nfs_subs.c revision 1.84 1 /* $NetBSD: nfs_subs.c,v 1.84 2000/09/19 23:26:26 bjh21 Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #include "opt_nfsserver.h"
79 #include "opt_iso.h"
80 #include "opt_inet.h"
81
82 /*
83 * These functions support the macros and help fiddle mbuf chains for
84 * the nfs op functions. They do things like create the rpc header and
85 * copy data between mbuf chains and uio lists.
86 */
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 static u_int32_t nfs_xid = 0;
133 nfstype nfsv2_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON,
134 NFCHR, NFNON };
135 nfstype nfsv3_type[9] = { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK,
136 NFFIFO, NFNON };
137 enum vtype nv2tov_type[8] = { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 enum vtype nv3tov_type[8]={ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
139 int nfs_ticks;
140
141 /* NFS client/server stats. */
142 struct nfsstats nfsstats;
143
144 /*
145 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
146 */
147 int nfsv3_procid[NFS_NPROCS] = {
148 NFSPROC_NULL,
149 NFSPROC_GETATTR,
150 NFSPROC_SETATTR,
151 NFSPROC_NOOP,
152 NFSPROC_LOOKUP,
153 NFSPROC_READLINK,
154 NFSPROC_READ,
155 NFSPROC_NOOP,
156 NFSPROC_WRITE,
157 NFSPROC_CREATE,
158 NFSPROC_REMOVE,
159 NFSPROC_RENAME,
160 NFSPROC_LINK,
161 NFSPROC_SYMLINK,
162 NFSPROC_MKDIR,
163 NFSPROC_RMDIR,
164 NFSPROC_READDIR,
165 NFSPROC_FSSTAT,
166 NFSPROC_NOOP,
167 NFSPROC_NOOP,
168 NFSPROC_NOOP,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP
174 };
175
176 /*
177 * and the reverse mapping from generic to Version 2 procedure numbers
178 */
179 int nfsv2_procid[NFS_NPROCS] = {
180 NFSV2PROC_NULL,
181 NFSV2PROC_GETATTR,
182 NFSV2PROC_SETATTR,
183 NFSV2PROC_LOOKUP,
184 NFSV2PROC_NOOP,
185 NFSV2PROC_READLINK,
186 NFSV2PROC_READ,
187 NFSV2PROC_WRITE,
188 NFSV2PROC_CREATE,
189 NFSV2PROC_MKDIR,
190 NFSV2PROC_SYMLINK,
191 NFSV2PROC_CREATE,
192 NFSV2PROC_REMOVE,
193 NFSV2PROC_RMDIR,
194 NFSV2PROC_RENAME,
195 NFSV2PROC_LINK,
196 NFSV2PROC_READDIR,
197 NFSV2PROC_NOOP,
198 NFSV2PROC_STATFS,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 };
207
208 /*
209 * Maps errno values to nfs error numbers.
210 * Use NFSERR_IO as the catch all for ones not specifically defined in
211 * RFC 1094.
212 */
213 static u_char nfsrv_v2errmap[ELAST] = {
214 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
217 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
218 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
227 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO,
231 };
232
233 /*
234 * Maps errno values to nfs error numbers.
235 * Although it is not obvious whether or not NFS clients really care if
236 * a returned error value is in the specified list for the procedure, the
237 * safest thing to do is filter them appropriately. For Version 2, the
238 * X/Open XNFS document is the only specification that defines error values
239 * for each RPC (The RFC simply lists all possible error values for all RPCs),
240 * so I have decided to not do this for Version 2.
241 * The first entry is the default error return and the rest are the valid
242 * errors for that RPC in increasing numeric order.
243 */
244 static short nfsv3err_null[] = {
245 0,
246 0,
247 };
248
249 static short nfsv3err_getattr[] = {
250 NFSERR_IO,
251 NFSERR_IO,
252 NFSERR_STALE,
253 NFSERR_BADHANDLE,
254 NFSERR_SERVERFAULT,
255 0,
256 };
257
258 static short nfsv3err_setattr[] = {
259 NFSERR_IO,
260 NFSERR_PERM,
261 NFSERR_IO,
262 NFSERR_ACCES,
263 NFSERR_INVAL,
264 NFSERR_NOSPC,
265 NFSERR_ROFS,
266 NFSERR_DQUOT,
267 NFSERR_STALE,
268 NFSERR_BADHANDLE,
269 NFSERR_NOT_SYNC,
270 NFSERR_SERVERFAULT,
271 0,
272 };
273
274 static short nfsv3err_lookup[] = {
275 NFSERR_IO,
276 NFSERR_NOENT,
277 NFSERR_IO,
278 NFSERR_ACCES,
279 NFSERR_NOTDIR,
280 NFSERR_NAMETOL,
281 NFSERR_STALE,
282 NFSERR_BADHANDLE,
283 NFSERR_SERVERFAULT,
284 0,
285 };
286
287 static short nfsv3err_access[] = {
288 NFSERR_IO,
289 NFSERR_IO,
290 NFSERR_STALE,
291 NFSERR_BADHANDLE,
292 NFSERR_SERVERFAULT,
293 0,
294 };
295
296 static short nfsv3err_readlink[] = {
297 NFSERR_IO,
298 NFSERR_IO,
299 NFSERR_ACCES,
300 NFSERR_INVAL,
301 NFSERR_STALE,
302 NFSERR_BADHANDLE,
303 NFSERR_NOTSUPP,
304 NFSERR_SERVERFAULT,
305 0,
306 };
307
308 static short nfsv3err_read[] = {
309 NFSERR_IO,
310 NFSERR_IO,
311 NFSERR_NXIO,
312 NFSERR_ACCES,
313 NFSERR_INVAL,
314 NFSERR_STALE,
315 NFSERR_BADHANDLE,
316 NFSERR_SERVERFAULT,
317 NFSERR_JUKEBOX,
318 0,
319 };
320
321 static short nfsv3err_write[] = {
322 NFSERR_IO,
323 NFSERR_IO,
324 NFSERR_ACCES,
325 NFSERR_INVAL,
326 NFSERR_FBIG,
327 NFSERR_NOSPC,
328 NFSERR_ROFS,
329 NFSERR_DQUOT,
330 NFSERR_STALE,
331 NFSERR_BADHANDLE,
332 NFSERR_SERVERFAULT,
333 NFSERR_JUKEBOX,
334 0,
335 };
336
337 static short nfsv3err_create[] = {
338 NFSERR_IO,
339 NFSERR_IO,
340 NFSERR_ACCES,
341 NFSERR_EXIST,
342 NFSERR_NOTDIR,
343 NFSERR_NOSPC,
344 NFSERR_ROFS,
345 NFSERR_NAMETOL,
346 NFSERR_DQUOT,
347 NFSERR_STALE,
348 NFSERR_BADHANDLE,
349 NFSERR_NOTSUPP,
350 NFSERR_SERVERFAULT,
351 0,
352 };
353
354 static short nfsv3err_mkdir[] = {
355 NFSERR_IO,
356 NFSERR_IO,
357 NFSERR_ACCES,
358 NFSERR_EXIST,
359 NFSERR_NOTDIR,
360 NFSERR_NOSPC,
361 NFSERR_ROFS,
362 NFSERR_NAMETOL,
363 NFSERR_DQUOT,
364 NFSERR_STALE,
365 NFSERR_BADHANDLE,
366 NFSERR_NOTSUPP,
367 NFSERR_SERVERFAULT,
368 0,
369 };
370
371 static short nfsv3err_symlink[] = {
372 NFSERR_IO,
373 NFSERR_IO,
374 NFSERR_ACCES,
375 NFSERR_EXIST,
376 NFSERR_NOTDIR,
377 NFSERR_NOSPC,
378 NFSERR_ROFS,
379 NFSERR_NAMETOL,
380 NFSERR_DQUOT,
381 NFSERR_STALE,
382 NFSERR_BADHANDLE,
383 NFSERR_NOTSUPP,
384 NFSERR_SERVERFAULT,
385 0,
386 };
387
388 static short nfsv3err_mknod[] = {
389 NFSERR_IO,
390 NFSERR_IO,
391 NFSERR_ACCES,
392 NFSERR_EXIST,
393 NFSERR_NOTDIR,
394 NFSERR_NOSPC,
395 NFSERR_ROFS,
396 NFSERR_NAMETOL,
397 NFSERR_DQUOT,
398 NFSERR_STALE,
399 NFSERR_BADHANDLE,
400 NFSERR_NOTSUPP,
401 NFSERR_SERVERFAULT,
402 NFSERR_BADTYPE,
403 0,
404 };
405
406 static short nfsv3err_remove[] = {
407 NFSERR_IO,
408 NFSERR_NOENT,
409 NFSERR_IO,
410 NFSERR_ACCES,
411 NFSERR_NOTDIR,
412 NFSERR_ROFS,
413 NFSERR_NAMETOL,
414 NFSERR_STALE,
415 NFSERR_BADHANDLE,
416 NFSERR_SERVERFAULT,
417 0,
418 };
419
420 static short nfsv3err_rmdir[] = {
421 NFSERR_IO,
422 NFSERR_NOENT,
423 NFSERR_IO,
424 NFSERR_ACCES,
425 NFSERR_EXIST,
426 NFSERR_NOTDIR,
427 NFSERR_INVAL,
428 NFSERR_ROFS,
429 NFSERR_NAMETOL,
430 NFSERR_NOTEMPTY,
431 NFSERR_STALE,
432 NFSERR_BADHANDLE,
433 NFSERR_NOTSUPP,
434 NFSERR_SERVERFAULT,
435 0,
436 };
437
438 static short nfsv3err_rename[] = {
439 NFSERR_IO,
440 NFSERR_NOENT,
441 NFSERR_IO,
442 NFSERR_ACCES,
443 NFSERR_EXIST,
444 NFSERR_XDEV,
445 NFSERR_NOTDIR,
446 NFSERR_ISDIR,
447 NFSERR_INVAL,
448 NFSERR_NOSPC,
449 NFSERR_ROFS,
450 NFSERR_MLINK,
451 NFSERR_NAMETOL,
452 NFSERR_NOTEMPTY,
453 NFSERR_DQUOT,
454 NFSERR_STALE,
455 NFSERR_BADHANDLE,
456 NFSERR_NOTSUPP,
457 NFSERR_SERVERFAULT,
458 0,
459 };
460
461 static short nfsv3err_link[] = {
462 NFSERR_IO,
463 NFSERR_IO,
464 NFSERR_ACCES,
465 NFSERR_EXIST,
466 NFSERR_XDEV,
467 NFSERR_NOTDIR,
468 NFSERR_INVAL,
469 NFSERR_NOSPC,
470 NFSERR_ROFS,
471 NFSERR_MLINK,
472 NFSERR_NAMETOL,
473 NFSERR_DQUOT,
474 NFSERR_STALE,
475 NFSERR_BADHANDLE,
476 NFSERR_NOTSUPP,
477 NFSERR_SERVERFAULT,
478 0,
479 };
480
481 static short nfsv3err_readdir[] = {
482 NFSERR_IO,
483 NFSERR_IO,
484 NFSERR_ACCES,
485 NFSERR_NOTDIR,
486 NFSERR_STALE,
487 NFSERR_BADHANDLE,
488 NFSERR_BAD_COOKIE,
489 NFSERR_TOOSMALL,
490 NFSERR_SERVERFAULT,
491 0,
492 };
493
494 static short nfsv3err_readdirplus[] = {
495 NFSERR_IO,
496 NFSERR_IO,
497 NFSERR_ACCES,
498 NFSERR_NOTDIR,
499 NFSERR_STALE,
500 NFSERR_BADHANDLE,
501 NFSERR_BAD_COOKIE,
502 NFSERR_NOTSUPP,
503 NFSERR_TOOSMALL,
504 NFSERR_SERVERFAULT,
505 0,
506 };
507
508 static short nfsv3err_fsstat[] = {
509 NFSERR_IO,
510 NFSERR_IO,
511 NFSERR_STALE,
512 NFSERR_BADHANDLE,
513 NFSERR_SERVERFAULT,
514 0,
515 };
516
517 static short nfsv3err_fsinfo[] = {
518 NFSERR_STALE,
519 NFSERR_STALE,
520 NFSERR_BADHANDLE,
521 NFSERR_SERVERFAULT,
522 0,
523 };
524
525 static short nfsv3err_pathconf[] = {
526 NFSERR_STALE,
527 NFSERR_STALE,
528 NFSERR_BADHANDLE,
529 NFSERR_SERVERFAULT,
530 0,
531 };
532
533 static short nfsv3err_commit[] = {
534 NFSERR_IO,
535 NFSERR_IO,
536 NFSERR_STALE,
537 NFSERR_BADHANDLE,
538 NFSERR_SERVERFAULT,
539 0,
540 };
541
542 static short *nfsrv_v3errmap[] = {
543 nfsv3err_null,
544 nfsv3err_getattr,
545 nfsv3err_setattr,
546 nfsv3err_lookup,
547 nfsv3err_access,
548 nfsv3err_readlink,
549 nfsv3err_read,
550 nfsv3err_write,
551 nfsv3err_create,
552 nfsv3err_mkdir,
553 nfsv3err_symlink,
554 nfsv3err_mknod,
555 nfsv3err_remove,
556 nfsv3err_rmdir,
557 nfsv3err_rename,
558 nfsv3err_link,
559 nfsv3err_readdir,
560 nfsv3err_readdirplus,
561 nfsv3err_fsstat,
562 nfsv3err_fsinfo,
563 nfsv3err_pathconf,
564 nfsv3err_commit,
565 };
566
567 extern struct nfsrtt nfsrtt;
568 extern time_t nqnfsstarttime;
569 extern int nqsrv_clockskew;
570 extern int nqsrv_writeslack;
571 extern int nqsrv_maxlease;
572 extern int nqnfs_piggy[NFS_NPROCS];
573 extern struct nfsnodehashhead *nfsnodehashtbl;
574 extern u_long nfsnodehash;
575
576 LIST_HEAD(nfsnodehashhead, nfsnode);
577 u_long nfsdirhashmask;
578
579 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
580
581 /*
582 * Create the header for an rpc request packet
583 * The hsiz is the size of the rest of the nfs request header.
584 * (just used to decide if a cluster is a good idea)
585 */
586 struct mbuf *
587 nfsm_reqh(vp, procid, hsiz, bposp)
588 struct vnode *vp;
589 u_long procid;
590 int hsiz;
591 caddr_t *bposp;
592 {
593 struct mbuf *mb;
594 u_int32_t *tl;
595 caddr_t bpos;
596 struct mbuf *mb2;
597 struct nfsmount *nmp;
598 int nqflag;
599
600 MGET(mb, M_WAIT, MT_DATA);
601 if (hsiz >= MINCLSIZE)
602 MCLGET(mb, M_WAIT);
603 mb->m_len = 0;
604 bpos = mtod(mb, caddr_t);
605
606 /*
607 * For NQNFS, add lease request.
608 */
609 if (vp) {
610 nmp = VFSTONFS(vp->v_mount);
611 #ifndef NFS_V2_ONLY
612 if (nmp->nm_flag & NFSMNT_NQNFS) {
613 nqflag = NQNFS_NEEDLEASE(vp, procid);
614 if (nqflag) {
615 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
616 *tl++ = txdr_unsigned(nqflag);
617 *tl = txdr_unsigned(nmp->nm_leaseterm);
618 } else {
619 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
620 *tl = 0;
621 }
622 }
623 #endif
624 }
625 /* Finally, return values */
626 *bposp = bpos;
627 return (mb);
628 }
629
630 /*
631 * Build the RPC header and fill in the authorization info.
632 * The authorization string argument is only used when the credentials
633 * come from outside of the kernel.
634 * Returns the head of the mbuf list.
635 */
636 struct mbuf *
637 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
638 verf_str, mrest, mrest_len, mbp, xidp)
639 struct ucred *cr;
640 int nmflag;
641 int procid;
642 int auth_type;
643 int auth_len;
644 char *auth_str;
645 int verf_len;
646 char *verf_str;
647 struct mbuf *mrest;
648 int mrest_len;
649 struct mbuf **mbp;
650 u_int32_t *xidp;
651 {
652 struct mbuf *mb;
653 u_int32_t *tl;
654 caddr_t bpos;
655 int i;
656 struct mbuf *mreq, *mb2;
657 int siz, grpsiz, authsiz;
658 struct timeval tv;
659 static u_int32_t base;
660
661 authsiz = nfsm_rndup(auth_len);
662 MGETHDR(mb, M_WAIT, MT_DATA);
663 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
664 MCLGET(mb, M_WAIT);
665 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
666 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
667 } else {
668 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
669 }
670 mb->m_len = 0;
671 mreq = mb;
672 bpos = mtod(mb, caddr_t);
673
674 /*
675 * First the RPC header.
676 */
677 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
678
679 /*
680 * derive initial xid from system time
681 * XXX time is invalid if root not yet mounted
682 */
683 if (!base && (rootvp)) {
684 microtime(&tv);
685 base = tv.tv_sec << 12;
686 nfs_xid = base;
687 }
688 /*
689 * Skip zero xid if it should ever happen.
690 */
691 if (++nfs_xid == 0)
692 nfs_xid++;
693
694 *tl++ = *xidp = txdr_unsigned(nfs_xid);
695 *tl++ = rpc_call;
696 *tl++ = rpc_vers;
697 if (nmflag & NFSMNT_NQNFS) {
698 *tl++ = txdr_unsigned(NQNFS_PROG);
699 *tl++ = txdr_unsigned(NQNFS_VER3);
700 } else {
701 *tl++ = txdr_unsigned(NFS_PROG);
702 if (nmflag & NFSMNT_NFSV3)
703 *tl++ = txdr_unsigned(NFS_VER3);
704 else
705 *tl++ = txdr_unsigned(NFS_VER2);
706 }
707 if (nmflag & NFSMNT_NFSV3)
708 *tl++ = txdr_unsigned(procid);
709 else
710 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
711
712 /*
713 * And then the authorization cred.
714 */
715 *tl++ = txdr_unsigned(auth_type);
716 *tl = txdr_unsigned(authsiz);
717 switch (auth_type) {
718 case RPCAUTH_UNIX:
719 nfsm_build(tl, u_int32_t *, auth_len);
720 *tl++ = 0; /* stamp ?? */
721 *tl++ = 0; /* NULL hostname */
722 *tl++ = txdr_unsigned(cr->cr_uid);
723 *tl++ = txdr_unsigned(cr->cr_gid);
724 grpsiz = (auth_len >> 2) - 5;
725 *tl++ = txdr_unsigned(grpsiz);
726 for (i = 0; i < grpsiz; i++)
727 *tl++ = txdr_unsigned(cr->cr_groups[i]);
728 break;
729 case RPCAUTH_KERB4:
730 siz = auth_len;
731 while (siz > 0) {
732 if (M_TRAILINGSPACE(mb) == 0) {
733 MGET(mb2, M_WAIT, MT_DATA);
734 if (siz >= MINCLSIZE)
735 MCLGET(mb2, M_WAIT);
736 mb->m_next = mb2;
737 mb = mb2;
738 mb->m_len = 0;
739 bpos = mtod(mb, caddr_t);
740 }
741 i = min(siz, M_TRAILINGSPACE(mb));
742 memcpy(bpos, auth_str, i);
743 mb->m_len += i;
744 auth_str += i;
745 bpos += i;
746 siz -= i;
747 }
748 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
749 for (i = 0; i < siz; i++)
750 *bpos++ = '\0';
751 mb->m_len += siz;
752 }
753 break;
754 };
755
756 /*
757 * And the verifier...
758 */
759 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
760 if (verf_str) {
761 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
762 *tl = txdr_unsigned(verf_len);
763 siz = verf_len;
764 while (siz > 0) {
765 if (M_TRAILINGSPACE(mb) == 0) {
766 MGET(mb2, M_WAIT, MT_DATA);
767 if (siz >= MINCLSIZE)
768 MCLGET(mb2, M_WAIT);
769 mb->m_next = mb2;
770 mb = mb2;
771 mb->m_len = 0;
772 bpos = mtod(mb, caddr_t);
773 }
774 i = min(siz, M_TRAILINGSPACE(mb));
775 memcpy(bpos, verf_str, i);
776 mb->m_len += i;
777 verf_str += i;
778 bpos += i;
779 siz -= i;
780 }
781 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
782 for (i = 0; i < siz; i++)
783 *bpos++ = '\0';
784 mb->m_len += siz;
785 }
786 } else {
787 *tl++ = txdr_unsigned(RPCAUTH_NULL);
788 *tl = 0;
789 }
790 mb->m_next = mrest;
791 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
792 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
793 *mbp = mb;
794 return (mreq);
795 }
796
797 /*
798 * copies mbuf chain to the uio scatter/gather list
799 */
800 int
801 nfsm_mbuftouio(mrep, uiop, siz, dpos)
802 struct mbuf **mrep;
803 struct uio *uiop;
804 int siz;
805 caddr_t *dpos;
806 {
807 char *mbufcp, *uiocp;
808 int xfer, left, len;
809 struct mbuf *mp;
810 long uiosiz, rem;
811 int error = 0;
812
813 mp = *mrep;
814 mbufcp = *dpos;
815 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
816 rem = nfsm_rndup(siz)-siz;
817 while (siz > 0) {
818 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
819 return (EFBIG);
820 left = uiop->uio_iov->iov_len;
821 uiocp = uiop->uio_iov->iov_base;
822 if (left > siz)
823 left = siz;
824 uiosiz = left;
825 while (left > 0) {
826 while (len == 0) {
827 mp = mp->m_next;
828 if (mp == NULL)
829 return (EBADRPC);
830 mbufcp = mtod(mp, caddr_t);
831 len = mp->m_len;
832 }
833 xfer = (left > len) ? len : left;
834 #ifdef notdef
835 /* Not Yet.. */
836 if (uiop->uio_iov->iov_op != NULL)
837 (*(uiop->uio_iov->iov_op))
838 (mbufcp, uiocp, xfer);
839 else
840 #endif
841 if (uiop->uio_segflg == UIO_SYSSPACE)
842 memcpy(uiocp, mbufcp, xfer);
843 else
844 copyout(mbufcp, uiocp, xfer);
845 left -= xfer;
846 len -= xfer;
847 mbufcp += xfer;
848 uiocp += xfer;
849 uiop->uio_offset += xfer;
850 uiop->uio_resid -= xfer;
851 }
852 if (uiop->uio_iov->iov_len <= siz) {
853 uiop->uio_iovcnt--;
854 uiop->uio_iov++;
855 } else {
856 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
857 uiop->uio_iov->iov_len -= uiosiz;
858 }
859 siz -= uiosiz;
860 }
861 *dpos = mbufcp;
862 *mrep = mp;
863 if (rem > 0) {
864 if (len < rem)
865 error = nfs_adv(mrep, dpos, rem, len);
866 else
867 *dpos += rem;
868 }
869 return (error);
870 }
871
872 /*
873 * copies a uio scatter/gather list to an mbuf chain.
874 * NOTE: can ony handle iovcnt == 1
875 */
876 int
877 nfsm_uiotombuf(uiop, mq, siz, bpos)
878 struct uio *uiop;
879 struct mbuf **mq;
880 int siz;
881 caddr_t *bpos;
882 {
883 char *uiocp;
884 struct mbuf *mp, *mp2;
885 int xfer, left, mlen;
886 int uiosiz, clflg, rem;
887 char *cp;
888
889 #ifdef DIAGNOSTIC
890 if (uiop->uio_iovcnt != 1)
891 panic("nfsm_uiotombuf: iovcnt != 1");
892 #endif
893
894 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
895 clflg = 1;
896 else
897 clflg = 0;
898 rem = nfsm_rndup(siz)-siz;
899 mp = mp2 = *mq;
900 while (siz > 0) {
901 left = uiop->uio_iov->iov_len;
902 uiocp = uiop->uio_iov->iov_base;
903 if (left > siz)
904 left = siz;
905 uiosiz = left;
906 while (left > 0) {
907 mlen = M_TRAILINGSPACE(mp);
908 if (mlen == 0) {
909 MGET(mp, M_WAIT, MT_DATA);
910 if (clflg)
911 MCLGET(mp, M_WAIT);
912 mp->m_len = 0;
913 mp2->m_next = mp;
914 mp2 = mp;
915 mlen = M_TRAILINGSPACE(mp);
916 }
917 xfer = (left > mlen) ? mlen : left;
918 #ifdef notdef
919 /* Not Yet.. */
920 if (uiop->uio_iov->iov_op != NULL)
921 (*(uiop->uio_iov->iov_op))
922 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
923 else
924 #endif
925 if (uiop->uio_segflg == UIO_SYSSPACE)
926 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
927 else
928 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
929 mp->m_len += xfer;
930 left -= xfer;
931 uiocp += xfer;
932 uiop->uio_offset += xfer;
933 uiop->uio_resid -= xfer;
934 }
935 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
936 uiop->uio_iov->iov_len -= uiosiz;
937 siz -= uiosiz;
938 }
939 if (rem > 0) {
940 if (rem > M_TRAILINGSPACE(mp)) {
941 MGET(mp, M_WAIT, MT_DATA);
942 mp->m_len = 0;
943 mp2->m_next = mp;
944 }
945 cp = mtod(mp, caddr_t)+mp->m_len;
946 for (left = 0; left < rem; left++)
947 *cp++ = '\0';
948 mp->m_len += rem;
949 *bpos = cp;
950 } else
951 *bpos = mtod(mp, caddr_t)+mp->m_len;
952 *mq = mp;
953 return (0);
954 }
955
956 /*
957 * Get at least "siz" bytes of correctly aligned data.
958 * When called the mbuf pointers are not necessarily correct,
959 * dsosp points to what ought to be in m_data and left contains
960 * what ought to be in m_len.
961 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
962 * cases. (The macros use the vars. dpos and dpos2)
963 */
964 int
965 nfsm_disct(mdp, dposp, siz, left, cp2)
966 struct mbuf **mdp;
967 caddr_t *dposp;
968 int siz;
969 int left;
970 caddr_t *cp2;
971 {
972 struct mbuf *m1, *m2;
973 struct mbuf *havebuf = NULL;
974 caddr_t src = *dposp;
975 caddr_t dst;
976 int len;
977
978 #ifdef DEBUG
979 if (left < 0)
980 panic("nfsm_disct: left < 0");
981 #endif
982 m1 = *mdp;
983 /*
984 * Skip through the mbuf chain looking for an mbuf with
985 * some data. If the first mbuf found has enough data
986 * and it is correctly aligned return it.
987 */
988 while (left == 0) {
989 havebuf = m1;
990 *mdp = m1 = m1->m_next;
991 if (m1 == NULL)
992 return (EBADRPC);
993 src = mtod(m1, caddr_t);
994 left = m1->m_len;
995 /*
996 * If we start a new mbuf and it is big enough
997 * and correctly aligned just return it, don't
998 * do any pull up.
999 */
1000 if (left >= siz && nfsm_aligned(src)) {
1001 *cp2 = src;
1002 *dposp = src + siz;
1003 return (0);
1004 }
1005 }
1006 if (m1->m_flags & M_EXT) {
1007 if (havebuf) {
1008 /* If the first mbuf with data has external data
1009 * and there is a previous empty mbuf use it
1010 * to move the data into.
1011 */
1012 m2 = m1;
1013 *mdp = m1 = havebuf;
1014 if (m1->m_flags & M_EXT) {
1015 MEXTREMOVE(m1);
1016 }
1017 } else {
1018 /*
1019 * If the first mbuf has a external data
1020 * and there is no previous empty mbuf
1021 * allocate a new mbuf and move the external
1022 * data to the new mbuf. Also make the first
1023 * mbuf look empty.
1024 */
1025 m2 = m_get(M_WAIT, MT_DATA);
1026 m2->m_ext = m1->m_ext;
1027 m2->m_data = src;
1028 m2->m_len = left;
1029 MCLADDREFERENCE(m1, m2);
1030 MEXTREMOVE(m1);
1031 m2->m_next = m1->m_next;
1032 m1->m_next = m2;
1033 }
1034 m1->m_len = 0;
1035 dst = m1->m_dat;
1036 } else {
1037 /*
1038 * If the first mbuf has no external data
1039 * move the data to the front of the mbuf.
1040 */
1041 if ((dst = m1->m_dat) != src)
1042 memmove(dst, src, left);
1043 dst += left;
1044 m1->m_len = left;
1045 m2 = m1->m_next;
1046 }
1047 m1->m_flags &= ~M_PKTHDR;
1048 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1049 *dposp = mtod(m1, caddr_t) + siz;
1050 /*
1051 * Loop through mbufs pulling data up into first mbuf until
1052 * the first mbuf is full or there is no more data to
1053 * pullup.
1054 */
1055 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1056 if ((len = min(len, m2->m_len)) != 0)
1057 memcpy(dst, m2->m_data, len);
1058 m1->m_len += len;
1059 dst += len;
1060 m2->m_data += len;
1061 m2->m_len -= len;
1062 m2 = m2->m_next;
1063 }
1064 if (m1->m_len < siz)
1065 return (EBADRPC);
1066 return (0);
1067 }
1068
1069 /*
1070 * Advance the position in the mbuf chain.
1071 */
1072 int
1073 nfs_adv(mdp, dposp, offs, left)
1074 struct mbuf **mdp;
1075 caddr_t *dposp;
1076 int offs;
1077 int left;
1078 {
1079 struct mbuf *m;
1080 int s;
1081
1082 m = *mdp;
1083 s = left;
1084 while (s < offs) {
1085 offs -= s;
1086 m = m->m_next;
1087 if (m == NULL)
1088 return (EBADRPC);
1089 s = m->m_len;
1090 }
1091 *mdp = m;
1092 *dposp = mtod(m, caddr_t)+offs;
1093 return (0);
1094 }
1095
1096 /*
1097 * Copy a string into mbufs for the hard cases...
1098 */
1099 int
1100 nfsm_strtmbuf(mb, bpos, cp, siz)
1101 struct mbuf **mb;
1102 char **bpos;
1103 const char *cp;
1104 long siz;
1105 {
1106 struct mbuf *m1 = NULL, *m2;
1107 long left, xfer, len, tlen;
1108 u_int32_t *tl;
1109 int putsize;
1110
1111 putsize = 1;
1112 m2 = *mb;
1113 left = M_TRAILINGSPACE(m2);
1114 if (left > 0) {
1115 tl = ((u_int32_t *)(*bpos));
1116 *tl++ = txdr_unsigned(siz);
1117 putsize = 0;
1118 left -= NFSX_UNSIGNED;
1119 m2->m_len += NFSX_UNSIGNED;
1120 if (left > 0) {
1121 memcpy((caddr_t) tl, cp, left);
1122 siz -= left;
1123 cp += left;
1124 m2->m_len += left;
1125 left = 0;
1126 }
1127 }
1128 /* Loop around adding mbufs */
1129 while (siz > 0) {
1130 MGET(m1, M_WAIT, MT_DATA);
1131 if (siz > MLEN)
1132 MCLGET(m1, M_WAIT);
1133 m1->m_len = NFSMSIZ(m1);
1134 m2->m_next = m1;
1135 m2 = m1;
1136 tl = mtod(m1, u_int32_t *);
1137 tlen = 0;
1138 if (putsize) {
1139 *tl++ = txdr_unsigned(siz);
1140 m1->m_len -= NFSX_UNSIGNED;
1141 tlen = NFSX_UNSIGNED;
1142 putsize = 0;
1143 }
1144 if (siz < m1->m_len) {
1145 len = nfsm_rndup(siz);
1146 xfer = siz;
1147 if (xfer < len)
1148 *(tl+(xfer>>2)) = 0;
1149 } else {
1150 xfer = len = m1->m_len;
1151 }
1152 memcpy((caddr_t) tl, cp, xfer);
1153 m1->m_len = len+tlen;
1154 siz -= xfer;
1155 cp += xfer;
1156 }
1157 *mb = m1;
1158 *bpos = mtod(m1, caddr_t)+m1->m_len;
1159 return (0);
1160 }
1161
1162 /*
1163 * Directory caching routines. They work as follows:
1164 * - a cache is maintained per VDIR nfsnode.
1165 * - for each offset cookie that is exported to userspace, and can
1166 * thus be thrown back at us as an offset to VOP_READDIR, store
1167 * information in the cache.
1168 * - cached are:
1169 * - cookie itself
1170 * - blocknumber (essentially just a search key in the buffer cache)
1171 * - entry number in block.
1172 * - offset cookie of block in which this entry is stored
1173 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1174 * - entries are looked up in a hash table
1175 * - also maintained is an LRU list of entries, used to determine
1176 * which ones to delete if the cache grows too large.
1177 * - if 32 <-> 64 translation mode is requested for a filesystem,
1178 * the cache also functions as a translation table
1179 * - in the translation case, invalidating the cache does not mean
1180 * flushing it, but just marking entries as invalid, except for
1181 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1182 * still be able to use the cache as a translation table.
1183 * - 32 bit cookies are uniquely created by combining the hash table
1184 * entry value, and one generation count per hash table entry,
1185 * incremented each time an entry is appended to the chain.
1186 * - the cache is invalidated each time a direcory is modified
1187 * - sanity checks are also done; if an entry in a block turns
1188 * out not to have a matching cookie, the cache is invalidated
1189 * and a new block starting from the wanted offset is fetched from
1190 * the server.
1191 * - directory entries as read from the server are extended to contain
1192 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1193 * the cache and exporting them to userspace through the cookie
1194 * argument to VOP_READDIR.
1195 */
1196
1197 u_long
1198 nfs_dirhash(off)
1199 off_t off;
1200 {
1201 int i;
1202 char *cp = (char *)&off;
1203 u_long sum = 0L;
1204
1205 for (i = 0 ; i < sizeof (off); i++)
1206 sum += *cp++;
1207
1208 return sum;
1209 }
1210
1211 void
1212 nfs_initdircache(vp)
1213 struct vnode *vp;
1214 {
1215 struct nfsnode *np = VTONFS(vp);
1216 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1217
1218 np->n_dircachesize = 0;
1219 np->n_dblkno = 1;
1220 np->n_dircache =
1221 hashinit(NFS_DIRHASHSIZ, M_NFSDIROFF, M_WAITOK, &nfsdirhashmask);
1222 TAILQ_INIT(&np->n_dirchain);
1223 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1224 MALLOC(np->n_dirgens, unsigned *,
1225 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1226 M_WAITOK);
1227 memset((caddr_t)np->n_dirgens, 0,
1228 NFS_DIRHASHSIZ * sizeof (unsigned));
1229 }
1230 }
1231
1232 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1233
1234 struct nfsdircache *
1235 nfs_searchdircache(vp, off, do32, hashent)
1236 struct vnode *vp;
1237 off_t off;
1238 int do32;
1239 int *hashent;
1240 {
1241 struct nfsdirhashhead *ndhp;
1242 struct nfsdircache *ndp = NULL;
1243 struct nfsnode *np = VTONFS(vp);
1244 unsigned ent;
1245
1246 /*
1247 * Zero is always a valid cookie.
1248 */
1249 if (off == 0)
1250 return &dzero;
1251
1252 /*
1253 * We use a 32bit cookie as search key, directly reconstruct
1254 * the hashentry. Else use the hashfunction.
1255 */
1256 if (do32) {
1257 ent = (u_int32_t)off >> 24;
1258 if (ent >= NFS_DIRHASHSIZ)
1259 return NULL;
1260 ndhp = &np->n_dircache[ent];
1261 } else {
1262 ndhp = NFSDIRHASH(np, off);
1263 }
1264
1265 if (hashent)
1266 *hashent = (int)(ndhp - np->n_dircache);
1267 if (do32) {
1268 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1269 if (ndp->dc_cookie32 == (u_int32_t)off) {
1270 /*
1271 * An invalidated entry will become the
1272 * start of a new block fetched from
1273 * the server.
1274 */
1275 if (ndp->dc_blkno == -1) {
1276 ndp->dc_blkcookie = ndp->dc_cookie;
1277 ndp->dc_blkno = np->n_dblkno++;
1278 ndp->dc_entry = 0;
1279 }
1280 break;
1281 }
1282 }
1283 } else {
1284 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1285 if (ndp->dc_cookie == off)
1286 break;
1287 }
1288 return ndp;
1289 }
1290
1291
1292 struct nfsdircache *
1293 nfs_enterdircache(vp, off, blkoff, en, blkno)
1294 struct vnode *vp;
1295 off_t off, blkoff;
1296 daddr_t blkno;
1297 int en;
1298 {
1299 struct nfsnode *np = VTONFS(vp);
1300 struct nfsdirhashhead *ndhp;
1301 struct nfsdircache *ndp = NULL, *first;
1302 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1303 int hashent, gen, overwrite;
1304
1305 if (!np->n_dircache)
1306 /*
1307 * XXX would like to do this in nfs_nget but vtype
1308 * isn't known at that time.
1309 */
1310 nfs_initdircache(vp);
1311
1312 /*
1313 * XXX refuse entries for offset 0. amd(8) erroneously sets
1314 * cookie 0 for the '.' entry, making this necessary. This
1315 * isn't so bad, as 0 is a special case anyway.
1316 */
1317 if (off == 0)
1318 return &dzero;
1319
1320 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1321
1322 if (ndp && ndp->dc_blkno != -1) {
1323 /*
1324 * Overwriting an old entry. Check if it's the same.
1325 * If so, just return. If not, remove the old entry.
1326 */
1327 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1328 return ndp;
1329 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1330 LIST_REMOVE(ndp, dc_hash);
1331 FREE(ndp, M_NFSDIROFF);
1332 ndp = 0;
1333 }
1334
1335 ndhp = &np->n_dircache[hashent];
1336
1337 if (!ndp) {
1338 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1339 M_WAITOK);
1340 overwrite = 0;
1341 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1342 /*
1343 * We're allocating a new entry, so bump the
1344 * generation number.
1345 */
1346 gen = ++np->n_dirgens[hashent];
1347 if (gen == 0) {
1348 np->n_dirgens[hashent]++;
1349 gen++;
1350 }
1351 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1352 }
1353 } else
1354 overwrite = 1;
1355
1356 /*
1357 * If the entry number is 0, we are at the start of a new block, so
1358 * allocate a new blocknumber.
1359 */
1360 if (en == 0)
1361 ndp->dc_blkno = np->n_dblkno++;
1362 else
1363 ndp->dc_blkno = blkno;
1364
1365 ndp->dc_cookie = off;
1366 ndp->dc_blkcookie = blkoff;
1367 ndp->dc_entry = en;
1368
1369 if (overwrite)
1370 return ndp;
1371
1372 /*
1373 * If the maximum directory cookie cache size has been reached
1374 * for this node, take one off the front. The idea is that
1375 * directories are typically read front-to-back once, so that
1376 * the oldest entries can be thrown away without much performance
1377 * loss.
1378 */
1379 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1380 first = np->n_dirchain.tqh_first;
1381 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1382 LIST_REMOVE(first, dc_hash);
1383 FREE(first, M_NFSDIROFF);
1384 } else
1385 np->n_dircachesize++;
1386
1387 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1388 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1389 return ndp;
1390 }
1391
1392 void
1393 nfs_invaldircache(vp, forcefree)
1394 struct vnode *vp;
1395 int forcefree;
1396 {
1397 struct nfsnode *np = VTONFS(vp);
1398 struct nfsdircache *ndp = NULL;
1399 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1400
1401 #ifdef DIAGNOSTIC
1402 if (vp->v_type != VDIR)
1403 panic("nfs: invaldircache: not dir");
1404 #endif
1405
1406 if (!np->n_dircache)
1407 return;
1408
1409 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1410 while ((ndp = np->n_dirchain.tqh_first)) {
1411 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1412 LIST_REMOVE(ndp, dc_hash);
1413 FREE(ndp, M_NFSDIROFF);
1414 }
1415 np->n_dircachesize = 0;
1416 if (forcefree && np->n_dirgens) {
1417 FREE(np->n_dirgens, M_NFSDIROFF);
1418 }
1419 } else {
1420 for (ndp = np->n_dirchain.tqh_first; ndp;
1421 ndp = ndp->dc_chain.tqe_next)
1422 ndp->dc_blkno = -1;
1423 }
1424
1425 np->n_dblkno = 1;
1426 }
1427
1428 /*
1429 * Called once before VFS init to initialize shared and
1430 * server-specific data structures.
1431 */
1432 void
1433 nfs_init()
1434 {
1435 nfsrtt.pos = 0;
1436 rpc_vers = txdr_unsigned(RPC_VER2);
1437 rpc_call = txdr_unsigned(RPC_CALL);
1438 rpc_reply = txdr_unsigned(RPC_REPLY);
1439 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1440 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1441 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1442 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1443 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1444 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1445 nfs_prog = txdr_unsigned(NFS_PROG);
1446 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1447 nfs_true = txdr_unsigned(TRUE);
1448 nfs_false = txdr_unsigned(FALSE);
1449 nfs_xdrneg1 = txdr_unsigned(-1);
1450 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1451 if (nfs_ticks < 1)
1452 nfs_ticks = 1;
1453 #ifdef NFSSERVER
1454 nfsrv_init(0); /* Init server data structures */
1455 nfsrv_initcache(); /* Init the server request cache */
1456 #endif /* NFSSERVER */
1457
1458 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1459 /*
1460 * Initialize the nqnfs data structures.
1461 */
1462 if (nqnfsstarttime == 0) {
1463 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1464 + nqsrv_clockskew + nqsrv_writeslack;
1465 NQLOADNOVRAM(nqnfsstarttime);
1466 CIRCLEQ_INIT(&nqtimerhead);
1467 nqfhhashtbl = hashinit(NQLCHSZ, M_NQLEASE, M_WAITOK, &nqfhhash);
1468 }
1469 #endif
1470
1471 /*
1472 * Initialize reply list and start timer
1473 */
1474 TAILQ_INIT(&nfs_reqq);
1475 nfs_timer(NULL);
1476 }
1477
1478 #ifdef NFS
1479 /*
1480 * Called once at VFS init to initialize client-specific data structures.
1481 */
1482 void
1483 nfs_vfs_init()
1484 {
1485 int i;
1486
1487 /* Ensure async daemons disabled */
1488 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1489 nfs_iodwant[i] = (struct proc *)0;
1490 nfs_iodmount[i] = (struct nfsmount *)0;
1491 }
1492 nfs_nhinit(); /* Init the nfsnode table */
1493 }
1494
1495 void
1496 nfs_vfs_done()
1497 {
1498 nfs_nhdone();
1499 }
1500
1501 /*
1502 * Attribute cache routines.
1503 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1504 * that are on the mbuf list
1505 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1506 * error otherwise
1507 */
1508
1509 /*
1510 * Load the attribute cache (that lives in the nfsnode entry) with
1511 * the values on the mbuf list and
1512 * Iff vap not NULL
1513 * copy the attributes to *vaper
1514 */
1515 int
1516 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1517 struct vnode **vpp;
1518 struct mbuf **mdp;
1519 caddr_t *dposp;
1520 struct vattr *vaper;
1521 {
1522 int32_t t1;
1523 caddr_t cp2;
1524 int error = 0;
1525 struct mbuf *md;
1526 int v3 = NFS_ISV3(*vpp);
1527
1528 md = *mdp;
1529 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1530 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1531 if (error)
1532 return (error);
1533 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1534 }
1535
1536 int
1537 nfs_loadattrcache(vpp, fp, vaper)
1538 struct vnode **vpp;
1539 struct nfs_fattr *fp;
1540 struct vattr *vaper;
1541 {
1542 struct vnode *vp = *vpp;
1543 struct vattr *vap;
1544 int v3 = NFS_ISV3(vp);
1545 enum vtype vtyp;
1546 u_short vmode;
1547 struct timespec mtime;
1548 struct vnode *nvp;
1549 int32_t rdev;
1550 struct nfsnode *np;
1551 extern int (**spec_nfsv2nodeop_p) __P((void *));
1552
1553 if (v3) {
1554 vtyp = nfsv3tov_type(fp->fa_type);
1555 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1556 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1557 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1558 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1559 } else {
1560 vtyp = nfsv2tov_type(fp->fa_type);
1561 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1562 if (vtyp == VNON || vtyp == VREG)
1563 vtyp = IFTOVT(vmode);
1564 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1565 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1566
1567 /*
1568 * Really ugly NFSv2 kludge.
1569 */
1570 if (vtyp == VCHR && rdev == 0xffffffff)
1571 vtyp = VFIFO;
1572 }
1573
1574 /*
1575 * If v_type == VNON it is a new node, so fill in the v_type,
1576 * n_mtime fields. Check to see if it represents a special
1577 * device, and if so, check for a possible alias. Once the
1578 * correct vnode has been obtained, fill in the rest of the
1579 * information.
1580 */
1581 np = VTONFS(vp);
1582 if (vp->v_type != vtyp) {
1583 vp->v_type = vtyp;
1584 if (vp->v_type == VFIFO) {
1585 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1586 vp->v_op = fifo_nfsv2nodeop_p;
1587 }
1588 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1589 vp->v_op = spec_nfsv2nodeop_p;
1590 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1591 if (nvp) {
1592 /*
1593 * Discard unneeded vnode, but save its nfsnode.
1594 * Since the nfsnode does not have a lock, its
1595 * vnode lock has to be carried over.
1596 */
1597 nvp->v_data = vp->v_data;
1598 vp->v_data = NULL;
1599 vp->v_op = spec_vnodeop_p;
1600 vput(vp);
1601 vgone(vp);
1602 /*
1603 * XXX When nfs starts locking, we need to
1604 * lock the new node here.
1605 */
1606 /*
1607 * Reinitialize aliased node.
1608 */
1609 np->n_vnode = nvp;
1610 *vpp = vp = nvp;
1611 }
1612 }
1613 np->n_mtime = mtime.tv_sec;
1614 }
1615 vap = np->n_vattr;
1616 vap->va_type = vtyp;
1617 vap->va_mode = vmode & ALLPERMS;
1618 vap->va_rdev = (dev_t)rdev;
1619 vap->va_mtime = mtime;
1620 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1621 switch (vtyp) {
1622 case VDIR:
1623 vap->va_blocksize = NFS_DIRFRAGSIZ;
1624 break;
1625 case VBLK:
1626 vap->va_blocksize = BLKDEV_IOSIZE;
1627 break;
1628 case VCHR:
1629 vap->va_blocksize = MAXBSIZE;
1630 break;
1631 default:
1632 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1633 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1634 break;
1635 }
1636 if (v3) {
1637 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1638 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1639 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1640 vap->va_size = fxdr_hyper(&fp->fa3_size);
1641 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1642 vap->va_fileid = fxdr_unsigned(int32_t,
1643 fp->fa3_fileid.nfsuquad[1]);
1644 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1645 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1646 vap->va_flags = 0;
1647 vap->va_filerev = 0;
1648 } else {
1649 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1650 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1651 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1652 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1653 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1654 * NFS_FABLKSIZE;
1655 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1656 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1657 vap->va_flags = 0;
1658 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1659 fp->fa2_ctime.nfsv2_sec);
1660 vap->va_ctime.tv_nsec = 0;
1661 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1662 vap->va_filerev = 0;
1663 }
1664 if (vap->va_size != np->n_size) {
1665 if (vap->va_type == VREG) {
1666 if (np->n_flag & NMODIFIED) {
1667 if (vap->va_size < np->n_size)
1668 vap->va_size = np->n_size;
1669 else
1670 np->n_size = vap->va_size;
1671 } else
1672 np->n_size = vap->va_size;
1673 uvm_vnp_setsize(vp, np->n_size);
1674 } else
1675 np->n_size = vap->va_size;
1676 }
1677 np->n_attrstamp = time.tv_sec;
1678 if (vaper != NULL) {
1679 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1680 if (np->n_flag & NCHG) {
1681 if (np->n_flag & NACC)
1682 vaper->va_atime = np->n_atim;
1683 if (np->n_flag & NUPD)
1684 vaper->va_mtime = np->n_mtim;
1685 }
1686 }
1687 return (0);
1688 }
1689
1690 /*
1691 * Check the time stamp
1692 * If the cache is valid, copy contents to *vap and return 0
1693 * otherwise return an error
1694 */
1695 int
1696 nfs_getattrcache(vp, vaper)
1697 struct vnode *vp;
1698 struct vattr *vaper;
1699 {
1700 struct nfsnode *np = VTONFS(vp);
1701 struct vattr *vap;
1702
1703 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1704 nfsstats.attrcache_misses++;
1705 return (ENOENT);
1706 }
1707 nfsstats.attrcache_hits++;
1708 vap = np->n_vattr;
1709 if (vap->va_size != np->n_size) {
1710 if (vap->va_type == VREG) {
1711 if (np->n_flag & NMODIFIED) {
1712 if (vap->va_size < np->n_size)
1713 vap->va_size = np->n_size;
1714 else
1715 np->n_size = vap->va_size;
1716 } else
1717 np->n_size = vap->va_size;
1718 uvm_vnp_setsize(vp, np->n_size);
1719 } else
1720 np->n_size = vap->va_size;
1721 }
1722 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1723 if (np->n_flag & NCHG) {
1724 if (np->n_flag & NACC)
1725 vaper->va_atime = np->n_atim;
1726 if (np->n_flag & NUPD)
1727 vaper->va_mtime = np->n_mtim;
1728 }
1729 return (0);
1730 }
1731
1732 /*
1733 * Heuristic to see if the server XDR encodes directory cookies or not.
1734 * it is not supposed to, but a lot of servers may do this. Also, since
1735 * most/all servers will implement V2 as well, it is expected that they
1736 * may return just 32 bits worth of cookie information, so we need to
1737 * find out in which 32 bits this information is available. We do this
1738 * to avoid trouble with emulated binaries that can't handle 64 bit
1739 * directory offsets.
1740 */
1741
1742 void
1743 nfs_cookieheuristic(vp, flagp, p, cred)
1744 struct vnode *vp;
1745 int *flagp;
1746 struct proc *p;
1747 struct ucred *cred;
1748 {
1749 struct uio auio;
1750 struct iovec aiov;
1751 caddr_t buf, cp;
1752 struct dirent *dp;
1753 off_t *cookies = NULL, *cop;
1754 int error, eof, nc, len;
1755
1756 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1757
1758 aiov.iov_base = buf;
1759 aiov.iov_len = NFS_DIRFRAGSIZ;
1760 auio.uio_iov = &aiov;
1761 auio.uio_iovcnt = 1;
1762 auio.uio_rw = UIO_READ;
1763 auio.uio_segflg = UIO_SYSSPACE;
1764 auio.uio_procp = p;
1765 auio.uio_resid = NFS_DIRFRAGSIZ;
1766 auio.uio_offset = 0;
1767
1768 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1769
1770 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1771 if (error || len == 0) {
1772 FREE(buf, M_TEMP);
1773 if (cookies)
1774 free(cookies, M_TEMP);
1775 return;
1776 }
1777
1778 /*
1779 * Find the first valid entry and look at its offset cookie.
1780 */
1781
1782 cp = buf;
1783 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1784 dp = (struct dirent *)cp;
1785 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1786 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1787 *flagp |= NFSMNT_SWAPCOOKIE;
1788 nfs_invaldircache(vp, 0);
1789 nfs_vinvalbuf(vp, 0, cred, p, 1);
1790 }
1791 break;
1792 }
1793 cop++;
1794 cp += dp->d_reclen;
1795 }
1796
1797 FREE(buf, M_TEMP);
1798 free(cookies, M_TEMP);
1799 }
1800 #endif /* NFS */
1801
1802 /*
1803 * Set up nameidata for a lookup() call and do it.
1804 *
1805 * If pubflag is set, this call is done for a lookup operation on the
1806 * public filehandle. In that case we allow crossing mountpoints and
1807 * absolute pathnames. However, the caller is expected to check that
1808 * the lookup result is within the public fs, and deny access if
1809 * it is not.
1810 */
1811 int
1812 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1813 struct nameidata *ndp;
1814 fhandle_t *fhp;
1815 int len;
1816 struct nfssvc_sock *slp;
1817 struct mbuf *nam;
1818 struct mbuf **mdp;
1819 caddr_t *dposp;
1820 struct vnode **retdirp;
1821 struct proc *p;
1822 int kerbflag, pubflag;
1823 {
1824 int i, rem;
1825 struct mbuf *md;
1826 char *fromcp, *tocp, *cp;
1827 struct iovec aiov;
1828 struct uio auio;
1829 struct vnode *dp;
1830 int error, rdonly, linklen;
1831 struct componentname *cnp = &ndp->ni_cnd;
1832
1833 *retdirp = (struct vnode *)0;
1834
1835 if ((len + 1) > MAXPATHLEN)
1836 return (ENAMETOOLONG);
1837 cnp->cn_pnbuf = PNBUF_GET();
1838
1839 /*
1840 * Copy the name from the mbuf list to ndp->ni_pnbuf
1841 * and set the various ndp fields appropriately.
1842 */
1843 fromcp = *dposp;
1844 tocp = cnp->cn_pnbuf;
1845 md = *mdp;
1846 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1847 for (i = 0; i < len; i++) {
1848 while (rem == 0) {
1849 md = md->m_next;
1850 if (md == NULL) {
1851 error = EBADRPC;
1852 goto out;
1853 }
1854 fromcp = mtod(md, caddr_t);
1855 rem = md->m_len;
1856 }
1857 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1858 error = EACCES;
1859 goto out;
1860 }
1861 *tocp++ = *fromcp++;
1862 rem--;
1863 }
1864 *tocp = '\0';
1865 *mdp = md;
1866 *dposp = fromcp;
1867 len = nfsm_rndup(len)-len;
1868 if (len > 0) {
1869 if (rem >= len)
1870 *dposp += len;
1871 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1872 goto out;
1873 }
1874
1875 /*
1876 * Extract and set starting directory.
1877 */
1878 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1879 nam, &rdonly, kerbflag, pubflag);
1880 if (error)
1881 goto out;
1882 if (dp->v_type != VDIR) {
1883 vrele(dp);
1884 error = ENOTDIR;
1885 goto out;
1886 }
1887
1888 if (rdonly)
1889 cnp->cn_flags |= RDONLY;
1890
1891 *retdirp = dp;
1892
1893 if (pubflag) {
1894 /*
1895 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1896 * and the 'native path' indicator.
1897 */
1898 cp = PNBUF_GET();
1899 fromcp = cnp->cn_pnbuf;
1900 tocp = cp;
1901 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1902 switch ((unsigned char)*fromcp) {
1903 case WEBNFS_NATIVE_CHAR:
1904 /*
1905 * 'Native' path for us is the same
1906 * as a path according to the NFS spec,
1907 * just skip the escape char.
1908 */
1909 fromcp++;
1910 break;
1911 /*
1912 * More may be added in the future, range 0x80-0xff
1913 */
1914 default:
1915 error = EIO;
1916 FREE(cp, M_NAMEI);
1917 goto out;
1918 }
1919 }
1920 /*
1921 * Translate the '%' escapes, URL-style.
1922 */
1923 while (*fromcp != '\0') {
1924 if (*fromcp == WEBNFS_ESC_CHAR) {
1925 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1926 fromcp++;
1927 *tocp++ = HEXSTRTOI(fromcp);
1928 fromcp += 2;
1929 continue;
1930 } else {
1931 error = ENOENT;
1932 FREE(cp, M_NAMEI);
1933 goto out;
1934 }
1935 } else
1936 *tocp++ = *fromcp++;
1937 }
1938 *tocp = '\0';
1939 PNBUF_PUT(cnp->cn_pnbuf);
1940 cnp->cn_pnbuf = cp;
1941 }
1942
1943 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1944 ndp->ni_segflg = UIO_SYSSPACE;
1945
1946 if (pubflag) {
1947 ndp->ni_rootdir = rootvnode;
1948 ndp->ni_loopcnt = 0;
1949 if (cnp->cn_pnbuf[0] == '/')
1950 dp = rootvnode;
1951 } else {
1952 cnp->cn_flags |= NOCROSSMOUNT;
1953 }
1954
1955 cnp->cn_proc = p;
1956 VREF(dp);
1957
1958 for (;;) {
1959 cnp->cn_nameptr = cnp->cn_pnbuf;
1960 ndp->ni_startdir = dp;
1961 /*
1962 * And call lookup() to do the real work
1963 */
1964 error = lookup(ndp);
1965 if (error)
1966 break;
1967 /*
1968 * Check for encountering a symbolic link
1969 */
1970 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1971 if (cnp->cn_flags & (SAVENAME | SAVESTART)) {
1972 cnp->cn_flags |= HASBUF;
1973 return (0);
1974 }
1975 break;
1976 } else {
1977 if ((cnp->cn_flags & LOCKPARENT) && ndp->ni_pathlen == 1)
1978 VOP_UNLOCK(ndp->ni_dvp, 0);
1979 if (!pubflag) {
1980 vrele(ndp->ni_dvp);
1981 vput(ndp->ni_vp);
1982 ndp->ni_vp = NULL;
1983 error = EINVAL;
1984 break;
1985 }
1986
1987 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1988 error = ELOOP;
1989 break;
1990 }
1991 if (ndp->ni_pathlen > 1)
1992 cp = PNBUF_GET();
1993 else
1994 cp = cnp->cn_pnbuf;
1995 aiov.iov_base = cp;
1996 aiov.iov_len = MAXPATHLEN;
1997 auio.uio_iov = &aiov;
1998 auio.uio_iovcnt = 1;
1999 auio.uio_offset = 0;
2000 auio.uio_rw = UIO_READ;
2001 auio.uio_segflg = UIO_SYSSPACE;
2002 auio.uio_procp = (struct proc *)0;
2003 auio.uio_resid = MAXPATHLEN;
2004 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2005 if (error) {
2006 badlink:
2007 if (ndp->ni_pathlen > 1)
2008 PNBUF_PUT(cp);
2009 break;
2010 }
2011 linklen = MAXPATHLEN - auio.uio_resid;
2012 if (linklen == 0) {
2013 error = ENOENT;
2014 goto badlink;
2015 }
2016 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2017 error = ENAMETOOLONG;
2018 goto badlink;
2019 }
2020 if (ndp->ni_pathlen > 1) {
2021 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2022 PNBUF_PUT(cnp->cn_pnbuf);
2023 cnp->cn_pnbuf = cp;
2024 } else
2025 cnp->cn_pnbuf[linklen] = '\0';
2026 ndp->ni_pathlen += linklen;
2027 vput(ndp->ni_vp);
2028 dp = ndp->ni_dvp;
2029 /*
2030 * Check if root directory should replace current directory.
2031 */
2032 if (cnp->cn_pnbuf[0] == '/') {
2033 vrele(dp);
2034 dp = ndp->ni_rootdir;
2035 VREF(dp);
2036 }
2037 }
2038 }
2039 out:
2040 PNBUF_PUT(cnp->cn_pnbuf);
2041 return (error);
2042 }
2043
2044 /*
2045 * A fiddled version of m_adj() that ensures null fill to a long
2046 * boundary and only trims off the back end
2047 */
2048 void
2049 nfsm_adj(mp, len, nul)
2050 struct mbuf *mp;
2051 int len;
2052 int nul;
2053 {
2054 struct mbuf *m;
2055 int count, i;
2056 char *cp;
2057
2058 /*
2059 * Trim from tail. Scan the mbuf chain,
2060 * calculating its length and finding the last mbuf.
2061 * If the adjustment only affects this mbuf, then just
2062 * adjust and return. Otherwise, rescan and truncate
2063 * after the remaining size.
2064 */
2065 count = 0;
2066 m = mp;
2067 for (;;) {
2068 count += m->m_len;
2069 if (m->m_next == (struct mbuf *)0)
2070 break;
2071 m = m->m_next;
2072 }
2073 if (m->m_len > len) {
2074 m->m_len -= len;
2075 if (nul > 0) {
2076 cp = mtod(m, caddr_t)+m->m_len-nul;
2077 for (i = 0; i < nul; i++)
2078 *cp++ = '\0';
2079 }
2080 return;
2081 }
2082 count -= len;
2083 if (count < 0)
2084 count = 0;
2085 /*
2086 * Correct length for chain is "count".
2087 * Find the mbuf with last data, adjust its length,
2088 * and toss data from remaining mbufs on chain.
2089 */
2090 for (m = mp; m; m = m->m_next) {
2091 if (m->m_len >= count) {
2092 m->m_len = count;
2093 if (nul > 0) {
2094 cp = mtod(m, caddr_t)+m->m_len-nul;
2095 for (i = 0; i < nul; i++)
2096 *cp++ = '\0';
2097 }
2098 break;
2099 }
2100 count -= m->m_len;
2101 }
2102 for (m = m->m_next;m;m = m->m_next)
2103 m->m_len = 0;
2104 }
2105
2106 /*
2107 * Make these functions instead of macros, so that the kernel text size
2108 * doesn't get too big...
2109 */
2110 void
2111 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2112 struct nfsrv_descript *nfsd;
2113 int before_ret;
2114 struct vattr *before_vap;
2115 int after_ret;
2116 struct vattr *after_vap;
2117 struct mbuf **mbp;
2118 char **bposp;
2119 {
2120 struct mbuf *mb = *mbp, *mb2;
2121 char *bpos = *bposp;
2122 u_int32_t *tl;
2123
2124 if (before_ret) {
2125 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2126 *tl = nfs_false;
2127 } else {
2128 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2129 *tl++ = nfs_true;
2130 txdr_hyper(before_vap->va_size, tl);
2131 tl += 2;
2132 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2133 tl += 2;
2134 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2135 }
2136 *bposp = bpos;
2137 *mbp = mb;
2138 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2139 }
2140
2141 void
2142 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2143 struct nfsrv_descript *nfsd;
2144 int after_ret;
2145 struct vattr *after_vap;
2146 struct mbuf **mbp;
2147 char **bposp;
2148 {
2149 struct mbuf *mb = *mbp, *mb2;
2150 char *bpos = *bposp;
2151 u_int32_t *tl;
2152 struct nfs_fattr *fp;
2153
2154 if (after_ret) {
2155 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2156 *tl = nfs_false;
2157 } else {
2158 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2159 *tl++ = nfs_true;
2160 fp = (struct nfs_fattr *)tl;
2161 nfsm_srvfattr(nfsd, after_vap, fp);
2162 }
2163 *mbp = mb;
2164 *bposp = bpos;
2165 }
2166
2167 void
2168 nfsm_srvfattr(nfsd, vap, fp)
2169 struct nfsrv_descript *nfsd;
2170 struct vattr *vap;
2171 struct nfs_fattr *fp;
2172 {
2173
2174 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2175 fp->fa_uid = txdr_unsigned(vap->va_uid);
2176 fp->fa_gid = txdr_unsigned(vap->va_gid);
2177 if (nfsd->nd_flag & ND_NFSV3) {
2178 fp->fa_type = vtonfsv3_type(vap->va_type);
2179 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2180 txdr_hyper(vap->va_size, &fp->fa3_size);
2181 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2182 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2183 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2184 fp->fa3_fsid.nfsuquad[0] = 0;
2185 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2186 fp->fa3_fileid.nfsuquad[0] = 0;
2187 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2188 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2189 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2190 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2191 } else {
2192 fp->fa_type = vtonfsv2_type(vap->va_type);
2193 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2194 fp->fa2_size = txdr_unsigned(vap->va_size);
2195 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2196 if (vap->va_type == VFIFO)
2197 fp->fa2_rdev = 0xffffffff;
2198 else
2199 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2200 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2201 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2202 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2203 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2204 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2205 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2206 }
2207 }
2208
2209 /*
2210 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2211 * - look up fsid in mount list (if not found ret error)
2212 * - get vp and export rights by calling VFS_FHTOVP()
2213 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2214 * - if not lockflag unlock it with VOP_UNLOCK()
2215 */
2216 int
2217 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2218 fhandle_t *fhp;
2219 int lockflag;
2220 struct vnode **vpp;
2221 struct ucred *cred;
2222 struct nfssvc_sock *slp;
2223 struct mbuf *nam;
2224 int *rdonlyp;
2225 int kerbflag;
2226 {
2227 struct mount *mp;
2228 int i;
2229 struct ucred *credanon;
2230 int error, exflags;
2231 struct sockaddr_in *saddr;
2232
2233 *vpp = (struct vnode *)0;
2234
2235 if (nfs_ispublicfh(fhp)) {
2236 if (!pubflag || !nfs_pub.np_valid)
2237 return (ESTALE);
2238 fhp = &nfs_pub.np_handle;
2239 }
2240
2241 mp = vfs_getvfs(&fhp->fh_fsid);
2242 if (!mp)
2243 return (ESTALE);
2244 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2245 if (error)
2246 return (error);
2247 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2248 if (error)
2249 return (error);
2250
2251 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2252 saddr = mtod(nam, struct sockaddr_in *);
2253 if ((saddr->sin_family == AF_INET) &&
2254 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2255 vput(*vpp);
2256 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2257 }
2258 #ifdef INET6
2259 if ((saddr->sin_family == AF_INET6) &&
2260 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2261 vput(*vpp);
2262 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2263 }
2264 #endif
2265 }
2266 /*
2267 * Check/setup credentials.
2268 */
2269 if (exflags & MNT_EXKERB) {
2270 if (!kerbflag) {
2271 vput(*vpp);
2272 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2273 }
2274 } else if (kerbflag) {
2275 vput(*vpp);
2276 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2277 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2278 cred->cr_uid = credanon->cr_uid;
2279 cred->cr_gid = credanon->cr_gid;
2280 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2281 cred->cr_groups[i] = credanon->cr_groups[i];
2282 cred->cr_ngroups = i;
2283 }
2284 if (exflags & MNT_EXRDONLY)
2285 *rdonlyp = 1;
2286 else
2287 *rdonlyp = 0;
2288 if (!lockflag)
2289 VOP_UNLOCK(*vpp, 0);
2290 return (0);
2291 }
2292
2293 /*
2294 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2295 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2296 * transformed this to all zeroes in both cases, so check for it.
2297 */
2298 int
2299 nfs_ispublicfh(fhp)
2300 fhandle_t *fhp;
2301 {
2302 char *cp = (char *)fhp;
2303 int i;
2304
2305 for (i = 0; i < NFSX_V3FH; i++)
2306 if (*cp++ != 0)
2307 return (FALSE);
2308 return (TRUE);
2309 }
2310
2311 /*
2312 * This function compares two net addresses by family and returns TRUE
2313 * if they are the same host.
2314 * If there is any doubt, return FALSE.
2315 * The AF_INET family is handled as a special case so that address mbufs
2316 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2317 */
2318 int
2319 netaddr_match(family, haddr, nam)
2320 int family;
2321 union nethostaddr *haddr;
2322 struct mbuf *nam;
2323 {
2324 struct sockaddr_in *inetaddr;
2325
2326 switch (family) {
2327 case AF_INET:
2328 inetaddr = mtod(nam, struct sockaddr_in *);
2329 if (inetaddr->sin_family == AF_INET &&
2330 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2331 return (1);
2332 break;
2333 #ifdef INET6
2334 case AF_INET6:
2335 {
2336 struct sockaddr_in6 *sin6_1, *sin6_2;
2337
2338 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2339 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2340 if (sin6_1->sin6_family == AF_INET6 &&
2341 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2342 return 1;
2343 }
2344 #endif
2345 #ifdef ISO
2346 case AF_ISO:
2347 {
2348 struct sockaddr_iso *isoaddr1, *isoaddr2;
2349
2350 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2351 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2352 if (isoaddr1->siso_family == AF_ISO &&
2353 isoaddr1->siso_nlen > 0 &&
2354 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2355 SAME_ISOADDR(isoaddr1, isoaddr2))
2356 return (1);
2357 break;
2358 }
2359 #endif /* ISO */
2360 default:
2361 break;
2362 };
2363 return (0);
2364 }
2365
2366
2367 /*
2368 * The write verifier has changed (probably due to a server reboot), so all
2369 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2370 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2371 * flag. Once done the new write verifier can be set for the mount point.
2372 */
2373 void
2374 nfs_clearcommit(mp)
2375 struct mount *mp;
2376 {
2377 struct vnode *vp, *nvp;
2378 struct buf *bp, *nbp;
2379 struct nfsnode *np;
2380 int s;
2381
2382 s = splbio();
2383 loop:
2384 for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
2385 if (vp->v_mount != mp) /* Paranoia */
2386 goto loop;
2387 np = VTONFS(vp);
2388 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2389 np->n_pushedhi = 0;
2390 np->n_commitflags &=
2391 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2392 nvp = vp->v_mntvnodes.le_next;
2393 for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = nbp) {
2394 nbp = bp->b_vnbufs.le_next;
2395 if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT))
2396 == (B_DELWRI | B_NEEDCOMMIT))
2397 bp->b_flags &= ~B_NEEDCOMMIT;
2398 }
2399 }
2400 splx(s);
2401 }
2402
2403 void
2404 nfs_merge_commit_ranges(vp)
2405 struct vnode *vp;
2406 {
2407 struct nfsnode *np = VTONFS(vp);
2408
2409 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2410 np->n_pushedlo = np->n_pushlo;
2411 np->n_pushedhi = np->n_pushhi;
2412 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2413 } else {
2414 if (np->n_pushlo < np->n_pushedlo)
2415 np->n_pushedlo = np->n_pushlo;
2416 if (np->n_pushhi > np->n_pushedhi)
2417 np->n_pushedhi = np->n_pushhi;
2418 }
2419
2420 np->n_pushlo = np->n_pushhi = 0;
2421 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2422
2423 #ifdef fvdl_debug
2424 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2425 (unsigned)np->n_pushedhi);
2426 #endif
2427 }
2428
2429 int
2430 nfs_in_committed_range(vp, bp)
2431 struct vnode *vp;
2432 struct buf *bp;
2433 {
2434 struct nfsnode *np = VTONFS(vp);
2435 off_t lo, hi;
2436
2437 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2438 return 0;
2439 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2440 hi = lo + bp->b_dirtyend;
2441
2442 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2443 }
2444
2445 int
2446 nfs_in_tobecommitted_range(vp, bp)
2447 struct vnode *vp;
2448 struct buf *bp;
2449 {
2450 struct nfsnode *np = VTONFS(vp);
2451 off_t lo, hi;
2452
2453 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2454 return 0;
2455 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2456 hi = lo + bp->b_dirtyend;
2457
2458 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2459 }
2460
2461 void
2462 nfs_add_committed_range(vp, bp)
2463 struct vnode *vp;
2464 struct buf *bp;
2465 {
2466 struct nfsnode *np = VTONFS(vp);
2467 off_t lo, hi;
2468
2469 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2470 hi = lo + bp->b_dirtyend;
2471
2472 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2473 np->n_pushedlo = lo;
2474 np->n_pushedhi = hi;
2475 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2476 } else {
2477 if (hi > np->n_pushedhi)
2478 np->n_pushedhi = hi;
2479 if (lo < np->n_pushedlo)
2480 np->n_pushedlo = lo;
2481 }
2482 #ifdef fvdl_debug
2483 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2484 (unsigned)np->n_pushedhi);
2485 #endif
2486 }
2487
2488 void
2489 nfs_del_committed_range(vp, bp)
2490 struct vnode *vp;
2491 struct buf *bp;
2492 {
2493 struct nfsnode *np = VTONFS(vp);
2494 off_t lo, hi;
2495
2496 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2497 return;
2498
2499 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2500 hi = lo + bp->b_dirtyend;
2501
2502 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2503 return;
2504 if (lo <= np->n_pushedlo)
2505 np->n_pushedlo = hi;
2506 else if (hi >= np->n_pushedhi)
2507 np->n_pushedhi = lo;
2508 else {
2509 /*
2510 * XXX There's only one range. If the deleted range
2511 * is in the middle, pick the largest of the
2512 * contiguous ranges that it leaves.
2513 */
2514 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2515 np->n_pushedhi = lo;
2516 else
2517 np->n_pushedlo = hi;
2518 }
2519 #ifdef fvdl_debug
2520 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2521 (unsigned)np->n_pushedhi);
2522 #endif
2523 }
2524
2525 void
2526 nfs_add_tobecommitted_range(vp, bp)
2527 struct vnode *vp;
2528 struct buf *bp;
2529 {
2530 struct nfsnode *np = VTONFS(vp);
2531 off_t lo, hi;
2532
2533 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2534 hi = lo + bp->b_dirtyend;
2535
2536 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2537 np->n_pushlo = lo;
2538 np->n_pushhi = hi;
2539 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2540 } else {
2541 if (lo < np->n_pushlo)
2542 np->n_pushlo = lo;
2543 if (hi > np->n_pushhi)
2544 np->n_pushhi = hi;
2545 }
2546 #ifdef fvdl_debug
2547 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2548 (unsigned)np->n_pushhi);
2549 #endif
2550 }
2551
2552 void
2553 nfs_del_tobecommitted_range(vp, bp)
2554 struct vnode *vp;
2555 struct buf *bp;
2556 {
2557 struct nfsnode *np = VTONFS(vp);
2558 off_t lo, hi;
2559
2560 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2561 return;
2562
2563 lo = (off_t)bp->b_blkno * DEV_BSIZE;
2564 hi = lo + bp->b_dirtyend;
2565
2566 if (lo > np->n_pushhi || hi < np->n_pushlo)
2567 return;
2568
2569 if (lo <= np->n_pushlo)
2570 np->n_pushlo = hi;
2571 else if (hi >= np->n_pushhi)
2572 np->n_pushhi = lo;
2573 else {
2574 /*
2575 * XXX There's only one range. If the deleted range
2576 * is in the middle, pick the largest of the
2577 * contiguous ranges that it leaves.
2578 */
2579 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2580 np->n_pushhi = lo;
2581 else
2582 np->n_pushlo = hi;
2583 }
2584 #ifdef fvdl_debug
2585 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2586 (unsigned)np->n_pushhi);
2587 #endif
2588 }
2589
2590 /*
2591 * Map errnos to NFS error numbers. For Version 3 also filter out error
2592 * numbers not specified for the associated procedure.
2593 */
2594 int
2595 nfsrv_errmap(nd, err)
2596 struct nfsrv_descript *nd;
2597 int err;
2598 {
2599 short *defaulterrp, *errp;
2600
2601 if (nd->nd_flag & ND_NFSV3) {
2602 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2603 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2604 while (*++errp) {
2605 if (*errp == err)
2606 return (err);
2607 else if (*errp > err)
2608 break;
2609 }
2610 return ((int)*defaulterrp);
2611 } else
2612 return (err & 0xffff);
2613 }
2614 if (err <= ELAST)
2615 return ((int)nfsrv_v2errmap[err - 1]);
2616 return (NFSERR_IO);
2617 }
2618
2619 /*
2620 * Sort the group list in increasing numerical order.
2621 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2622 * that used to be here.)
2623 */
2624 void
2625 nfsrvw_sort(list, num)
2626 gid_t *list;
2627 int num;
2628 {
2629 int i, j;
2630 gid_t v;
2631
2632 /* Insertion sort. */
2633 for (i = 1; i < num; i++) {
2634 v = list[i];
2635 /* find correct slot for value v, moving others up */
2636 for (j = i; --j >= 0 && v < list[j];)
2637 list[j + 1] = list[j];
2638 list[j + 1] = v;
2639 }
2640 }
2641
2642 /*
2643 * copy credentials making sure that the result can be compared with memcmp().
2644 */
2645 void
2646 nfsrv_setcred(incred, outcred)
2647 struct ucred *incred, *outcred;
2648 {
2649 int i;
2650
2651 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2652 outcred->cr_ref = 1;
2653 outcred->cr_uid = incred->cr_uid;
2654 outcred->cr_gid = incred->cr_gid;
2655 outcred->cr_ngroups = incred->cr_ngroups;
2656 for (i = 0; i < incred->cr_ngroups; i++)
2657 outcred->cr_groups[i] = incred->cr_groups[i];
2658 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2659 }
2660