily correct,
    921  * dsosp points to what ought to be in m_data and left contains
    922  * what ought to be in m_len.
    923  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    924  * cases. (The macros use the vars. dpos and dpos2)
    925  */
    926 int
    927 nfsm_disct(mdp, dposp, siz, left, cp2)
    928 	struct mbuf **mdp;
    929 	caddr_t *dposp;
    930 	int siz;
    931 	int left;
    932 	caddr_t *cp2;
    933 {
    934 	struct mbuf *m1, *m2;
    935 	struct mbuf *havebuf = NULL;
    936 	caddr_t src = *dposp;
    937 	caddr_t dst;
    938 	int len;
    939 
    940 #ifdef DEBUG
    941 	if (left < 0)
    942 		panic("nfsm_disct: left < 0");
    943 #endif
    944 	m1 = *mdp;
    945 	/*
    946 	 * Skip through the mbuf chain looking for an mbuf with
    947 	 * some data. If the first mbuf found has enough data
    948 	 * and it is correctly aligned return it.
    949 	 */
    950 	while (left == 0) {
    951 		havebuf = m1;
    952 		*mdp = m1 = m1->m_next;
    953 		if (m1 == NULL)
    954 			return (EBADRPC);
    955 		src = mtod(m1, caddr_t);
    956 		left = m1->m_len;
    957 		/*
    958 		 * If we start a new mbuf and it is big enough
    959 		 * and correctly aligned just return it, don't
    960 		 * do any pull up.
    961 		 */
    962 		if (left >= siz && nfsm_aligned(src)) {
    963 			*cp2 = src;
    964 			*dposp = src + siz;
    965 			return (0);
    966 		}
    967 	}
    968 	if (m1->m_flags & M_EXT) {
    969 		if (havebuf) {
    970 			/* If the first mbuf with data has external data
    971 			 * and there is a previous empty mbuf use it
    972 			 * to move the data into.
    973 			 */
    974 			m2 = m1;
    975 			*mdp = m1 = havebuf;
    976 			if (m1->m_flags & M_EXT) {
    977 				MEXTREMOVE(m1);
    978 			}
    979 		} else {
    980 			/*
    981 			 * If the first mbuf has a external data
    982 			 * and there is no previous empty mbuf
    983 			 * allocate a new mbuf and move the external
    984 			 * data to the new mbuf. Also make the first
    985 			 * mbuf look empty.
    986 			 */
    987 			m2 = m_get(M_WAIT, MT_DATA);
    988 			m2->m_ext = m1->m_ext;
    989 			m2->m_data = src;
    990 			m2->m_len = left;
    991 			MCLADDREFERENCE(m1, m2);
    992 			MEXTREMOVE(m1);
    993 			m2->m_next = m1->m_next;
    994 			m1->m_next = m2;
    995 		}
    996 		m1->m_len = 0;
    997 		dst = m1->m_dat;
    998 	} else {
    999 		/*
   1000 		 * If the first mbuf has no external data
   1001 		 * move the data to the front of the mbuf.
   1002 		 */
   1003 		if ((dst = m1->m_dat) != src)
   1004 			memmove(dst, src, left);
   1005 		dst += left;
   1006 		m1->m_len = left;
   1007 		m2 = m1->m_next;
   1008 	}
   1009 	m1->m_flags &= ~M_PKTHDR;
   1010 	*cp2 = m1->m_data = m1->m_dat;   /* data is at beginning of buffer */
   1011 	*dposp = mtod(m1, caddr_t) + siz;
   1012 	/*
   1013 	 * Loop through mbufs pulling data up into first mbuf until
   1014 	 * the first mbuf is full or there is no more data to
   1015 	 * pullup.
   1016 	 */
   1017 	while ((len = (MLEN - m1->m_len)) != 0 && m2) {
   1018 		if ((len = min(len, m2->m_len)) != 0)
   1019 			memcpy(dst, m2->m_data, len);
   1020 		m1->m_len += len;
   1021 		dst += len;
   1022 		m2->m_data += len;
   1023 		m2->m_len -= len;
   1024 		m2 = m2->m_next;
   1025 	}
   1026 	if (m1->m_len < siz)
   1027 		return (EBADRPC);
   1028 	return (0);
   1029 }
   1030 
   1031 /*
   1032  * Advance the position in the mbuf chain.
   1033  */
   1034 int
   1035 nfs_adv(mdp, dposp, offs, left)
   1036 	struct mbuf **mdp;
   1037 	caddr_t *dposp;
   1038 	int offs;
   1039 	int left;
   1040 {
   1041 	struct mbuf *m;
   1042 	int s;
   1043 
   1044 	m = *mdp;
   1045 	s = left;
   1046 	while (s < offs) {
   1047 		offs -= s;
   1048 		m = m->m_next;
   1049 		if (m == NULL)
   1050 			return (EBADRPC);
   1051 		s = m->m_len;
   1052 	}
   1053 	*mdp = m;
   1054 	*dposp = mtod(m, caddr_t)+offs;
   1055 	return (0);
   1056 }
   1057 
   1058 /*
   1059  * Copy a string into mbufs for the hard cases...
   1060  */
   1061 int
   1062 nfsm_strtmbuf(mb, bpos, cp, siz)
   1063 	struct mbuf **mb;
   1064 	char **bpos;
   1065 	const char *cp;
   1066 	long siz;
   1067 {
   1068 	struct mbuf *m1 = NULL, *m2;
   1069 	long left, xfer, len, tlen;
   1070 	u_int32_t *tl;
   1071 	int putsize;
   1072 
   1073 	putsize = 1;
   1074 	m2 = *mb;
   1075 	left = M_TRAILINGSPACE(m2);
   1076 	if (left > 0) {
   1077 		tl = ((u_int32_t *)(*bpos));
   1078 		*tl++ = txdr_unsigned(siz);
   1079 		putsize = 0;
   1080 		left -= NFSX_UNSIGNED;
   1081 		m2->m_len += NFSX_UNSIGNED;
   1082 		if (left > 0) {
   1083 			memcpy((caddr_t) tl, cp, left);
   1084 			siz -= left;
   1085 			cp += left;
   1086 			m2->m_len += left;
   1087 			left = 0;
   1088 		}
   1089 	}
   1090 	/* Loop around adding mbufs */
   1091 	while (siz > 0) {
   1092 		MGET(m1, M_WAIT, MT_DATA);
   1093 		if (siz > MLEN)
   1094 			MCLGET(m1, M_WAIT);
   1095 		m1->m_len = NFSMSIZ(m1);
   1096 		m2->m_next = m1;
   1097 		m2 = m1;
   1098 		tl = mtod(m1, u_int32_t *);
   1099 		tlen = 0;
   1100 		if (putsize) {
   1101 			*tl++ = txdr_unsigned(siz);
   1102 			m1->m_len -= NFSX_UNSIGNED;
   1103 			tlen = NFSX_UNSIGNED;
   1104 			putsize = 0;
   1105 		}
   1106 		if (siz < m1->m_len) {
   1107 			len = nfsm_rndup(siz);
   1108 			xfer = siz;
   1109 			if (xfer < len)
   1110 				*(tl+(xfer>>2)) = 0;
   1111 		} else {
   1112 			xfer = len = m1->m_len;
   1113 		}
   1114 		memcpy((caddr_t) tl, cp, xfer);
   1115 		m1->m_len = len+tlen;
   1116 		siz -= xfer;
   1117 		cp += xfer;
   1118 	}
   1119 	*mb = m1;
   1120 	*bpos = mtod(m1, caddr_t)+m1->m_len;
   1121 	return (0);
   1122 }
   1123 
   1124 /*
   1125  * Directory caching routines. They work as follows:
   1126  * - a cache is maintained per VDIR nfsnode.
   1127  * - for each offset cookie that is exported to userspace, and can
   1128  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1129  *   information in the cache.
   1130  * - cached are:
   1131  *   - cookie itself
   1132  *   - blocknumber (essentially just a search key in the buffer cache)
   1133  *   - entry number in block.
   1134  *   - offset cookie of block in which this entry is stored
   1135  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1136  * - entries are looked up in a hash table
   1137  * - also maintained is an LRU list of entries, used to determine
   1138  *   which ones to delete if the cache grows too large.
   1139  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1140  *   the cache also functions as a translation table
   1141  * - in the translation case, invalidating the cache does not mean
   1142  *   flushing it, but just marking entries as invalid, except for
   1143  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1144  *   still be able to use the cache as a translation table.
   1145  * - 32 bit cookies are uniquely created by combining the hash table
   1146  *   entry value, and one generation count per hash table entry,
   1147  *   incremented each time an entry is appended to the chain.
   1148  * - the cache is invalidated each time a direcory is modified
   1149  * - sanity checks are also done; if an entry in a block turns
   1150  *   out not to have a matching cookie, the cache is invalidated
   1151  *   and a new block starting from the wanted offset is fetched from
   1152  *   the server.
   1153  * - directory entries as read from the server are extended to contain
   1154  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1155  *   the cache and exporting them to userspace through the cookie
   1156  *   argument to VOP_READDIR.
   1157  */
   1158 
   1159 u_long
   1160 nfs_dirhash(off)
   1161 	off_t off;
   1162 {
   1163 	int i;
   1164 	char *cp = (char *)&off;
   1165 	u_long sum = 0L;
   1166 
   1167 	for (i = 0 ; i < sizeof (off); i++)
   1168 		sum += *cp++;
   1169 
   1170 	return sum;
   1171 }
   1172 
   1173 void
   1174 nfs_initdircache(vp)
   1175 	struct vnode *vp;
   1176 {
   1177 	struct nfsnode *np = VTONFS(vp);
   1178 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1179 
   1180 	np->n_dircachesize = 0;
   1181 	np->n_dblkno = 1;
   1182 	np->n_dircache =
   1183 	    hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
   1184 	TAILQ_INIT(&np->n_dirchain);
   1185 	if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1186 		MALLOC(np->n_dirgens, unsigned *,
   1187 		    NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
   1188 		    M_WAITOK);
   1189 		memset((caddr_t)np->n_dirgens, 0,
   1190 		    NFS_DIRHASHSIZ * sizeof (unsigned));
   1191 	}
   1192 }
   1193 
   1194 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
   1195 
   1196 struct nfsdircache *
   1197 nfs_searchdircache(vp, off, do32, hashent)
   1198 	struct vnode *vp;
   1199 	off_t off;
   1200 	int do32;
   1201 	int *hashent;
   1202 {
   1203 	struct nfsdirhashhead *ndhp;
   1204 	struct nfsdircache *ndp = NULL;
   1205 	struct nfsnode *np = VTONFS(vp);
   1206 	unsigned ent;
   1207 
   1208 	/*
   1209 	 * Zero is always a valid cookie.
   1210 	 */
   1211 	if (off == 0)
   1212 		return &dzero;
   1213 
   1214 	/*
   1215 	 * We use a 32bit cookie as search key, directly reconstruct
   1216 	 * the hashentry. Else use the hashfunction.
   1217 	 */
   1218 	if (do32) {
   1219 		ent = (u_int32_t)off >> 24;
   1220 		if (ent >= NFS_DIRHASHSIZ)
   1221 			return NULL;
   1222 		ndhp = &np->n_dircache[ent];
   1223 	} else {
   1224 		ndhp = NFSDIRHASH(np, off);
   1225 	}
   1226 
   1227 	if (hashent)
   1228 		*hashent = (int)(ndhp - np->n_dircache);
   1229 	if (do32) {
   1230 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
   1231 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1232 				/*
   1233 				 * An invalidated entry will become the
   1234 				 * start of a new block fetched from
   1235 				 * the server.
   1236 				 */
   1237 				if (ndp->dc_blkno == -1) {
   1238 					ndp->dc_blkcookie = ndp->dc_cookie;
   1239 					ndp->dc_blkno = np->n_dblkno++;
   1240 					ndp->dc_entry = 0;
   1241 				}
   1242 				break;
   1243 			}
   1244 		}
   1245 	} else {
   1246 		for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
   1247 			if (ndp->dc_cookie == off)
   1248 				break;
   1249 	}
   1250 	return ndp;
   1251 }
   1252 
   1253 
   1254 struct nfsdircache *
   1255 nfs_enterdircache(vp, off, blkoff, en, blkno)
   1256 	struct vnode *vp;
   1257 	off_t off, blkoff;
   1258 	daddr_t blkno;
   1259 	int en;
   1260 {
   1261 	struct nfsnode *np = VTONFS(vp);
   1262 	struct nfsdirhashhead *ndhp;
   1263 	struct nfsdircache *ndp = NULL, *first;
   1264 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1265 	int hashent, gen, overwrite;
   1266 
   1267 	if (!np->n_dircache)
   1268 		/*
   1269 		 * XXX would like to do this in nfs_nget but vtype
   1270 		 * isn't known at that time.
   1271 		 */
   1272 		nfs_initdircache(vp);
   1273 
   1274 	/*
   1275 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1276 	 * cookie 0 for the '.' entry, making this necessary. This
   1277 	 * isn't so bad, as 0 is a special case anyway.
   1278 	 */
   1279 	if (off == 0)
   1280 		return &dzero;
   1281 
   1282 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1283 
   1284 	if (ndp && ndp->dc_blkno != -1) {
   1285 		/*
   1286 		 * Overwriting an old entry. Check if it's the same.
   1287 		 * If so, just return. If not, remove the old entry.
   1288 		 */
   1289 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1290 			return ndp;
   1291 		TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1292 		LIST_REMOVE(ndp, dc_hash);
   1293 		FREE(ndp, M_NFSDIROFF);
   1294 		ndp = 0;
   1295 	}
   1296 
   1297 	ndhp = &np->n_dircache[hashent];
   1298 
   1299 	if (!ndp) {
   1300 		MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
   1301 		    M_WAITOK);
   1302 		overwrite = 0;
   1303 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1304 			/*
   1305 			 * We're allocating a new entry, so bump the
   1306 			 * generation number.
   1307 			 */
   1308 			gen = ++np->n_dirgens[hashent];
   1309 			if (gen == 0) {
   1310 				np->n_dirgens[hashent]++;
   1311 				gen++;
   1312 			}
   1313 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1314 		}
   1315 	} else
   1316 		overwrite = 1;
   1317 
   1318 	/*
   1319 	 * If the entry number is 0, we are at the start of a new block, so
   1320 	 * allocate a new blocknumber.
   1321 	 */
   1322 	if (en == 0)
   1323 		ndp->dc_blkno = np->n_dblkno++;
   1324 	else
   1325 		ndp->dc_blkno = blkno;
   1326 
   1327 	ndp->dc_cookie = off;
   1328 	ndp->dc_blkcookie = blkoff;
   1329 	ndp->dc_entry = en;
   1330 
   1331 	if (overwrite)
   1332 		return ndp;
   1333 
   1334 	/*
   1335 	 * If the maximum directory cookie cache size has been reached
   1336 	 * for this node, take one off the front. The idea is that
   1337 	 * directories are typically read front-to-back once, so that
   1338 	 * the oldest entries can be thrown away without much performance
   1339 	 * loss.
   1340 	 */
   1341 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1342 		first = np->n_dirchain.tqh_first;
   1343 		TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
   1344 		LIST_REMOVE(first, dc_hash);
   1345 		FREE(first, M_NFSDIROFF);
   1346 	} else
   1347 		np->n_dircachesize++;
   1348 
   1349 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1350 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1351 	return ndp;
   1352 }
   1353 
   1354 void
   1355 nfs_invaldircache(vp, forcefree)
   1356 	struct vnode *vp;
   1357 	int forcefree;
   1358 {
   1359 	struct nfsnode *np = VTONFS(vp);
   1360 	struct nfsdircache *ndp = NULL;
   1361 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1362 
   1363 #ifdef DIAGNOSTIC
   1364 	if (vp->v_type != VDIR)
   1365 		panic("nfs: invaldircache: not dir");
   1366 #endif
   1367 
   1368 	if (!np->n_dircache)
   1369 		return;
   1370 
   1371 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1372 		while ((ndp = np->n_dirchain.tqh_first)) {
   1373 			TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1374 			LIST_REMOVE(ndp, dc_hash);
   1375 			FREE(ndp, M_NFSDIROFF);
   1376 		}
   1377 		np->n_dircachesize = 0;
   1378 		if (forcefree && np->n_dirgens) {
   1379 			FREE(np->n_dirgens, M_NFSDIROFF);
   1380 		}
   1381 	} else {
   1382 		for (ndp = np->n_dirchain.tqh_first; ndp;
   1383 		    ndp = ndp->dc_chain.tqe_next)
   1384 			ndp->dc_blkno = -1;
   1385 	}
   1386 
   1387 	np->n_dblkno = 1;
   1388 }
   1389 
   1390 /*
   1391  * Called once before VFS init to initialize shared and
   1392  * server-specific data structures.
   1393  */
   1394 void
   1395 nfs_init()
   1396 {
   1397 
   1398 #if !defined(alpha) && !defined(_LP64) && defined(DIAGNOSTIC)
   1399 	/*
   1400 	 * Check to see if major data structures haven't bloated.
   1401 	 */
   1402 	if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
   1403 		printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
   1404 		printf("Try reducing NFS_SMALLFH\n");
   1405 	}
   1406 	if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
   1407 		printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
   1408 		printf("Try reducing NFS_UIDHASHSIZ\n");
   1409 	}
   1410 	if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
   1411 		printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
   1412 		printf("Try unionizing the nu_nickname and nu_flag fields\n");
   1413 	}
   1414 #endif
   1415 
   1416 	nfsrtt.pos = 0;
   1417 	rpc_vers = txdr_unsigned(RPC_VER2);
   1418 	rpc_call = txdr_unsigned(RPC_CALL);
   1419 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1420 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1421 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1422 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1423 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1424 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1425 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1426 	nfs_prog = txdr_unsigned(NFS_PROG);
   1427 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
   1428 	nfs_true = txdr_unsigned(TRUE);
   1429 	nfs_false = txdr_unsigned(FALSE);
   1430 	nfs_xdrneg1 = txdr_unsigned(-1);
   1431 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1432 	if (nfs_ticks < 1)
   1433 		nfs_ticks = 1;
   1434 #ifdef NFSSERVER
   1435 	nfsrv_init(0);			/* Init server data structures */
   1436 	nfsrv_initcache();		/* Init the server request cache */
   1437 #endif /* NFSSERVER */
   1438 
   1439 	/*
   1440 	 * Initialize the nqnfs data structures.
   1441 	 */
   1442 	if (nqnfsstarttime == 0) {
   1443 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
   1444 			+ nqsrv_clockskew + nqsrv_writeslack;
   1445 		NQLOADNOVRAM(nqnfsstarttime);
   1446 		CIRCLEQ_INIT(&nqtimerhead);
   1447 		nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
   1448 	}
   1449 
   1450 	/*
   1451 	 * Initialize reply list and start timer
   1452 	 */
   1453 	TAILQ_INIT(&nfs_reqq);
   1454 	nfs_timer(NULL);
   1455 }
   1456 
   1457 #ifdef NFS
   1458 /*
   1459  * Called once at VFS init to initialize client-specific data structures.
   1460  */
   1461 void
   1462 nfs_vfs_init()
   1463 {
   1464 	int i;
   1465 
   1466 	/* Ensure async daemons disabled */
   1467 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
   1468 		nfs_iodwant[i] = (struct proc *)0;
   1469 		nfs_iodmount[i] = (struct nfsmount *)0;
   1470 	}
   1471 	nfs_nhinit();			/* Init the nfsnode table */
   1472 }
   1473 
   1474 void
   1475 nfs_vfs_done()
   1476 {
   1477 	nfs_nhdone();
   1478 }
   1479 
   1480 /*
   1481  * Attribute cache routines.
   1482  * nfs_loadattrcache() - loads or updates the cache contents from attributes
   1483  *	that are on the mbuf list
   1484  * nfs_getattrcache() - returns valid attributes if found in cache, returns
   1485  *	error otherwise
   1486  */
   1487 
   1488 /*
   1489  * Load the attribute cache (that lives in the nfsnode entry) with
   1490  * the values on the mbuf list and
   1491  * Iff vap not NULL
   1492  *    copy the attributes to *vaper
   1493  */
   1494 int
   1495 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
   1496 	struct vnode **vpp;
   1497 	struct mbuf **mdp;
   1498 	caddr_t *dposp;
   1499 	struct vattr *vaper;
   1500 {
   1501 	int32_t t1;
   1502 	caddr_t cp2;
   1503 	int error = 0;
   1504 	struct mbuf *md;
   1505 	int v3 = NFS_ISV3(*vpp);
   1506 
   1507 	md = *mdp;
   1508 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
   1509 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
   1510 	if (error)
   1511 		return (error);
   1512 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
   1513 }
   1514 
   1515 int
   1516 nfs_loadattrcache(vpp, fp, vaper)
   1517 	struct vnode **vpp;
   1518 	struct nfs_fattr *fp;
   1519 	struct vattr *vaper;
   1520 {
   1521 	struct vnode *vp = *vpp;
   1522 	struct vattr *vap;
   1523 	int v3 = NFS_ISV3(vp);
   1524 	enum vtype vtyp;
   1525 	u_short vmode;
   1526 	struct timespec mtime;
   1527 	struct vnode *nvp;
   1528 	int32_t rdev;
   1529 	struct nfsnode *np;
   1530 	extern int (**spec_nfsv2nodeop_p) __P((void *));
   1531 
   1532 	if (v3) {
   1533 		vtyp = nfsv3tov_type(fp->fa_type);
   1534 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1535 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
   1536 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
   1537 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
   1538 	} else {
   1539 		vtyp = nfsv2tov_type(fp->fa_type);
   1540 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1541 		if (vtyp == VNON || vtyp == VREG)
   1542 			vtyp = IFTOVT(vmode);
   1543 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
   1544 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
   1545 
   1546 		/*
   1547 		 * Really ugly NFSv2 kludge.
   1548 		 */
   1549 		if (vtyp == VCHR && rdev == 0xffffffff)
   1550 			vtyp = VFIFO;
   1551 	}
   1552 
   1553 	/*
   1554 	 * If v_type == VNON it is a new node, so fill in the v_type,
   1555 	 * n_mtime fields. Check to see if it represents a special
   1556 	 * device, and if so, check for a possible alias. Once the
   1557 	 * correct vnode has been obtained, fill in the rest of the
   1558 	 * information.
   1559 	 */
   1560 	np = VTONFS(vp);
   1561 	if (vp->v_type != vtyp) {
   1562 		vp->v_type = vtyp;
   1563 		if (vp->v_type == VFIFO) {
   1564 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
   1565 			vp->v_op = fifo_nfsv2nodeop_p;
   1566 		}
   1567 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
   1568 			vp->v_op = spec_nfsv2nodeop_p;
   1569 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
   1570 			if (nvp) {
   1571 				/*
   1572 				 * Discard unneeded vnode, but save its nfsnode.
   1573 				 * Since the nfsnode does not have a lock, its
   1574 				 * vnode lock has to be carried over.
   1575 				 */
   1576 				nvp->v_data = vp->v_data;
   1577 				vp->v_data = NULL;
   1578 				vp->v_op = spec_vnodeop_p;
   1579 				vput(vp);
   1580 				vgone(vp);
   1581 				/*
   1582 				 * XXX When nfs starts locking, we need to
   1583 				 * lock the new node here.
   1584 				 */
   1585 				/*
   1586 				 * Reinitialize aliased node.
   1587 				 */
   1588 				np->n_vnode = nvp;
   1589 				*vpp = vp = nvp;
   1590 			}
   1591 		}
   1592 		np->n_mtime = mtime.tv_sec;
   1593 	}
   1594 	vap = np->n_vattr;
   1595 	vap->va_type = vtyp;
   1596 	vap->va_mode = vmode & ALLPERMS;
   1597 	vap->va_rdev = (dev_t)rdev;
   1598 	vap->va_mtime = mtime;
   1599 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
   1600 	switch (vtyp) {
   1601 	case VDIR:
   1602 		vap->va_blocksize = NFS_DIRFRAGSIZ;
   1603 		break;
   1604 	case VBLK:
   1605 		vap->va_blocksize = BLKDEV_IOSIZE;
   1606 		break;
   1607 	case VCHR:
   1608 		vap->va_blocksize = MAXBSIZE;
   1609 		break;
   1610 	default:
   1611 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
   1612 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
   1613 		break;
   1614 	}
   1615 	if (v3) {
   1616 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1617 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1618 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1619 		vap->va_size = fxdr_hyper(&fp->fa3_size);
   1620 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
   1621 		vap->va_fileid = fxdr_unsigned(int32_t,
   1622 		    fp->fa3_fileid.nfsuquad[1]);
   1623 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
   1624 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
   1625 		vap->va_flags = 0;
   1626 		vap->va_filerev = 0;
   1627 	} else {
   1628 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1629 		vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1630 		vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1631 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
   1632 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
   1633 		    * NFS_FABLKSIZE;
   1634 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
   1635 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
   1636 		vap->va_flags = 0;
   1637 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
   1638 		    fp->fa2_ctime.nfsv2_sec);
   1639 		vap->va_ctime.tv_nsec = 0;
   1640 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
   1641 		vap->va_filerev = 0;
   1642 	}
   1643 	if (vap->va_size != np->n_size) {
   1644 		if (vap->va_type == VREG) {
   1645 			if (np->n_flag & NMODIFIED) {
   1646 				if (vap->va_size < np->n_size)
   1647 					vap->va_size = np->n_size;
   1648 				else
   1649 					np->n_size = vap->va_size;
   1650 			} else
   1651 				np->n_size = vap->va_size;
   1652 			uvm_vnp_setsize(vp, np->n_size);
   1653 		} else
   1654 			np->n_size = vap->va_size;
   1655 	}
   1656 	np->n_attrstamp = time.tv_sec;
   1657 	if (vaper != NULL) {
   1658 		memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
   1659 		if (np->n_flag & NCHG) {
   1660 			if (np->n_flag & NACC)
   1661 				vaper->va_atime = np->n_atim;
   1662 			if (np->n_flag & NUPD)
   1663 				vaper->va_mtime = np->n_mtim;
   1664 		}
   1665 	}
   1666 	return (0);
   1667 }
   1668 
   1669 /*
   1670  * Check the time stamp
   1671  * If the cache is valid, copy contents to *vap and return 0
   1672  * otherwise return an error
   1673  */
   1674 int
   1675 nfs_getattrcache(vp, vaper)
   1676 	struct vnode *vp;
   1677 	struct vattr *vaper;
   1678 {
   1679 	struct nfsnode *np = VTONFS(vp);
   1680 	struct vattr *vap;
   1681 
   1682 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
   1683 		nfsstats.attrcache_misses++;
   1684 		return (ENOENT);
   1685 	}
   1686 	nfsstats.attrcache_hits++;
   1687 	vap = np->n_vattr;
   1688 	if (vap->va_size != np->n_size) {
   1689 		if (vap->va_type == VREG) {
   1690 			if (np->n_flag & NMODIFIED) {
   1691 				if (vap->va_size < np->n_size)
   1692 					vap->va_size = np->n_size;
   1693 				else
   1694 					np->n_size = vap->va_size;
   1695 			} else
   1696 				np->n_size = vap->va_size;
   1697 			uvm_vnp_setsize(vp, np->n_size);
   1698 		} else
   1699 			np->n_size = vap->va_size;
   1700 	}
   1701 	memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
   1702 	if (np->n_flag & NCHG) {
   1703 		if (np->n_flag & NACC)
   1704 			vaper->va_atime = np->n_atim;
   1705 		if (np->n_flag & NUPD)
   1706 			vaper->va_mtime = np->n_mtim;
   1707 	}
   1708 	return (0);
   1709 }
   1710 
   1711 /*
   1712  * Heuristic to see if the server XDR encodes directory cookies or not.
   1713  * it is not supposed to, but a lot of servers may do this. Also, since
   1714  * most/all servers will implement V2 as well, it is expected that they
   1715  * may return just 32 bits worth of cookie information, so we need to
   1716  * find out in which 32 bits this information is available. We do this
   1717  * to avoid trouble with emulated binaries that can't handle 64 bit
   1718  * directory offsets.
   1719  */
   1720 
   1721 void
   1722 nfs_cookieheuristic(vp, flagp, p, cred)
   1723 	struct vnode *vp;
   1724 	int *flagp;
   1725 	struct proc *p;
   1726 	struct ucred *cred;
   1727 {
   1728 	struct uio auio;
   1729 	struct iovec aiov;
   1730 	caddr_t buf, cp;
   1731 	struct dirent *dp;
   1732 	off_t *cookies = NULL, *cop;
   1733 	int error, eof, nc, len;
   1734 
   1735 	MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
   1736 
   1737 	aiov.iov_base = buf;
   1738 	aiov.iov_len = NFS_DIRFRAGSIZ;
   1739 	auio.uio_iov = &aiov;
   1740 	auio.uio_iovcnt = 1;
   1741 	auio.uio_rw = UIO_READ;
   1742 	auio.uio_segflg = UIO_SYSSPACE;
   1743 	auio.uio_procp = p;
   1744 	auio.uio_resid = NFS_DIRFRAGSIZ;
   1745 	auio.uio_offset = 0;
   1746 
   1747 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
   1748 
   1749 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
   1750 	if (error || len == 0) {
   1751 		FREE(buf, M_TEMP);
   1752 		if (cookies)
   1753 			free(cookies, M_TEMP);
   1754 		return;
   1755 	}
   1756 
   1757 	/*
   1758 	 * Find the first valid entry and look at its offset cookie.
   1759 	 */
   1760 
   1761 	cp = buf;
   1762 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
   1763 		dp = (struct dirent *)cp;
   1764 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
   1765 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
   1766 				*flagp |= NFSMNT_SWAPCOOKIE;
   1767 				nfs_invaldircache(vp, 0);
   1768 				nfs_vinvalbuf(vp, 0, cred, p, 1);
   1769 			}
   1770 			break;
   1771 		}
   1772 		cop++;
   1773 		cp += dp->d_reclen;
   1774 	}
   1775 
   1776 	FREE(buf, M_TEMP);
   1777 	free(cookies, M_TEMP);
   1778 }
   1779 #endif /* NFS */
   1780 
   1781 /*
   1782  * Set up nameidata for a lookup() call and do it.
   1783  *
   1784  * If pubflag is set, this call is done for a lookup operation on the
   1785  * public filehandle. In that case we allow crossing mountpoints and
   1786  * absolute pathnames. However, the caller is expected to check that
   1787  * the lookup result is within the public fs, and deny access if
   1788  * it is not.
   1789  */
   1790 int
   1791 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
   1792 	struct nameidata *ndp;
   1793 	fhandle_t *fhp;
   1794 	int len;
   1795 	struct nfssvc_sock *slp;
   1796 	struct mbuf *nam;
   1797 	struct mbuf **mdp;
   1798 	caddr_t *dposp;
   1799 	struct vnode **retdirp;
   1800 	struct proc *p;
   1801 	int kerbflag, pubflag;
   1802 {
   1803 	int i, rem;
   1804 	struct mbuf *md;
   1805 	char *fromcp, *tocp, *cp;
   1806 	struct iovec aiov;
   1807 	struct uio auio;
   1808 	struct vnode *dp;
   1809 	int error, rdonly, linklen;
   1810 	struct componentname *cnp = &ndp->ni_cnd;
   1811 
   1812 	*retdirp = (struct vnode *)0;
   1813 	MALLOC(cnp->cn_pnbuf, char *, len + 1, M_NAMEI, M_WAITOK);
   1814 	/*
   1815 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
   1816 	 * and set the various ndp fields appropriately.
   1817 	 */
   1818 	fromcp = *dposp;
   1819 	tocp = cnp->cn_pnbuf;
   1820 	md = *mdp;
   1821 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
   1822 	for (i = 0; i < len; i++) {
   1823 		while (rem == 0) {
   1824 			md = md->m_next;
   1825 			if (md == NULL) {
   1826 				error = EBADRPC;
   1827 				goto out;
   1828 			}
   1829 			fromcp = mtod(md, caddr_t);
   1830 			rem = md->m_len;
   1831 		}
   1832 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
   1833 			error = EACCES;
   1834 			goto out;
   1835 		}
   1836 		*tocp++ = *fromcp++;
   1837 		rem--;
   1838 	}
   1839 	*tocp = '\0';
   1840 	*mdp = md;
   1841 	*dposp = fromcp;
   1842 	len = nfsm_rndup(len)-len;
   1843 	if (len > 0) {
   1844 		if (rem >= len)
   1845 			*dposp += len;
   1846 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
   1847 			goto out;
   1848 	}
   1849 
   1850 	/*
   1851 	 * Extract and set starting directory.
   1852 	 */
   1853 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
   1854 	    nam, &rdonly, kerbflag, pubflag);
   1855 	if (error)
   1856 		goto out;
   1857 	if (dp->v_type != VDIR) {
   1858 		vrele(dp);
   1859 		error = ENOTDIR;
   1860 		goto out;
   1861 	}
   1862 
   1863 	if (rdonly)
   1864 		cnp->cn_flags |= RDONLY;
   1865 
   1866 	*retdirp = dp;
   1867 
   1868 	if (pubflag) {
   1869 		/*
   1870 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
   1871 		 * and the 'native path' indicator.
   1872 		 */
   1873 		MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
   1874 		fromcp = cnp->cn_pnbuf;
   1875 		tocp = cp;
   1876 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
   1877 			switch ((unsigned char)*fromcp) {
   1878 			case WEBNFS_NATIVE_CHAR:
   1879 				/*
   1880 				 * 'Native' path for us is the same
   1881 				 * as a path according to the NFS spec,
   1882 				 * just skip the escape char.
   1883 				 */
   1884 				fromcp++;
   1885 				break;
   1886 			/*
   1887 			 * More may be added in the future, range 0x80-0xff
   1888 			 */
   1889 			default:
   1890 				error = EIO;
   1891 				FREE(cp, M_NAMEI);
   1892 				goto out;
   1893 			}
   1894 		}
   1895 		/*
   1896 		 * Translate the '%' escapes, URL-style.
   1897 		 */
   1898 		while (*fromcp != '\0') {
   1899 			if (*fromcp == WEBNFS_ESC_CHAR) {
   1900 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
   1901 					fromcp++;
   1902 					*tocp++ = HEXSTRTOI(fromcp);
   1903 					fromcp += 2;
   1904 					continue;
   1905 				} else {
   1906 					error = ENOENT;
   1907 					FREE(cp, M_NAMEI);
   1908 					goto out;
   1909 				}
   1910 			} else
   1911 				*tocp++ = *fromcp++;
   1912 		}
   1913 		*tocp = '\0';
   1914 		FREE(cnp->cn_pnbuf, M_NAMEI);
   1915 		cnp->cn_pnbuf = cp;
   1916 	}
   1917 
   1918 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
   1919 	ndp->ni_segflg = UIO_SYSSPACE;
   1920 
   1921 	if (pubflag) {
   1922 		ndp->ni_rootdir = rootvnode;
   1923 		ndp->ni_loopcnt = 0;
   1924 		if (cnp->cn_pnbuf[0] == '/')
   1925 			dp = rootvnode;
   1926 	} else {
   1927 		cnp->cn_flags |= NOCROSSMOUNT;
   1928 	}
   1929 
   1930 	cnp->cn_proc = p;
   1931 	VREF(dp);
   1932 
   1933     for (;;) {
   1934 	cnp->cn_nameptr = cnp->cn_pnbuf;
   1935 	ndp->ni_startdir = dp;
   1936 	/*
   1937 	 * And call lookup() to do the real work
   1938 	 */
   1939 	error = lookup(ndp);
   1940 	if (error)
   1941 		break;
   1942 	/*
   1943 	 * Check for encountering a symbolic link
   1944 	 */
   1945 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
   1946 		if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
   1947 			cnp->cn_flags |= HASBUF;
   1948 			return (0);
   1949 		}
   1950 		break;
   1951 	} else {
   1952 		if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
   1953 			VOP_UNLOCK(ndp->ni_dvp, 0);
   1954 		if (!pubflag) {
   1955 			vrele(ndp->ni_dvp);
   1956 			vput(ndp->ni_vp);
   1957 			ndp->ni_vp = NULL;
   1958 			error = EINVAL;
   1959 			break;
   1960 		}
   1961 
   1962 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
   1963 			error = ELOOP;
   1964 			break;
   1965 		}
   1966 		if (ndp->ni_pathlen > 1)
   1967 			MALLOC(cp, char *, MAXPATHLEN, M_NAMEI, M_WAITOK);
   1968 		else
   1969 			cp = cnp->cn_pnbuf;
   1970 		aiov.iov_base = cp;
   1971 		aiov.iov_len = MAXPATHLEN;
   1972 		auio.uio_iov = &aiov;
   1973 		auio.uio_iovcnt = 1;
   1974 		auio.uio_offset = 0;
   1975 		auio.uio_rw = UIO_READ;
   1976 		auio.uio_segflg = UIO_SYSSPACE;
   1977 		auio.uio_procp = (struct proc *)0;
   1978 		auio.uio_resid = MAXPATHLEN;
   1979 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
   1980 		if (error) {
   1981 		badlink:
   1982 			if (ndp->ni_pathlen > 1)
   1983 				FREE(cp, M_NAMEI);
   1984 			break;
   1985 		}
   1986 		linklen = MAXPATHLEN - auio.uio_resid;
   1987 		if (linklen == 0) {
   1988 			error = ENOENT;
   1989 			goto badlink;
   1990 		}
   1991 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
   1992 			error = ENAMETOOLONG;
   1993 			goto badlink;
   1994 		}
   1995 		if (ndp->ni_pathlen > 1) {
   1996 			memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
   1997 			FREE(cnp->cn_pnbuf, M_NAMEI);
   1998 			cnp->cn_pnbuf = cp;
   1999 		} else
   2000 			cnp->cn_pnbuf[linklen] = '\0';
   2001 		ndp->ni_pathlen += linklen;
   2002 		vput(ndp->ni_vp);
   2003 		dp = ndp->ni_dvp;
   2004 		/*
   2005 		 * Check if root directory should replace current directory.
   2006 		 */
   2007 		if (cnp->cn_pnbuf[0] == '/') {
   2008 			vrele(dp);
   2009 			dp = ndp->ni_rootdir;
   2010 			VREF(dp);
   2011 		}
   2012 	}
   2013    }
   2014 out:
   2015 	FREE(cnp->cn_pnbuf, M_NAMEI);
   2016 	return (error);
   2017 }
   2018 
   2019 /*
   2020  * A fiddled version of m_adj() that ensures null fill to a long
   2021  * boundary and only trims off the back end
   2022  */
   2023 void
   2024 nfsm_adj(mp, len, nul)
   2025 	struct mbuf *mp;
   2026 	int len;
   2027 	int nul;
   2028 {
   2029 	struct mbuf *m;
   2030 	int count, i;
   2031 	char *cp;
   2032 
   2033 	/*
   2034 	 * Trim from tail.  Scan the mbuf chain,
   2035 	 * calculating its length and finding the last mbuf.
   2036 	 * If the adjustment only affects this mbuf, then just
   2037 	 * adjust and return.  Otherwise, rescan and truncate
   2038 	 * after the remaining size.
   2039 	 */
   2040 	count = 0;
   2041 	m = mp;
   2042 	for (;;) {
   2043 		count += m->m_len;
   2044 		if (m->m_next == (struct mbuf *)0)
   2045 			break;
   2046 		m = m->m_next;
   2047 	}
   2048 	if (m->m_len > len) {
   2049 		m->m_len -= len;
   2050 		if (nul > 0) {
   2051 			cp = mtod(m, caddr_t)+m->m_len-nul;
   2052 			for (i = 0; i < nul; i++)
   2053 				*cp++ = '\0';
   2054 		}
   2055 		return;
   2056 	}
   2057 	count -= len;
   2058 	if (count < 0)
   2059 		count = 0;
   2060 	/*
   2061 	 * Correct length for chain is "count".
   2062 	 * Find the mbuf with last data, adjust its length,
   2063 	 * and toss data from remaining mbufs on chain.
   2064 	 */
   2065 	for (m = mp; m; m = m->m_next) {
   2066 		if (m->m_len >= count) {
   2067 			m->m_len = count;
   2068 			if (nul > 0) {
   2069 				cp = mtod(m, caddr_t)+m->m_len-nul;
   2070 				for (i = 0; i < nul; i++)
   2071 					*cp++ = '\0';
   2072 			}
   2073 			break;
   2074 		}
   2075 		count -= m->m_len;
   2076 	}
   2077 	for (m = m->m_next;m;m = m->m_next)
   2078 		m->m_len = 0;
   2079 }
   2080 
   2081 /*
   2082  * Make these functions instead of macros, so that the kernel text size
   2083  * doesn't get too big...
   2084  */
   2085 void
   2086 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
   2087 	struct nfsrv_descript *nfsd;
   2088 	int before_ret;
   2089 	struct vattr *before_vap;
   2090 	int after_ret;
   2091 	struct vattr *after_vap;
   2092 	struct mbuf **mbp;
   2093 	char **bposp;
   2094 {
   2095 	struct mbuf *mb = *mbp, *mb2;
   2096 	char *bpos = *bposp;
   2097 	u_int32_t *tl;
   2098 
   2099 	if (before_ret) {
   2100 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2101 		*tl = nfs_false;
   2102 	} else {
   2103 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   2104 		*tl++ = nfs_true;
   2105 		txdr_hyper(before_vap->va_size, tl);
   2106 		tl += 2;
   2107 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   2108 		tl += 2;
   2109 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   2110 	}
   2111 	*bposp = bpos;
   2112 	*mbp = mb;
   2113 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   2114 }
   2115 
   2116 void
   2117 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
   2118 	struct nfsrv_descript *nfsd;
   2119 	int after_ret;
   2120 	struct vattr *after_vap;
   2121 	struct mbuf **mbp;
   2122 	char **bposp;
   2123 {
   2124 	struct mbuf *mb = *mbp, *mb2;
   2125 	char *bpos = *bposp;
   2126 	u_int32_t *tl;
   2127 	struct nfs_fattr *fp;
   2128 
   2129 	if (after_ret) {
   2130 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2131 		*tl = nfs_false;
   2132 	} else {
   2133 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   2134 		*tl++ = nfs_true;
   2135 		fp = (struct nfs_fattr *)tl;
   2136 		nfsm_srvfattr(nfsd, after_vap, fp);
   2137 	}
   2138 	*mbp = mb;
   2139 	*bposp = bpos;
   2140 }
   2141 
   2142 void
   2143 nfsm_srvfattr(nfsd, vap, fp)
   2144 	struct nfsrv_descript *nfsd;
   2145 	struct vattr *vap;
   2146 	struct nfs_fattr *fp;
   2147 {
   2148 
   2149 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   2150 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   2151 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   2152 	if (nfsd->nd_flag & ND_NFSV3) {
   2153 		fp->fa_type = vtonfsv3_type(vap->va_type);
   2154 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   2155 		txdr_hyper(vap->va_size, &fp->fa3_size);
   2156 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   2157 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   2158 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   2159 		fp->fa3_fsid.nfsuquad[0] = 0;
   2160 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   2161 		fp->fa3_fileid.nfsuquad[0] = 0;
   2162 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
   2163 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   2164 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   2165 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   2166 	} else {
   2167 		fp->fa_type = vtonfsv2_type(vap->va_type);
   2168 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   2169 		fp->fa2_size = txdr_unsigned(vap->va_size);
   2170 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
   2171 		if (vap->va_type == VFIFO)
   2172 			fp->fa2_rdev = 0xffffffff;
   2173 		else
   2174 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   2175 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   2176 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   2177 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   2178 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   2179 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   2180 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   2181 	}
   2182 }
   2183 
   2184 /*
   2185  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
   2186  * 	- look up fsid in mount list (if not found ret error)
   2187  *	- get vp and export rights by calling VFS_FHTOVP()
   2188  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
   2189  *	- if not lockflag unlock it with VOP_UNLOCK()
   2190  */
   2191 int
   2192 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
   2193 	fhandle_t *fhp;
   2194 	int lockflag;
   2195 	struct vnode **vpp;
   2196 	struct ucred *cred;
   2197 	struct nfssvc_sock *slp;
   2198 	struct mbuf *nam;
   2199 	int *rdonlyp;
   2200 	int kerbflag;
   2201 {
   2202 	struct mount *mp;
   2203 	int i;
   2204 	struct ucred *credanon;
   2205 	int error, exflags;
   2206 	struct sockaddr_in *saddr;
   2207 
   2208 	*vpp = (struct vnode *)0;
   2209 
   2210 	if (nfs_ispublicfh(fhp)) {
   2211 		if (!pubflag || !nfs_pub.np_valid)
   2212 			return (ESTALE);
   2213 		fhp = &nfs_pub.np_handle;
   2214 	}
   2215 
   2216 	mp = vfs_getvfs(&fhp->fh_fsid);
   2217 	if (!mp)
   2218 		return (ESTALE);
   2219 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
   2220 	if (error)
   2221 		return (error);
   2222 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
   2223 	if (error)
   2224 		return (error);
   2225 
   2226 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
   2227 		saddr = mtod(nam, struct sockaddr_in *);
   2228 		if ((saddr->sin_family == AF_INET) &&
   2229 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
   2230 			vput(*vpp);
   2231 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2232 		}
   2233 #ifdef INET6
   2234 		if ((saddr->sin_family == AF_INET6) &&
   2235 		    ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
   2236 			vput(*vpp);
   2237 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2238 		}
   2239 #endif
   2240 	}
   2241 	/*
   2242 	 * Check/setup credentials.
   2243 	 */
   2244 	if (exflags & MNT_EXKERB) {
   2245 		if (!kerbflag) {
   2246 			vput(*vpp);
   2247 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2248 		}
   2249 	} else if (kerbflag) {
   2250 		vput(*vpp);
   2251 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2252 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
   2253 		cred->cr_uid = credanon->cr_uid;
   2254 		cred->cr_gid = credanon->cr_gid;
   2255 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
   2256 			cred->cr_groups[i] = credanon->cr_groups[i];
   2257 		cred->cr_ngroups = i;
   2258 	}
   2259 	if (exflags & MNT_EXRDONLY)
   2260 		*rdonlyp = 1;
   2261 	else
   2262 		*rdonlyp = 0;
   2263 	if (!lockflag)
   2264 		VOP_UNLOCK(*vpp, 0);
   2265 	return (0);
   2266 }
   2267 
   2268 /*
   2269  * WebNFS: check if a filehandle is a public filehandle. For v3, this
   2270  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
   2271  * transformed this to all zeroes in both cases, so check for it.
   2272  */
   2273 int
   2274 nfs_ispublicfh(fhp)
   2275 	fhandle_t *fhp;
   2276 {
   2277 	char *cp = (char *)fhp;
   2278 	int i;
   2279 
   2280 	for (i = 0; i < NFSX_V3FH; i++)
   2281 		if (*cp++ != 0)
   2282 			return (FALSE);
   2283 	return (TRUE);
   2284 }
   2285 
   2286 /*
   2287  * This function compares two net addresses by family and returns TRUE
   2288  * if they are the same host.
   2289  * If there is any doubt, return FALSE.
   2290  * The AF_INET family is handled as a special case so that address mbufs
   2291  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   2292  */
   2293 int
   2294 netaddr_match(family, haddr, nam)
   2295 	int family;
   2296 	union nethostaddr *haddr;
   2297 	struct mbuf *nam;
   2298 {
   2299 	struct sockaddr_in *inetaddr;
   2300 
   2301 	switch (family) {
   2302 	case AF_INET:
   2303 		inetaddr = mtod(nam, struct sockaddr_in *);
   2304 		if (inetaddr->sin_family == AF_INET &&
   2305 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   2306 			return (1);
   2307 		break;
   2308 #ifdef INET6
   2309 	case AF_INET6:
   2310 	    {
   2311 		struct sockaddr_in6 *sin6_1, *sin6_2;
   2312 
   2313 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
   2314 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
   2315 		if (sin6_1->sin6_family == AF_INET6 &&
   2316 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
   2317 			return 1;
   2318 	    }
   2319 #endif
   2320 #ifdef ISO
   2321 	case AF_ISO:
   2322 	    {
   2323 		struct sockaddr_iso *isoaddr1, *isoaddr2;
   2324 
   2325 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
   2326 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
   2327 		if (isoaddr1->siso_family == AF_ISO &&
   2328 		    isoaddr1->siso_nlen > 0 &&
   2329 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
   2330 		    SAME_ISOADDR(isoaddr1, isoaddr2))
   2331 			return (1);
   2332 		break;
   2333 	    }
   2334 #endif	/* ISO */
   2335 	default:
   2336 		break;
   2337 	};
   2338 	return (0);
   2339 }
   2340 
   2341 
   2342 /*
   2343  * The write verifier has changed (probably due to a server reboot), so all
   2344  * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
   2345  * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
   2346  * flag. Once done the new write verifier can be set for the mount point.
   2347  */
   2348 void
   2349 nfs_clearcommit(mp)
   2350 	struct mount *mp;
   2351 {
   2352 	struct vnode *vp, *nvp;
   2353 	struct buf *bp, *nbp;
   2354 	int s;
   2355 
   2356 	s = splbio();
   2357 loop:
   2358 	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
   2359 		if (vp->v_mount != mp)	/* Paranoia */
   2360 			goto loop;
   2361 		nvp = vp->v_mntvnodes.le_next;
   2362 		for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
   2363 			nbp = bp->b_vnbufs.le_next;
   2364 			if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
   2365 				== (B_DELWRI | B_NEEDCOMMIT))
   2366 				bp->b_flags &= ~B_NEEDCOMMIT;
   2367 		}
   2368 	}
   2369 	splx(s);
   2370 }
   2371 
   2372 /*
   2373  * Map errnos to NFS error numbers. For Version 3 also filter out error
   2374  * numbers not specified for the associated procedure.
   2375  */
   2376 int
   2377 nfsrv_errmap(nd, err)
   2378 	struct nfsrv_descript *nd;
   2379 	int err;
   2380 {
   2381 	short *defaulterrp, *errp;
   2382 
   2383 	if (nd->nd_flag & ND_NFSV3) {
   2384 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   2385 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   2386 		while (*++errp) {
   2387 			if (*errp == err)
   2388 				return (err);
   2389 			else if (*errp > err)
   2390 				break;
   2391 		}
   2392 		return ((int)*defaulterrp);
   2393 	    } else
   2394 		return (err & 0xffff);
   2395 	}
   2396 	if (err <= ELAST)
   2397 		return ((int)nfsrv_v2errmap[err - 1]);
   2398 	return (NFSERR_IO);
   2399 }
   2400 
   2401 /*
   2402  * Sort the group list in increasing numerical order.
   2403  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
   2404  *  that used to be here.)
   2405  */
   2406 void
   2407 nfsrvw_sort(list, num)
   2408         gid_t *list;
   2409         int num;
   2410 {
   2411 	int i, j;
   2412 	gid_t v;
   2413 
   2414 	/* Insertion sort. */
   2415 	for (i = 1; i < num; i++) {
   2416 		v = list[i];
   2417 		/* find correct slot for value v, moving others up */
   2418 		for (j = i; --j >= 0 && v < list[j];)
   2419 			list[j + 1] = list[j];
   2420 		list[j + 1] = v;
   2421 	}
   2422 }
   2423 
   2424 /*
   2425  * copy credentials making sure that the result can be compared with memcmp().
   2426  */
   2427 void
   2428 nfsrv_setcred(incred, outcred)
   2429 	struct ucred *incred, *outcred;
   2430 {
   2431 	int i;
   2432 
   2433 	memset((caddr_t)outcred, 0, sizeof (struct ucred));
   2434 	outcred->cr_ref = 1;
   2435 	outcred->cr_uid = incred->cr_uid;
   2436 	outcred->cr_gid = incred->cr_gid;
   2437 	outcred->cr_ngroups = incred->cr_ngroups;
   2438 	for (i = 0; i < incred->cr_ngroups; i++)
   2439 		outcred->cr_groups[i] = incred->cr_groups[i];
   2440 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
   2441 }
   2442