nfs_subs.c revision 1.83 1 /* $NetBSD: nfs_subs.c,v 1.83 2000/09/19 22:13:55 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #include "opt_nfsserver.h"
79 #include "opt_iso.h"
80 #include "opt_inet.h"
81
82 /*
83 * These functions support the macros and help fiddle mbuf chains for
84 * the nfs op functions. They do things like create the rpc header and
85 * copy data between mbuf chains and uio lists.
86 */
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 static u_int32_t nfs_xid = 0;
133 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
134 NFCHR, NFNON };
135 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
136 NFFIFO, NFNON };
137 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
139 int nfs_ticks;
140
141 /* NFS client/server stats. */
142 struct nfsstats nfsstats;
143
144 /*
145 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
146 */
147 int nfsv3_procid[NFS_NPROCS] = {
148 NFSPROC_NULL,
149 NFSPROC_GETATTR,
150 NFSPROC_SETATTR,
151 NFSPROC_NOOP,
152 NFSPROC_LOOKUP,
153 NFSPROC_READLINK,
154 NFSPROC_READ,
155 NFSPROC_NOOP,
156 NFSPROC_WRITE,
157 NFSPROC_CREATE,
158 NFSPROC_REMOVE,
159 NFSPROC_RENAME,
160 NFSPROC_LINK,
161 NFSPROC_SYMLINK,
162 NFSPROC_MKDIR,
163 NFSPROC_RMDIR,
164 NFSPROC_READDIR,
165 NFSPROC_FSSTAT,
166 NFSPROC_NOOP,
167 NFSPROC_NOOP,
168 NFSPROC_NOOP,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP
174 };
175
176 /*
177 * and the reverse mapping from generic to Version 2 procedure numbers
178 */
179 int nfsv2_procid[NFS_NPROCS] = {
180 NFSV2PROC_NULL,
181 NFSV2PROC_GETATTR,
182 NFSV2PROC_SETATTR,
183 NFSV2PROC_LOOKUP,
184 NFSV2PROC_NOOP,
185 NFSV2PROC_READLINK,
186 NFSV2PROC_READ,
187 NFSV2PROC_WRITE,
188 NFSV2PROC_CREATE,
189 NFSV2PROC_MKDIR,
190 NFSV2PROC_SYMLINK,
191 NFSV2PROC_CREATE,
192 NFSV2PROC_REMOVE,
193 NFSV2PROC_RMDIR,
194 NFSV2PROC_RENAME,
195 NFSV2PROC_LINK,
196 NFSV2PROC_READDIR,
197 NFSV2PROC_NOOP,
198 NFSV2PROC_STATFS,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 };
207
208 /*
209 * Maps errno values to nfs error numbers.
210 * Use NFSERR_IO as the catch all for ones not specifically defined in
211 * RFC 1094.
212 */
213 static u_char nfsrv_v2errmap[ELAST] = {
214 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
217 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
218 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
227 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO,
231 };
232
233 /*
234 * Maps errno values to nfs error numbers.
235 * Although it is not obvious whether or not NFS clients really care if
236 * a returned error value is in the specified list for the procedure, the
237 * safest thing to do is filter them appropriately. For Version 2, the
238 * X/Open XNFS document is the only specification that defines error values
239 * for each RPC (The RFC simply lists all possible error values for all RPCs),
240 * so I have decided to not do this for Version 2.
241 * The first entry is the default error return and the rest are the valid
242 * errors for that RPC in increasing numeric order.
243 */
244 static short nfsv3err_null[] = {
245 0,
246 0,
247 };
248
249 static short nfsv3err_getattr[] = {
250 NFSERR_IO,
251 NFSERR_IO,
252 NFSERR_STALE,
253 NFSERR_BADHANDLE,
254 NFSERR_SERVERFAULT,
255 0,
256 };
257
258 static short nfsv3err_setattr[] = {
259 NFSERR_IO,
260 NFSERR_PERM,
261 NFSERR_IO,
262 NFSERR_ACCES,
263 NFSERR_INVAL,
264 NFSERR_NOSPC,
265 NFSERR_ROFS,
266 NFSERR_DQUOT,
267 NFSERR_STALE,
268 NFSERR_BADHANDLE,
269 NFSERR_NOT_SYNC,
270 NFSERR_SERVERFAULT,
271 0,
272 };
273
274 static short nfsv3err_lookup[] = {
275 NFSERR_IO,
276 NFSERR_NOENT,
277 NFSERR_IO,
278 NFSERR_ACCES,
279 NFSERR_NOTDIR,
280 NFSERR_NAMETOL,
281 NFSERR_STALE,
282 NFSERR_BADHANDLE,
283 NFSERR_SERVERFAULT,
284 0,
285 };
286
287 static short nfsv3err_access[] = {
288 NFSERR_IO,
289 NFSERR_IO,
290 NFSERR_STALE,
291 NFSERR_BADHANDLE,
292 NFSERR_SERVERFAULT,
293 0,
294 };
295
296 static short nfsv3err_readlink[] = {
297 NFSERR_IO,
298 NFSERR_IO,
299 NFSERR_ACCES,
300 NFSERR_INVAL,
301 NFSERR_STALE,
302 NFSERR_BADHANDLE,
303 NFSERR_NOTSUPP,
304 NFSERR_SERVERFAULT,
305 0,
306 };
307
308 static short nfsv3err_read[] = {
309 NFSERR_IO,
310 NFSERR_IO,
311 NFSERR_NXIO,
312 NFSERR_ACCES,
313 NFSERR_INVAL,
314 NFSERR_STALE,
315 NFSERR_BADHANDLE,
316 NFSERR_SERVERFAULT,
317 NFSERR_JUKEBOX,
318 0,
319 };
320
321 static short nfsv3err_write[] = {
322 NFSERR_IO,
323 NFSERR_IO,
324 NFSERR_ACCES,
325 NFSERR_INVAL,
326 NFSERR_FBIG,
327 NFSERR_NOSPC,
328 NFSERR_ROFS,
329 NFSERR_DQUOT,
330 NFSERR_STALE,
331 NFSERR_BADHANDLE,
332 NFSERR_SERVERFAULT,
333 NFSERR_JUKEBOX,
334 0,
335 };
336
337 static short nfsv3err_create[] = {
338 NFSERR_IO,
339 NFSERR_IO,
340 NFSERR_ACCES,
341 NFSERR_EXIST,
342 NFSERR_NOTDIR,
343 NFSERR_NOSPC,
344 NFSERR_ROFS,
345 NFSERR_NAMETOL,
346 NFSERR_DQUOT,
347 NFSERR_STALE,
348 NFSERR_BADHANDLE,
349 NFSERR_NOTSUPP,
350 NFSERR_SERVERFAULT,
351 0,
352 };
353
354 static short nfsv3err_mkdir[] = {
355 NFSERR_IO,
356 NFSERR_IO,
357 NFSERR_ACCES,
358 NFSERR_EXIST,
359 NFSERR_NOTDIR,
360 NFSERR_NOSPC,
361 NFSERR_ROFS,
362 NFSERR_NAMETOL,
363 NFSERR_DQUOT,
364 NFSERR_STALE,
365 NFSERR_BADHANDLE,
366 NFSERR_NOTSUPP,
367 NFSERR_SERVERFAULT,
368 0,
369 };
370
371 static short nfsv3err_symlink[] = {
372 NFSERR_IO,
373 NFSERR_IO,
374 NFSERR_ACCES,
375 NFSERR_EXIST,
376 NFSERR_NOTDIR,
377 NFSERR_NOSPC,
378 NFSERR_ROFS,
379 NFSERR_NAMETOL,
380 NFSERR_DQUOT,
381 NFSERR_STALE,
382 NFSERR_BADHANDLE,
383 NFSERR_NOTSUPP,
384 NFSERR_SERVERFAULT,
385 0,
386 };
387
388 static short nfsv3err_mknod[] = {
389 NFSERR_IO,
390 NFSERR_IO,
391 NFSERR_ACCES,
392 NFSERR_EXIST,
393 NFSERR_NOTDIR,
394 NFSERR_NOSPC,
395 NFSERR_ROFS,
396 NFSERR_NAMETOL,
397 NFSERR_DQUOT,
398 NFSERR_STALE,
399 NFSERR_BADHANDLE,
400 NFSERR_NOTSUPP,
401 NFSERR_SERVERFAULT,
402 NFSERR_BADTYPE,
403 0,
404 };
405
406 static short nfsv3err_remove[] = {
407 NFSERR_IO,
408 NFSERR_NOENT,
409 NFSERR_IO,
410 NFSERR_ACCES,
411 NFSERR_NOTDIR,
412 NFSERR_ROFS,
413 NFSERR_NAMETOL,
414 NFSERR_STALE,
415 NFSERR_BADHANDLE,
416 NFSERR_SERVERFAULT,
417 0,
418 };
419
420 static short nfsv3err_rmdir[] = {
421 NFSERR_IO,
422 NFSERR_NOENT,
423 NFSERR_IO,
424 NFSERR_ACCES,
425 NFSERR_EXIST,
426 NFSERR_NOTDIR,
427 NFSERR_INVAL,
428 NFSERR_ROFS,
429 NFSERR_NAMETOL,
430 NFSERR_NOTEMPTY,
431 NFSERR_STALE,
432 NFSERR_BADHANDLE,
433 NFSERR_NOTSUPP,
434 NFSERR_SERVERFAULT,
435 0,
436 };
437
438 static short nfsv3err_rename[] = {
439 NFSERR_IO,
440 NFSERR_NOENT,
441 NFSERR_IO,
442 NFSERR_ACCES,
443 NFSERR_EXIST,
444 NFSERR_XDEV,
445 NFSERR_NOTDIR,
446 NFSERR_ISDIR,
447 NFSERR_INVAL,
448 NFSERR_NOSPC,
449 NFSERR_ROFS,
450 NFSERR_MLINK,
451 NFSERR_NAMETOL,
452 NFSERR_NOTEMPTY,
453 NFSERR_DQUOT,
454 NFSERR_STALE,
455 NFSERR_BADHANDLE,
456 NFSERR_NOTSUPP,
457 NFSERR_SERVERFAULT,
458 0,
459 };
460
461 static short nfsv3err_link[] = {
462 NFSERR_IO,
463 NFSERR_IO,
464 NFSERR_ACCES,
465 NFSERR_EXIST,
466 NFSERR_XDEV,
467 NFSERR_NOTDIR,
468 NFSERR_INVAL,
469 NFSERR_NOSPC,
470 NFSERR_ROFS,
471 NFSERR_MLINK,
472 NFSERR_NAMETOL,
473 NFSERR_DQUOT,
474 NFSERR_STALE,
475 NFSERR_BADHANDLE,
476 NFSERR_NOTSUPP,
477 NFSERR_SERVERFAULT,
478 0,
479 };
480
481 static short nfsv3err_readdir[] = {
482 NFSERR_IO,
483 NFSERR_IO,
484 NFSERR_ACCES,
485 NFSERR_NOTDIR,
486 NFSERR_STALE,
487 NFSERR_BADHANDLE,
488 NFSERR_BAD_COOKIE,
489 NFSERR_TOOSMALL,
490 NFSERR_SERVERFAULT,
491 0,
492 };
493
494 static short nfsv3err_readdirplus[] = {
495 NFSERR_IO,
496 NFSERR_IO,
497 NFSERR_ACCES,
498 NFSERR_NOTDIR,
499 NFSERR_STALE,
500 NFSERR_BADHANDLE,
501 NFSERR_BAD_COOKIE,
502 NFSERR_NOTSUPP,
503 NFSERR_TOOSMALL,
504 NFSERR_SERVERFAULT,
505 0,
506 };
507
508 static short nfsv3err_fsstat[] = {
509 NFSERR_IO,
510 NFSERR_IO,
511 NFSERR_STALE,
512 NFSERR_BADHANDLE,
513 NFSERR_SERVERFAULT,
514 0,
515 };
516
517 static short nfsv3err_fsinfo[] = {
518 NFSERR_STALE,
519 NFSERR_STALE,
520 NFSERR_BADHANDLE,
521 NFSERR_SERVERFAULT,
522 0,
523 };
524
525 static short nfsv3err_pathconf[] = {
526 NFSERR_STALE,
527 NFSERR_STALE,
528 NFSERR_BADHANDLE,
529 NFSERR_SERVERFAULT,
530 0,
531 };
532
533 static short nfsv3err_commit[] = {
534 NFSERR_IO,
535 NFSERR_IO,
536 NFSERR_STALE,
537 NFSERR_BADHANDLE,
538 NFSERR_SERVERFAULT,
539 0,
540 };
541
542 static short *nfsrv_v3errmap[] = {
543 nfsv3err_null,
544 nfsv3err_getattr,
545 nfsv3err_setattr,
546 nfsv3err_lookup,
547 nfsv3err_access,
548 nfsv3err_readlink,
549 nfsv3err_read,
550 nfsv3err_write,
551 nfsv3err_create,
552 nfsv3err_mkdir,
553 nfsv3err_symlink,
554 nfsv3err_mknod,
555 nfsv3err_remove,
556 nfsv3err_rmdir,
557 nfsv3err_rename,
558 nfsv3err_link,
559 nfsv3err_readdir,
560 nfsv3err_readdirplus,
561 nfsv3err_fsstat,
562 nfsv3err_fsinfo,
563 nfsv3err_pathconf,
564 nfsv3err_commit,
565 };
566
567 extern struct nfsrtt nfsrtt;
568 extern time_t nqnfsstarttime;
569 extern int nqsrv_clockskew;
570 extern int nqsrv_writeslack;
571 extern int nqsrv_maxlease;
572 extern int nqnfs_piggy[NFS_NPROCS];
573 extern struct nfsnodehashhead *nfsnodehashtbl;
574 extern u_long nfsnodehash;
575
576 LIST_HEAD(nfsnodehashhead, nfsnode);
577 u_long nfsdirhashmask;
578
579 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
580
581 /*
582 * Create the header for an rpc request packet
583 * The hsiz is the size of the rest of the nfs request header.
584 * (just used to decide if a cluster is a good idea)
585 */
586 struct mbuf *
587 nfsm_reqh(vp, procid, hsiz, bposp)
588 struct vnode *vp;
589 u_long procid;
590 int hsiz;
591 caddr_t *bposp;
592 {
593 struct mbuf *mb;
594 u_int32_t *tl;
595 caddr_t bpos;
596 struct mbuf *mb2;
597 struct nfsmount *nmp;
598 int nqflag;
599
600 MGET(mb, M_WAIT, MT_DATA);
601 if (hsiz >= MINCLSIZE)
602 MCLGET(mb, M_WAIT);
603 mb->m_len = 0;
604 bpos = mtod(mb, caddr_t);
605
606 /*
607 * For NQNFS, add lease request.
608 */
609 if (vp) {
610 nmp = VFSTONFS(vp->v_mount);
611 if (nmp->nm_flag & NFSMNT_NQNFS) {
612 nqflag = NQNFS_NEEDLEASE(vp, procid);
613 if (nqflag) {
614 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
615 *tl++ = txdr_unsigned(nqflag);
616 *tl = txdr_unsigned(nmp->nm_leaseterm);
617 } else {
618 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
619 *tl = 0;
620 }
621 }
622 }
623 /* Finally, return values */
624 *bposp = bpos;
625 return (mb);
626 }
627
628 /*
629 * Build the RPC header and fill in the authorization info.
630 * The authorization string argument is only used when the credentials
631 * come from outside of the kernel.
632 * Returns the head of the mbuf list.
633 */
634 struct mbuf *
635 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
636 verf_str, mrest, mrest_len, mbp, xidp)
637 struct ucred *cr;
638 int nmflag;
639 int procid;
640 int auth_type;
641 int auth_len;
642 char *auth_str;
643 int verf_len;
644 char *verf_str;
645 struct mbuf *mrest;
646 int mrest_len;
647 struct mbuf **mbp;
648 u_int32_t *xidp;
649 {
650 struct mbuf *mb;
651 u_int32_t *tl;
652 caddr_t bpos;
653 int i;
654 struct mbuf *mreq, *mb2;
655 int siz, grpsiz, authsiz;
656 struct timeval tv;
657 static u_int32_t base;
658
659 authsiz = nfsm_rndup(auth_len);
660 MGETHDR(mb, M_WAIT, MT_DATA);
661 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
662 MCLGET(mb, M_WAIT);
663 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
664 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
665 } else {
666 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
667 }
668 mb->m_len = 0;
669 mreq = mb;
670 bpos = mtod(mb, caddr_t);
671
672 /*
673 * First the RPC header.
674 */
675 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
676
677 /*
678 * derive initial xid from system time
679 * XXX time is invalid if root not yet mounted
680 */
681 if (!base && (rootvp)) {
682 microtime(&tv);
683 base = tv.tv_sec << 12;
684 nfs_xid = base;
685 }
686 /*
687 * Skip zero xid if it should ever happen.
688 */
689 if (++nfs_xid == 0)
690 nfs_xid++;
691
692 *tl++ = *xidp = txdr_unsigned(nfs_xid);
693 *tl++ = rpc_call;
694 *tl++ = rpc_vers;
695 if (nmflag & NFSMNT_NQNFS) {
696 *tl++ = txdr_unsigned(NQNFS_PROG);
697 *tl++ = txdr_unsigned(NQNFS_VER3);
698 } else {
699 *tl++ = txdr_unsigned(NFS_PROG);
700 if (nmflag & NFSMNT_NFSV3)
701 *tl++ = txdr_unsigned(NFS_VER3);
702 else
703 *tl++ = txdr_unsigned(NFS_VER2);
704 }
705 if (nmflag & NFSMNT_NFSV3)
706 *tl++ = txdr_unsigned(procid);
707 else
708 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
709
710 /*
711 * And then the authorization cred.
712 */
713 *tl++ = txdr_unsigned(auth_type);
714 *tl = txdr_unsigned(authsiz);
715 switch (auth_type) {
716 case RPCAUTH_UNIX:
717 nfsm_build(tl, u_int32_t *, auth_len);
718 *tl++ = 0; /* stamp ?? */
719 *tl++ = 0; /* NULL hostname */
720 *tl++ = txdr_unsigned(cr->cr_uid);
721 *tl++ = txdr_unsigned(cr->cr_gid);
722 grpsiz = (auth_len >> 2) - 5;
723 *tl++ = txdr_unsigned(grpsiz);
724 for (i = 0; i < grpsiz; i++)
725 *tl++ = txdr_unsigned(cr->cr_groups[i]);
726 break;
727 case RPCAUTH_KERB4:
728 siz = auth_len;
729 while (siz > 0) {
730 if (M_TRAILINGSPACE(mb) == 0) {
731 MGET(mb2, M_WAIT, MT_DATA);
732 if (siz >= MINCLSIZE)
733 MCLGET(mb2, M_WAIT);
734 mb->m_next = mb2;
735 mb = mb2;
736 mb->m_len = 0;
737 bpos = mtod(mb, caddr_t);
738 }
739 i = min(siz, M_TRAILINGSPACE(mb));
740 memcpy(bpos, auth_str, i);
741 mb->m_len += i;
742 auth_str += i;
743 bpos += i;
744 siz -= i;
745 }
746 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
747 for (i = 0; i < siz; i++)
748 *bpos++ = '\0';
749 mb->m_len += siz;
750 }
751 break;
752 };
753
754 /*
755 * And the verifier...
756 */
757 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
758 if (verf_str) {
759 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
760 *tl = txdr_unsigned(verf_len);
761 siz = verf_len;
762 while (siz > 0) {
763 if (M_TRAILINGSPACE(mb) == 0) {
764 MGET(mb2, M_WAIT, MT_DATA);
765 if (siz >= MINCLSIZE)
766 MCLGET(mb2, M_WAIT);
767 mb->m_next = mb2;
768 mb = mb2;
769 mb->m_len = 0;
770 bpos = mtod(mb, caddr_t);
771 }
772 i = min(siz, M_TRAILINGSPACE(mb));
773 memcpy(bpos, verf_str, i);
774 mb->m_len += i;
775 verf_str += i;
776 bpos += i;
777 siz -= i;
778 }
779 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
780 for (i = 0; i < siz; i++)
781 *bpos++ = '\0';
782 mb->m_len += siz;
783 }
784 } else {
785 *tl++ = txdr_unsigned(RPCAUTH_NULL);
786 *tl = 0;
787 }
788 mb->m_next = mrest;
789 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
790 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
791 *mbp = mb;
792 return (mreq);
793 }
794
795 /*
796 * copies mbuf chain to the uio scatter/gather list
797 */
798 int
799 nfsm_mbuftouio(mrep, uiop, siz, dpos)
800 struct mbuf **mrep;
801 struct uio *uiop;
802 int siz;
803 caddr_t *dpos;
804 {
805 char *mbufcp, *uiocp;
806 int xfer, left, len;
807 struct mbuf *mp;
808 long uiosiz, rem;
809 int error = 0;
810
811 mp = *mrep;
812 mbufcp = *dpos;
813 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
814 rem = nfsm_rndup(siz)-siz;
815 while (siz > 0) {
816 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
817 return (EFBIG);
818 left = uiop->uio_iov->iov_len;
819 uiocp = uiop->uio_iov->iov_base;
820 if (left > siz)
821 left = siz;
822 uiosiz = left;
823 while (left > 0) {
824 while (len == 0) {
825 mp = mp->m_next;
826 if (mp == NULL)
827 return (EBADRPC);
828 mbufcp = mtod(mp, caddr_t);
829 len = mp->m_len;
830 }
831 xfer = (left > len) ? len : left;
832 #ifdef notdef
833 /* Not Yet.. */
834 if (uiop->uio_iov->iov_op != NULL)
835 (*(uiop->uio_iov->iov_op))
836 (mbufcp, uiocp, xfer);
837 else
838 #endif
839 if (uiop->uio_segflg == UIO_SYSSPACE)
840 memcpy(uiocp, mbufcp, xfer);
841 else
842 copyout(mbufcp, uiocp, xfer);
843 left -= xfer;
844 len -= xfer;
845 mbufcp += xfer;
846 uiocp += xfer;
847 uiop->uio_offset += xfer;
848 uiop->uio_resid -= xfer;
849 }
850 if (uiop->uio_iov->iov_len <= siz) {
851 uiop->uio_iovcnt--;
852 uiop->uio_iov++;
853 } else {
854 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
855 uiop->uio_iov->iov_len -= uiosiz;
856 }
857 siz -= uiosiz;
858 }
859 *dpos = mbufcp;
860 *mrep = mp;
861 if (rem > 0) {
862 if (len < rem)
863 error = nfs_adv(mrep, dpos, rem, len);
864 else
865 *dpos += rem;
866 }
867 return (error);
868 }
869
870 /*
871 * copies a uio scatter/gather list to an mbuf chain.
872 * NOTE: can ony handle iovcnt == 1
873 */
874 int
875 nfsm_uiotombuf(uiop, mq, siz, bpos)
876 struct uio *uiop;
877 struct mbuf **mq;
878 int siz;
879 caddr_t *bpos;
880 {
881 char *uiocp;
882 struct mbuf *mp, *mp2;
883 int xfer, left, mlen;
884 int uiosiz, clflg, rem;
885 char *cp;
886
887 #ifdef DIAGNOSTIC
888 if (uiop->uio_iovcnt != 1)
889 panic("nfsm_uiotombuf: iovcnt != 1");
890 #endif
891
892 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
893 clflg = 1;
894 else
895 clflg = 0;
896 rem = nfsm_rndup(siz)-siz;
897 mp = mp2 = *mq;
898 while (siz > 0) {
899 left = uiop->uio_iov->iov_len;
900 uiocp = uiop->uio_iov->iov_base;
901 if (left > siz)
902 left = siz;
903 uiosiz = left;
904 while (left > 0) {
905 mlen = M_TRAILINGSPACE(mp);
906 if (mlen == 0) {
907 MGET(mp, M_WAIT, MT_DATA);
908 if (clflg)
909 MCLGET(mp, M_WAIT);
910 mp->m_len = 0;
911 mp2->m_next = mp;
912 mp2 = mp;
913 mlen = M_TRAILINGSPACE(mp);
914 }
915 xfer = (left > mlen) ? mlen : left;
916 #ifdef notdef
917 /* Not Yet.. */
918 if (uiop->uio_iov->iov_op != NULL)
919 (*(uiop->uio_iov->iov_op))
920 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
921 else
922 #endif
923 if (uiop->uio_segflg == UIO_SYSSPACE)
924 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
925 else
926 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
927 mp->m_len += xfer;
928 left -= xfer;
929 uiocp += xfer;
930 uiop->uio_offset += xfer;
931 uiop->uio_resid -= xfer;
932 }
933 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
934 uiop->uio_iov->iov_len -= uiosiz;
935 siz -= uiosiz;
936 }
937 if (rem > 0) {
938 if (rem > M_TRAILINGSPACE(mp)) {
939 MGET(mp, M_WAIT, MT_DATA);
940 mp->m_len = 0;
941 mp2->m_next = mp;
942 }
943 cp = mtod(mp, caddr_t)+mp->m_len;
944 for (left = 0; left < rem; left++)
945 *cp++ = '\0';
946 mp->m_len += rem;
947 *bpos = cp;
948 } else
949 *bpos = mtod(mp, caddr_t)+mp->m_len;
950 *mq = mp;
951 return (0);
952 }
953
954 /*
955 * Get at least "siz" bytes of correctly aligned data.
956 * When called the mbuf pointers are not necessarily correct,
957 * dsosp points to what ought to be in m_data and left contains
958 * what ought to be in m_len.
959 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
960 * cases. (The macros use the vars. dpos and dpos2)
961 */
962 int
963 nfsm_disct(mdp, dposp, siz, left, cp2)
964 struct mbuf **mdp;
965 caddr_t *dposp;
966 int siz;
967 int left;
968 caddr_t *cp2;
969 {
970 struct mbuf *m1, *m2;
971 struct mbuf *havebuf = NULL;
972 caddr_t src = *dposp;
973 caddr_t dst;
974 int len;
975
976 #ifdef DEBUG
977 if (left < 0)
978 panic("nfsm_disct: left < 0");
979 #endif
980 m1 = *mdp;
981 /*
982 * Skip through the mbuf chain looking for an mbuf with
983 * some data. If the first mbuf found has enough data
984 * and it is correctly aligned return it.
985 */
986 while (left == 0) {
987 havebuf = m1;
988 *mdp = m1 = m1->m_next;
989 if (m1 == NULL)
990 return (EBADRPC);
991 src = mtod(m1, caddr_t);
992 left = m1->m_len;
993 /*
994 * If we start a new mbuf and it is big enough
995 * and correctly aligned just return it, don't
996 * do any pull up.
997 */
998 if (left >= siz && nfsm_aligned(src)) {
999 *cp2 = src;
1000 *dposp = src + siz;
1001 return (0);
1002 }
1003 }
1004 if (m1->m_flags & M_EXT) {
1005 if (havebuf) {
1006 /* If the first mbuf with data has external data
1007 * and there is a previous empty mbuf use it
1008 * to move the data into.
1009 */
1010 m2 = m1;
1011 *mdp = m1 = havebuf;
1012 if (m1->m_flags & M_EXT) {
1013 MEXTREMOVE(m1);
1014 }
1015 } else {
1016 /*
1017 * If the first mbuf has a external data
1018 * and there is no previous empty mbuf
1019 * allocate a new mbuf and move the external
1020 * data to the new mbuf. Also make the first
1021 * mbuf look empty.
1022 */
1023 m2 = m_get(M_WAIT, MT_DATA);
1024 m2->m_ext = m1->m_ext;
1025 m2->m_data = src;
1026 m2->m_len = left;
1027 MCLADDREFERENCE(m1, m2);
1028 MEXTREMOVE(m1);
1029 m2->m_next = m1->m_next;
1030 m1->m_next = m2;
1031 }
1032 m1->m_len = 0;
1033 dst = m1->m_dat;
1034 } else {
1035 /*
1036 * If the first mbuf has no external data
1037 * move the data to the front of the mbuf.
1038 */
1039 if ((dst = m1->m_dat) != src)
1040 memmove(dst, src, left);
1041 dst += left;
1042 m1->m_len = left;
1043 m2 = m1->m_next;
1044 }
1045 m1->m_flags &= ~M_PKTHDR;
1046 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1047 *dposp = mtod(m1, caddr_t) + siz;
1048 /*
1049 * Loop through mbufs pulling data up into first mbuf until
1050 * the first mbuf is full or there is no more data to
1051 * pullup.
1052 */
1053 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1054 if ((len = min(len, m2->m_len)) != 0)
1055 memcpy(dst, m2->m_data, len);
1056 m1->m_len += len;
1057 dst += len;
1058 m2->m_data += len;
1059 m2->m_len -= len;
1060 m2 = m2->m_next;
1061 }
1062 if (m1->m_len < siz)
1063 return (EBADRPC);
1064 return (0);
1065 }
1066
1067 /*
1068 * Advance the position in the mbuf chain.
1069 */
1070 int
1071 nfs_adv(mdp, dposp, offs, left)
1072 struct mbuf **mdp;
1073 caddr_t *dposp;
1074 int offs;
1075 int left;
1076 {
1077 struct mbuf *m;
1078 int s;
1079
1080 m = *mdp;
1081 s = left;
1082 while (s < offs) {
1083 offs -= s;
1084 m = m->m_next;
1085 if (m == NULL)
1086 return (EBADRPC);
1087 s = m->m_len;
1088 }
1089 *mdp = m;
1090 *dposp = mtod(m, caddr_t)+offs;
1091 return (0);
1092 }
1093
1094 /*
1095 * Copy a string into mbufs for the hard cases...
1096 */
1097 int
1098 nfsm_strtmbuf(mb, bpos, cp, siz)
1099 struct mbuf **mb;
1100 char **bpos;
1101 const char *cp;
1102 long siz;
1103 {
1104 struct mbuf *m1 = NULL, *m2;
1105 long left, xfer, len, tlen;
1106 u_int32_t *tl;
1107 int putsize;
1108
1109 putsize = 1;
1110 m2 = *mb;
1111 left = M_TRAILINGSPACE(m2);
1112 if (left > 0) {
1113 tl = ((u_int32_t *)(*bpos));
1114 *tl++ = txdr_unsigned(siz);
1115 putsize = 0;
1116 left -= NFSX_UNSIGNED;
1117 m2->m_len += NFSX_UNSIGNED;
1118 if (left > 0) {
1119 memcpy((caddr_t) tl, cp, left);
1120 siz -= left;
1121 cp += left;
1122 m2->m_len += left;
1123 left = 0;
1124 }
1125 }
1126 /* Loop around adding mbufs */
1127 while (siz > 0) {
1128 MGET(m1, M_WAIT, MT_DATA);
1129 if (siz > MLEN)
1130 MCLGET(m1, M_WAIT);
1131 m1->m_len = NFSMSIZ(m1);
1132 m2->m_next = m1;
1133 m2 = m1;
1134 tl = mtod(m1, u_int32_t *);
1135 tlen = 0;
1136 if (putsize) {
1137 *tl++ = txdr_unsigned(siz);
1138 m1->m_len -= NFSX_UNSIGNED;
1139 tlen = NFSX_UNSIGNED;
1140 putsize = 0;
1141 }
1142 if (siz < m1->m_len) {
1143 len = nfsm_rndup(siz);
1144 xfer = siz;
1145 if (xfer < len)
1146 *(tl+(xfer>>2)) = 0;
1147 } else {
1148 xfer = len = m1->m_len;
1149 }
1150 memcpy((caddr_t) tl, cp, xfer);
1151 m1->m_len = len+tlen;
1152 siz -= xfer;
1153 cp += xfer;
1154 }
1155 *mb = m1;
1156 *bpos = mtod(m1, caddr_t)+m1->m_len;
1157 return (0);
1158 }
1159
1160 /*
1161 * Directory caching routines. They work as follows:
1162 * - a cache is maintained per VDIR nfsnode.
1163 * - for each offset cookie that is exported to userspace, and can
1164 * thus be thrown back at us as an offset to VOP_READDIR, store
1165 * information in the cache.
1166 * - cached are:
1167 * - cookie itself
1168 * - blocknumber (essentially just a search key in the buffer cache)
1169 * - entry number in block.
1170 * - offset cookie of block in which this entry is stored
1171 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1172 * - entries are looked up in a hash table
1173 * - also maintained is an LRU list of entries, used to determine
1174 * which ones to delete if the cache grows too large.
1175 * - if 32 <-> 64 translation mode is requested for a filesystem,
1176 * the cache also functions as a translation table
1177 * - in the translation case, invalidating the cache does not mean
1178 * flushing it, but just marking entries as invalid, except for
1179 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1180 * still be able to use the cache as a translation table.
1181 * - 32 bit cookies are uniquely created by combining the hash table
1182 * entry value, and one generation count per hash table entry,
1183 * incremented each time an entry is appended to the chain.
1184 * - the cache is invalidated each time a direcory is modified
1185 * - sanity checks are also done; if an entry in a block turns
1186 * out not to have a matching cookie, the cache is invalidated
1187 * and a new block starting from the wanted offset is fetched from
1188 * the server.
1189 * - directory entries as read from the server are extended to contain
1190 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1191 * the cache and exporting them to userspace through the cookie
1192 * argument to VOP_READDIR.
1193 */
1194
1195 u_long
1196 nfs_dirhash(off)
1197 off_t off;
1198 {
1199 int i;
1200 char *cp = (char *)&off;
1201 u_long sum = 0L;
1202
1203 for (i = 0 ; i < sizeof (off); i++)
1204 sum += *cp++;
1205
1206 return sum;
1207 }
1208
1209 void
1210 nfs_initdircache(vp)
1211 struct vnode *vp;
1212 {
1213 struct nfsnode *np = VTONFS(vp);
1214 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1215
1216 np->n_dircachesize = 0;
1217 np->n_dblkno = 1;
1218 np->n_dircache =
1219 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
1220 TAILQ_INIT(&np->n_dirchain);
1221 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1222 MALLOC(np->n_dirgens, unsigned *,
1223 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1224 M_WAITOK);
1225 memset((caddr_t)np->n_dirgens, 0,
1226 NFS_DIRHASHSIZ * sizeof (unsigned));
1227 }
1228 }
1229
1230 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1231
1232 struct nfsdircache *
1233 nfs_searchdircache(vp, off, do32, hashent)
1234 struct vnode *vp;
1235 off_t off;
1236 int do32;
1237 int *hashent;
1238 {
1239 struct nfsdirhashhead *ndhp;
1240 struct nfsdircache *ndp = NULL;
1241 struct nfsnode *np = VTONFS(vp);
1242 unsigned ent;
1243
1244 /*
1245 * Zero is always a valid cookie.
1246 */
1247 if (off == 0)
1248 return &dzero;
1249
1250 /*
1251 * We use a 32bit cookie as search key, directly reconstruct
1252 * the hashentry. Else use the hashfunction.
1253 */
1254 if (do32) {
1255 ent = (u_int32_t)off >> 24;
1256 if (ent >= NFS_DIRHASHSIZ)
1257 return NULL;
1258 ndhp = &np->n_dircache[ent];
1259 } else {
1260 ndhp = NFSDIRHASH(np, off);
1261 }
1262
1263 if (hashent)
1264 *hashent = (int)(ndhp - np->n_dircache);
1265 if (do32) {
1266 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1267 if (ndp->dc_cookie32 == (u_int32_t)off) {
1268 /*
1269 * An invalidated entry will become the
1270 * start of a new block fetched from
1271 * the server.
1272 */
1273 if (ndp->dc_blkno == -1) {
1274 ndp->dc_blkcookie = ndp->dc_cookie;
1275 ndp->dc_blkno = np->n_dblkno++;
1276 ndp->dc_entry = 0;
1277 }
1278 break;
1279 }
1280 }
1281 } else {
1282 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1283 if (ndp->dc_cookie == off)
1284 break;
1285 }
1286 return ndp;
1287 }
1288
1289
1290 struct nfsdircache *
1291 nfs_enterdircache(vp, off, blkoff, en, blkno)
1292 struct vnode *vp;
1293 off_t off, blkoff;
1294 daddr_t blkno;
1295 int en;
1296 {
1297 struct nfsnode *np = VTONFS(vp);
1298 struct nfsdirhashhead *ndhp;
1299 struct nfsdircache *ndp = NULL, *first;
1300 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1301 int hashent, gen, overwrite;
1302
1303 if (!np->n_dircache)
1304 /*
1305 * XXX would like to do this in nfs_nget but vtype
1306 * isn't known at that time.
1307 */
1308 nfs_initdircache(vp);
1309
1310 /*
1311 * XXX refuse entries for offset 0. amd(8) erroneously sets
1312 * cookie 0 for the '.' entry, making this necessary. This
1313 * isn't so bad, as 0 is a special case anyway.
1314 */
1315 if (off == 0)
1316 return &dzero;
1317
1318 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1319
1320 if (ndp && ndp->dc_blkno != -1) {
1321 /*
1322 * Overwriting an old entry. Check if it's the same.
1323 * If so, just return. If not, remove the old entry.
1324 */
1325 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1326 return ndp;
1327 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1328 LIST_REMOVE(ndp, dc_hash);
1329 FREE(ndp, M_NFSDIROFF);
1330 ndp = 0;
1331 }
1332
1333 ndhp = &np->n_dircache[hashent];
1334
1335 if (!ndp) {
1336 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1337 M_WAITOK);
1338 overwrite = 0;
1339 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1340 /*
1341 * We're allocating a new entry, so bump the
1342 * generation number.
1343 */
1344 gen = ++np->n_dirgens[hashent];
1345 if (gen == 0) {
1346 np->n_dirgens[hashent]++;
1347 gen++;
1348 }
1349 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1350 }
1351 } else
1352 overwrite = 1;
1353
1354 /*
1355 * If the entry number is 0, we are at the start of a new block, so
1356 * allocate a new blocknumber.
1357 */
1358 if (en == 0)
1359 ndp->dc_blkno = np->n_dblkno++;
1360 else
1361 ndp->dc_blkno = blkno;
1362
1363 ndp->dc_cookie = off;
1364 ndp->dc_blkcookie = blkoff;
1365 ndp->dc_entry = en;
1366
1367 if (overwrite)
1368 return ndp;
1369
1370 /*
1371 * If the maximum directory cookie cache size has been reached
1372 * for this node, take one off the front. The idea is that
1373 * directories are typically read front-to-back once, so that
1374 * the oldest entries can be thrown away without much performance
1375 * loss.
1376 */
1377 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1378 first = np->n_dirchain.tqh_first;
1379 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1380 LIST_REMOVE(first, dc_hash);
1381 FREE(first, M_NFSDIROFF);
1382 } else
1383 np->n_dircachesize++;
1384
1385 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1386 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1387 return ndp;
1388 }
1389
1390 void
1391 nfs_invaldircache(vp, forcefree)
1392 struct vnode *vp;
1393 int forcefree;
1394 {
1395 struct nfsnode *np = VTONFS(vp);
1396 struct nfsdircache *ndp = NULL;
1397 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1398
1399 #ifdef DIAGNOSTIC
1400 if (vp->v_type != VDIR)
1401 panic("nfs: invaldircache: not dir");
1402 #endif
1403
1404 if (!np->n_dircache)
1405 return;
1406
1407 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1408 while ((ndp = np->n_dirchain.tqh_first)) {
1409 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1410 LIST_REMOVE(ndp, dc_hash);
1411 FREE(ndp, M_NFSDIROFF);
1412 }
1413 np->n_dircachesize = 0;
1414 if (forcefree && np->n_dirgens) {
1415 FREE(np->n_dirgens, M_NFSDIROFF);
1416 }
1417 } else {
1418 for (ndp = np->n_dirchain.tqh_first; ndp;
1419 ndp = ndp->dc_chain.tqe_next)
1420 ndp->dc_blkno = -1;
1421 }
1422
1423 np->n_dblkno = 1;
1424 }
1425
1426 /*
1427 * Called once before VFS init to initialize shared and
1428 * server-specific data structures.
1429 */
1430 void
1431 nfs_init()
1432 {
1433 nfsrtt.pos = 0;
1434 rpc_vers = txdr_unsigned(RPC_VER2);
1435 rpc_call = txdr_unsigned(RPC_CALL);
1436 rpc_reply = txdr_unsigned(RPC_REPLY);
1437 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1438 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1439 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1440 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1441 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1442 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1443 nfs_prog = txdr_unsigned(NFS_PROG);
1444 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1445 nfs_true = txdr_unsigned(TRUE);
1446 nfs_false = txdr_unsigned(FALSE);
1447 nfs_xdrneg1 = txdr_unsigned(-1);
1448 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1449 if (nfs_ticks < 1)
1450 nfs_ticks = 1;
1451 #ifdef NFSSERVER
1452 nfsrv_init(0); /* Init server data structures */
1453 nfsrv_initcache(); /* Init the server request cache */
1454 #endif /* NFSSERVER */
1455
1456 /*
1457 * Initialize the nqnfs data structures.
1458 */
1459 if (nqnfsstarttime == 0) {
1460 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1461 + nqsrv_clockskew + nqsrv_writeslack;
1462 NQLOADNOVRAM(nqnfsstarttime);
1463 CIRCLEQ_INIT(&nqtimerhead);
1464 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
1465 }
1466
1467 /*
1468 * Initialize reply list and start timer
1469 */
1470 TAILQ_INIT(&nfs_reqq);
1471 nfs_timer(NULL);
1472 }
1473
1474 #ifdef NFS
1475 /*
1476 * Called once at VFS init to initialize client-specific data structures.
1477 */
1478 void
1479 nfs_vfs_init()
1480 {
1481 int i;
1482
1483 /* Ensure async daemons disabled */
1484 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1485 nfs_iodwant[i] = (struct proc *)0;
1486 nfs_iodmount[i] = (struct nfsmount *)0;
1487 }
1488 nfs_nhinit(); /* Init the nfsnode table */
1489 }
1490
1491 void
1492 nfs_vfs_done()
1493 {
1494 nfs_nhdone();
1495 }
1496
1497 /*
1498 * Attribute cache routines.
1499 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1500 * that are on the mbuf list
1501 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1502 * error otherwise
1503 */
1504
1505 /*
1506 * Load the attribute cache (that lives in the nfsnode entry) with
1507 * the values on the mbuf list and
1508 * Iff vap not NULL
1509 * copy the attributes to *vaper
1510 */
1511 int
1512 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1513 struct vnode **vpp;
1514 struct mbuf **mdp;
1515 caddr_t *dposp;
1516 struct vattr *vaper;
1517 {
1518 int32_t t1;
1519 caddr_t cp2;
1520 int error = 0;
1521 struct mbuf *md;
1522 int v3 = NFS_ISV3(*vpp);
1523
1524 md = *mdp;
1525 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1526 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1527 if (error)
1528 return (error);
1529 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1530 }
1531
1532 int
1533 nfs_loadattrcache(vpp, fp, vaper)
1534 struct vnode **vpp;
1535 struct nfs_fattr *fp;
1536 struct vattr *vaper;
1537 {
1538 struct vnode *vp = *vpp;
1539 struct vattr *vap;
1540 int v3 = NFS_ISV3(vp);
1541 enum vtype vtyp;
1542 u_short vmode;
1543 struct timespec mtime;
1544 struct vnode *nvp;
1545 int32_t rdev;
1546 struct nfsnode *np;
1547 extern int (**spec_nfsv2nodeop_p) __P((void *));
1548
1549 if (v3) {
1550 vtyp = nfsv3tov_type(fp->fa_type);
1551 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1552 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1553 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1554 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1555 } else {
1556 vtyp = nfsv2tov_type(fp->fa_type);
1557 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1558 if (vtyp == VNON || vtyp == VREG)
1559 vtyp = IFTOVT(vmode);
1560 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1561 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1562
1563 /*
1564 * Really ugly NFSv2 kludge.
1565 */
1566 if (vtyp == VCHR && rdev == 0xffffffff)
1567 vtyp = VFIFO;
1568 }
1569
1570 /*
1571 * If v_type == VNON it is a new node, so fill in the v_type,
1572 * n_mtime fields. Check to see if it represents a special
1573 * device, and if so, check for a possible alias. Once the
1574 * correct vnode has been obtained, fill in the rest of the
1575 * information.
1576 */
1577 np = VTONFS(vp);
1578 if (vp->v_type != vtyp) {
1579 vp->v_type = vtyp;
1580 if (vp->v_type == VFIFO) {
1581 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1582 vp->v_op = fifo_nfsv2nodeop_p;
1583 }
1584 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1585 vp->v_op = spec_nfsv2nodeop_p;
1586 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1587 if (nvp) {
1588 /*
1589 * Discard unneeded vnode, but save its nfsnode.
1590 * Since the nfsnode does not have a lock, its
1591 * vnode lock has to be carried over.
1592 */
1593 nvp->v_data = vp->v_data;
1594 vp->v_data = NULL;
1595 vp->v_op = spec_vnodeop_p;
1596 vput(vp);
1597 vgone(vp);
1598 /*
1599 * XXX When nfs starts locking, we need to
1600 * lock the new node here.
1601 */
1602 /*
1603 * Reinitialize aliased node.
1604 */
1605 np->n_vnode = nvp;
1606 *vpp = vp = nvp;
1607 }
1608 }
1609 np->n_mtime = mtime.tv_sec;
1610 }
1611 vap = np->n_vattr;
1612 vap->va_type = vtyp;
1613 vap->va_mode = vmode & ALLPERMS;
1614 vap->va_rdev = (dev_t)rdev;
1615 vap->va_mtime = mtime;
1616 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1617 switch (vtyp) {
1618 case VDIR:
1619 vap->va_blocksize = NFS_DIRFRAGSIZ;
1620 break;
1621 case VBLK:
1622 vap->va_blocksize = BLKDEV_IOSIZE;
1623 break;
1624 case VCHR:
1625 vap->va_blocksize = MAXBSIZE;
1626 break;
1627 default:
1628 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1629 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1630 break;
1631 }
1632 if (v3) {
1633 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1634 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1635 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1636 vap->va_size = fxdr_hyper(&fp->fa3_size);
1637 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1638 vap->va_fileid = fxdr_unsigned(int32_t,
1639 fp->fa3_fileid.nfsuquad[1]);
1640 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1641 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1642 vap->va_flags = 0;
1643 vap->va_filerev = 0;
1644 } else {
1645 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1646 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1647 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1648 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1649 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1650 * NFS_FABLKSIZE;
1651 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1652 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1653 vap->va_flags = 0;
1654 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1655 fp->fa2_ctime.nfsv2_sec);
1656 vap->va_ctime.tv_nsec = 0;
1657 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1658 vap->va_filerev = 0;
1659 }
1660 if (vap->va_size != np->n_size) {
1661 if (vap->va_type == VREG) {
1662 if (np->n_flag & NMODIFIED) {
1663 if (vap->va_size < np->n_size)
1664 vap->va_size = np->n_size;
1665 else
1666 np->n_size = vap->va_size;
1667 } else
1668 np->n_size = vap->va_size;
1669 uvm_vnp_setsize(vp, np->n_size);
1670 } else
1671 np->n_size = vap->va_size;
1672 }
1673 np->n_attrstamp = time.tv_sec;
1674 if (vaper != NULL) {
1675 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1676 if (np->n_flag & NCHG) {
1677 if (np->n_flag & NACC)
1678 vaper->va_atime = np->n_atim;
1679 if (np->n_flag & NUPD)
1680 vaper->va_mtime = np->n_mtim;
1681 }
1682 }
1683 return (0);
1684 }
1685
1686 /*
1687 * Check the time stamp
1688 * If the cache is valid, copy contents to *vap and return 0
1689 * otherwise return an error
1690 */
1691 int
1692 nfs_getattrcache(vp, vaper)
1693 struct vnode *vp;
1694 struct vattr *vaper;
1695 {
1696 struct nfsnode *np = VTONFS(vp);
1697 struct vattr *vap;
1698
1699 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1700 nfsstats.attrcache_misses++;
1701 return (ENOENT);
1702 }
1703 nfsstats.attrcache_hits++;
1704 vap = np->n_vattr;
1705 if (vap->va_size != np->n_size) {
1706 if (vap->va_type == VREG) {
1707 if (np->n_flag & NMODIFIED) {
1708 if (vap->va_size < np->n_size)
1709 vap->va_size = np->n_size;
1710 else
1711 np->n_size = vap->va_size;
1712 } else
1713 np->n_size = vap->va_size;
1714 uvm_vnp_setsize(vp, np->n_size);
1715 } else
1716 np->n_size = vap->va_size;
1717 }
1718 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1719 if (np->n_flag & NCHG) {
1720 if (np->n_flag & NACC)
1721 vaper->va_atime = np->n_atim;
1722 if (np->n_flag & NUPD)
1723 vaper->va_mtime = np->n_mtim;
1724 }
1725 return (0);
1726 }
1727
1728 /*
1729 * Heuristic to see if the server XDR encodes directory cookies or not.
1730 * it is not supposed to, but a lot of servers may do this. Also, since
1731 * most/all servers will implement V2 as well, it is expected that they
1732 * may return just 32 bits worth of cookie information, so we need to
1733 * find out in which 32 bits this information is available. We do this
1734 * to avoid trouble with emulated binaries that can't handle 64 bit
1735 * directory offsets.
1736 */
1737
1738 void
1739 nfs_cookieheuristic(vp, flagp, p, cred)
1740 struct vnode *vp;
1741 int *flagp;
1742 struct proc *p;
1743 struct ucred *cred;
1744 {
1745 struct uio auio;
1746 struct iovec aiov;
1747 caddr_t buf, cp;
1748 struct dirent *dp;
1749 off_t *cookies = NULL, *cop;
1750 int error, eof, nc, len;
1751
1752 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1753
1754 aiov.iov_base = buf;
1755 aiov.iov_len = NFS_DIRFRAGSIZ;
1756 auio.uio_iov = &aiov;
1757 auio.uio_iovcnt = 1;
1758 auio.uio_rw = UIO_READ;
1759 auio.uio_segflg = UIO_SYSSPACE;
1760 auio.uio_procp = p;
1761 auio.uio_resid = NFS_DIRFRAGSIZ;
1762 auio.uio_offset = 0;
1763
1764 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1765
1766 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1767 if (error || len == 0) {
1768 FREE(buf, M_TEMP);
1769 if (cookies)
1770 free(cookies, M_TEMP);
1771 return;
1772 }
1773
1774 /*
1775 * Find the first valid entry and look at its offset cookie.
1776 */
1777
1778 cp = buf;
1779 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1780 dp = (struct dirent *)cp;
1781 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1782 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1783 *flagp |= NFSMNT_SWAPCOOKIE;
1784 nfs_invaldircache(vp, 0);
1785 nfs_vinvalbuf(vp, 0, cred, p, 1);
1786 }
1787 break;
1788 }
1789 cop++;
1790 cp += dp->d_reclen;
1791 }
1792
1793 FREE(buf, M_TEMP);
1794 free(cookies, M_TEMP);
1795 }
1796 #endif /* NFS */
1797
1798 /*
1799 * Set up nameidata for a lookup() call and do it.
1800 *
1801 * If pubflag is set, this call is done for a lookup operation on the
1802 * public filehandle. In that case we allow crossing mountpoints and
1803 * absolute pathnames. However, the caller is expected to check that
1804 * the lookup result is within the public fs, and deny access if
1805 * it is not.
1806 */
1807 int
1808 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1809 struct nameidata *ndp;
1810 fhandle_t *fhp;
1811 int len;
1812 struct nfssvc_sock *slp;
1813 struct mbuf *nam;
1814 struct mbuf **mdp;
1815 caddr_t *dposp;
1816 struct vnode **retdirp;
1817 struct proc *p;
1818 int kerbflag, pubflag;
1819 {
1820 int i, rem;
1821 struct mbuf *md;
1822 char *fromcp, *tocp, *cp;
1823 struct iovec aiov;
1824 struct uio auio;
1825 struct vnode *dp;
1826 int error, rdonly, linklen;
1827 struct componentname *cnp = &ndp->ni_cnd;
1828
1829 *retdirp = (struct vnode *)0;
1830
1831 if ((len + 1) > MAXPATHLEN)
1832 return (ENAMETOOLONG);
1833 cnp->cn_pnbuf = PNBUF_GET();
1834
1835 /*
1836 * Copy the name from the mbuf list to ndp->ni_pnbuf
1837 * and set the various ndp fields appropriately.
1838 */
1839 fromcp = *dposp;
1840 tocp = cnp->cn_pnbuf;
1841 md = *mdp;
1842 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1843 for (i = 0; i < len; i++) {
1844 while (rem == 0) {
1845 md = md->m_next;
1846 if (md == NULL) {
1847 error = EBADRPC;
1848 goto out;
1849 }
1850 fromcp = mtod(md, caddr_t);
1851 rem = md->m_len;
1852 }
1853 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1854 error = EACCES;
1855 goto out;
1856 }
1857 *tocp++ = *fromcp++;
1858 rem--;
1859 }
1860 *tocp = '\0';
1861 *mdp = md;
1862 *dposp = fromcp;
1863 len = nfsm_rndup(len)-len;
1864 if (len > 0) {
1865 if (rem >= len)
1866 *dposp += len;
1867 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1868 goto out;
1869 }
1870
1871 /*
1872 * Extract and set starting directory.
1873 */
1874 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1875 nam, &rdonly, kerbflag, pubflag);
1876 if (error)
1877 goto out;
1878 if (dp->v_type != VDIR) {
1879 vrele(dp);
1880 error = ENOTDIR;
1881 goto out;
1882 }
1883
1884 if (rdonly)
1885 cnp->cn_flags |= RDONLY;
1886
1887 *retdirp = dp;
1888
1889 if (pubflag) {
1890 /*
1891 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1892 * and the 'native path' indicator.
1893 */
1894 cp = PNBUF_GET();
1895 fromcp = cnp->cn_pnbuf;
1896 tocp = cp;
1897 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1898 switch ((unsigned char)*fromcp) {
1899 case WEBNFS_NATIVE_CHAR:
1900 /*
1901 * 'Native' path for us is the same
1902 * as a path according to the NFS spec,
1903 * just skip the escape char.
1904 */
1905 fromcp++;
1906 break;
1907 /*
1908 * More may be added in the future, range 0x80-0xff
1909 */
1910 default:
1911 error = EIO;
1912 FREE(cp, M_NAMEI);
1913 goto out;
1914 }
1915 }
1916 /*
1917 * Translate the '%' escapes, URL-style.
1918 */
1919 while (*fromcp != '\0') {
1920 if (*fromcp == WEBNFS_ESC_CHAR) {
1921 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1922 fromcp++;
1923 *tocp++ = HEXSTRTOI(fromcp);
1924 fromcp += 2;
1925 continue;
1926 } else {
1927 error = ENOENT;
1928 FREE(cp, M_NAMEI);
1929 goto out;
1930 }
1931 } else
1932 *tocp++ = *fromcp++;
1933 }
1934 *tocp = '\0';
1935 PNBUF_PUT(cnp->cn_pnbuf);
1936 cnp->cn_pnbuf = cp;
1937 }
1938
1939 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1940 ndp->ni_segflg = UIO_SYSSPACE;
1941
1942 if (pubflag) {
1943 ndp->ni_rootdir = rootvnode;
1944 ndp->ni_loopcnt = 0;
1945 if (cnp->cn_pnbuf[0] == '/')
1946 dp = rootvnode;
1947 } else {
1948 cnp->cn_flags |= NOCROSSMOUNT;
1949 }
1950
1951 cnp->cn_proc = p;
1952 VREF(dp);
1953
1954 for (;;) {
1955 cnp->cn_nameptr = cnp->cn_pnbuf;
1956 ndp->ni_startdir = dp;
1957 /*
1958 * And call lookup() to do the real work
1959 */
1960 error = lookup(ndp);
1961 if (error)
1962 break;
1963 /*
1964 * Check for encountering a symbolic link
1965 */
1966 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1967 if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1968 cnp->cn_flags |= HASBUF;
1969 return (0);
1970 }
1971 break;
1972 } else {
1973 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1974 VOP_UNLOCK(ndp->ni_dvp, 0);
1975 if (!pubflag) {
1976 vrele(ndp->ni_dvp);
1977 vput(ndp->ni_vp);
1978 ndp->ni_vp = NULL;
1979 error = EINVAL;
1980 break;
1981 }
1982
1983 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1984 error = ELOOP;
1985 break;
1986 }
1987 if (ndp->ni_pathlen > 1)
1988 cp = PNBUF_GET();
1989 else
1990 cp = cnp->cn_pnbuf;
1991 aiov.iov_base = cp;
1992 aiov.iov_len = MAXPATHLEN;
1993 auio.uio_iov = &aiov;
1994 auio.uio_iovcnt = 1;
1995 auio.uio_offset = 0;
1996 auio.uio_rw = UIO_READ;
1997 auio.uio_segflg = UIO_SYSSPACE;
1998 auio.uio_procp = (struct proc *)0;
1999 auio.uio_resid = MAXPATHLEN;
2000 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2001 if (error) {
2002 badlink:
2003 if (ndp->ni_pathlen > 1)
2004 PNBUF_PUT(cp);
2005 break;
2006 }
2007 linklen = MAXPATHLEN - auio.uio_resid;
2008 if (linklen == 0) {
2009 error = ENOENT;
2010 goto badlink;
2011 }
2012 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2013 error = ENAMETOOLONG;
2014 goto badlink;
2015 }
2016 if (ndp->ni_pathlen > 1) {
2017 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2018 PNBUF_PUT(cnp->cn_pnbuf);
2019 cnp->cn_pnbuf = cp;
2020 } else
2021 cnp->cn_pnbuf[linklen] = '\0';
2022 ndp->ni_pathlen += linklen;
2023 vput(ndp->ni_vp);
2024 dp = ndp->ni_dvp;
2025 /*
2026 * Check if root directory should replace current directory.
2027 */
2028 if (cnp->cn_pnbuf[0] == '/') {
2029 vrele(dp);
2030 dp = ndp->ni_rootdir;
2031 VREF(dp);
2032 }
2033 }
2034 }
2035 out:
2036 PNBUF_PUT(cnp->cn_pnbuf);
2037 return (error);
2038 }
2039
2040 /*
2041 * A fiddled version of m_adj() that ensures null fill to a long
2042 * boundary and only trims off the back end
2043 */
2044 void
2045 nfsm_adj(mp, len, nul)
2046 struct mbuf *mp;
2047 int len;
2048 int nul;
2049 {
2050 struct mbuf *m;
2051 int count, i;
2052 char *cp;
2053
2054 /*
2055 * Trim from tail. Scan the mbuf chain,
2056 * calculating its length and finding the last mbuf.
2057 * If the adjustment only affects this mbuf, then just
2058 * adjust and return. Otherwise, rescan and truncate
2059 * after the remaining size.
2060 */
2061 count = 0;
2062 m = mp;
2063 for (;;) {
2064 count += m->m_len;
2065 if (m->m_next == (struct mbuf *)0)
2066 break;
2067 m = m->m_next;
2068 }
2069 if (m->m_len > len) {
2070 m->m_len -= len;
2071 if (nul > 0) {
2072 cp = mtod(m, caddr_t)+m->m_len-nul;
2073 for (i = 0; i < nul; i++)
2074 *cp++ = '\0';
2075 }
2076 return;
2077 }
2078 count -= len;
2079 if (count < 0)
2080 count = 0;
2081 /*
2082 * Correct length for chain is "count".
2083 * Find the mbuf with last data, adjust its length,
2084 * and toss data from remaining mbufs on chain.
2085 */
2086 for (m = mp; m; m = m->m_next) {
2087 if (m->m_len >= count) {
2088 m->m_len = count;
2089 if (nul > 0) {
2090 cp = mtod(m, caddr_t)+m->m_len-nul;
2091 for (i = 0; i < nul; i++)
2092 *cp++ = '\0';
2093 }
2094 break;
2095 }
2096 count -= m->m_len;
2097 }
2098 for (m = m->m_next;m;m = m->m_next)
2099 m->m_len = 0;
2100 }
2101
2102 /*
2103 * Make these functions instead of macros, so that the kernel text size
2104 * doesn't get too big...
2105 */
2106 void
2107 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2108 struct nfsrv_descript *nfsd;
2109 int before_ret;
2110 struct vattr *before_vap;
2111 int after_ret;
2112 struct vattr *after_vap;
2113 struct mbuf **mbp;
2114 char **bposp;
2115 {
2116 struct mbuf *mb = *mbp, *mb2;
2117 char *bpos = *bposp;
2118 u_int32_t *tl;
2119
2120 if (before_ret) {
2121 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2122 *tl = nfs_false;
2123 } else {
2124 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2125 *tl++ = nfs_true;
2126 txdr_hyper(before_vap->va_size, tl);
2127 tl += 2;
2128 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2129 tl += 2;
2130 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2131 }
2132 *bposp = bpos;
2133 *mbp = mb;
2134 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2135 }
2136
2137 void
2138 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2139 struct nfsrv_descript *nfsd;
2140 int after_ret;
2141 struct vattr *after_vap;
2142 struct mbuf **mbp;
2143 char **bposp;
2144 {
2145 struct mbuf *mb = *mbp, *mb2;
2146 char *bpos = *bposp;
2147 u_int32_t *tl;
2148 struct nfs_fattr *fp;
2149
2150 if (after_ret) {
2151 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2152 *tl = nfs_false;
2153 } else {
2154 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2155 *tl++ = nfs_true;
2156 fp = (struct nfs_fattr *)tl;
2157 nfsm_srvfattr(nfsd, after_vap, fp);
2158 }
2159 *mbp = mb;
2160 *bposp = bpos;
2161 }
2162
2163 void
2164 nfsm_srvfattr(nfsd, vap, fp)
2165 struct nfsrv_descript *nfsd;
2166 struct vattr *vap;
2167 struct nfs_fattr *fp;
2168 {
2169
2170 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2171 fp->fa_uid = txdr_unsigned(vap->va_uid);
2172 fp->fa_gid = txdr_unsigned(vap->va_gid);
2173 if (nfsd->nd_flag & ND_NFSV3) {
2174 fp->fa_type = vtonfsv3_type(vap->va_type);
2175 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2176 txdr_hyper(vap->va_size, &fp->fa3_size);
2177 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2178 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2179 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2180 fp->fa3_fsid.nfsuquad[0] = 0;
2181 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2182 fp->fa3_fileid.nfsuquad[0] = 0;
2183 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2184 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2185 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2186 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2187 } else {
2188 fp->fa_type = vtonfsv2_type(vap->va_type);
2189 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2190 fp->fa2_size = txdr_unsigned(vap->va_size);
2191 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2192 if (vap->va_type == VFIFO)
2193 fp->fa2_rdev = 0xffffffff;
2194 else
2195 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2196 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2197 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2198 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2199 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2200 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2201 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2202 }
2203 }
2204
2205 /*
2206 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2207 * - look up fsid in mount list (if not found ret error)
2208 * - get vp and export rights by calling VFS_FHTOVP()
2209 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2210 * - if not lockflag unlock it with VOP_UNLOCK()
2211 */
2212 int
2213 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2214 fhandle_t *fhp;
2215 int lockflag;
2216 struct vnode **vpp;
2217 struct ucred *cred;
2218 struct nfssvc_sock *slp;
2219 struct mbuf *nam;
2220 int *rdonlyp;
2221 int kerbflag;
2222 {
2223 struct mount *mp;
2224 int i;
2225 struct ucred *credanon;
2226 int error, exflags;
2227 struct sockaddr_in *saddr;
2228
2229 *vpp = (struct vnode *)0;
2230
2231 if (nfs_ispublicfh(fhp)) {
2232 if (!pubflag || !nfs_pub.np_valid)
2233 return (ESTALE);
2234 fhp = &nfs_pub.np_handle;
2235 }
2236
2237 mp = vfs_getvfs(&fhp->fh_fsid);
2238 if (!mp)
2239 return (ESTALE);
2240 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2241 if (error)
2242 return (error);
2243 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2244 if (error)
2245 return (error);
2246
2247 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2248 saddr = mtod(nam, struct sockaddr_in *);
2249 if ((saddr->sin_family == AF_INET) &&
2250 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2251 vput(*vpp);
2252 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2253 }
2254 #ifdef INET6
2255 if ((saddr->sin_family == AF_INET6) &&
2256 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2257 vput(*vpp);
2258 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2259 }
2260 #endif
2261 }
2262 /*
2263 * Check/setup credentials.
2264 */
2265 if (exflags & MNT_EXKERB) {
2266 if (!kerbflag) {
2267 vput(*vpp);
2268 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2269 }
2270 } else if (kerbflag) {
2271 vput(*vpp);
2272 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2273 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2274 cred->cr_uid = credanon->cr_uid;
2275 cred->cr_gid = credanon->cr_gid;
2276 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2277 cred->cr_groups[i] = credanon->cr_groups[i];
2278 cred->cr_ngroups = i;
2279 }
2280 if (exflags & MNT_EXRDONLY)
2281 *rdonlyp = 1;
2282 else
2283 *rdonlyp = 0;
2284 if (!lockflag)
2285 VOP_UNLOCK(*vpp, 0);
2286 return (0);
2287 }
2288
2289 /*
2290 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2291 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2292 * transformed this to all zeroes in both cases, so check for it.
2293 */
2294 int
2295 nfs_ispublicfh(fhp)
2296 fhandle_t *fhp;
2297 {
2298 char *cp = (char *)fhp;
2299 int i;
2300
2301 for (i = 0; i < NFSX_V3FH; i++)
2302 if (*cp++ != 0)
2303 return (FALSE);
2304 return (TRUE);
2305 }
2306
2307 /*
2308 * This function compares two net addresses by family and returns TRUE
2309 * if they are the same host.
2310 * If there is any doubt, return FALSE.
2311 * The AF_INET family is handled as a special case so that address mbufs
2312 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2313 */
2314 int
2315 netaddr_match(family, haddr, nam)
2316 int family;
2317 union nethostaddr *haddr;
2318 struct mbuf *nam;
2319 {
2320 struct sockaddr_in *inetaddr;
2321
2322 switch (family) {
2323 case AF_INET:
2324 inetaddr = mtod(nam, struct sockaddr_in *);
2325 if (inetaddr->sin_family == AF_INET &&
2326 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2327 return (1);
2328 break;
2329 #ifdef INET6
2330 case AF_INET6:
2331 {
2332 struct sockaddr_in6 *sin6_1, *sin6_2;
2333
2334 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2335 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2336 if (sin6_1->sin6_family == AF_INET6 &&
2337 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2338 return 1;
2339 }
2340 #endif
2341 #ifdef ISO
2342 case AF_ISO:
2343 {
2344 struct sockaddr_iso *isoaddr1, *isoaddr2;
2345
2346 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2347 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2348 if (isoaddr1->siso_family == AF_ISO &&
2349 isoaddr1->siso_nlen > 0 &&
2350 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2351 SAME_ISOADDR(isoaddr1, isoaddr2))
2352 return (1);
2353 break;
2354 }
2355 #endif /* ISO */
2356 default:
2357 break;
2358 };
2359 return (0);
2360 }
2361
2362
2363 /*
2364 * The write verifier has changed (probably due to a server reboot), so all
2365 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2366 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2367 * flag. Once done the new write verifier can be set for the mount point.
2368 */
2369 void
2370 nfs_clearcommit(mp)
2371 struct mount *mp;
2372 {
2373 struct vnode *vp, *nvp;
2374 struct buf *bp, *nbp;
2375 struct nfsnode *np;
2376 int s;
2377
2378 s = splbio();
2379 loop:
2380 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2381 if (vp->v_mount != mp) /* Paranoia */
2382 goto loop;
2383 np = VTONFS(vp);
2384 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2385 np->n_pushedhi = 0;
2386 np->n_commitflags &=
2387 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2388 nvp = vp->v_mntvnodes.le_next;
2389 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2390 nbp = bp->b_vnbufs.le_next;
2391 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2392 == (B_DELWRI | B_NEEDCOMMIT))
2393 bp->b_flags &= ~B_NEEDCOMMIT;
2394 }
2395 }
2396 splx(s);
2397 }
2398
2399 void
2400 nfs_merge_commit_ranges(vp)
2401 struct vnode *vp;
2402 {
2403 struct nfsnode *np = VTONFS(vp);
2404
2405 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2406 np->n_pushedlo = np->n_pushlo;
2407 np->n_pushedhi = np->n_pushhi;
2408 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2409 } else {
2410 if (np->n_pushlo < np->n_pushedlo)
2411 np->n_pushedlo = np->n_pushlo;
2412 if (np->n_pushhi > np->n_pushedhi)
2413 np->n_pushedhi = np->n_pushhi;
2414 }
2415
2416 np->n_pushlo = np->n_pushhi = 0;
2417 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2418
2419 #ifdef fvdl_debug
2420 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2421 (unsigned)np->n_pushedhi);
2422 #endif
2423 }
2424
2425 int
2426 nfs_in_committed_range(vp, bp)
2427 struct vnode *vp;
2428 struct buf *bp;
2429 {
2430 struct nfsnode *np = VTONFS(vp);
2431 off_t lo, hi;
2432
2433 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2434 return 0;
2435 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2436 hi = lo + bp->b_dirtyend;
2437
2438 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2439 }
2440
2441 int
2442 nfs_in_tobecommitted_range(vp, bp)
2443 struct vnode *vp;
2444 struct buf *bp;
2445 {
2446 struct nfsnode *np = VTONFS(vp);
2447 off_t lo, hi;
2448
2449 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2450 return 0;
2451 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2452 hi = lo + bp->b_dirtyend;
2453
2454 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2455 }
2456
2457 void
2458 nfs_add_committed_range(vp, bp)
2459 struct vnode *vp;
2460 struct buf *bp;
2461 {
2462 struct nfsnode *np = VTONFS(vp);
2463 off_t lo, hi;
2464
2465 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2466 hi = lo + bp->b_dirtyend;
2467
2468 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2469 np->n_pushedlo = lo;
2470 np->n_pushedhi = hi;
2471 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2472 } else {
2473 if (hi > np->n_pushedhi)
2474 np->n_pushedhi = hi;
2475 if (lo < np->n_pushedlo)
2476 np->n_pushedlo = lo;
2477 }
2478 #ifdef fvdl_debug
2479 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2480 (unsigned)np->n_pushedhi);
2481 #endif
2482 }
2483
2484 void
2485 nfs_del_committed_range(vp, bp)
2486 struct vnode *vp;
2487 struct buf *bp;
2488 {
2489 struct nfsnode *np = VTONFS(vp);
2490 off_t lo, hi;
2491
2492 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2493 return;
2494
2495 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2496 hi = lo + bp->b_dirtyend;
2497
2498 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2499 return;
2500 if (lo <= np->n_pushedlo)
2501 np->n_pushedlo = hi;
2502 else if (hi >= np->n_pushedhi)
2503 np->n_pushedhi = lo;
2504 else {
2505 /*
2506 * XXX There's only one range. If the deleted range
2507 * is in the middle, pick the largest of the
2508 * contiguous ranges that it leaves.
2509 */
2510 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2511 np->n_pushedhi = lo;
2512 else
2513 np->n_pushedlo = hi;
2514 }
2515 #ifdef fvdl_debug
2516 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2517 (unsigned)np->n_pushedhi);
2518 #endif
2519 }
2520
2521 void
2522 nfs_add_tobecommitted_range(vp, bp)
2523 struct vnode *vp;
2524 struct buf *bp;
2525 {
2526 struct nfsnode *np = VTONFS(vp);
2527 off_t lo, hi;
2528
2529 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2530 hi = lo + bp->b_dirtyend;
2531
2532 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2533 np->n_pushlo = lo;
2534 np->n_pushhi = hi;
2535 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2536 } else {
2537 if (lo < np->n_pushlo)
2538 np->n_pushlo = lo;
2539 if (hi > np->n_pushhi)
2540 np->n_pushhi = hi;
2541 }
2542 #ifdef fvdl_debug
2543 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2544 (unsigned)np->n_pushhi);
2545 #endif
2546 }
2547
2548 void
2549 nfs_del_tobecommitted_range(vp, bp)
2550 struct vnode *vp;
2551 struct buf *bp;
2552 {
2553 struct nfsnode *np = VTONFS(vp);
2554 off_t lo, hi;
2555
2556 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2557 return;
2558
2559 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2560 hi = lo + bp->b_dirtyend;
2561
2562 if (lo > np->n_pushhi || hi < np->n_pushlo)
2563 return;
2564
2565 if (lo <= np->n_pushlo)
2566 np->n_pushlo = hi;
2567 else if (hi >= np->n_pushhi)
2568 np->n_pushhi = lo;
2569 else {
2570 /*
2571 * XXX There's only one range. If the deleted range
2572 * is in the middle, pick the largest of the
2573 * contiguous ranges that it leaves.
2574 */
2575 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2576 np->n_pushhi = lo;
2577 else
2578 np->n_pushlo = hi;
2579 }
2580 #ifdef fvdl_debug
2581 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2582 (unsigned)np->n_pushhi);
2583 #endif
2584 }
2585
2586 /*
2587 * Map errnos to NFS error numbers. For Version 3 also filter out error
2588 * numbers not specified for the associated procedure.
2589 */
2590 int
2591 nfsrv_errmap(nd, err)
2592 struct nfsrv_descript *nd;
2593 int err;
2594 {
2595 short *defaulterrp, *errp;
2596
2597 if (nd->nd_flag & ND_NFSV3) {
2598 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2599 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2600 while (*++errp) {
2601 if (*errp == err)
2602 return (err);
2603 else if (*errp > err)
2604 break;
2605 }
2606 return ((int)*defaulterrp);
2607 } else
2608 return (err & 0xffff);
2609 }
2610 if (err <= ELAST)
2611 return ((int)nfsrv_v2errmap[err - 1]);
2612 return (NFSERR_IO);
2613 }
2614
2615 /*
2616 * Sort the group list in increasing numerical order.
2617 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2618 * that used to be here.)
2619 */
2620 void
2621 nfsrvw_sort(list, num)
2622 gid_t *list;
2623 int num;
2624 {
2625 int i, j;
2626 gid_t v;
2627
2628 /* Insertion sort. */
2629 for (i = 1; i < num; i++) {
2630 v = list[i];
2631 /* find correct slot for value v, moving others up */
2632 for (j = i; --j >= 0 && v < list[j];)
2633 list[j + 1] = list[j];
2634 list[j + 1] = v;
2635 }
2636 }
2637
2638 /*
2639 * copy credentials making sure that the result can be compared with memcmp().
2640 */
2641 void
2642 nfsrv_setcred(incred, outcred)
2643 struct ucred *incred, *outcred;
2644 {
2645 int i;
2646
2647 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2648 outcred->cr_ref = 1;
2649 outcred->cr_uid = incred->cr_uid;
2650 outcred->cr_gid = incred->cr_gid;
2651 outcred->cr_ngroups = incred->cr_ngroups;
2652 for (i = 0; i < incred->cr_ngroups; i++)
2653 outcred->cr_groups[i] = incred->cr_groups[i];
2654 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2655 }
2656