nfs_subs.c revision 1.92 1 /* $NetBSD: nfs_subs.c,v 1.92 2001/02/21 21:39:57 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #include "opt_nfsserver.h"
79 #include "opt_iso.h"
80 #include "opt_inet.h"
81
82 /*
83 * These functions support the macros and help fiddle mbuf chains for
84 * the nfs op functions. They do things like create the rpc header and
85 * copy data between mbuf chains and uio lists.
86 */
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 static u_int32_t nfs_xid = 0;
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145
146 /*
147 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148 */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 NFSPROC_NULL,
151 NFSPROC_GETATTR,
152 NFSPROC_SETATTR,
153 NFSPROC_NOOP,
154 NFSPROC_LOOKUP,
155 NFSPROC_READLINK,
156 NFSPROC_READ,
157 NFSPROC_NOOP,
158 NFSPROC_WRITE,
159 NFSPROC_CREATE,
160 NFSPROC_REMOVE,
161 NFSPROC_RENAME,
162 NFSPROC_LINK,
163 NFSPROC_SYMLINK,
164 NFSPROC_MKDIR,
165 NFSPROC_RMDIR,
166 NFSPROC_READDIR,
167 NFSPROC_FSSTAT,
168 NFSPROC_NOOP,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 };
209
210 /*
211 * Maps errno values to nfs error numbers.
212 * Use NFSERR_IO as the catch all for ones not specifically defined in
213 * RFC 1094.
214 */
215 static const u_char nfsrv_v2errmap[ELAST] = {
216 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
217 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
220 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
229 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO,
233 };
234
235 /*
236 * Maps errno values to nfs error numbers.
237 * Although it is not obvious whether or not NFS clients really care if
238 * a returned error value is in the specified list for the procedure, the
239 * safest thing to do is filter them appropriately. For Version 2, the
240 * X/Open XNFS document is the only specification that defines error values
241 * for each RPC (The RFC simply lists all possible error values for all RPCs),
242 * so I have decided to not do this for Version 2.
243 * The first entry is the default error return and the rest are the valid
244 * errors for that RPC in increasing numeric order.
245 */
246 static const short nfsv3err_null[] = {
247 0,
248 0,
249 };
250
251 static const short nfsv3err_getattr[] = {
252 NFSERR_IO,
253 NFSERR_IO,
254 NFSERR_STALE,
255 NFSERR_BADHANDLE,
256 NFSERR_SERVERFAULT,
257 0,
258 };
259
260 static const short nfsv3err_setattr[] = {
261 NFSERR_IO,
262 NFSERR_PERM,
263 NFSERR_IO,
264 NFSERR_ACCES,
265 NFSERR_INVAL,
266 NFSERR_NOSPC,
267 NFSERR_ROFS,
268 NFSERR_DQUOT,
269 NFSERR_STALE,
270 NFSERR_BADHANDLE,
271 NFSERR_NOT_SYNC,
272 NFSERR_SERVERFAULT,
273 0,
274 };
275
276 static const short nfsv3err_lookup[] = {
277 NFSERR_IO,
278 NFSERR_NOENT,
279 NFSERR_IO,
280 NFSERR_ACCES,
281 NFSERR_NOTDIR,
282 NFSERR_NAMETOL,
283 NFSERR_STALE,
284 NFSERR_BADHANDLE,
285 NFSERR_SERVERFAULT,
286 0,
287 };
288
289 static const short nfsv3err_access[] = {
290 NFSERR_IO,
291 NFSERR_IO,
292 NFSERR_STALE,
293 NFSERR_BADHANDLE,
294 NFSERR_SERVERFAULT,
295 0,
296 };
297
298 static const short nfsv3err_readlink[] = {
299 NFSERR_IO,
300 NFSERR_IO,
301 NFSERR_ACCES,
302 NFSERR_INVAL,
303 NFSERR_STALE,
304 NFSERR_BADHANDLE,
305 NFSERR_NOTSUPP,
306 NFSERR_SERVERFAULT,
307 0,
308 };
309
310 static const short nfsv3err_read[] = {
311 NFSERR_IO,
312 NFSERR_IO,
313 NFSERR_NXIO,
314 NFSERR_ACCES,
315 NFSERR_INVAL,
316 NFSERR_STALE,
317 NFSERR_BADHANDLE,
318 NFSERR_SERVERFAULT,
319 NFSERR_JUKEBOX,
320 0,
321 };
322
323 static const short nfsv3err_write[] = {
324 NFSERR_IO,
325 NFSERR_IO,
326 NFSERR_ACCES,
327 NFSERR_INVAL,
328 NFSERR_FBIG,
329 NFSERR_NOSPC,
330 NFSERR_ROFS,
331 NFSERR_DQUOT,
332 NFSERR_STALE,
333 NFSERR_BADHANDLE,
334 NFSERR_SERVERFAULT,
335 NFSERR_JUKEBOX,
336 0,
337 };
338
339 static const short nfsv3err_create[] = {
340 NFSERR_IO,
341 NFSERR_IO,
342 NFSERR_ACCES,
343 NFSERR_EXIST,
344 NFSERR_NOTDIR,
345 NFSERR_NOSPC,
346 NFSERR_ROFS,
347 NFSERR_NAMETOL,
348 NFSERR_DQUOT,
349 NFSERR_STALE,
350 NFSERR_BADHANDLE,
351 NFSERR_NOTSUPP,
352 NFSERR_SERVERFAULT,
353 0,
354 };
355
356 static const short nfsv3err_mkdir[] = {
357 NFSERR_IO,
358 NFSERR_IO,
359 NFSERR_ACCES,
360 NFSERR_EXIST,
361 NFSERR_NOTDIR,
362 NFSERR_NOSPC,
363 NFSERR_ROFS,
364 NFSERR_NAMETOL,
365 NFSERR_DQUOT,
366 NFSERR_STALE,
367 NFSERR_BADHANDLE,
368 NFSERR_NOTSUPP,
369 NFSERR_SERVERFAULT,
370 0,
371 };
372
373 static const short nfsv3err_symlink[] = {
374 NFSERR_IO,
375 NFSERR_IO,
376 NFSERR_ACCES,
377 NFSERR_EXIST,
378 NFSERR_NOTDIR,
379 NFSERR_NOSPC,
380 NFSERR_ROFS,
381 NFSERR_NAMETOL,
382 NFSERR_DQUOT,
383 NFSERR_STALE,
384 NFSERR_BADHANDLE,
385 NFSERR_NOTSUPP,
386 NFSERR_SERVERFAULT,
387 0,
388 };
389
390 static const short nfsv3err_mknod[] = {
391 NFSERR_IO,
392 NFSERR_IO,
393 NFSERR_ACCES,
394 NFSERR_EXIST,
395 NFSERR_NOTDIR,
396 NFSERR_NOSPC,
397 NFSERR_ROFS,
398 NFSERR_NAMETOL,
399 NFSERR_DQUOT,
400 NFSERR_STALE,
401 NFSERR_BADHANDLE,
402 NFSERR_NOTSUPP,
403 NFSERR_SERVERFAULT,
404 NFSERR_BADTYPE,
405 0,
406 };
407
408 static const short nfsv3err_remove[] = {
409 NFSERR_IO,
410 NFSERR_NOENT,
411 NFSERR_IO,
412 NFSERR_ACCES,
413 NFSERR_NOTDIR,
414 NFSERR_ROFS,
415 NFSERR_NAMETOL,
416 NFSERR_STALE,
417 NFSERR_BADHANDLE,
418 NFSERR_SERVERFAULT,
419 0,
420 };
421
422 static const short nfsv3err_rmdir[] = {
423 NFSERR_IO,
424 NFSERR_NOENT,
425 NFSERR_IO,
426 NFSERR_ACCES,
427 NFSERR_EXIST,
428 NFSERR_NOTDIR,
429 NFSERR_INVAL,
430 NFSERR_ROFS,
431 NFSERR_NAMETOL,
432 NFSERR_NOTEMPTY,
433 NFSERR_STALE,
434 NFSERR_BADHANDLE,
435 NFSERR_NOTSUPP,
436 NFSERR_SERVERFAULT,
437 0,
438 };
439
440 static const short nfsv3err_rename[] = {
441 NFSERR_IO,
442 NFSERR_NOENT,
443 NFSERR_IO,
444 NFSERR_ACCES,
445 NFSERR_EXIST,
446 NFSERR_XDEV,
447 NFSERR_NOTDIR,
448 NFSERR_ISDIR,
449 NFSERR_INVAL,
450 NFSERR_NOSPC,
451 NFSERR_ROFS,
452 NFSERR_MLINK,
453 NFSERR_NAMETOL,
454 NFSERR_NOTEMPTY,
455 NFSERR_DQUOT,
456 NFSERR_STALE,
457 NFSERR_BADHANDLE,
458 NFSERR_NOTSUPP,
459 NFSERR_SERVERFAULT,
460 0,
461 };
462
463 static const short nfsv3err_link[] = {
464 NFSERR_IO,
465 NFSERR_IO,
466 NFSERR_ACCES,
467 NFSERR_EXIST,
468 NFSERR_XDEV,
469 NFSERR_NOTDIR,
470 NFSERR_INVAL,
471 NFSERR_NOSPC,
472 NFSERR_ROFS,
473 NFSERR_MLINK,
474 NFSERR_NAMETOL,
475 NFSERR_DQUOT,
476 NFSERR_STALE,
477 NFSERR_BADHANDLE,
478 NFSERR_NOTSUPP,
479 NFSERR_SERVERFAULT,
480 0,
481 };
482
483 static const short nfsv3err_readdir[] = {
484 NFSERR_IO,
485 NFSERR_IO,
486 NFSERR_ACCES,
487 NFSERR_NOTDIR,
488 NFSERR_STALE,
489 NFSERR_BADHANDLE,
490 NFSERR_BAD_COOKIE,
491 NFSERR_TOOSMALL,
492 NFSERR_SERVERFAULT,
493 0,
494 };
495
496 static const short nfsv3err_readdirplus[] = {
497 NFSERR_IO,
498 NFSERR_IO,
499 NFSERR_ACCES,
500 NFSERR_NOTDIR,
501 NFSERR_STALE,
502 NFSERR_BADHANDLE,
503 NFSERR_BAD_COOKIE,
504 NFSERR_NOTSUPP,
505 NFSERR_TOOSMALL,
506 NFSERR_SERVERFAULT,
507 0,
508 };
509
510 static const short nfsv3err_fsstat[] = {
511 NFSERR_IO,
512 NFSERR_IO,
513 NFSERR_STALE,
514 NFSERR_BADHANDLE,
515 NFSERR_SERVERFAULT,
516 0,
517 };
518
519 static const short nfsv3err_fsinfo[] = {
520 NFSERR_STALE,
521 NFSERR_STALE,
522 NFSERR_BADHANDLE,
523 NFSERR_SERVERFAULT,
524 0,
525 };
526
527 static const short nfsv3err_pathconf[] = {
528 NFSERR_STALE,
529 NFSERR_STALE,
530 NFSERR_BADHANDLE,
531 NFSERR_SERVERFAULT,
532 0,
533 };
534
535 static const short nfsv3err_commit[] = {
536 NFSERR_IO,
537 NFSERR_IO,
538 NFSERR_STALE,
539 NFSERR_BADHANDLE,
540 NFSERR_SERVERFAULT,
541 0,
542 };
543
544 static const short * const nfsrv_v3errmap[] = {
545 nfsv3err_null,
546 nfsv3err_getattr,
547 nfsv3err_setattr,
548 nfsv3err_lookup,
549 nfsv3err_access,
550 nfsv3err_readlink,
551 nfsv3err_read,
552 nfsv3err_write,
553 nfsv3err_create,
554 nfsv3err_mkdir,
555 nfsv3err_symlink,
556 nfsv3err_mknod,
557 nfsv3err_remove,
558 nfsv3err_rmdir,
559 nfsv3err_rename,
560 nfsv3err_link,
561 nfsv3err_readdir,
562 nfsv3err_readdirplus,
563 nfsv3err_fsstat,
564 nfsv3err_fsinfo,
565 nfsv3err_pathconf,
566 nfsv3err_commit,
567 };
568
569 extern struct nfsrtt nfsrtt;
570 extern time_t nqnfsstarttime;
571 extern int nqsrv_clockskew;
572 extern int nqsrv_writeslack;
573 extern int nqsrv_maxlease;
574 extern const int nqnfs_piggy[NFS_NPROCS];
575 extern struct nfsnodehashhead *nfsnodehashtbl;
576 extern u_long nfsnodehash;
577
578 LIST_HEAD(nfsnodehashhead, nfsnode);
579 u_long nfsdirhashmask;
580
581 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
582
583 /*
584 * Create the header for an rpc request packet
585 * The hsiz is the size of the rest of the nfs request header.
586 * (just used to decide if a cluster is a good idea)
587 */
588 struct mbuf *
589 nfsm_reqh(vp, procid, hsiz, bposp)
590 struct vnode *vp;
591 u_long procid;
592 int hsiz;
593 caddr_t *bposp;
594 {
595 struct mbuf *mb;
596 caddr_t bpos;
597 struct nfsmount *nmp;
598 #ifndef NFS_V2_ONLY
599 u_int32_t *tl;
600 struct mbuf *mb2;
601 int nqflag;
602 #endif
603
604 MGET(mb, M_WAIT, MT_DATA);
605 if (hsiz >= MINCLSIZE)
606 MCLGET(mb, M_WAIT);
607 mb->m_len = 0;
608 bpos = mtod(mb, caddr_t);
609
610 /*
611 * For NQNFS, add lease request.
612 */
613 if (vp) {
614 nmp = VFSTONFS(vp->v_mount);
615 #ifndef NFS_V2_ONLY
616 if (nmp->nm_flag & NFSMNT_NQNFS) {
617 nqflag = NQNFS_NEEDLEASE(vp, procid);
618 if (nqflag) {
619 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
620 *tl++ = txdr_unsigned(nqflag);
621 *tl = txdr_unsigned(nmp->nm_leaseterm);
622 } else {
623 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
624 *tl = 0;
625 }
626 }
627 #endif
628 }
629 /* Finally, return values */
630 *bposp = bpos;
631 return (mb);
632 }
633
634 /*
635 * Build the RPC header and fill in the authorization info.
636 * The authorization string argument is only used when the credentials
637 * come from outside of the kernel.
638 * Returns the head of the mbuf list.
639 */
640 struct mbuf *
641 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
642 verf_str, mrest, mrest_len, mbp, xidp)
643 struct ucred *cr;
644 int nmflag;
645 int procid;
646 int auth_type;
647 int auth_len;
648 char *auth_str;
649 int verf_len;
650 char *verf_str;
651 struct mbuf *mrest;
652 int mrest_len;
653 struct mbuf **mbp;
654 u_int32_t *xidp;
655 {
656 struct mbuf *mb;
657 u_int32_t *tl;
658 caddr_t bpos;
659 int i;
660 struct mbuf *mreq, *mb2;
661 int siz, grpsiz, authsiz;
662 struct timeval tv;
663 static u_int32_t base;
664
665 authsiz = nfsm_rndup(auth_len);
666 MGETHDR(mb, M_WAIT, MT_DATA);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 MCLGET(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 /*
684 * derive initial xid from system time
685 * XXX time is invalid if root not yet mounted
686 */
687 if (!base && (rootvp)) {
688 microtime(&tv);
689 base = tv.tv_sec << 12;
690 nfs_xid = base;
691 }
692 /*
693 * Skip zero xid if it should ever happen.
694 */
695 if (++nfs_xid == 0)
696 nfs_xid++;
697
698 *tl++ = *xidp = txdr_unsigned(nfs_xid);
699 *tl++ = rpc_call;
700 *tl++ = rpc_vers;
701 if (nmflag & NFSMNT_NQNFS) {
702 *tl++ = txdr_unsigned(NQNFS_PROG);
703 *tl++ = txdr_unsigned(NQNFS_VER3);
704 } else {
705 *tl++ = txdr_unsigned(NFS_PROG);
706 if (nmflag & NFSMNT_NFSV3)
707 *tl++ = txdr_unsigned(NFS_VER3);
708 else
709 *tl++ = txdr_unsigned(NFS_VER2);
710 }
711 if (nmflag & NFSMNT_NFSV3)
712 *tl++ = txdr_unsigned(procid);
713 else
714 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
715
716 /*
717 * And then the authorization cred.
718 */
719 *tl++ = txdr_unsigned(auth_type);
720 *tl = txdr_unsigned(authsiz);
721 switch (auth_type) {
722 case RPCAUTH_UNIX:
723 nfsm_build(tl, u_int32_t *, auth_len);
724 *tl++ = 0; /* stamp ?? */
725 *tl++ = 0; /* NULL hostname */
726 *tl++ = txdr_unsigned(cr->cr_uid);
727 *tl++ = txdr_unsigned(cr->cr_gid);
728 grpsiz = (auth_len >> 2) - 5;
729 *tl++ = txdr_unsigned(grpsiz);
730 for (i = 0; i < grpsiz; i++)
731 *tl++ = txdr_unsigned(cr->cr_groups[i]);
732 break;
733 case RPCAUTH_KERB4:
734 siz = auth_len;
735 while (siz > 0) {
736 if (M_TRAILINGSPACE(mb) == 0) {
737 MGET(mb2, M_WAIT, MT_DATA);
738 if (siz >= MINCLSIZE)
739 MCLGET(mb2, M_WAIT);
740 mb->m_next = mb2;
741 mb = mb2;
742 mb->m_len = 0;
743 bpos = mtod(mb, caddr_t);
744 }
745 i = min(siz, M_TRAILINGSPACE(mb));
746 memcpy(bpos, auth_str, i);
747 mb->m_len += i;
748 auth_str += i;
749 bpos += i;
750 siz -= i;
751 }
752 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
753 for (i = 0; i < siz; i++)
754 *bpos++ = '\0';
755 mb->m_len += siz;
756 }
757 break;
758 };
759
760 /*
761 * And the verifier...
762 */
763 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
764 if (verf_str) {
765 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
766 *tl = txdr_unsigned(verf_len);
767 siz = verf_len;
768 while (siz > 0) {
769 if (M_TRAILINGSPACE(mb) == 0) {
770 MGET(mb2, M_WAIT, MT_DATA);
771 if (siz >= MINCLSIZE)
772 MCLGET(mb2, M_WAIT);
773 mb->m_next = mb2;
774 mb = mb2;
775 mb->m_len = 0;
776 bpos = mtod(mb, caddr_t);
777 }
778 i = min(siz, M_TRAILINGSPACE(mb));
779 memcpy(bpos, verf_str, i);
780 mb->m_len += i;
781 verf_str += i;
782 bpos += i;
783 siz -= i;
784 }
785 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
786 for (i = 0; i < siz; i++)
787 *bpos++ = '\0';
788 mb->m_len += siz;
789 }
790 } else {
791 *tl++ = txdr_unsigned(RPCAUTH_NULL);
792 *tl = 0;
793 }
794 mb->m_next = mrest;
795 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
796 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
797 *mbp = mb;
798 return (mreq);
799 }
800
801 /*
802 * copies mbuf chain to the uio scatter/gather list
803 */
804 int
805 nfsm_mbuftouio(mrep, uiop, siz, dpos)
806 struct mbuf **mrep;
807 struct uio *uiop;
808 int siz;
809 caddr_t *dpos;
810 {
811 char *mbufcp, *uiocp;
812 int xfer, left, len;
813 struct mbuf *mp;
814 long uiosiz, rem;
815 int error = 0;
816
817 mp = *mrep;
818 mbufcp = *dpos;
819 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
820 rem = nfsm_rndup(siz)-siz;
821 while (siz > 0) {
822 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
823 return (EFBIG);
824 left = uiop->uio_iov->iov_len;
825 uiocp = uiop->uio_iov->iov_base;
826 if (left > siz)
827 left = siz;
828 uiosiz = left;
829 while (left > 0) {
830 while (len == 0) {
831 mp = mp->m_next;
832 if (mp == NULL)
833 return (EBADRPC);
834 mbufcp = mtod(mp, caddr_t);
835 len = mp->m_len;
836 }
837 xfer = (left > len) ? len : left;
838 #ifdef notdef
839 /* Not Yet.. */
840 if (uiop->uio_iov->iov_op != NULL)
841 (*(uiop->uio_iov->iov_op))
842 (mbufcp, uiocp, xfer);
843 else
844 #endif
845 if (uiop->uio_segflg == UIO_SYSSPACE)
846 memcpy(uiocp, mbufcp, xfer);
847 else
848 copyout(mbufcp, uiocp, xfer);
849 left -= xfer;
850 len -= xfer;
851 mbufcp += xfer;
852 uiocp += xfer;
853 uiop->uio_offset += xfer;
854 uiop->uio_resid -= xfer;
855 }
856 if (uiop->uio_iov->iov_len <= siz) {
857 uiop->uio_iovcnt--;
858 uiop->uio_iov++;
859 } else {
860 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
861 uiop->uio_iov->iov_len -= uiosiz;
862 }
863 siz -= uiosiz;
864 }
865 *dpos = mbufcp;
866 *mrep = mp;
867 if (rem > 0) {
868 if (len < rem)
869 error = nfs_adv(mrep, dpos, rem, len);
870 else
871 *dpos += rem;
872 }
873 return (error);
874 }
875
876 /*
877 * copies a uio scatter/gather list to an mbuf chain.
878 * NOTE: can ony handle iovcnt == 1
879 */
880 int
881 nfsm_uiotombuf(uiop, mq, siz, bpos)
882 struct uio *uiop;
883 struct mbuf **mq;
884 int siz;
885 caddr_t *bpos;
886 {
887 char *uiocp;
888 struct mbuf *mp, *mp2;
889 int xfer, left, mlen;
890 int uiosiz, clflg, rem;
891 char *cp;
892
893 #ifdef DIAGNOSTIC
894 if (uiop->uio_iovcnt != 1)
895 panic("nfsm_uiotombuf: iovcnt != 1");
896 #endif
897
898 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
899 clflg = 1;
900 else
901 clflg = 0;
902 rem = nfsm_rndup(siz)-siz;
903 mp = mp2 = *mq;
904 while (siz > 0) {
905 left = uiop->uio_iov->iov_len;
906 uiocp = uiop->uio_iov->iov_base;
907 if (left > siz)
908 left = siz;
909 uiosiz = left;
910 while (left > 0) {
911 mlen = M_TRAILINGSPACE(mp);
912 if (mlen == 0) {
913 MGET(mp, M_WAIT, MT_DATA);
914 if (clflg)
915 MCLGET(mp, M_WAIT);
916 mp->m_len = 0;
917 mp2->m_next = mp;
918 mp2 = mp;
919 mlen = M_TRAILINGSPACE(mp);
920 }
921 xfer = (left > mlen) ? mlen : left;
922 #ifdef notdef
923 /* Not Yet.. */
924 if (uiop->uio_iov->iov_op != NULL)
925 (*(uiop->uio_iov->iov_op))
926 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
927 else
928 #endif
929 if (uiop->uio_segflg == UIO_SYSSPACE)
930 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
931 else
932 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
933 mp->m_len += xfer;
934 left -= xfer;
935 uiocp += xfer;
936 uiop->uio_offset += xfer;
937 uiop->uio_resid -= xfer;
938 }
939 (caddr_t)uiop->uio_iov->iov_base += uiosiz;
940 uiop->uio_iov->iov_len -= uiosiz;
941 siz -= uiosiz;
942 }
943 if (rem > 0) {
944 if (rem > M_TRAILINGSPACE(mp)) {
945 MGET(mp, M_WAIT, MT_DATA);
946 mp->m_len = 0;
947 mp2->m_next = mp;
948 }
949 cp = mtod(mp, caddr_t)+mp->m_len;
950 for (left = 0; left < rem; left++)
951 *cp++ = '\0';
952 mp->m_len += rem;
953 *bpos = cp;
954 } else
955 *bpos = mtod(mp, caddr_t)+mp->m_len;
956 *mq = mp;
957 return (0);
958 }
959
960 /*
961 * Get at least "siz" bytes of correctly aligned data.
962 * When called the mbuf pointers are not necessarily correct,
963 * dsosp points to what ought to be in m_data and left contains
964 * what ought to be in m_len.
965 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
966 * cases. (The macros use the vars. dpos and dpos2)
967 */
968 int
969 nfsm_disct(mdp, dposp, siz, left, cp2)
970 struct mbuf **mdp;
971 caddr_t *dposp;
972 int siz;
973 int left;
974 caddr_t *cp2;
975 {
976 struct mbuf *m1, *m2;
977 struct mbuf *havebuf = NULL;
978 caddr_t src = *dposp;
979 caddr_t dst;
980 int len;
981
982 #ifdef DEBUG
983 if (left < 0)
984 panic("nfsm_disct: left < 0");
985 #endif
986 m1 = *mdp;
987 /*
988 * Skip through the mbuf chain looking for an mbuf with
989 * some data. If the first mbuf found has enough data
990 * and it is correctly aligned return it.
991 */
992 while (left == 0) {
993 havebuf = m1;
994 *mdp = m1 = m1->m_next;
995 if (m1 == NULL)
996 return (EBADRPC);
997 src = mtod(m1, caddr_t);
998 left = m1->m_len;
999 /*
1000 * If we start a new mbuf and it is big enough
1001 * and correctly aligned just return it, don't
1002 * do any pull up.
1003 */
1004 if (left >= siz && nfsm_aligned(src)) {
1005 *cp2 = src;
1006 *dposp = src + siz;
1007 return (0);
1008 }
1009 }
1010 if (m1->m_flags & M_EXT) {
1011 if (havebuf) {
1012 /* If the first mbuf with data has external data
1013 * and there is a previous empty mbuf use it
1014 * to move the data into.
1015 */
1016 m2 = m1;
1017 *mdp = m1 = havebuf;
1018 if (m1->m_flags & M_EXT) {
1019 MEXTREMOVE(m1);
1020 }
1021 } else {
1022 /*
1023 * If the first mbuf has a external data
1024 * and there is no previous empty mbuf
1025 * allocate a new mbuf and move the external
1026 * data to the new mbuf. Also make the first
1027 * mbuf look empty.
1028 */
1029 m2 = m_get(M_WAIT, MT_DATA);
1030 m2->m_ext = m1->m_ext;
1031 m2->m_data = src;
1032 m2->m_len = left;
1033 MCLADDREFERENCE(m1, m2);
1034 MEXTREMOVE(m1);
1035 m2->m_next = m1->m_next;
1036 m1->m_next = m2;
1037 }
1038 m1->m_len = 0;
1039 dst = m1->m_dat;
1040 } else {
1041 /*
1042 * If the first mbuf has no external data
1043 * move the data to the front of the mbuf.
1044 */
1045 if ((dst = m1->m_dat) != src)
1046 memmove(dst, src, left);
1047 dst += left;
1048 m1->m_len = left;
1049 m2 = m1->m_next;
1050 }
1051 m1->m_flags &= ~M_PKTHDR;
1052 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1053 *dposp = mtod(m1, caddr_t) + siz;
1054 /*
1055 * Loop through mbufs pulling data up into first mbuf until
1056 * the first mbuf is full or there is no more data to
1057 * pullup.
1058 */
1059 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1060 if ((len = min(len, m2->m_len)) != 0)
1061 memcpy(dst, m2->m_data, len);
1062 m1->m_len += len;
1063 dst += len;
1064 m2->m_data += len;
1065 m2->m_len -= len;
1066 m2 = m2->m_next;
1067 }
1068 if (m1->m_len < siz)
1069 return (EBADRPC);
1070 return (0);
1071 }
1072
1073 /*
1074 * Advance the position in the mbuf chain.
1075 */
1076 int
1077 nfs_adv(mdp, dposp, offs, left)
1078 struct mbuf **mdp;
1079 caddr_t *dposp;
1080 int offs;
1081 int left;
1082 {
1083 struct mbuf *m;
1084 int s;
1085
1086 m = *mdp;
1087 s = left;
1088 while (s < offs) {
1089 offs -= s;
1090 m = m->m_next;
1091 if (m == NULL)
1092 return (EBADRPC);
1093 s = m->m_len;
1094 }
1095 *mdp = m;
1096 *dposp = mtod(m, caddr_t)+offs;
1097 return (0);
1098 }
1099
1100 /*
1101 * Copy a string into mbufs for the hard cases...
1102 */
1103 int
1104 nfsm_strtmbuf(mb, bpos, cp, siz)
1105 struct mbuf **mb;
1106 char **bpos;
1107 const char *cp;
1108 long siz;
1109 {
1110 struct mbuf *m1 = NULL, *m2;
1111 long left, xfer, len, tlen;
1112 u_int32_t *tl;
1113 int putsize;
1114
1115 putsize = 1;
1116 m2 = *mb;
1117 left = M_TRAILINGSPACE(m2);
1118 if (left > 0) {
1119 tl = ((u_int32_t *)(*bpos));
1120 *tl++ = txdr_unsigned(siz);
1121 putsize = 0;
1122 left -= NFSX_UNSIGNED;
1123 m2->m_len += NFSX_UNSIGNED;
1124 if (left > 0) {
1125 memcpy((caddr_t) tl, cp, left);
1126 siz -= left;
1127 cp += left;
1128 m2->m_len += left;
1129 left = 0;
1130 }
1131 }
1132 /* Loop around adding mbufs */
1133 while (siz > 0) {
1134 MGET(m1, M_WAIT, MT_DATA);
1135 if (siz > MLEN)
1136 MCLGET(m1, M_WAIT);
1137 m1->m_len = NFSMSIZ(m1);
1138 m2->m_next = m1;
1139 m2 = m1;
1140 tl = mtod(m1, u_int32_t *);
1141 tlen = 0;
1142 if (putsize) {
1143 *tl++ = txdr_unsigned(siz);
1144 m1->m_len -= NFSX_UNSIGNED;
1145 tlen = NFSX_UNSIGNED;
1146 putsize = 0;
1147 }
1148 if (siz < m1->m_len) {
1149 len = nfsm_rndup(siz);
1150 xfer = siz;
1151 if (xfer < len)
1152 *(tl+(xfer>>2)) = 0;
1153 } else {
1154 xfer = len = m1->m_len;
1155 }
1156 memcpy((caddr_t) tl, cp, xfer);
1157 m1->m_len = len+tlen;
1158 siz -= xfer;
1159 cp += xfer;
1160 }
1161 *mb = m1;
1162 *bpos = mtod(m1, caddr_t)+m1->m_len;
1163 return (0);
1164 }
1165
1166 /*
1167 * Directory caching routines. They work as follows:
1168 * - a cache is maintained per VDIR nfsnode.
1169 * - for each offset cookie that is exported to userspace, and can
1170 * thus be thrown back at us as an offset to VOP_READDIR, store
1171 * information in the cache.
1172 * - cached are:
1173 * - cookie itself
1174 * - blocknumber (essentially just a search key in the buffer cache)
1175 * - entry number in block.
1176 * - offset cookie of block in which this entry is stored
1177 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1178 * - entries are looked up in a hash table
1179 * - also maintained is an LRU list of entries, used to determine
1180 * which ones to delete if the cache grows too large.
1181 * - if 32 <-> 64 translation mode is requested for a filesystem,
1182 * the cache also functions as a translation table
1183 * - in the translation case, invalidating the cache does not mean
1184 * flushing it, but just marking entries as invalid, except for
1185 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1186 * still be able to use the cache as a translation table.
1187 * - 32 bit cookies are uniquely created by combining the hash table
1188 * entry value, and one generation count per hash table entry,
1189 * incremented each time an entry is appended to the chain.
1190 * - the cache is invalidated each time a direcory is modified
1191 * - sanity checks are also done; if an entry in a block turns
1192 * out not to have a matching cookie, the cache is invalidated
1193 * and a new block starting from the wanted offset is fetched from
1194 * the server.
1195 * - directory entries as read from the server are extended to contain
1196 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1197 * the cache and exporting them to userspace through the cookie
1198 * argument to VOP_READDIR.
1199 */
1200
1201 u_long
1202 nfs_dirhash(off)
1203 off_t off;
1204 {
1205 int i;
1206 char *cp = (char *)&off;
1207 u_long sum = 0L;
1208
1209 for (i = 0 ; i < sizeof (off); i++)
1210 sum += *cp++;
1211
1212 return sum;
1213 }
1214
1215 void
1216 nfs_initdircache(vp)
1217 struct vnode *vp;
1218 {
1219 struct nfsnode *np = VTONFS(vp);
1220 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1221
1222 np->n_dircachesize = 0;
1223 np->n_dblkno = 1;
1224 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1225 M_WAITOK, &nfsdirhashmask);
1226 TAILQ_INIT(&np->n_dirchain);
1227 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1228 MALLOC(np->n_dirgens, unsigned *,
1229 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1230 M_WAITOK);
1231 memset((caddr_t)np->n_dirgens, 0,
1232 NFS_DIRHASHSIZ * sizeof (unsigned));
1233 }
1234 }
1235
1236 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1237
1238 struct nfsdircache *
1239 nfs_searchdircache(vp, off, do32, hashent)
1240 struct vnode *vp;
1241 off_t off;
1242 int do32;
1243 int *hashent;
1244 {
1245 struct nfsdirhashhead *ndhp;
1246 struct nfsdircache *ndp = NULL;
1247 struct nfsnode *np = VTONFS(vp);
1248 unsigned ent;
1249
1250 /*
1251 * Zero is always a valid cookie.
1252 */
1253 if (off == 0)
1254 return &dzero;
1255
1256 /*
1257 * We use a 32bit cookie as search key, directly reconstruct
1258 * the hashentry. Else use the hashfunction.
1259 */
1260 if (do32) {
1261 ent = (u_int32_t)off >> 24;
1262 if (ent >= NFS_DIRHASHSIZ)
1263 return NULL;
1264 ndhp = &np->n_dircache[ent];
1265 } else {
1266 ndhp = NFSDIRHASH(np, off);
1267 }
1268
1269 if (hashent)
1270 *hashent = (int)(ndhp - np->n_dircache);
1271 if (do32) {
1272 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1273 if (ndp->dc_cookie32 == (u_int32_t)off) {
1274 /*
1275 * An invalidated entry will become the
1276 * start of a new block fetched from
1277 * the server.
1278 */
1279 if (ndp->dc_blkno == -1) {
1280 ndp->dc_blkcookie = ndp->dc_cookie;
1281 ndp->dc_blkno = np->n_dblkno++;
1282 ndp->dc_entry = 0;
1283 }
1284 break;
1285 }
1286 }
1287 } else {
1288 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1289 if (ndp->dc_cookie == off)
1290 break;
1291 }
1292 return ndp;
1293 }
1294
1295
1296 struct nfsdircache *
1297 nfs_enterdircache(vp, off, blkoff, en, blkno)
1298 struct vnode *vp;
1299 off_t off, blkoff;
1300 daddr_t blkno;
1301 int en;
1302 {
1303 struct nfsnode *np = VTONFS(vp);
1304 struct nfsdirhashhead *ndhp;
1305 struct nfsdircache *ndp = NULL, *first;
1306 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1307 int hashent, gen, overwrite;
1308
1309 if (!np->n_dircache)
1310 /*
1311 * XXX would like to do this in nfs_nget but vtype
1312 * isn't known at that time.
1313 */
1314 nfs_initdircache(vp);
1315
1316 /*
1317 * XXX refuse entries for offset 0. amd(8) erroneously sets
1318 * cookie 0 for the '.' entry, making this necessary. This
1319 * isn't so bad, as 0 is a special case anyway.
1320 */
1321 if (off == 0)
1322 return &dzero;
1323
1324 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1325
1326 if (ndp && ndp->dc_blkno != -1) {
1327 /*
1328 * Overwriting an old entry. Check if it's the same.
1329 * If so, just return. If not, remove the old entry.
1330 */
1331 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1332 return ndp;
1333 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1334 LIST_REMOVE(ndp, dc_hash);
1335 FREE(ndp, M_NFSDIROFF);
1336 ndp = 0;
1337 }
1338
1339 ndhp = &np->n_dircache[hashent];
1340
1341 if (!ndp) {
1342 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1343 M_WAITOK);
1344 overwrite = 0;
1345 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1346 /*
1347 * We're allocating a new entry, so bump the
1348 * generation number.
1349 */
1350 gen = ++np->n_dirgens[hashent];
1351 if (gen == 0) {
1352 np->n_dirgens[hashent]++;
1353 gen++;
1354 }
1355 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1356 }
1357 } else
1358 overwrite = 1;
1359
1360 /*
1361 * If the entry number is 0, we are at the start of a new block, so
1362 * allocate a new blocknumber.
1363 */
1364 if (en == 0)
1365 ndp->dc_blkno = np->n_dblkno++;
1366 else
1367 ndp->dc_blkno = blkno;
1368
1369 ndp->dc_cookie = off;
1370 ndp->dc_blkcookie = blkoff;
1371 ndp->dc_entry = en;
1372
1373 if (overwrite)
1374 return ndp;
1375
1376 /*
1377 * If the maximum directory cookie cache size has been reached
1378 * for this node, take one off the front. The idea is that
1379 * directories are typically read front-to-back once, so that
1380 * the oldest entries can be thrown away without much performance
1381 * loss.
1382 */
1383 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1384 first = np->n_dirchain.tqh_first;
1385 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1386 LIST_REMOVE(first, dc_hash);
1387 FREE(first, M_NFSDIROFF);
1388 } else
1389 np->n_dircachesize++;
1390
1391 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1392 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1393 return ndp;
1394 }
1395
1396 void
1397 nfs_invaldircache(vp, forcefree)
1398 struct vnode *vp;
1399 int forcefree;
1400 {
1401 struct nfsnode *np = VTONFS(vp);
1402 struct nfsdircache *ndp = NULL;
1403 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1404
1405 #ifdef DIAGNOSTIC
1406 if (vp->v_type != VDIR)
1407 panic("nfs: invaldircache: not dir");
1408 #endif
1409
1410 if (!np->n_dircache)
1411 return;
1412
1413 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1414 while ((ndp = np->n_dirchain.tqh_first)) {
1415 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1416 LIST_REMOVE(ndp, dc_hash);
1417 FREE(ndp, M_NFSDIROFF);
1418 }
1419 np->n_dircachesize = 0;
1420 if (forcefree && np->n_dirgens) {
1421 FREE(np->n_dirgens, M_NFSDIROFF);
1422 }
1423 } else {
1424 for (ndp = np->n_dirchain.tqh_first; ndp;
1425 ndp = ndp->dc_chain.tqe_next)
1426 ndp->dc_blkno = -1;
1427 }
1428
1429 np->n_dblkno = 1;
1430 }
1431
1432 /*
1433 * Called once before VFS init to initialize shared and
1434 * server-specific data structures.
1435 */
1436 void
1437 nfs_init()
1438 {
1439 nfsrtt.pos = 0;
1440 rpc_vers = txdr_unsigned(RPC_VER2);
1441 rpc_call = txdr_unsigned(RPC_CALL);
1442 rpc_reply = txdr_unsigned(RPC_REPLY);
1443 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1444 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1445 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1446 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1447 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1448 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1449 nfs_prog = txdr_unsigned(NFS_PROG);
1450 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1451 nfs_true = txdr_unsigned(TRUE);
1452 nfs_false = txdr_unsigned(FALSE);
1453 nfs_xdrneg1 = txdr_unsigned(-1);
1454 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1455 if (nfs_ticks < 1)
1456 nfs_ticks = 1;
1457 #ifdef NFSSERVER
1458 nfsrv_init(0); /* Init server data structures */
1459 nfsrv_initcache(); /* Init the server request cache */
1460 #endif /* NFSSERVER */
1461
1462 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1463 /*
1464 * Initialize the nqnfs data structures.
1465 */
1466 if (nqnfsstarttime == 0) {
1467 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1468 + nqsrv_clockskew + nqsrv_writeslack;
1469 NQLOADNOVRAM(nqnfsstarttime);
1470 CIRCLEQ_INIT(&nqtimerhead);
1471 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1472 M_WAITOK, &nqfhhash);
1473 }
1474 #endif
1475
1476 /*
1477 * Initialize reply list and start timer
1478 */
1479 TAILQ_INIT(&nfs_reqq);
1480 nfs_timer(NULL);
1481 }
1482
1483 #ifdef NFS
1484 /*
1485 * Called once at VFS init to initialize client-specific data structures.
1486 */
1487 void
1488 nfs_vfs_init()
1489 {
1490 int i;
1491
1492 /* Ensure async daemons disabled */
1493 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) {
1494 nfs_iodwant[i] = (struct proc *)0;
1495 nfs_iodmount[i] = (struct nfsmount *)0;
1496 }
1497 nfs_nhinit(); /* Init the nfsnode table */
1498 }
1499
1500 void
1501 nfs_vfs_done()
1502 {
1503 nfs_nhdone();
1504 }
1505
1506 /*
1507 * Attribute cache routines.
1508 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1509 * that are on the mbuf list
1510 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1511 * error otherwise
1512 */
1513
1514 /*
1515 * Load the attribute cache (that lives in the nfsnode entry) with
1516 * the values on the mbuf list and
1517 * Iff vap not NULL
1518 * copy the attributes to *vaper
1519 */
1520 int
1521 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1522 struct vnode **vpp;
1523 struct mbuf **mdp;
1524 caddr_t *dposp;
1525 struct vattr *vaper;
1526 {
1527 int32_t t1;
1528 caddr_t cp2;
1529 int error = 0;
1530 struct mbuf *md;
1531 int v3 = NFS_ISV3(*vpp);
1532
1533 md = *mdp;
1534 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1535 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1536 if (error)
1537 return (error);
1538 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1539 }
1540
1541 int
1542 nfs_loadattrcache(vpp, fp, vaper)
1543 struct vnode **vpp;
1544 struct nfs_fattr *fp;
1545 struct vattr *vaper;
1546 {
1547 struct vnode *vp = *vpp;
1548 struct vattr *vap;
1549 int v3 = NFS_ISV3(vp);
1550 enum vtype vtyp;
1551 u_short vmode;
1552 struct timespec mtime;
1553 struct vnode *nvp;
1554 int32_t rdev;
1555 struct nfsnode *np;
1556 extern int (**spec_nfsv2nodeop_p) __P((void *));
1557
1558 if (v3) {
1559 vtyp = nfsv3tov_type(fp->fa_type);
1560 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1561 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1562 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1563 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1564 } else {
1565 vtyp = nfsv2tov_type(fp->fa_type);
1566 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1567 if (vtyp == VNON || vtyp == VREG)
1568 vtyp = IFTOVT(vmode);
1569 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1570 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1571
1572 /*
1573 * Really ugly NFSv2 kludge.
1574 */
1575 if (vtyp == VCHR && rdev == 0xffffffff)
1576 vtyp = VFIFO;
1577 }
1578
1579 /*
1580 * If v_type == VNON it is a new node, so fill in the v_type,
1581 * n_mtime fields. Check to see if it represents a special
1582 * device, and if so, check for a possible alias. Once the
1583 * correct vnode has been obtained, fill in the rest of the
1584 * information.
1585 */
1586 np = VTONFS(vp);
1587 if (vp->v_type == VNON) {
1588 vp->v_type = vtyp;
1589 if (vp->v_type == VFIFO) {
1590 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1591 vp->v_op = fifo_nfsv2nodeop_p;
1592 }
1593 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1594 vp->v_op = spec_nfsv2nodeop_p;
1595 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1596 if (nvp) {
1597 /*
1598 * Discard unneeded vnode, but save its nfsnode.
1599 * Since the nfsnode does not have a lock, its
1600 * vnode lock has to be carried over.
1601 */
1602 nvp->v_data = vp->v_data;
1603 vp->v_data = NULL;
1604 vp->v_op = spec_vnodeop_p;
1605 vput(vp);
1606 vgone(vp);
1607 /*
1608 * XXX When nfs starts locking, we need to
1609 * lock the new node here.
1610 */
1611 /*
1612 * Reinitialize aliased node.
1613 */
1614 np->n_vnode = nvp;
1615 *vpp = vp = nvp;
1616 }
1617 }
1618 np->n_mtime = mtime.tv_sec;
1619 }
1620 vap = np->n_vattr;
1621 vap->va_type = vtyp;
1622 vap->va_mode = vmode & ALLPERMS;
1623 vap->va_rdev = (dev_t)rdev;
1624 vap->va_mtime = mtime;
1625 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1626 switch (vtyp) {
1627 case VDIR:
1628 vap->va_blocksize = NFS_DIRFRAGSIZ;
1629 break;
1630 case VBLK:
1631 vap->va_blocksize = BLKDEV_IOSIZE;
1632 break;
1633 case VCHR:
1634 vap->va_blocksize = MAXBSIZE;
1635 break;
1636 default:
1637 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1638 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1639 break;
1640 }
1641 if (v3) {
1642 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1643 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1644 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1645 vap->va_size = fxdr_hyper(&fp->fa3_size);
1646 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1647 vap->va_fileid = fxdr_unsigned(int32_t,
1648 fp->fa3_fileid.nfsuquad[1]);
1649 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1650 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1651 vap->va_flags = 0;
1652 vap->va_filerev = 0;
1653 } else {
1654 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1655 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1656 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1657 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1658 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1659 * NFS_FABLKSIZE;
1660 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1661 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1662 vap->va_flags = 0;
1663 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1664 fp->fa2_ctime.nfsv2_sec);
1665 vap->va_ctime.tv_nsec = 0;
1666 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1667 vap->va_filerev = 0;
1668 }
1669 if (vap->va_size != np->n_size) {
1670 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1671 vap->va_size = np->n_size;
1672 } else {
1673 np->n_size = vap->va_size;
1674 if (vap->va_type == VREG) {
1675 uvm_vnp_setsize(vp, np->n_size);
1676 }
1677 }
1678 }
1679 np->n_attrstamp = time.tv_sec;
1680 if (vaper != NULL) {
1681 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1682 if (np->n_flag & NCHG) {
1683 if (np->n_flag & NACC)
1684 vaper->va_atime = np->n_atim;
1685 if (np->n_flag & NUPD)
1686 vaper->va_mtime = np->n_mtim;
1687 }
1688 }
1689 return (0);
1690 }
1691
1692 /*
1693 * Check the time stamp
1694 * If the cache is valid, copy contents to *vap and return 0
1695 * otherwise return an error
1696 */
1697 int
1698 nfs_getattrcache(vp, vaper)
1699 struct vnode *vp;
1700 struct vattr *vaper;
1701 {
1702 struct nfsnode *np = VTONFS(vp);
1703 struct vattr *vap;
1704
1705 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1706 nfsstats.attrcache_misses++;
1707 return (ENOENT);
1708 }
1709 nfsstats.attrcache_hits++;
1710 vap = np->n_vattr;
1711 if (vap->va_size != np->n_size) {
1712 if (vap->va_type == VREG) {
1713 if (np->n_flag & NMODIFIED) {
1714 if (vap->va_size < np->n_size)
1715 vap->va_size = np->n_size;
1716 else
1717 np->n_size = vap->va_size;
1718 } else
1719 np->n_size = vap->va_size;
1720 uvm_vnp_setsize(vp, np->n_size);
1721 } else
1722 np->n_size = vap->va_size;
1723 }
1724 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1725 if (np->n_flag & NCHG) {
1726 if (np->n_flag & NACC)
1727 vaper->va_atime = np->n_atim;
1728 if (np->n_flag & NUPD)
1729 vaper->va_mtime = np->n_mtim;
1730 }
1731 return (0);
1732 }
1733
1734 /*
1735 * Heuristic to see if the server XDR encodes directory cookies or not.
1736 * it is not supposed to, but a lot of servers may do this. Also, since
1737 * most/all servers will implement V2 as well, it is expected that they
1738 * may return just 32 bits worth of cookie information, so we need to
1739 * find out in which 32 bits this information is available. We do this
1740 * to avoid trouble with emulated binaries that can't handle 64 bit
1741 * directory offsets.
1742 */
1743
1744 void
1745 nfs_cookieheuristic(vp, flagp, p, cred)
1746 struct vnode *vp;
1747 int *flagp;
1748 struct proc *p;
1749 struct ucred *cred;
1750 {
1751 struct uio auio;
1752 struct iovec aiov;
1753 caddr_t buf, cp;
1754 struct dirent *dp;
1755 off_t *cookies = NULL, *cop;
1756 int error, eof, nc, len;
1757
1758 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1759
1760 aiov.iov_base = buf;
1761 aiov.iov_len = NFS_DIRFRAGSIZ;
1762 auio.uio_iov = &aiov;
1763 auio.uio_iovcnt = 1;
1764 auio.uio_rw = UIO_READ;
1765 auio.uio_segflg = UIO_SYSSPACE;
1766 auio.uio_procp = p;
1767 auio.uio_resid = NFS_DIRFRAGSIZ;
1768 auio.uio_offset = 0;
1769
1770 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1771
1772 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1773 if (error || len == 0) {
1774 FREE(buf, M_TEMP);
1775 if (cookies)
1776 free(cookies, M_TEMP);
1777 return;
1778 }
1779
1780 /*
1781 * Find the first valid entry and look at its offset cookie.
1782 */
1783
1784 cp = buf;
1785 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1786 dp = (struct dirent *)cp;
1787 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1788 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1789 *flagp |= NFSMNT_SWAPCOOKIE;
1790 nfs_invaldircache(vp, 0);
1791 nfs_vinvalbuf(vp, 0, cred, p, 1);
1792 }
1793 break;
1794 }
1795 cop++;
1796 cp += dp->d_reclen;
1797 }
1798
1799 FREE(buf, M_TEMP);
1800 free(cookies, M_TEMP);
1801 }
1802 #endif /* NFS */
1803
1804 /*
1805 * Set up nameidata for a lookup() call and do it.
1806 *
1807 * If pubflag is set, this call is done for a lookup operation on the
1808 * public filehandle. In that case we allow crossing mountpoints and
1809 * absolute pathnames. However, the caller is expected to check that
1810 * the lookup result is within the public fs, and deny access if
1811 * it is not.
1812 */
1813 int
1814 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1815 struct nameidata *ndp;
1816 fhandle_t *fhp;
1817 int len;
1818 struct nfssvc_sock *slp;
1819 struct mbuf *nam;
1820 struct mbuf **mdp;
1821 caddr_t *dposp;
1822 struct vnode **retdirp;
1823 struct proc *p;
1824 int kerbflag, pubflag;
1825 {
1826 int i, rem;
1827 struct mbuf *md;
1828 char *fromcp, *tocp, *cp;
1829 struct iovec aiov;
1830 struct uio auio;
1831 struct vnode *dp;
1832 int error, rdonly, linklen;
1833 struct componentname *cnp = &ndp->ni_cnd;
1834
1835 *retdirp = (struct vnode *)0;
1836
1837 if ((len + 1) > MAXPATHLEN)
1838 return (ENAMETOOLONG);
1839 cnp->cn_pnbuf = PNBUF_GET();
1840
1841 /*
1842 * Copy the name from the mbuf list to ndp->ni_pnbuf
1843 * and set the various ndp fields appropriately.
1844 */
1845 fromcp = *dposp;
1846 tocp = cnp->cn_pnbuf;
1847 md = *mdp;
1848 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1849 for (i = 0; i < len; i++) {
1850 while (rem == 0) {
1851 md = md->m_next;
1852 if (md == NULL) {
1853 error = EBADRPC;
1854 goto out;
1855 }
1856 fromcp = mtod(md, caddr_t);
1857 rem = md->m_len;
1858 }
1859 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1860 error = EACCES;
1861 goto out;
1862 }
1863 *tocp++ = *fromcp++;
1864 rem--;
1865 }
1866 *tocp = '\0';
1867 *mdp = md;
1868 *dposp = fromcp;
1869 len = nfsm_rndup(len)-len;
1870 if (len > 0) {
1871 if (rem >= len)
1872 *dposp += len;
1873 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1874 goto out;
1875 }
1876
1877 /*
1878 * Extract and set starting directory.
1879 */
1880 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1881 nam, &rdonly, kerbflag, pubflag);
1882 if (error)
1883 goto out;
1884 if (dp->v_type != VDIR) {
1885 vrele(dp);
1886 error = ENOTDIR;
1887 goto out;
1888 }
1889
1890 if (rdonly)
1891 cnp->cn_flags |= RDONLY;
1892
1893 *retdirp = dp;
1894
1895 if (pubflag) {
1896 /*
1897 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1898 * and the 'native path' indicator.
1899 */
1900 cp = PNBUF_GET();
1901 fromcp = cnp->cn_pnbuf;
1902 tocp = cp;
1903 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1904 switch ((unsigned char)*fromcp) {
1905 case WEBNFS_NATIVE_CHAR:
1906 /*
1907 * 'Native' path for us is the same
1908 * as a path according to the NFS spec,
1909 * just skip the escape char.
1910 */
1911 fromcp++;
1912 break;
1913 /*
1914 * More may be added in the future, range 0x80-0xff
1915 */
1916 default:
1917 error = EIO;
1918 FREE(cp, M_NAMEI);
1919 goto out;
1920 }
1921 }
1922 /*
1923 * Translate the '%' escapes, URL-style.
1924 */
1925 while (*fromcp != '\0') {
1926 if (*fromcp == WEBNFS_ESC_CHAR) {
1927 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1928 fromcp++;
1929 *tocp++ = HEXSTRTOI(fromcp);
1930 fromcp += 2;
1931 continue;
1932 } else {
1933 error = ENOENT;
1934 FREE(cp, M_NAMEI);
1935 goto out;
1936 }
1937 } else
1938 *tocp++ = *fromcp++;
1939 }
1940 *tocp = '\0';
1941 PNBUF_PUT(cnp->cn_pnbuf);
1942 cnp->cn_pnbuf = cp;
1943 }
1944
1945 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1946 ndp->ni_segflg = UIO_SYSSPACE;
1947
1948 if (pubflag) {
1949 ndp->ni_rootdir = rootvnode;
1950 ndp->ni_loopcnt = 0;
1951 if (cnp->cn_pnbuf[0] == '/')
1952 dp = rootvnode;
1953 } else {
1954 cnp->cn_flags |= NOCROSSMOUNT;
1955 }
1956
1957 cnp->cn_proc = p;
1958 VREF(dp);
1959
1960 for (;;) {
1961 cnp->cn_nameptr = cnp->cn_pnbuf;
1962 ndp->ni_startdir = dp;
1963 /*
1964 * And call lookup() to do the real work
1965 */
1966 error = lookup(ndp);
1967 if (error) {
1968 PNBUF_PUT(cnp->cn_pnbuf);
1969 return (error);
1970 }
1971 /*
1972 * Check for encountering a symbolic link
1973 */
1974 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1975 if (cnp->cn_flags & (SAVENAME | SAVESTART))
1976 cnp->cn_flags |= HASBUF;
1977 else
1978 PNBUF_PUT(cnp->cn_pnbuf);
1979 return (0);
1980 } else {
1981 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
1982 VOP_UNLOCK(ndp->ni_dvp, 0);
1983 if (!pubflag) {
1984 error = EINVAL;
1985 break;
1986 }
1987
1988 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1989 error = ELOOP;
1990 break;
1991 }
1992 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
1993 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
1994 cnp->cn_proc);
1995 if (error != 0)
1996 break;
1997 }
1998 if (ndp->ni_pathlen > 1)
1999 cp = PNBUF_GET();
2000 else
2001 cp = cnp->cn_pnbuf;
2002 aiov.iov_base = cp;
2003 aiov.iov_len = MAXPATHLEN;
2004 auio.uio_iov = &aiov;
2005 auio.uio_iovcnt = 1;
2006 auio.uio_offset = 0;
2007 auio.uio_rw = UIO_READ;
2008 auio.uio_segflg = UIO_SYSSPACE;
2009 auio.uio_procp = (struct proc *)0;
2010 auio.uio_resid = MAXPATHLEN;
2011 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2012 if (error) {
2013 badlink:
2014 if (ndp->ni_pathlen > 1)
2015 PNBUF_PUT(cp);
2016 break;
2017 }
2018 linklen = MAXPATHLEN - auio.uio_resid;
2019 if (linklen == 0) {
2020 error = ENOENT;
2021 goto badlink;
2022 }
2023 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2024 error = ENAMETOOLONG;
2025 goto badlink;
2026 }
2027 if (ndp->ni_pathlen > 1) {
2028 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2029 PNBUF_PUT(cnp->cn_pnbuf);
2030 cnp->cn_pnbuf = cp;
2031 } else
2032 cnp->cn_pnbuf[linklen] = '\0';
2033 ndp->ni_pathlen += linklen;
2034 vput(ndp->ni_vp);
2035 dp = ndp->ni_dvp;
2036 /*
2037 * Check if root directory should replace current directory.
2038 */
2039 if (cnp->cn_pnbuf[0] == '/') {
2040 vrele(dp);
2041 dp = ndp->ni_rootdir;
2042 VREF(dp);
2043 }
2044 }
2045 }
2046 vrele(ndp->ni_dvp);
2047 vput(ndp->ni_vp);
2048 ndp->ni_vp = NULL;
2049 out:
2050 PNBUF_PUT(cnp->cn_pnbuf);
2051 return (error);
2052 }
2053
2054 /*
2055 * A fiddled version of m_adj() that ensures null fill to a long
2056 * boundary and only trims off the back end
2057 */
2058 void
2059 nfsm_adj(mp, len, nul)
2060 struct mbuf *mp;
2061 int len;
2062 int nul;
2063 {
2064 struct mbuf *m;
2065 int count, i;
2066 char *cp;
2067
2068 /*
2069 * Trim from tail. Scan the mbuf chain,
2070 * calculating its length and finding the last mbuf.
2071 * If the adjustment only affects this mbuf, then just
2072 * adjust and return. Otherwise, rescan and truncate
2073 * after the remaining size.
2074 */
2075 count = 0;
2076 m = mp;
2077 for (;;) {
2078 count += m->m_len;
2079 if (m->m_next == (struct mbuf *)0)
2080 break;
2081 m = m->m_next;
2082 }
2083 if (m->m_len > len) {
2084 m->m_len -= len;
2085 if (nul > 0) {
2086 cp = mtod(m, caddr_t)+m->m_len-nul;
2087 for (i = 0; i < nul; i++)
2088 *cp++ = '\0';
2089 }
2090 return;
2091 }
2092 count -= len;
2093 if (count < 0)
2094 count = 0;
2095 /*
2096 * Correct length for chain is "count".
2097 * Find the mbuf with last data, adjust its length,
2098 * and toss data from remaining mbufs on chain.
2099 */
2100 for (m = mp; m; m = m->m_next) {
2101 if (m->m_len >= count) {
2102 m->m_len = count;
2103 if (nul > 0) {
2104 cp = mtod(m, caddr_t)+m->m_len-nul;
2105 for (i = 0; i < nul; i++)
2106 *cp++ = '\0';
2107 }
2108 break;
2109 }
2110 count -= m->m_len;
2111 }
2112 for (m = m->m_next;m;m = m->m_next)
2113 m->m_len = 0;
2114 }
2115
2116 /*
2117 * Make these functions instead of macros, so that the kernel text size
2118 * doesn't get too big...
2119 */
2120 void
2121 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2122 struct nfsrv_descript *nfsd;
2123 int before_ret;
2124 struct vattr *before_vap;
2125 int after_ret;
2126 struct vattr *after_vap;
2127 struct mbuf **mbp;
2128 char **bposp;
2129 {
2130 struct mbuf *mb = *mbp, *mb2;
2131 char *bpos = *bposp;
2132 u_int32_t *tl;
2133
2134 if (before_ret) {
2135 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2136 *tl = nfs_false;
2137 } else {
2138 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2139 *tl++ = nfs_true;
2140 txdr_hyper(before_vap->va_size, tl);
2141 tl += 2;
2142 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2143 tl += 2;
2144 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2145 }
2146 *bposp = bpos;
2147 *mbp = mb;
2148 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2149 }
2150
2151 void
2152 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2153 struct nfsrv_descript *nfsd;
2154 int after_ret;
2155 struct vattr *after_vap;
2156 struct mbuf **mbp;
2157 char **bposp;
2158 {
2159 struct mbuf *mb = *mbp, *mb2;
2160 char *bpos = *bposp;
2161 u_int32_t *tl;
2162 struct nfs_fattr *fp;
2163
2164 if (after_ret) {
2165 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2166 *tl = nfs_false;
2167 } else {
2168 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2169 *tl++ = nfs_true;
2170 fp = (struct nfs_fattr *)tl;
2171 nfsm_srvfattr(nfsd, after_vap, fp);
2172 }
2173 *mbp = mb;
2174 *bposp = bpos;
2175 }
2176
2177 void
2178 nfsm_srvfattr(nfsd, vap, fp)
2179 struct nfsrv_descript *nfsd;
2180 struct vattr *vap;
2181 struct nfs_fattr *fp;
2182 {
2183
2184 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2185 fp->fa_uid = txdr_unsigned(vap->va_uid);
2186 fp->fa_gid = txdr_unsigned(vap->va_gid);
2187 if (nfsd->nd_flag & ND_NFSV3) {
2188 fp->fa_type = vtonfsv3_type(vap->va_type);
2189 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2190 txdr_hyper(vap->va_size, &fp->fa3_size);
2191 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2192 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2193 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2194 fp->fa3_fsid.nfsuquad[0] = 0;
2195 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2196 fp->fa3_fileid.nfsuquad[0] = 0;
2197 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2198 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2199 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2200 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2201 } else {
2202 fp->fa_type = vtonfsv2_type(vap->va_type);
2203 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2204 fp->fa2_size = txdr_unsigned(vap->va_size);
2205 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2206 if (vap->va_type == VFIFO)
2207 fp->fa2_rdev = 0xffffffff;
2208 else
2209 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2210 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2211 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2212 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2213 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2214 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2215 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2216 }
2217 }
2218
2219 /*
2220 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2221 * - look up fsid in mount list (if not found ret error)
2222 * - get vp and export rights by calling VFS_FHTOVP()
2223 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2224 * - if not lockflag unlock it with VOP_UNLOCK()
2225 */
2226 int
2227 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2228 fhandle_t *fhp;
2229 int lockflag;
2230 struct vnode **vpp;
2231 struct ucred *cred;
2232 struct nfssvc_sock *slp;
2233 struct mbuf *nam;
2234 int *rdonlyp;
2235 int kerbflag;
2236 {
2237 struct mount *mp;
2238 int i;
2239 struct ucred *credanon;
2240 int error, exflags;
2241 struct sockaddr_in *saddr;
2242
2243 *vpp = (struct vnode *)0;
2244
2245 if (nfs_ispublicfh(fhp)) {
2246 if (!pubflag || !nfs_pub.np_valid)
2247 return (ESTALE);
2248 fhp = &nfs_pub.np_handle;
2249 }
2250
2251 mp = vfs_getvfs(&fhp->fh_fsid);
2252 if (!mp)
2253 return (ESTALE);
2254 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2255 if (error)
2256 return (error);
2257 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2258 if (error)
2259 return (error);
2260
2261 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2262 saddr = mtod(nam, struct sockaddr_in *);
2263 if ((saddr->sin_family == AF_INET) &&
2264 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2265 vput(*vpp);
2266 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2267 }
2268 #ifdef INET6
2269 if ((saddr->sin_family == AF_INET6) &&
2270 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2271 vput(*vpp);
2272 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2273 }
2274 #endif
2275 }
2276 /*
2277 * Check/setup credentials.
2278 */
2279 if (exflags & MNT_EXKERB) {
2280 if (!kerbflag) {
2281 vput(*vpp);
2282 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2283 }
2284 } else if (kerbflag) {
2285 vput(*vpp);
2286 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2287 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2288 cred->cr_uid = credanon->cr_uid;
2289 cred->cr_gid = credanon->cr_gid;
2290 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2291 cred->cr_groups[i] = credanon->cr_groups[i];
2292 cred->cr_ngroups = i;
2293 }
2294 if (exflags & MNT_EXRDONLY)
2295 *rdonlyp = 1;
2296 else
2297 *rdonlyp = 0;
2298 if (!lockflag)
2299 VOP_UNLOCK(*vpp, 0);
2300 return (0);
2301 }
2302
2303 /*
2304 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2305 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2306 * transformed this to all zeroes in both cases, so check for it.
2307 */
2308 int
2309 nfs_ispublicfh(fhp)
2310 fhandle_t *fhp;
2311 {
2312 char *cp = (char *)fhp;
2313 int i;
2314
2315 for (i = 0; i < NFSX_V3FH; i++)
2316 if (*cp++ != 0)
2317 return (FALSE);
2318 return (TRUE);
2319 }
2320
2321 /*
2322 * This function compares two net addresses by family and returns TRUE
2323 * if they are the same host.
2324 * If there is any doubt, return FALSE.
2325 * The AF_INET family is handled as a special case so that address mbufs
2326 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2327 */
2328 int
2329 netaddr_match(family, haddr, nam)
2330 int family;
2331 union nethostaddr *haddr;
2332 struct mbuf *nam;
2333 {
2334 struct sockaddr_in *inetaddr;
2335
2336 switch (family) {
2337 case AF_INET:
2338 inetaddr = mtod(nam, struct sockaddr_in *);
2339 if (inetaddr->sin_family == AF_INET &&
2340 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2341 return (1);
2342 break;
2343 #ifdef INET6
2344 case AF_INET6:
2345 {
2346 struct sockaddr_in6 *sin6_1, *sin6_2;
2347
2348 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2349 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2350 if (sin6_1->sin6_family == AF_INET6 &&
2351 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2352 return 1;
2353 }
2354 #endif
2355 #ifdef ISO
2356 case AF_ISO:
2357 {
2358 struct sockaddr_iso *isoaddr1, *isoaddr2;
2359
2360 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2361 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2362 if (isoaddr1->siso_family == AF_ISO &&
2363 isoaddr1->siso_nlen > 0 &&
2364 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2365 SAME_ISOADDR(isoaddr1, isoaddr2))
2366 return (1);
2367 break;
2368 }
2369 #endif /* ISO */
2370 default:
2371 break;
2372 };
2373 return (0);
2374 }
2375
2376 /*
2377 * The write verifier has changed (probably due to a server reboot), so all
2378 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2379 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2380 * flag. Once done the new write verifier can be set for the mount point.
2381 */
2382 void
2383 nfs_clearcommit(mp)
2384 struct mount *mp;
2385 {
2386 struct vnode *vp;
2387 struct nfsnode *np;
2388 struct vm_page *pg;
2389 int s;
2390
2391 s = splbio();
2392 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2393 KASSERT(vp->v_mount == mp);
2394 if (vp->v_type == VNON)
2395 continue;
2396 np = VTONFS(vp);
2397 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2398 np->n_pushedhi = 0;
2399 np->n_commitflags &=
2400 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2401 simple_lock(&vp->v_uvm.u_obj.vmobjlock);
2402 TAILQ_FOREACH(pg, &vp->v_uvm.u_obj.memq, listq) {
2403 pg->flags &= ~PG_NEEDCOMMIT;
2404 }
2405 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
2406 }
2407 splx(s);
2408 }
2409
2410 void
2411 nfs_merge_commit_ranges(vp)
2412 struct vnode *vp;
2413 {
2414 struct nfsnode *np = VTONFS(vp);
2415
2416 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2417 np->n_pushedlo = np->n_pushlo;
2418 np->n_pushedhi = np->n_pushhi;
2419 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2420 } else {
2421 if (np->n_pushlo < np->n_pushedlo)
2422 np->n_pushedlo = np->n_pushlo;
2423 if (np->n_pushhi > np->n_pushedhi)
2424 np->n_pushedhi = np->n_pushhi;
2425 }
2426
2427 np->n_pushlo = np->n_pushhi = 0;
2428 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2429
2430 #ifdef fvdl_debug
2431 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2432 (unsigned)np->n_pushedhi);
2433 #endif
2434 }
2435
2436 int
2437 nfs_in_committed_range(vp, off, len)
2438 struct vnode *vp;
2439 off_t off, len;
2440 {
2441 struct nfsnode *np = VTONFS(vp);
2442 off_t lo, hi;
2443
2444 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2445 return 0;
2446 lo = off;
2447 hi = lo + len;
2448
2449 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2450 }
2451
2452 int
2453 nfs_in_tobecommitted_range(vp, off, len)
2454 struct vnode *vp;
2455 off_t off, len;
2456 {
2457 struct nfsnode *np = VTONFS(vp);
2458 off_t lo, hi;
2459
2460 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2461 return 0;
2462 lo = off;
2463 hi = lo + len;
2464
2465 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2466 }
2467
2468 void
2469 nfs_add_committed_range(vp, off, len)
2470 struct vnode *vp;
2471 off_t off, len;
2472 {
2473 struct nfsnode *np = VTONFS(vp);
2474 off_t lo, hi;
2475
2476 lo = off;
2477 hi = lo + len;
2478
2479 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2480 np->n_pushedlo = lo;
2481 np->n_pushedhi = hi;
2482 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2483 } else {
2484 if (hi > np->n_pushedhi)
2485 np->n_pushedhi = hi;
2486 if (lo < np->n_pushedlo)
2487 np->n_pushedlo = lo;
2488 }
2489 #ifdef fvdl_debug
2490 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2491 (unsigned)np->n_pushedhi);
2492 #endif
2493 }
2494
2495 void
2496 nfs_del_committed_range(vp, off, len)
2497 struct vnode *vp;
2498 off_t off, len;
2499 {
2500 struct nfsnode *np = VTONFS(vp);
2501 off_t lo, hi;
2502
2503 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2504 return;
2505
2506 lo = off;
2507 hi = lo + len;
2508
2509 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2510 return;
2511 if (lo <= np->n_pushedlo)
2512 np->n_pushedlo = hi;
2513 else if (hi >= np->n_pushedhi)
2514 np->n_pushedhi = lo;
2515 else {
2516 /*
2517 * XXX There's only one range. If the deleted range
2518 * is in the middle, pick the largest of the
2519 * contiguous ranges that it leaves.
2520 */
2521 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2522 np->n_pushedhi = lo;
2523 else
2524 np->n_pushedlo = hi;
2525 }
2526 #ifdef fvdl_debug
2527 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2528 (unsigned)np->n_pushedhi);
2529 #endif
2530 }
2531
2532 void
2533 nfs_add_tobecommitted_range(vp, off, len)
2534 struct vnode *vp;
2535 off_t off, len;
2536 {
2537 struct nfsnode *np = VTONFS(vp);
2538 off_t lo, hi;
2539
2540 lo = off;
2541 hi = lo + len;
2542
2543 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2544 np->n_pushlo = lo;
2545 np->n_pushhi = hi;
2546 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2547 } else {
2548 if (lo < np->n_pushlo)
2549 np->n_pushlo = lo;
2550 if (hi > np->n_pushhi)
2551 np->n_pushhi = hi;
2552 }
2553 #ifdef fvdl_debug
2554 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2555 (unsigned)np->n_pushhi);
2556 #endif
2557 }
2558
2559 void
2560 nfs_del_tobecommitted_range(vp, off, len)
2561 struct vnode *vp;
2562 off_t off, len;
2563 {
2564 struct nfsnode *np = VTONFS(vp);
2565 off_t lo, hi;
2566
2567 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2568 return;
2569
2570 lo = off;
2571 hi = lo + len;
2572
2573 if (lo > np->n_pushhi || hi < np->n_pushlo)
2574 return;
2575
2576 if (lo <= np->n_pushlo)
2577 np->n_pushlo = hi;
2578 else if (hi >= np->n_pushhi)
2579 np->n_pushhi = lo;
2580 else {
2581 /*
2582 * XXX There's only one range. If the deleted range
2583 * is in the middle, pick the largest of the
2584 * contiguous ranges that it leaves.
2585 */
2586 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2587 np->n_pushhi = lo;
2588 else
2589 np->n_pushlo = hi;
2590 }
2591 #ifdef fvdl_debug
2592 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2593 (unsigned)np->n_pushhi);
2594 #endif
2595 }
2596
2597 /*
2598 * Map errnos to NFS error numbers. For Version 3 also filter out error
2599 * numbers not specified for the associated procedure.
2600 */
2601 int
2602 nfsrv_errmap(nd, err)
2603 struct nfsrv_descript *nd;
2604 int err;
2605 {
2606 const short *defaulterrp, *errp;
2607
2608 if (nd->nd_flag & ND_NFSV3) {
2609 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2610 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2611 while (*++errp) {
2612 if (*errp == err)
2613 return (err);
2614 else if (*errp > err)
2615 break;
2616 }
2617 return ((int)*defaulterrp);
2618 } else
2619 return (err & 0xffff);
2620 }
2621 if (err <= ELAST)
2622 return ((int)nfsrv_v2errmap[err - 1]);
2623 return (NFSERR_IO);
2624 }
2625
2626 /*
2627 * Sort the group list in increasing numerical order.
2628 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2629 * that used to be here.)
2630 */
2631 void
2632 nfsrvw_sort(list, num)
2633 gid_t *list;
2634 int num;
2635 {
2636 int i, j;
2637 gid_t v;
2638
2639 /* Insertion sort. */
2640 for (i = 1; i < num; i++) {
2641 v = list[i];
2642 /* find correct slot for value v, moving others up */
2643 for (j = i; --j >= 0 && v < list[j];)
2644 list[j + 1] = list[j];
2645 list[j + 1] = v;
2646 }
2647 }
2648
2649 /*
2650 * copy credentials making sure that the result can be compared with memcmp().
2651 */
2652 void
2653 nfsrv_setcred(incred, outcred)
2654 struct ucred *incred, *outcred;
2655 {
2656 int i;
2657
2658 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2659 outcred->cr_ref = 1;
2660 outcred->cr_uid = incred->cr_uid;
2661 outcred->cr_gid = incred->cr_gid;
2662 outcred->cr_ngroups = incred->cr_ngroups;
2663 for (i = 0; i < incred->cr_ngroups; i++)
2664 outcred->cr_groups[i] = incred->cr_groups[i];
2665 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2666 }
2667