nfs_subs.c revision 1.82 1 /* $NetBSD: nfs_subs.c,v 1.82 2000/09/19 17:04:51 bjh21 Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 #include "fs_nfs.h"
42 #include "opt_nfs.h"
43 #include "opt_nfsserver.h"
44 #include "opt_iso.h"
45 #include "opt_inet.h"
46
47 /*
48 * These functions support the macros and help fiddle mbuf chains for
49 * the nfs op functions. They do things like create the rpc header and
50 * copy data between mbuf chains and uio lists.
51 */
52 #include <sys/param.h>
53 #include <sys/proc.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/mount.h>
57 #include <sys/vnode.h>
58 #include <sys/namei.h>
59 #include <sys/mbuf.h>
60 #include <sys/socket.h>
61 #include <sys/stat.h>
62 #include <sys/malloc.h>
63 #include <sys/time.h>
64 #include <sys/dirent.h>
65
66 #include <uvm/uvm_extern.h>
67
68 #include <nfs/rpcv2.h>
69 #include <nfs/nfsproto.h>
70 #include <nfs/nfsnode.h>
71 #include <nfs/nfs.h>
72 #include <nfs/xdr_subs.h>
73 #include <nfs/nfsm_subs.h>
74 #include <nfs/nfsmount.h>
75 #include <nfs/nqnfs.h>
76 #include <nfs/nfsrtt.h>
77 #include <nfs/nfs_var.h>
78
79 #include <miscfs/specfs/specdev.h>
80
81 #include <netinet/in.h>
82 #ifdef ISO
83 #include <netiso/iso.h>
84 #endif
85
86 /*
87 * Data items converted to xdr at startup, since they are constant
88 * This is kinda hokey, but may save a little time doing byte swaps
89 */
90 u_int32_t nfs_xdrneg1;
91 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
92 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
93 rpc_auth_kerb;
94 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
95
96 /* And other global data */
97 static u_int32_t nfs_xid = 0;
98 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
99 NFCHR, NFNON };
100 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
101 NFFIFO, NFNON };
102 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
103 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
104 int nfs_ticks;
105
106 /* NFS client/server stats. */
107 struct nfsstats nfsstats;
108
109 /*
110 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
111 */
112 int nfsv3_procid[NFS_NPROCS] = {
113 NFSPROC_NULL,
114 NFSPROC_GETATTR,
115 NFSPROC_SETATTR,
116 NFSPROC_NOOP,
117 NFSPROC_LOOKUP,
118 NFSPROC_READLINK,
119 NFSPROC_READ,
120 NFSPROC_NOOP,
121 NFSPROC_WRITE,
122 NFSPROC_CREATE,
123 NFSPROC_REMOVE,
124 NFSPROC_RENAME,
125 NFSPROC_LINK,
126 NFSPROC_SYMLINK,
127 NFSPROC_MKDIR,
128 NFSPROC_RMDIR,
129 NFSPROC_READDIR,
130 NFSPROC_FSSTAT,
131 NFSPROC_NOOP,
132 NFSPROC_NOOP,
133 NFSPROC_NOOP,
134 NFSPROC_NOOP,
135 NFSPROC_NOOP,
136 NFSPROC_NOOP,
137 NFSPROC_NOOP,
138 NFSPROC_NOOP
139 };
140
141 /*
142 * and the reverse mapping from generic to Version 2 procedure numbers
143 */
144 int nfsv2_procid[NFS_NPROCS] = {
145 NFSV2PROC_NULL,
146 NFSV2PROC_GETATTR,
147 NFSV2PROC_SETATTR,
148 NFSV2PROC_LOOKUP,
149 NFSV2PROC_NOOP,
150 NFSV2PROC_READLINK,
151 NFSV2PROC_READ,
152 NFSV2PROC_WRITE,
153 NFSV2PROC_CREATE,
154 NFSV2PROC_MKDIR,
155 NFSV2PROC_SYMLINK,
156 NFSV2PROC_CREATE,
157 NFSV2PROC_REMOVE,
158 NFSV2PROC_RMDIR,
159 NFSV2PROC_RENAME,
160 NFSV2PROC_LINK,
161 NFSV2PROC_READDIR,
162 NFSV2PROC_NOOP,
163 NFSV2PROC_STATFS,
164 NFSV2PROC_NOOP,
165 NFSV2PROC_NOOP,
166 NFSV2PROC_NOOP,
167 NFSV2PROC_NOOP,
168 NFSV2PROC_NOOP,
169 NFSV2PROC_NOOP,
170 NFSV2PROC_NOOP,
171 };
172
173 /*
174 * Maps errno values to nfs error numbers.
175 * Use NFSERR_IO as the catch all for ones not specifically defined in
176 * RFC 1094.
177 */
178 static u_char nfsrv_v2errmap[ELAST] = {
179 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
180 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
181 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
182 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
183 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
184 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
185 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
186 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
187 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
188 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
189 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
190 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
191 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
192 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
193 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
194 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
195 NFSERR_IO, NFSERR_IO,
196 };
197
198 /*
199 * Maps errno values to nfs error numbers.
200 * Although it is not obvious whether or not NFS clients really care if
201 * a returned error value is in the specified list for the procedure, the
202 * safest thing to do is filter them appropriately. For Version 2, the
203 * X/Open XNFS document is the only specification that defines error values
204 * for each RPC (The RFC simply lists all possible error values for all RPCs),
205 * so I have decided to not do this for Version 2.
206 * The first entry is the default error return and the rest are the valid
207 * errors for that RPC in increasing numeric order.
208 */
209 static short nfsv3err_null[] = {
210 0,
211 0,
212 };
213
214 static short nfsv3err_getattr[] = {
215 NFSERR_IO,
216 NFSERR_IO,
217 NFSERR_STALE,
218 NFSERR_BADHANDLE,
219 NFSERR_SERVERFAULT,
220 0,
221 };
222
223 static short nfsv3err_setattr[] = {
224 NFSERR_IO,
225 NFSERR_PERM,
226 NFSERR_IO,
227 NFSERR_ACCES,
228 NFSERR_INVAL,
229 NFSERR_NOSPC,
230 NFSERR_ROFS,
231 NFSERR_DQUOT,
232 NFSERR_STALE,
233 NFSERR_BADHANDLE,
234 NFSERR_NOT_SYNC,
235 NFSERR_SERVERFAULT,
236 0,
237 };
238
239 static short nfsv3err_lookup[] = {
240 NFSERR_IO,
241 NFSERR_NOENT,
242 NFSERR_IO,
243 NFSERR_ACCES,
244 NFSERR_NOTDIR,
245 NFSERR_NAMETOL,
246 NFSERR_STALE,
247 NFSERR_BADHANDLE,
248 NFSERR_SERVERFAULT,
249 0,
250 };
251
252 static short nfsv3err_access[] = {
253 NFSERR_IO,
254 NFSERR_IO,
255 NFSERR_STALE,
256 NFSERR_BADHANDLE,
257 NFSERR_SERVERFAULT,
258 0,
259 };
260
261 static short nfsv3err_readlink[] = {
262 NFSERR_IO,
263 NFSERR_IO,
264 NFSERR_ACCES,
265 NFSERR_INVAL,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOTSUPP,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static short nfsv3err_read[] = {
274 NFSERR_IO,
275 NFSERR_IO,
276 NFSERR_NXIO,
277 NFSERR_ACCES,
278 NFSERR_INVAL,
279 NFSERR_STALE,
280 NFSERR_BADHANDLE,
281 NFSERR_SERVERFAULT,
282 NFSERR_JUKEBOX,
283 0,
284 };
285
286 static short nfsv3err_write[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_ACCES,
290 NFSERR_INVAL,
291 NFSERR_FBIG,
292 NFSERR_NOSPC,
293 NFSERR_ROFS,
294 NFSERR_DQUOT,
295 NFSERR_STALE,
296 NFSERR_BADHANDLE,
297 NFSERR_SERVERFAULT,
298 NFSERR_JUKEBOX,
299 0,
300 };
301
302 static short nfsv3err_create[] = {
303 NFSERR_IO,
304 NFSERR_IO,
305 NFSERR_ACCES,
306 NFSERR_EXIST,
307 NFSERR_NOTDIR,
308 NFSERR_NOSPC,
309 NFSERR_ROFS,
310 NFSERR_NAMETOL,
311 NFSERR_DQUOT,
312 NFSERR_STALE,
313 NFSERR_BADHANDLE,
314 NFSERR_NOTSUPP,
315 NFSERR_SERVERFAULT,
316 0,
317 };
318
319 static short nfsv3err_mkdir[] = {
320 NFSERR_IO,
321 NFSERR_IO,
322 NFSERR_ACCES,
323 NFSERR_EXIST,
324 NFSERR_NOTDIR,
325 NFSERR_NOSPC,
326 NFSERR_ROFS,
327 NFSERR_NAMETOL,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_NOTSUPP,
332 NFSERR_SERVERFAULT,
333 0,
334 };
335
336 static short nfsv3err_symlink[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static short nfsv3err_mknod[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 NFSERR_BADTYPE,
368 0,
369 };
370
371 static short nfsv3err_remove[] = {
372 NFSERR_IO,
373 NFSERR_NOENT,
374 NFSERR_IO,
375 NFSERR_ACCES,
376 NFSERR_NOTDIR,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_STALE,
380 NFSERR_BADHANDLE,
381 NFSERR_SERVERFAULT,
382 0,
383 };
384
385 static short nfsv3err_rmdir[] = {
386 NFSERR_IO,
387 NFSERR_NOENT,
388 NFSERR_IO,
389 NFSERR_ACCES,
390 NFSERR_EXIST,
391 NFSERR_NOTDIR,
392 NFSERR_INVAL,
393 NFSERR_ROFS,
394 NFSERR_NAMETOL,
395 NFSERR_NOTEMPTY,
396 NFSERR_STALE,
397 NFSERR_BADHANDLE,
398 NFSERR_NOTSUPP,
399 NFSERR_SERVERFAULT,
400 0,
401 };
402
403 static short nfsv3err_rename[] = {
404 NFSERR_IO,
405 NFSERR_NOENT,
406 NFSERR_IO,
407 NFSERR_ACCES,
408 NFSERR_EXIST,
409 NFSERR_XDEV,
410 NFSERR_NOTDIR,
411 NFSERR_ISDIR,
412 NFSERR_INVAL,
413 NFSERR_NOSPC,
414 NFSERR_ROFS,
415 NFSERR_MLINK,
416 NFSERR_NAMETOL,
417 NFSERR_NOTEMPTY,
418 NFSERR_DQUOT,
419 NFSERR_STALE,
420 NFSERR_BADHANDLE,
421 NFSERR_NOTSUPP,
422 NFSERR_SERVERFAULT,
423 0,
424 };
425
426 static short nfsv3err_link[] = {
427 NFSERR_IO,
428 NFSERR_IO,
429 NFSERR_ACCES,
430 NFSERR_EXIST,
431 NFSERR_XDEV,
432 NFSERR_NOTDIR,
433 NFSERR_INVAL,
434 NFSERR_NOSPC,
435 NFSERR_ROFS,
436 NFSERR_MLINK,
437 NFSERR_NAMETOL,
438 NFSERR_DQUOT,
439 NFSERR_STALE,
440 NFSERR_BADHANDLE,
441 NFSERR_NOTSUPP,
442 NFSERR_SERVERFAULT,
443 0,
444 };
445
446 static short nfsv3err_readdir[] = {
447 NFSERR_IO,
448 NFSERR_IO,
449 NFSERR_ACCES,
450 NFSERR_NOTDIR,
451 NFSERR_STALE,
452 NFSERR_BADHANDLE,
453 NFSERR_BAD_COOKIE,
454 NFSERR_TOOSMALL,
455 NFSERR_SERVERFAULT,
456 0,
457 };
458
459 static short nfsv3err_readdirplus[] = {
460 NFSERR_IO,
461 NFSERR_IO,
462 NFSERR_ACCES,
463 NFSERR_NOTDIR,
464 NFSERR_STALE,
465 NFSERR_BADHANDLE,
466 NFSERR_BAD_COOKIE,
467 NFSERR_NOTSUPP,
468 NFSERR_TOOSMALL,
469 NFSERR_SERVERFAULT,
470 0,
471 };
472
473 static short nfsv3err_fsstat[] = {
474 NFSERR_IO,
475 NFSERR_IO,
476 NFSERR_STALE,
477 NFSERR_BADHANDLE,
478 NFSERR_SERVERFAULT,
479 0,
480 };
481
482 static short nfsv3err_fsinfo[] = {
483 NFSERR_STALE,
484 NFSERR_STALE,
485 NFSERR_BADHANDLE,
486 NFSERR_SERVERFAULT,
487 0,
488 };
489
490 static short nfsv3err_pathconf[] = {
491 NFSERR_STALE,
492 NFSERR_STALE,
493 NFSERR_BADHANDLE,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static short nfsv3err_commit[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_STALE,
502 NFSERR_BADHANDLE,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static short *nfsrv_v3errmap[] = {
508 nfsv3err_null,
509 nfsv3err_getattr,
510 nfsv3err_setattr,
511 nfsv3err_lookup,
512 nfsv3err_access,
513 nfsv3err_readlink,
514 nfsv3err_read,
515 nfsv3err_write,
516 nfsv3err_create,
517 nfsv3err_mkdir,
518 nfsv3err_symlink,
519 nfsv3err_mknod,
520 nfsv3err_remove,
521 nfsv3err_rmdir,
522 nfsv3err_rename,
523 nfsv3err_link,
524 nfsv3err_readdir,
525 nfsv3err_readdirplus,
526 nfsv3err_fsstat,
527 nfsv3err_fsinfo,
528 nfsv3err_pathconf,
529 nfsv3err_commit,
530 };
531
532 extern struct nfsrtt nfsrtt;
533 extern time_t nqnfsstarttime;
534 extern int nqsrv_clockskew;
535 extern int nqsrv_writeslack;
536 extern int nqsrv_maxlease;
537 extern int nqnfs_piggy[NFS_NPROCS];
538 extern struct nfsnodehashhead *nfsnodehashtbl;
539 extern u_long nfsnodehash;
540
541 LIST_HEAD(nfsnodehashhead, nfsnode);
542 u_long nfsdirhashmask;
543
544 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
545
546 /*
547 * Create the header for an rpc request packet
548 * The hsiz is the size of the rest of the nfs request header.
549 * (just used to decide if a cluster is a good idea)
550 */
551 struct mbuf *
552 nfsm_reqh(vp, procid, hsiz, bposp)
553 struct vnode *vp;
554 u_long procid;
555 int hsiz;
556 caddr_t *bposp;
557 {
558 struct mbuf *mb;
559 u_int32_t *tl;
560 caddr_t bpos;
561 struct mbuf *mb2;
562 struct nfsmount *nmp;
563 int nqflag;
564
565 MGET(mb, M_WAIT, MT_DATA);
566 if (hsiz >= MINCLSIZE)
567 MCLGET(mb, M_WAIT);
568 mb->m_len = 0;
569 bpos = mtod(mb, caddr_t);
570
571 /*
572 * For NQNFS, add lease request.
573 */
574 if (vp) {
575 nmp = VFSTONFS(vp->v_mount);
576 if (nmp->nm_flag & NFSMNT_NQNFS) {
577 nqflag = NQNFS_NEEDLEASE(vp, procid);
578 if (nqflag) {
579 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
580 *tl++ = txdr_unsigned(nqflag);
581 *tl = txdr_unsigned(nmp->nm_leaseterm);
582 } else {
583 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
584 *tl = 0;
585 }
586 }
587 }
588 /* Finally, return values */
589 *bposp = bpos;
590 return (mb);
591 }
592
593 /*
594 * Build the RPC header and fill in the authorization info.
595 * The authorization string argument is only used when the credentials
596 * come from outside of the kernel.
597 * Returns the head of the mbuf list.
598 */
599 struct mbuf *
600 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
601 verf_str, mrest, mrest_len, mbp, xidp)
602 struct ucred *cr;
603 int nmflag;
604 int procid;
605 int auth_type;
606 int auth_len;
607 char *auth_str;
608 int verf_len;
609 char *verf_str;
610 struct mbuf *mrest;
611 int mrest_len;
612 struct mbuf **mbp;
613 u_int32_t *xidp;
614 {
615 struct mbuf *mb;
616 u_int32_t *tl;
617 caddr_t bpos;
618 int i;
619 struct mbuf *mreq, *mb2;
620 int siz, grpsiz, authsiz;
621 struct timeval tv;
622 static u_int32_t base;
623
624 authsiz = nfsm_rndup(auth_len);
625 MGETHDR(mb, M_WAIT, MT_DATA);
626 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
627 MCLGET(mb, M_WAIT);
628 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
629 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
630 } else {
631 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
632 }
633 mb->m_len = 0;
634 mreq = mb;
635 bpos = mtod(mb, caddr_t);
636
637 /*
638 * First the RPC header.
639 */
640 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
641
642 /*
643 * derive initial xid from system time
644 * XXX time is invalid if root not yet mounted
645 */
646 if (!base && (rootvp)) {
647 microtime(&tv);
648 base = tv.tv_sec << 12;
649 nfs_xid = base;
650 }
651 /*
652 * Skip zero xid if it should ever happen.
653 */
654 if (++nfs_xid == 0)
655 nfs_xid++;
656
657 *tl++ = *xidp = txdr_unsigned(nfs_xid);
658 *tl++ = rpc_call;
659 *tl++ = rpc_vers;
660 if (nmflag & NFSMNT_NQNFS) {
661 *tl++ = txdr_unsigned(NQNFS_PROG);
662 *tl++ = txdr_unsigned(NQNFS_VER3);
663 } else {
664 *tl++ = txdr_unsigned(NFS_PROG);
665 if (nmflag & NFSMNT_NFSV3)
666 *tl++ = txdr_unsigned(NFS_VER3);
667 else
668 *tl++ = txdr_unsigned(NFS_VER2);
669 }
670 if (nmflag & NFSMNT_NFSV3)
671 *tl++ = txdr_unsigned(procid);
672 else
673 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
674
675 /*
676 * And then the authorization cred.
677 */
678 *tl++ = txdr_unsigned(auth_type);
679 *tl = txdr_unsigned(authsiz);
680 switch (auth_type) {
681 case RPCAUTH_UNIX:
682 nfsm_build(tl, u_int32_t *, auth_len);
683 *tl++ = 0; /* stamp ?? */
684 *tl++ = 0; /* NULL hostname */
685 *tl++ = txdr_unsigned(cr->cr_uid);
686 *tl++ = txdr_unsigned(cr->cr_gid);
687 grpsiz = (auth_len >> 2) - 5;
688 *tl++ = txdr_unsigned(grpsiz);
689 for (i = 0; i < grpsiz; i++)
690 *tl++ = txdr_unsigned(cr->cr_groups[i]);
691 break;
692 case RPCAUTH_KERB4:
693 siz = auth_len;
694 while (siz > 0) {
695 if (M_TRAILINGSPACE(mb) == 0) {
696 MGET(mb2, M_WAIT, MT_DATA);
697 if (siz >= MINCLSIZE)
698 MCLGET(mb2, M_WAIT);
699 mb->m_next = mb2;
700 mb = mb2;
701 mb->m_len = 0;
702 bpos = mtod(mb, caddr_t);
703 }
704 i = min(siz, M_TRAILINGSPACE(mb));
705 memcpy(bpos, auth_str, i);
706 mb->m_len += i;
707 auth_str += i;
708 bpos += i;
709 siz -= i;
710 }
711 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
712 for (i = 0; i < siz; i++)
713 *bpos++ = '\0';
714 mb->m_len += siz;
715 }
716 break;
717 };
718
719 /*
720 * And the verifier...
721 */
722 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
723 if (verf_str) {
724 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
725 *tl = txdr_unsigned(verf_len);
726 siz = verf_len;
727 while (siz > 0) {
728 if (M_TRAILINGSPACE(mb) == 0) {
729 MGET(mb2, M_WAIT, MT_DATA);
730 if (siz >= MINCLSIZE)
731 MCLGET(mb2, M_WAIT);
732 mb->m_next = mb2;
733 mb = mb2;
734 mb->m_len = 0;
735 bpos = mtod(mb, caddr_t);
736 }
737 i = min(siz, M_TRAILINGSPACE(mb));
738 memcpy(bpos, verf_str, i);
739 mb->m_len += i;
740 verf_str += i;
741 bpos += i;
742 siz -= i;
743 }
744 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
745 for (i = 0; i < siz; i++)
746 *bpos++ = '\0';
747 mb->m_len += siz;
748 }
749 } else {
750 *tl++ = txdr_unsigned(RPCAUTH_NULL);
751 *tl = 0;
752 }
753 mb->m_next = mrest;
754 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
755 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
756 *mbp = mb;
757 return (mreq);
758 }
759
760 /*
761 * copies mbuf chain to the uio scatter/gather list
762 */
763 int
764 nfsm_mbuftouio(mrep, uiop, siz, dpos)
765 struct mbuf **mrep;
766 struct uio *uiop;
767 int siz;
768 caddr_t *dpos;
769 {
770 char *mbufcp, *uiocp;
771 int xfer, left, len;
772 struct mbuf *mp;
773 long uiosiz, rem;
774 int error = 0;
775
776 mp = *mrep;
777 mbufcp = *dpos;
778 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
779 rem = nfsm_rndup(siz)-siz;
780 while (siz > 0) {
781 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
782 return (EFBIG);
783 left = uiop->uio_iov->iov_len;
784 uiocp = uiop->uio_iov->iov_base;
785 if (left > siz)
786 left = siz;
787 uiosiz = left;
788 while (left > 0) {
789 while (len == 0) {
790 mp = mp->m_next;
791 if (mp == NULL)
792 return (EBADRPC);
793 mbufcp = mtod(mp, caddr_t);
794 len = mp->m_len;
795 }
796 xfer = (left > len) ? len : left;
797 #ifdef notdef
798 /* Not Yet.. */
799 if (uiop->uio_iov->iov_op != NULL)
800 (*(uiop->uio_iov->iov_op))
801 (mbufcp, uiocp, xfer);
802 else
803 #endif
804 if (uiop->uio_segflg == UIO_SYSSPACE)
805 memcpy(uiocp, mbufcp, xfer);
806 else
807 copyout(mbufcp, uiocp, xfer);
808 left -= xfer;
809 len -= xfer;
810 mbufcp += xfer;
811 uiocp += xfer;
812 uiop->uio_offset += xfer;
813 uiop->uio_resid -= xfer;
814 }
815 if (uiop->uio_iov->iov_len <= siz) {
816 uiop->uio_iovcnt--;
817 uiop->uio_iov++;
818 } else {
819 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
820 uiop->uio_iov->iov_len -= uiosiz;
821 }
822 siz -= uiosiz;
823 }
824 *dpos = mbufcp;
825 *mrep = mp;
826 if (rem > 0) {
827 if (len < rem)
828 error = nfs_adv(mrep, dpos, rem, len);
829 else
830 *dpos += rem;
831 }
832 return (error);
833 }
834
835 /*
836 * copies a uio scatter/gather list to an mbuf chain.
837 * NOTE: can ony handle iovcnt == 1
838 */
839 int
840 nfsm_uiotombuf(uiop, mq, siz, bpos)
841 struct uio *uiop;
842 struct mbuf **mq;
843 int siz;
844 caddr_t *bpos;
845 {
846 char *uiocp;
847 struct mbuf *mp, *mp2;
848 int xfer, left, mlen;
849 int uiosiz, clflg, rem;
850 char *cp;
851
852 #ifdef DIAGNOSTIC
853 if (uiop->uio_iovcnt != 1)
854 panic("nfsm_uiotombuf: iovcnt != 1");
855 #endif
856
857 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
858 clflg = 1;
859 else
860 clflg = 0;
861 rem = nfsm_rndup(siz)-siz;
862 mp = mp2 = *mq;
863 while (siz > 0) {
864 left = uiop->uio_iov->iov_len;
865 uiocp = uiop->uio_iov->iov_base;
866 if (left > siz)
867 left = siz;
868 uiosiz = left;
869 while (left > 0) {
870 mlen = M_TRAILINGSPACE(mp);
871 if (mlen == 0) {
872 MGET(mp, M_WAIT, MT_DATA);
873 if (clflg)
874 MCLGET(mp, M_WAIT);
875 mp->m_len = 0;
876 mp2->m_next = mp;
877 mp2 = mp;
878 mlen = M_TRAILINGSPACE(mp);
879 }
880 xfer = (left > mlen) ? mlen : left;
881 #ifdef notdef
882 /* Not Yet.. */
883 if (uiop->uio_iov->iov_op != NULL)
884 (*(uiop->uio_iov->iov_op))
885 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
886 else
887 #endif
888 if (uiop->uio_segflg == UIO_SYSSPACE)
889 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
890 else
891 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
892 mp->m_len += xfer;
893 left -= xfer;
894 uiocp += xfer;
895 uiop->uio_offset += xfer;
896 uiop->uio_resid -= xfer;
897 }
898 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
899 uiop->uio_iov->iov_len -= uiosiz;
900 siz -= uiosiz;
901 }
902 if (rem > 0) {
903 if (rem > M_TRAILINGSPACE(mp)) {
904 MGET(mp, M_WAIT, MT_DATA);
905 mp->m_len = 0;
906 mp2->m_next = mp;
907 }
908 cp = mtod(mp, caddr_t)+mp->m_len;
909 for (left = 0; left < rem; left++)
910 *cp++ = '\0';
911 mp->m_len += rem;
912 *bpos = cp;
913 } else
914 *bpos = mtod(mp, caddr_t)+mp->m_len;
915 *mq = mp;
916 return (0);
917 }
918
919 /*
920 * Get at least "siz" bytes of correctly aligned data.
921 * When called the mbuf pointers are not necessarily correct,
922 * dsosp points to what ought to be in m_data and left contains
923 * what ought to be in m_len.
924 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
925 * cases. (The macros use the vars. dpos and dpos2)
926 */
927 int
928 nfsm_disct(mdp, dposp, siz, left, cp2)
929 struct mbuf **mdp;
930 caddr_t *dposp;
931 int siz;
932 int left;
933 caddr_t *cp2;
934 {
935 struct mbuf *m1, *m2;
936 struct mbuf *havebuf = NULL;
937 caddr_t src = *dposp;
938 caddr_t dst;
939 int len;
940
941 #ifdef DEBUG
942 if (left < 0)
943 panic("nfsm_disct: left < 0");
944 #endif
945 m1 = *mdp;
946 /*
947 * Skip through the mbuf chain looking for an mbuf with
948 * some data. If the first mbuf found has enough data
949 * and it is correctly aligned return it.
950 */
951 while (left == 0) {
952 havebuf = m1;
953 *mdp = m1 = m1->m_next;
954 if (m1 == NULL)
955 return (EBADRPC);
956 src = mtod(m1, caddr_t);
957 left = m1->m_len;
958 /*
959 * If we start a new mbuf and it is big enough
960 * and correctly aligned just return it, don't
961 * do any pull up.
962 */
963 if (left >= siz && nfsm_aligned(src)) {
964 *cp2 = src;
965 *dposp = src + siz;
966 return (0);
967 }
968 }
969 if (m1->m_flags & M_EXT) {
970 if (havebuf) {
971 /* If the first mbuf with data has external data
972 * and there is a previous empty mbuf use it
973 * to move the data into.
974 */
975 m2 = m1;
976 *mdp = m1 = havebuf;
977 if (m1->m_flags & M_EXT) {
978 MEXTREMOVE(m1);
979 }
980 } else {
981 /*
982 * If the first mbuf has a external data
983 * and there is no previous empty mbuf
984 * allocate a new mbuf and move the external
985 * data to the new mbuf. Also make the first
986 * mbuf look empty.
987 */
988 m2 = m_get(M_WAIT, MT_DATA);
989 m2->m_ext = m1->m_ext;
990 m2->m_data = src;
991 m2->m_len = left;
992 MCLADDREFERENCE(m1, m2);
993 MEXTREMOVE(m1);
994 m2->m_next = m1->m_next;
995 m1->m_next = m2;
996 }
997 m1->m_len = 0;
998 dst = m1->m_dat;
999 } else {
1000 /*
1001 * If the first mbuf has no external data
1002 * move the data to the front of the mbuf.
1003 */
1004 if ((dst = m1->m_dat) != src)
1005 memmove(dst, src, left);
1006 dst += left;
1007 m1->m_len = left;
1008 m2 = m1->m_next;
1009 }
1010 m1->m_flags &= ~M_PKTHDR;
1011 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1012 *dposp = mtod(m1, caddr_t) + siz;
1013 /*
1014 * Loop through mbufs pulling data up into first mbuf until
1015 * the first mbuf is full or there is no more data to
1016 * pullup.
1017 */
1018 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1019 if ((len = min(len, m2->m_len)) != 0)
1020 memcpy(dst, m2->m_data, len);
1021 m1->m_len += len;
1022 dst += len;
1023 m2->m_data += len;
1024 m2->m_len -= len;
1025 m2 = m2->m_next;
1026 }
1027 if (m1->m_len < siz)
1028 return (EBADRPC);
1029 return (0);
1030 }
1031
1032 /*
1033 * Advance the position in the mbuf chain.
1034 */
1035 int
1036 nfs_adv(mdp, dposp, offs, left)
1037 struct mbuf **mdp;
1038 caddr_t *dposp;
1039 int offs;
1040 int left;
1041 {
1042 struct mbuf *m;
1043 int s;
1044
1045 m = *mdp;
1046 s = left;
1047 while (s < offs) {
1048 offs -= s;
1049 m = m->m_next;
1050 if (m == NULL)
1051 return (EBADRPC);
1052 s = m->m_len;
1053 }
1054 *mdp = m;
1055 *dposp = mtod(m, caddr_t)+offs;
1056 return (0);
1057 }
1058
1059 /*
1060 * Copy a string into mbufs for the hard cases...
1061 */
1062 int
1063 nfsm_strtmbuf(mb, bpos, cp, siz)
1064 struct mbuf **mb;
1065 char **bpos;
1066 const char *cp;
1067 long siz;
1068 {
1069 struct mbuf *m1 = NULL, *m2;
1070 long left, xfer, len, tlen;
1071 u_int32_t *tl;
1072 int putsize;
1073
1074 putsize = 1;
1075 m2 = *mb;
1076 left = M_TRAILINGSPACE(m2);
1077 if (left > 0) {
1078 tl = ((u_int32_t *)(*bpos));
1079 *tl++ = txdr_unsigned(siz);
1080 putsize = 0;
1081 left -= NFSX_UNSIGNED;
1082 m2->m_len += NFSX_UNSIGNED;
1083 if (left > 0) {
1084 memcpy((caddr_t) tl, cp, left);
1085 siz -= left;
1086 cp += left;
1087 m2->m_len += left;
1088 left = 0;
1089 }
1090 }
1091 /* Loop around adding mbufs */
1092 while (siz > 0) {
1093 MGET(m1, M_WAIT, MT_DATA);
1094 if (siz > MLEN)
1095 MCLGET(m1, M_WAIT);
1096 m1->m_len = NFSMSIZ(m1);
1097 m2->m_next = m1;
1098 m2 = m1;
1099 tl = mtod(m1, u_int32_t *);
1100 tlen = 0;
1101 if (putsize) {
1102 *tl++ = txdr_unsigned(siz);
1103 m1->m_len -= NFSX_UNSIGNED;
1104 tlen = NFSX_UNSIGNED;
1105 putsize = 0;
1106 }
1107 if (siz < m1->m_len) {
1108 len = nfsm_rndup(siz);
1109 xfer = siz;
1110 if (xfer < len)
1111 *(tl+(xfer>>2)) = 0;
1112 } else {
1113 xfer = len = m1->m_len;
1114 }
1115 memcpy((caddr_t) tl, cp, xfer);
1116 m1->m_len = len+tlen;
1117 siz -= xfer;
1118 cp += xfer;
1119 }
1120 *mb = m1;
1121 *bpos = mtod(m1, caddr_t)+m1->m_len;
1122 return (0);
1123 }
1124
1125 /*
1126 * Directory caching routines. They work as follows:
1127 * - a cache is maintained per VDIR nfsnode.
1128 * - for each offset cookie that is exported to userspace, and can
1129 * thus be thrown back at us as an offset to VOP_READDIR, store
1130 * information in the cache.
1131 * - cached are:
1132 * - cookie itself
1133 * - blocknumber (essentially just a search key in the buffer cache)
1134 * - entry number in block.
1135 * - offset cookie of block in which this entry is stored
1136 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1137 * - entries are looked up in a hash table
1138 * - also maintained is an LRU list of entries, used to determine
1139 * which ones to delete if the cache grows too large.
1140 * - if 32 <-> 64 translation mode is requested for a filesystem,
1141 * the cache also functions as a translation table
1142 * - in the translation case, invalidating the cache does not mean
1143 * flushing it, but just marking entries as invalid, except for
1144 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1145 * still be able to use the cache as a translation table.
1146 * - 32 bit cookies are uniquely created by combining the hash table
1147 * entry value, and one generation count per hash table entry,
1148 * incremented each time an entry is appended to the chain.
1149 * - the cache is invalidated each time a direcory is modified
1150 * - sanity checks are also done; if an entry in a block turns
1151 * out not to have a matching cookie, the cache is invalidated
1152 * and a new block starting from the wanted offset is fetched from
1153 * the server.
1154 * - directory entries as read from the server are extended to contain
1155 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1156 * the cache and exporting them to userspace through the cookie
1157 * argument to VOP_READDIR.
1158 */
1159
1160 u_long
1161 nfs_dirhash(off)
1162 off_t off;
1163 {
1164 int i;
1165 char *cp = (char *)&off;
1166 u_long sum = 0L;
1167
1168 for (i = 0 ; i < sizeof (off); i++)
1169 sum += *cp++;
1170
1171 return sum;
1172 }
1173
1174 void
1175 nfs_initdircache(vp)
1176 struct vnode *vp;
1177 {
1178 struct nfsnode *np = VTONFS(vp);
1179 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1180
1181 np->n_dircachesize = 0;
1182 np->n_dblkno = 1;
1183 np->n_dircache =
1184 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
1185 TAILQ_INIT(&np->n_dirchain);
1186 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1187 MALLOC(np->n_dirgens, unsigned *,
1188 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1189 M_WAITOK);
1190 memset((caddr_t)np->n_dirgens, 0,
1191 NFS_DIRHASHSIZ * sizeof (unsigned));
1192 }
1193 }
1194
1195 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1196
1197 struct nfsdircache *
1198 nfs_searchdircache(vp, off, do32, hashent)
1199 struct vnode *vp;
1200 off_t off;
1201 int do32;
1202 int *hashent;
1203 {
1204 struct nfsdirhashhead *ndhp;
1205 struct nfsdircache *ndp = NULL;
1206 struct nfsnode *np = VTONFS(vp);
1207 unsigned ent;
1208
1209 /*
1210 * Zero is always a valid cookie.
1211 */
1212 if (off == 0)
1213 return &dzero;
1214
1215 /*
1216 * We use a 32bit cookie as search key, directly reconstruct
1217 * the hashentry. Else use the hashfunction.
1218 */
1219 if (do32) {
1220 ent = (u_int32_t)off >> 24;
1221 if (ent >= NFS_DIRHASHSIZ)
1222 return NULL;
1223 ndhp = &np->n_dircache[ent];
1224 } else {
1225 ndhp = NFSDIRHASH(np, off);
1226 }
1227
1228 if (hashent)
1229 *hashent = (int)(ndhp - np->n_dircache);
1230 if (do32) {
1231 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1232 if (ndp->dc_cookie32 == (u_int32_t)off) {
1233 /*
1234 * An invalidated entry will become the
1235 * start of a new block fetched from
1236 * the server.
1237 */
1238 if (ndp->dc_blkno == -1) {
1239 ndp->dc_blkcookie = ndp->dc_cookie;
1240 ndp->dc_blkno = np->n_dblkno++;
1241 ndp->dc_entry = 0;
1242 }
1243 break;
1244 }
1245 }
1246 } else {
1247 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1248 if (ndp->dc_cookie == off)
1249 break;
1250 }
1251 return ndp;
1252 }
1253
1254
1255 struct nfsdircache *
1256 nfs_enterdircache(vp, off, blkoff, en, blkno)
1257 struct vnode *vp;
1258 off_t off, blkoff;
1259 daddr_t blkno;
1260 int en;
1261 {
1262 struct nfsnode *np = VTONFS(vp);
1263 struct nfsdirhashhead *ndhp;
1264 struct nfsdircache *ndp = NULL, *first;
1265 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1266 int hashent, gen, overwrite;
1267
1268 if (!np->n_dircache)
1269 /*
1270 * XXX would like to do this in nfs_nget but vtype
1271 * isn't known at that time.
1272 */
1273 nfs_initdircache(vp);
1274
1275 /*
1276 * XXX refuse entries for offset 0. amd(8) erroneously sets
1277 * cookie 0 for the '.' entry, making this necessary. This
1278 * isn't so bad, as 0 is a special case anyway.
1279 */
1280 if (off == 0)
1281 return &dzero;
1282
1283 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1284
1285 if (ndp && ndp->dc_blkno != -1) {
1286 /*
1287 * Overwriting an old entry. Check if it's the same.
1288 * If so, just return. If not, remove the old entry.
1289 */
1290 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1291 return ndp;
1292 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1293 LIST_REMOVE(ndp, dc_hash);
1294 FREE(ndp, M_NFSDIROFF);
1295 ndp = 0;
1296 }
1297
1298 ndhp = &np->n_dircache[hashent];
1299
1300 if (!ndp) {
1301 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1302 M_WAITOK);
1303 overwrite = 0;
1304 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1305 /*
1306 * We're allocating a new entry, so bump the
1307 * generation number.
1308 */
1309 gen = ++np->n_dirgens[hashent];
1310 if (gen == 0) {
1311 np->n_dirgens[hashent]++;
1312 gen++;
1313 }
1314 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1315 }
1316 } else
1317 overwrite = 1;
1318
1319 /*
1320 * If the entry number is 0, we are at the start of a new block, so
1321 * allocate a new blocknumber.
1322 */
1323 if (en == 0)
1324 ndp->dc_blkno = np->n_dblkno++;
1325 else
1326 ndp->dc_blkno = blkno;
1327
1328 ndp->dc_cookie = off;
1329 ndp->dc_blkcookie = blkoff;
1330 ndp->dc_entry = en;
1331
1332 if (overwrite)
1333 return ndp;
1334
1335 /*
1336 * If the maximum directory cookie cache size has been reached
1337 * for this node, take one off the front. The idea is that
1338 * directories are typically read front-to-back once, so that
1339 * the oldest entries can be thrown away without much performance
1340 * loss.
1341 */
1342 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1343 first = np->n_dirchain.tqh_first;
1344 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1345 LIST_REMOVE(first, dc_hash);
1346 FREE(first, M_NFSDIROFF);
1347 } else
1348 np->n_dircachesize++;
1349
1350 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1351 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1352 return ndp;
1353 }
1354
1355 void
1356 nfs_invaldircache(vp, forcefree)
1357 struct vnode *vp;
1358 int forcefree;
1359 {
1360 struct nfsnode *np = VTONFS(vp);
1361 struct nfsdircache *ndp = NULL;
1362 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1363
1364 #ifdef DIAGNOSTIC
1365 if (vp->v_type != VDIR)
1366 panic("nfs: invaldircache: not dir");
1367 #endif
1368
1369 if (!np->n_dircache)
1370 return;
1371
1372 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1373 while ((ndp = np->n_dirchain.tqh_first)) {
1374 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1375 LIST_REMOVE(ndp, dc_hash);
1376 FREE(ndp, M_NFSDIROFF);
1377 }
1378 np->n_dircachesize = 0;
1379 if (forcefree && np->n_dirgens) {
1380 FREE(np->n_dirgens, M_NFSDIROFF);
1381 }
1382 } else {
1383 for (ndp = np->n_dirchain.tqh_first; ndp;
1384 ndp = ndp->dc_chain.tqe_next)
1385 ndp->dc_blkno = -1;
1386 }
1387
1388 np->n_dblkno = 1;
1389 }
1390
1391 /*
1392 * Called once before VFS init to initialize shared and
1393 * server-specific data structures.
1394 */
1395 void
1396 nfs_init()
1397 {
1398
1399 #if !defined(alpha) && !defined(_LP64) && defined(DIAGNOSTIC)
1400 /*
1401 * Check to see if major data structures haven't bloated.
1402 */
1403 if (sizeof (struct nfsnode) > NFS_NODEALLOC) {
1404 printf("struct nfsnode bloated (> %dbytes)\n", NFS_NODEALLOC);
1405 printf("Try reducing NFS_SMALLFH\n");
1406 }
1407 if (sizeof (struct nfssvc_sock) > NFS_SVCALLOC) {
1408 printf("struct nfssvc_sock bloated (> %dbytes)\n",NFS_SVCALLOC);
1409 printf("Try reducing NFS_UIDHASHSIZ\n");
1410 }
1411 if (sizeof (struct nfsuid) > NFS_UIDALLOC) {
1412 printf("struct nfsuid bloated (> %dbytes)\n",NFS_UIDALLOC);
1413 printf("Try unionizing the nu_nickname and nu_flag fields\n");
1414 }
1415 #endif
1416
1417 nfsrtt.pos = 0;
1418 rpc_vers = txdr_unsigned(RPC_VER2);
1419 rpc_call = txdr_unsigned(RPC_CALL);
1420 rpc_reply = txdr_unsigned(RPC_REPLY);
1421 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1422 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1423 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1424 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1425 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1426 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1427 nfs_prog = txdr_unsigned(NFS_PROG);
1428 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1429 nfs_true = txdr_unsigned(TRUE);
1430 nfs_false = txdr_unsigned(FALSE);
1431 nfs_xdrneg1 = txdr_unsigned(-1);
1432 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1433 if (nfs_ticks < 1)
1434 nfs_ticks = 1;
1435 #ifdef NFSSERVER
1436 nfsrv_init(0); /* Init server data structures */
1437 nfsrv_initcache(); /* Init the server request cache */
1438 #endif /* NFSSERVER */
1439
1440 /*
1441 * Initialize the nqnfs data structures.
1442 */
1443 if (nqnfsstarttime == 0) {
1444 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1445 + nqsrv_clockskew + nqsrv_writeslack;
1446 NQLOADNOVRAM(nqnfsstarttime);
1447 CIRCLEQ_INIT(&nqtimerhead);
1448 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
1449 }
1450
1451 /*
1452 * Initialize reply list and start timer
1453 */
1454 TAILQ_INIT(&nfs_reqq);
1455 nfs_timer(NULL);
1456 }
1457
1458 #ifdef NFS
1459 /*
1460 * Called once at VFS init to initialize client-specific data structures.
1461 */
1462 void
1463 nfs_vfs_init()
1464 {
1465 int i;
1466
1467 /* Ensure async daemons disabled */
1468 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1469 nfs_iodwant[i] = (struct proc *)0;
1470 nfs_iodmount[i] = (struct nfsmount *)0;
1471 }
1472 nfs_nhinit(); /* Init the nfsnode table */
1473 }
1474
1475 void
1476 nfs_vfs_done()
1477 {
1478 nfs_nhdone();
1479 }
1480
1481 /*
1482 * Attribute cache routines.
1483 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1484 * that are on the mbuf list
1485 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1486 * error otherwise
1487 */
1488
1489 /*
1490 * Load the attribute cache (that lives in the nfsnode entry) with
1491 * the values on the mbuf list and
1492 * Iff vap not NULL
1493 * copy the attributes to *vaper
1494 */
1495 int
1496 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1497 struct vnode **vpp;
1498 struct mbuf **mdp;
1499 caddr_t *dposp;
1500 struct vattr *vaper;
1501 {
1502 int32_t t1;
1503 caddr_t cp2;
1504 int error = 0;
1505 struct mbuf *md;
1506 int v3 = NFS_ISV3(*vpp);
1507
1508 md = *mdp;
1509 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1510 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1511 if (error)
1512 return (error);
1513 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1514 }
1515
1516 int
1517 nfs_loadattrcache(vpp, fp, vaper)
1518 struct vnode **vpp;
1519 struct nfs_fattr *fp;
1520 struct vattr *vaper;
1521 {
1522 struct vnode *vp = *vpp;
1523 struct vattr *vap;
1524 int v3 = NFS_ISV3(vp);
1525 enum vtype vtyp;
1526 u_short vmode;
1527 struct timespec mtime;
1528 struct vnode *nvp;
1529 int32_t rdev;
1530 struct nfsnode *np;
1531 extern int (**spec_nfsv2nodeop_p) __P((void *));
1532
1533 if (v3) {
1534 vtyp = nfsv3tov_type(fp->fa_type);
1535 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1536 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1537 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1538 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1539 } else {
1540 vtyp = nfsv2tov_type(fp->fa_type);
1541 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1542 if (vtyp == VNON || vtyp == VREG)
1543 vtyp = IFTOVT(vmode);
1544 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1545 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1546
1547 /*
1548 * Really ugly NFSv2 kludge.
1549 */
1550 if (vtyp == VCHR && rdev == 0xffffffff)
1551 vtyp = VFIFO;
1552 }
1553
1554 /*
1555 * If v_type == VNON it is a new node, so fill in the v_type,
1556 * n_mtime fields. Check to see if it represents a special
1557 * device, and if so, check for a possible alias. Once the
1558 * correct vnode has been obtained, fill in the rest of the
1559 * information.
1560 */
1561 np = VTONFS(vp);
1562 if (vp->v_type != vtyp) {
1563 vp->v_type = vtyp;
1564 if (vp->v_type == VFIFO) {
1565 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1566 vp->v_op = fifo_nfsv2nodeop_p;
1567 }
1568 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1569 vp->v_op = spec_nfsv2nodeop_p;
1570 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1571 if (nvp) {
1572 /*
1573 * Discard unneeded vnode, but save its nfsnode.
1574 * Since the nfsnode does not have a lock, its
1575 * vnode lock has to be carried over.
1576 */
1577 nvp->v_data = vp->v_data;
1578 vp->v_data = NULL;
1579 vp->v_op = spec_vnodeop_p;
1580 vput(vp);
1581 vgone(vp);
1582 /*
1583 * XXX When nfs starts locking, we need to
1584 * lock the new node here.
1585 */
1586 /*
1587 * Reinitialize aliased node.
1588 */
1589 np->n_vnode = nvp;
1590 *vpp = vp = nvp;
1591 }
1592 }
1593 np->n_mtime = mtime.tv_sec;
1594 }
1595 vap = np->n_vattr;
1596 vap->va_type = vtyp;
1597 vap->va_mode = vmode & ALLPERMS;
1598 vap->va_rdev = (dev_t)rdev;
1599 vap->va_mtime = mtime;
1600 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1601 switch (vtyp) {
1602 case VDIR:
1603 vap->va_blocksize = NFS_DIRFRAGSIZ;
1604 break;
1605 case VBLK:
1606 vap->va_blocksize = BLKDEV_IOSIZE;
1607 break;
1608 case VCHR:
1609 vap->va_blocksize = MAXBSIZE;
1610 break;
1611 default:
1612 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1613 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1614 break;
1615 }
1616 if (v3) {
1617 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1618 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1619 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1620 vap->va_size = fxdr_hyper(&fp->fa3_size);
1621 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1622 vap->va_fileid = fxdr_unsigned(int32_t,
1623 fp->fa3_fileid.nfsuquad[1]);
1624 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1625 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1626 vap->va_flags = 0;
1627 vap->va_filerev = 0;
1628 } else {
1629 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1630 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1631 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1632 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1633 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1634 * NFS_FABLKSIZE;
1635 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1636 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1637 vap->va_flags = 0;
1638 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1639 fp->fa2_ctime.nfsv2_sec);
1640 vap->va_ctime.tv_nsec = 0;
1641 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1642 vap->va_filerev = 0;
1643 }
1644 if (vap->va_size != np->n_size) {
1645 if (vap->va_type == VREG) {
1646 if (np->n_flag & NMODIFIED) {
1647 if (vap->va_size < np->n_size)
1648 vap->va_size = np->n_size;
1649 else
1650 np->n_size = vap->va_size;
1651 } else
1652 np->n_size = vap->va_size;
1653 uvm_vnp_setsize(vp, np->n_size);
1654 } else
1655 np->n_size = vap->va_size;
1656 }
1657 np->n_attrstamp = time.tv_sec;
1658 if (vaper != NULL) {
1659 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1660 if (np->n_flag & NCHG) {
1661 if (np->n_flag & NACC)
1662 vaper->va_atime = np->n_atim;
1663 if (np->n_flag & NUPD)
1664 vaper->va_mtime = np->n_mtim;
1665 }
1666 }
1667 return (0);
1668 }
1669
1670 /*
1671 * Check the time stamp
1672 * If the cache is valid, copy contents to *vap and return 0
1673 * otherwise return an error
1674 */
1675 int
1676 nfs_getattrcache(vp, vaper)
1677 struct vnode *vp;
1678 struct vattr *vaper;
1679 {
1680 struct nfsnode *np = VTONFS(vp);
1681 struct vattr *vap;
1682
1683 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1684 nfsstats.attrcache_misses++;
1685 return (ENOENT);
1686 }
1687 nfsstats.attrcache_hits++;
1688 vap = np->n_vattr;
1689 if (vap->va_size != np->n_size) {
1690 if (vap->va_type == VREG) {
1691 if (np->n_flag & NMODIFIED) {
1692 if (vap->va_size < np->n_size)
1693 vap->va_size = np->n_size;
1694 else
1695 np->n_size = vap->va_size;
1696 } else
1697 np->n_size = vap->va_size;
1698 uvm_vnp_setsize(vp, np->n_size);
1699 } else
1700 np->n_size = vap->va_size;
1701 }
1702 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1703 if (np->n_flag & NCHG) {
1704 if (np->n_flag & NACC)
1705 vaper->va_atime = np->n_atim;
1706 if (np->n_flag & NUPD)
1707 vaper->va_mtime = np->n_mtim;
1708 }
1709 return (0);
1710 }
1711
1712 /*
1713 * Heuristic to see if the server XDR encodes directory cookies or not.
1714 * it is not supposed to, but a lot of servers may do this. Also, since
1715 * most/all servers will implement V2 as well, it is expected that they
1716 * may return just 32 bits worth of cookie information, so we need to
1717 * find out in which 32 bits this information is available. We do this
1718 * to avoid trouble with emulated binaries that can't handle 64 bit
1719 * directory offsets.
1720 */
1721
1722 void
1723 nfs_cookieheuristic(vp, flagp, p, cred)
1724 struct vnode *vp;
1725 int *flagp;
1726 struct proc *p;
1727 struct ucred *cred;
1728 {
1729 struct uio auio;
1730 struct iovec aiov;
1731 caddr_t buf, cp;
1732 struct dirent *dp;
1733 off_t *cookies = NULL, *cop;
1734 int error, eof, nc, len;
1735
1736 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1737
1738 aiov.iov_base = buf;
1739 aiov.iov_len = NFS_DIRFRAGSIZ;
1740 auio.uio_iov = &aiov;
1741 auio.uio_iovcnt = 1;
1742 auio.uio_rw = UIO_READ;
1743 auio.uio_segflg = UIO_SYSSPACE;
1744 auio.uio_procp = p;
1745 auio.uio_resid = NFS_DIRFRAGSIZ;
1746 auio.uio_offset = 0;
1747
1748 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1749
1750 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1751 if (error || len == 0) {
1752 FREE(buf, M_TEMP);
1753 if (cookies)
1754 free(cookies, M_TEMP);
1755 return;
1756 }
1757
1758 /*
1759 * Find the first valid entry and look at its offset cookie.
1760 */
1761
1762 cp = buf;
1763 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1764 dp = (struct dirent *)cp;
1765 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1766 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1767 *flagp |= NFSMNT_SWAPCOOKIE;
1768 nfs_invaldircache(vp, 0);
1769 nfs_vinvalbuf(vp, 0, cred, p, 1);
1770 }
1771 break;
1772 }
1773 cop++;
1774 cp += dp->d_reclen;
1775 }
1776
1777 FREE(buf, M_TEMP);
1778 free(cookies, M_TEMP);
1779 }
1780 #endif /* NFS */
1781
1782 /*
1783 * Set up nameidata for a lookup() call and do it.
1784 *
1785 * If pubflag is set, this call is done for a lookup operation on the
1786 * public filehandle. In that case we allow crossing mountpoints and
1787 * absolute pathnames. However, the caller is expected to check that
1788 * the lookup result is within the public fs, and deny access if
1789 * it is not.
1790 */
1791 int
1792 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1793 struct nameidata *ndp;
1794 fhandle_t *fhp;
1795 int len;
1796 struct nfssvc_sock *slp;
1797 struct mbuf *nam;
1798 struct mbuf **mdp;
1799 caddr_t *dposp;
1800 struct vnode **retdirp;
1801 struct proc *p;
1802 int kerbflag, pubflag;
1803 {
1804 int i, rem;
1805 struct mbuf *md;
1806 char *fromcp, *tocp, *cp;
1807 struct iovec aiov;
1808 struct uio auio;
1809 struct vnode *dp;
1810 int error, rdonly, linklen;
1811 struct componentname *cnp = &ndp->ni_cnd;
1812
1813 *retdirp = (struct vnode *)0;
1814
1815 if ((len + 1) > MAXPATHLEN)
1816 return (ENAMETOOLONG);
1817 cnp->cn_pnbuf = PNBUF_GET();
1818
1819 /*
1820 * Copy the name from the mbuf list to ndp->ni_pnbuf
1821 * and set the various ndp fields appropriately.
1822 */
1823 fromcp = *dposp;
1824 tocp = cnp->cn_pnbuf;
1825 md = *mdp;
1826 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1827 for (i = 0; i < len; i++) {
1828 while (rem == 0) {
1829 md = md->m_next;
1830 if (md == NULL) {
1831 error = EBADRPC;
1832 goto out;
1833 }
1834 fromcp = mtod(md, caddr_t);
1835 rem = md->m_len;
1836 }
1837 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1838 error = EACCES;
1839 goto out;
1840 }
1841 *tocp++ = *fromcp++;
1842 rem--;
1843 }
1844 *tocp = '\0';
1845 *mdp = md;
1846 *dposp = fromcp;
1847 len = nfsm_rndup(len)-len;
1848 if (len > 0) {
1849 if (rem >= len)
1850 *dposp += len;
1851 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1852 goto out;
1853 }
1854
1855 /*
1856 * Extract and set starting directory.
1857 */
1858 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1859 nam, &rdonly, kerbflag, pubflag);
1860 if (error)
1861 goto out;
1862 if (dp->v_type != VDIR) {
1863 vrele(dp);
1864 error = ENOTDIR;
1865 goto out;
1866 }
1867
1868 if (rdonly)
1869 cnp->cn_flags |= RDONLY;
1870
1871 *retdirp = dp;
1872
1873 if (pubflag) {
1874 /*
1875 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1876 * and the 'native path' indicator.
1877 */
1878 cp = PNBUF_GET();
1879 fromcp = cnp->cn_pnbuf;
1880 tocp = cp;
1881 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1882 switch ((unsigned char)*fromcp) {
1883 case WEBNFS_NATIVE_CHAR:
1884 /*
1885 * 'Native' path for us is the same
1886 * as a path according to the NFS spec,
1887 * just skip the escape char.
1888 */
1889 fromcp++;
1890 break;
1891 /*
1892 * More may be added in the future, range 0x80-0xff
1893 */
1894 default:
1895 error = EIO;
1896 FREE(cp, M_NAMEI);
1897 goto out;
1898 }
1899 }
1900 /*
1901 * Translate the '%' escapes, URL-style.
1902 */
1903 while (*fromcp != '\0') {
1904 if (*fromcp == WEBNFS_ESC_CHAR) {
1905 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1906 fromcp++;
1907 *tocp++ = HEXSTRTOI(fromcp);
1908 fromcp += 2;
1909 continue;
1910 } else {
1911 error = ENOENT;
1912 FREE(cp, M_NAMEI);
1913 goto out;
1914 }
1915 } else
1916 *tocp++ = *fromcp++;
1917 }
1918 *tocp = '\0';
1919 PNBUF_PUT(cnp->cn_pnbuf);
1920 cnp->cn_pnbuf = cp;
1921 }
1922
1923 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1924 ndp->ni_segflg = UIO_SYSSPACE;
1925
1926 if (pubflag) {
1927 ndp->ni_rootdir = rootvnode;
1928 ndp->ni_loopcnt = 0;
1929 if (cnp->cn_pnbuf[0] == '/')
1930 dp = rootvnode;
1931 } else {
1932 cnp->cn_flags |= NOCROSSMOUNT;
1933 }
1934
1935 cnp->cn_proc = p;
1936 VREF(dp);
1937
1938 for (;;) {
1939 cnp->cn_nameptr = cnp->cn_pnbuf;
1940 ndp->ni_startdir = dp;
1941 /*
1942 * And call lookup() to do the real work
1943 */
1944 error = lookup(ndp);
1945 if (error)
1946 break;
1947 /*
1948 * Check for encountering a symbolic link
1949 */
1950 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1951 if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1952 cnp->cn_flags |= HASBUF;
1953 return (0);
1954 }
1955 break;
1956 } else {
1957 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1958 VOP_UNLOCK(ndp->ni_dvp, 0);
1959 if (!pubflag) {
1960 vrele(ndp->ni_dvp);
1961 vput(ndp->ni_vp);
1962 ndp->ni_vp = NULL;
1963 error = EINVAL;
1964 break;
1965 }
1966
1967 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1968 error = ELOOP;
1969 break;
1970 }
1971 if (ndp->ni_pathlen > 1)
1972 cp = PNBUF_GET();
1973 else
1974 cp = cnp->cn_pnbuf;
1975 aiov.iov_base = cp;
1976 aiov.iov_len = MAXPATHLEN;
1977 auio.uio_iov = &aiov;
1978 auio.uio_iovcnt = 1;
1979 auio.uio_offset = 0;
1980 auio.uio_rw = UIO_READ;
1981 auio.uio_segflg = UIO_SYSSPACE;
1982 auio.uio_procp = (struct proc *)0;
1983 auio.uio_resid = MAXPATHLEN;
1984 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
1985 if (error) {
1986 badlink:
1987 if (ndp->ni_pathlen > 1)
1988 PNBUF_PUT(cp);
1989 break;
1990 }
1991 linklen = MAXPATHLEN - auio.uio_resid;
1992 if (linklen == 0) {
1993 error = ENOENT;
1994 goto badlink;
1995 }
1996 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
1997 error = ENAMETOOLONG;
1998 goto badlink;
1999 }
2000 if (ndp->ni_pathlen > 1) {
2001 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2002 PNBUF_PUT(cnp->cn_pnbuf);
2003 cnp->cn_pnbuf = cp;
2004 } else
2005 cnp->cn_pnbuf[linklen] = '\0';
2006 ndp->ni_pathlen += linklen;
2007 vput(ndp->ni_vp);
2008 dp = ndp->ni_dvp;
2009 /*
2010 * Check if root directory should replace current directory.
2011 */
2012 if (cnp->cn_pnbuf[0] == '/') {
2013 vrele(dp);
2014 dp = ndp->ni_rootdir;
2015 VREF(dp);
2016 }
2017 }
2018 }
2019 out:
2020 PNBUF_PUT(cnp->cn_pnbuf);
2021 return (error);
2022 }
2023
2024 /*
2025 * A fiddled version of m_adj() that ensures null fill to a long
2026 * boundary and only trims off the back end
2027 */
2028 void
2029 nfsm_adj(mp, len, nul)
2030 struct mbuf *mp;
2031 int len;
2032 int nul;
2033 {
2034 struct mbuf *m;
2035 int count, i;
2036 char *cp;
2037
2038 /*
2039 * Trim from tail. Scan the mbuf chain,
2040 * calculating its length and finding the last mbuf.
2041 * If the adjustment only affects this mbuf, then just
2042 * adjust and return. Otherwise, rescan and truncate
2043 * after the remaining size.
2044 */
2045 count = 0;
2046 m = mp;
2047 for (;;) {
2048 count += m->m_len;
2049 if (m->m_next == (struct mbuf *)0)
2050 break;
2051 m = m->m_next;
2052 }
2053 if (m->m_len > len) {
2054 m->m_len -= len;
2055 if (nul > 0) {
2056 cp = mtod(m, caddr_t)+m->m_len-nul;
2057 for (i = 0; i < nul; i++)
2058 *cp++ = '\0';
2059 }
2060 return;
2061 }
2062 count -= len;
2063 if (count < 0)
2064 count = 0;
2065 /*
2066 * Correct length for chain is "count".
2067 * Find the mbuf with last data, adjust its length,
2068 * and toss data from remaining mbufs on chain.
2069 */
2070 for (m = mp; m; m = m->m_next) {
2071 if (m->m_len >= count) {
2072 m->m_len = count;
2073 if (nul > 0) {
2074 cp = mtod(m, caddr_t)+m->m_len-nul;
2075 for (i = 0; i < nul; i++)
2076 *cp++ = '\0';
2077 }
2078 break;
2079 }
2080 count -= m->m_len;
2081 }
2082 for (m = m->m_next;m;m = m->m_next)
2083 m->m_len = 0;
2084 }
2085
2086 /*
2087 * Make these functions instead of macros, so that the kernel text size
2088 * doesn't get too big...
2089 */
2090 void
2091 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2092 struct nfsrv_descript *nfsd;
2093 int before_ret;
2094 struct vattr *before_vap;
2095 int after_ret;
2096 struct vattr *after_vap;
2097 struct mbuf **mbp;
2098 char **bposp;
2099 {
2100 struct mbuf *mb = *mbp, *mb2;
2101 char *bpos = *bposp;
2102 u_int32_t *tl;
2103
2104 if (before_ret) {
2105 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2106 *tl = nfs_false;
2107 } else {
2108 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2109 *tl++ = nfs_true;
2110 txdr_hyper(before_vap->va_size, tl);
2111 tl += 2;
2112 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2113 tl += 2;
2114 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2115 }
2116 *bposp = bpos;
2117 *mbp = mb;
2118 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2119 }
2120
2121 void
2122 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2123 struct nfsrv_descript *nfsd;
2124 int after_ret;
2125 struct vattr *after_vap;
2126 struct mbuf **mbp;
2127 char **bposp;
2128 {
2129 struct mbuf *mb = *mbp, *mb2;
2130 char *bpos = *bposp;
2131 u_int32_t *tl;
2132 struct nfs_fattr *fp;
2133
2134 if (after_ret) {
2135 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2136 *tl = nfs_false;
2137 } else {
2138 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2139 *tl++ = nfs_true;
2140 fp = (struct nfs_fattr *)tl;
2141 nfsm_srvfattr(nfsd, after_vap, fp);
2142 }
2143 *mbp = mb;
2144 *bposp = bpos;
2145 }
2146
2147 void
2148 nfsm_srvfattr(nfsd, vap, fp)
2149 struct nfsrv_descript *nfsd;
2150 struct vattr *vap;
2151 struct nfs_fattr *fp;
2152 {
2153
2154 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2155 fp->fa_uid = txdr_unsigned(vap->va_uid);
2156 fp->fa_gid = txdr_unsigned(vap->va_gid);
2157 if (nfsd->nd_flag & ND_NFSV3) {
2158 fp->fa_type = vtonfsv3_type(vap->va_type);
2159 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2160 txdr_hyper(vap->va_size, &fp->fa3_size);
2161 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2162 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2163 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2164 fp->fa3_fsid.nfsuquad[0] = 0;
2165 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2166 fp->fa3_fileid.nfsuquad[0] = 0;
2167 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2168 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2169 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2170 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2171 } else {
2172 fp->fa_type = vtonfsv2_type(vap->va_type);
2173 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2174 fp->fa2_size = txdr_unsigned(vap->va_size);
2175 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2176 if (vap->va_type == VFIFO)
2177 fp->fa2_rdev = 0xffffffff;
2178 else
2179 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2180 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2181 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2182 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2183 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2184 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2185 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2186 }
2187 }
2188
2189 /*
2190 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2191 * - look up fsid in mount list (if not found ret error)
2192 * - get vp and export rights by calling VFS_FHTOVP()
2193 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2194 * - if not lockflag unlock it with VOP_UNLOCK()
2195 */
2196 int
2197 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2198 fhandle_t *fhp;
2199 int lockflag;
2200 struct vnode **vpp;
2201 struct ucred *cred;
2202 struct nfssvc_sock *slp;
2203 struct mbuf *nam;
2204 int *rdonlyp;
2205 int kerbflag;
2206 {
2207 struct mount *mp;
2208 int i;
2209 struct ucred *credanon;
2210 int error, exflags;
2211 struct sockaddr_in *saddr;
2212
2213 *vpp = (struct vnode *)0;
2214
2215 if (nfs_ispublicfh(fhp)) {
2216 if (!pubflag || !nfs_pub.np_valid)
2217 return (ESTALE);
2218 fhp = &nfs_pub.np_handle;
2219 }
2220
2221 mp = vfs_getvfs(&fhp->fh_fsid);
2222 if (!mp)
2223 return (ESTALE);
2224 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2225 if (error)
2226 return (error);
2227 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2228 if (error)
2229 return (error);
2230
2231 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2232 saddr = mtod(nam, struct sockaddr_in *);
2233 if ((saddr->sin_family == AF_INET) &&
2234 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2235 vput(*vpp);
2236 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2237 }
2238 #ifdef INET6
2239 if ((saddr->sin_family == AF_INET6) &&
2240 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2241 vput(*vpp);
2242 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2243 }
2244 #endif
2245 }
2246 /*
2247 * Check/setup credentials.
2248 */
2249 if (exflags & MNT_EXKERB) {
2250 if (!kerbflag) {
2251 vput(*vpp);
2252 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2253 }
2254 } else if (kerbflag) {
2255 vput(*vpp);
2256 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2257 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2258 cred->cr_uid = credanon->cr_uid;
2259 cred->cr_gid = credanon->cr_gid;
2260 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2261 cred->cr_groups[i] = credanon->cr_groups[i];
2262 cred->cr_ngroups = i;
2263 }
2264 if (exflags & MNT_EXRDONLY)
2265 *rdonlyp = 1;
2266 else
2267 *rdonlyp = 0;
2268 if (!lockflag)
2269 VOP_UNLOCK(*vpp, 0);
2270 return (0);
2271 }
2272
2273 /*
2274 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2275 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2276 * transformed this to all zeroes in both cases, so check for it.
2277 */
2278 int
2279 nfs_ispublicfh(fhp)
2280 fhandle_t *fhp;
2281 {
2282 char *cp = (char *)fhp;
2283 int i;
2284
2285 for (i = 0; i < NFSX_V3FH; i++)
2286 if (*cp++ != 0)
2287 return (FALSE);
2288 return (TRUE);
2289 }
2290
2291 /*
2292 * This function compares two net addresses by family and returns TRUE
2293 * if they are the same host.
2294 * If there is any doubt, return FALSE.
2295 * The AF_INET family is handled as a special case so that address mbufs
2296 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2297 */
2298 int
2299 netaddr_match(family, haddr, nam)
2300 int family;
2301 union nethostaddr *haddr;
2302 struct mbuf *nam;
2303 {
2304 struct sockaddr_in *inetaddr;
2305
2306 switch (family) {
2307 case AF_INET:
2308 inetaddr = mtod(nam, struct sockaddr_in *);
2309 if (inetaddr->sin_family == AF_INET &&
2310 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2311 return (1);
2312 break;
2313 #ifdef INET6
2314 case AF_INET6:
2315 {
2316 struct sockaddr_in6 *sin6_1, *sin6_2;
2317
2318 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2319 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2320 if (sin6_1->sin6_family == AF_INET6 &&
2321 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2322 return 1;
2323 }
2324 #endif
2325 #ifdef ISO
2326 case AF_ISO:
2327 {
2328 struct sockaddr_iso *isoaddr1, *isoaddr2;
2329
2330 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2331 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2332 if (isoaddr1->siso_family == AF_ISO &&
2333 isoaddr1->siso_nlen > 0 &&
2334 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2335 SAME_ISOADDR(isoaddr1, isoaddr2))
2336 return (1);
2337 break;
2338 }
2339 #endif /* ISO */
2340 default:
2341 break;
2342 };
2343 return (0);
2344 }
2345
2346
2347 /*
2348 * The write verifier has changed (probably due to a server reboot), so all
2349 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2350 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2351 * flag. Once done the new write verifier can be set for the mount point.
2352 */
2353 void
2354 nfs_clearcommit(mp)
2355 struct mount *mp;
2356 {
2357 struct vnode *vp, *nvp;
2358 struct buf *bp, *nbp;
2359 int s;
2360
2361 s = splbio();
2362 loop:
2363 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2364 if (vp->v_mount != mp) /* Paranoia */
2365 goto loop;
2366 nvp = vp->v_mntvnodes.le_next;
2367 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2368 nbp = bp->b_vnbufs.le_next;
2369 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2370 == (B_DELWRI | B_NEEDCOMMIT))
2371 bp->b_flags &= ~B_NEEDCOMMIT;
2372 }
2373 }
2374 splx(s);
2375 }
2376
2377 /*
2378 * Map errnos to NFS error numbers. For Version 3 also filter out error
2379 * numbers not specified for the associated procedure.
2380 */
2381 int
2382 nfsrv_errmap(nd, err)
2383 struct nfsrv_descript *nd;
2384 int err;
2385 {
2386 short *defaulterrp, *errp;
2387
2388 if (nd->nd_flag & ND_NFSV3) {
2389 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2390 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2391 while (*++errp) {
2392 if (*errp == err)
2393 return (err);
2394 else if (*errp > err)
2395 break;
2396 }
2397 return ((int)*defaulterrp);
2398 } else
2399 return (err & 0xffff);
2400 }
2401 if (err <= ELAST)
2402 return ((int)nfsrv_v2errmap[err - 1]);
2403 return (NFSERR_IO);
2404 }
2405
2406 /*
2407 * Sort the group list in increasing numerical order.
2408 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2409 * that used to be here.)
2410 */
2411 void
2412 nfsrvw_sort(list, num)
2413 gid_t *list;
2414 int num;
2415 {
2416 int i, j;
2417 gid_t v;
2418
2419 /* Insertion sort. */
2420 for (i = 1; i < num; i++) {
2421 v = list[i];
2422 /* find correct slot for value v, moving others up */
2423 for (j = i; --j >= 0 && v < list[j];)
2424 list[j + 1] = list[j];
2425 list[j + 1] = v;
2426 }
2427 }
2428
2429 /*
2430 * copy credentials making sure that the result can be compared with memcmp().
2431 */
2432 void
2433 nfsrv_setcred(incred, outcred)
2434 struct ucred *incred, *outcred;
2435 {
2436 int i;
2437
2438 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2439 outcred->cr_ref = 1;
2440 outcred->cr_uid = incred->cr_uid;
2441 outcred->cr_gid = incred->cr_gid;
2442 outcred->cr_ngroups = incred->cr_ngroups;
2443 for (i = 0; i < incred->cr_ngroups; i++)
2444 outcred->cr_groups[i] = incred->cr_groups[i];
2445 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2446 }
2447