nfs_subs.c revision 1.92.2.11 1 /* $NetBSD: nfs_subs.c,v 1.92.2.11 2002/12/11 06:46:50 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.92.2.11 2002/12/11 06:46:50 thorpej Exp $");
78
79 #include "fs_nfs.h"
80 #include "opt_nfs.h"
81 #include "opt_nfsserver.h"
82 #include "opt_iso.h"
83 #include "opt_inet.h"
84
85 /*
86 * These functions support the macros and help fiddle mbuf chains for
87 * the nfs op functions. They do things like create the rpc header and
88 * copy data between mbuf chains and uio lists.
89 */
90 #include <sys/param.h>
91 #include <sys/proc.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/vnode.h>
96 #include <sys/namei.h>
97 #include <sys/mbuf.h>
98 #include <sys/socket.h>
99 #include <sys/stat.h>
100 #include <sys/malloc.h>
101 #include <sys/filedesc.h>
102 #include <sys/time.h>
103 #include <sys/dirent.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <nfs/rpcv2.h>
108 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs.h>
111 #include <nfs/xdr_subs.h>
112 #include <nfs/nfsm_subs.h>
113 #include <nfs/nfsmount.h>
114 #include <nfs/nqnfs.h>
115 #include <nfs/nfsrtt.h>
116 #include <nfs/nfs_var.h>
117
118 #include <miscfs/specfs/specdev.h>
119
120 #include <netinet/in.h>
121 #ifdef ISO
122 #include <netiso/iso.h>
123 #endif
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 static u_int32_t nfs_xid = 0;
137 const nfstype nfsv2_type[9] =
138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
139 const nfstype nfsv3_type[9] =
140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
141 const enum vtype nv2tov_type[8] =
142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
143 const enum vtype nv3tov_type[8] =
144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
145 int nfs_ticks;
146 int nfs_commitsize;
147
148 /* NFS client/server stats. */
149 struct nfsstats nfsstats;
150
151 /*
152 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
153 */
154 const int nfsv3_procid[NFS_NPROCS] = {
155 NFSPROC_NULL,
156 NFSPROC_GETATTR,
157 NFSPROC_SETATTR,
158 NFSPROC_NOOP,
159 NFSPROC_LOOKUP,
160 NFSPROC_READLINK,
161 NFSPROC_READ,
162 NFSPROC_NOOP,
163 NFSPROC_WRITE,
164 NFSPROC_CREATE,
165 NFSPROC_REMOVE,
166 NFSPROC_RENAME,
167 NFSPROC_LINK,
168 NFSPROC_SYMLINK,
169 NFSPROC_MKDIR,
170 NFSPROC_RMDIR,
171 NFSPROC_READDIR,
172 NFSPROC_FSSTAT,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP,
180 NFSPROC_NOOP
181 };
182
183 /*
184 * and the reverse mapping from generic to Version 2 procedure numbers
185 */
186 const int nfsv2_procid[NFS_NPROCS] = {
187 NFSV2PROC_NULL,
188 NFSV2PROC_GETATTR,
189 NFSV2PROC_SETATTR,
190 NFSV2PROC_LOOKUP,
191 NFSV2PROC_NOOP,
192 NFSV2PROC_READLINK,
193 NFSV2PROC_READ,
194 NFSV2PROC_WRITE,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_MKDIR,
197 NFSV2PROC_SYMLINK,
198 NFSV2PROC_CREATE,
199 NFSV2PROC_REMOVE,
200 NFSV2PROC_RMDIR,
201 NFSV2PROC_RENAME,
202 NFSV2PROC_LINK,
203 NFSV2PROC_READDIR,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_STATFS,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 NFSV2PROC_NOOP,
213 };
214
215 /*
216 * Maps errno values to nfs error numbers.
217 * Use NFSERR_IO as the catch all for ones not specifically defined in
218 * RFC 1094.
219 */
220 static const u_char nfsrv_v2errmap[ELAST] = {
221 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
225 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
234 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
235 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
236 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
237 NFSERR_IO, NFSERR_IO,
238 };
239
240 /*
241 * Maps errno values to nfs error numbers.
242 * Although it is not obvious whether or not NFS clients really care if
243 * a returned error value is in the specified list for the procedure, the
244 * safest thing to do is filter them appropriately. For Version 2, the
245 * X/Open XNFS document is the only specification that defines error values
246 * for each RPC (The RFC simply lists all possible error values for all RPCs),
247 * so I have decided to not do this for Version 2.
248 * The first entry is the default error return and the rest are the valid
249 * errors for that RPC in increasing numeric order.
250 */
251 static const short nfsv3err_null[] = {
252 0,
253 0,
254 };
255
256 static const short nfsv3err_getattr[] = {
257 NFSERR_IO,
258 NFSERR_IO,
259 NFSERR_STALE,
260 NFSERR_BADHANDLE,
261 NFSERR_SERVERFAULT,
262 0,
263 };
264
265 static const short nfsv3err_setattr[] = {
266 NFSERR_IO,
267 NFSERR_PERM,
268 NFSERR_IO,
269 NFSERR_ACCES,
270 NFSERR_INVAL,
271 NFSERR_NOSPC,
272 NFSERR_ROFS,
273 NFSERR_DQUOT,
274 NFSERR_STALE,
275 NFSERR_BADHANDLE,
276 NFSERR_NOT_SYNC,
277 NFSERR_SERVERFAULT,
278 0,
279 };
280
281 static const short nfsv3err_lookup[] = {
282 NFSERR_IO,
283 NFSERR_NOENT,
284 NFSERR_IO,
285 NFSERR_ACCES,
286 NFSERR_NOTDIR,
287 NFSERR_NAMETOL,
288 NFSERR_STALE,
289 NFSERR_BADHANDLE,
290 NFSERR_SERVERFAULT,
291 0,
292 };
293
294 static const short nfsv3err_access[] = {
295 NFSERR_IO,
296 NFSERR_IO,
297 NFSERR_STALE,
298 NFSERR_BADHANDLE,
299 NFSERR_SERVERFAULT,
300 0,
301 };
302
303 static const short nfsv3err_readlink[] = {
304 NFSERR_IO,
305 NFSERR_IO,
306 NFSERR_ACCES,
307 NFSERR_INVAL,
308 NFSERR_STALE,
309 NFSERR_BADHANDLE,
310 NFSERR_NOTSUPP,
311 NFSERR_SERVERFAULT,
312 0,
313 };
314
315 static const short nfsv3err_read[] = {
316 NFSERR_IO,
317 NFSERR_IO,
318 NFSERR_NXIO,
319 NFSERR_ACCES,
320 NFSERR_INVAL,
321 NFSERR_STALE,
322 NFSERR_BADHANDLE,
323 NFSERR_SERVERFAULT,
324 NFSERR_JUKEBOX,
325 0,
326 };
327
328 static const short nfsv3err_write[] = {
329 NFSERR_IO,
330 NFSERR_IO,
331 NFSERR_ACCES,
332 NFSERR_INVAL,
333 NFSERR_FBIG,
334 NFSERR_NOSPC,
335 NFSERR_ROFS,
336 NFSERR_DQUOT,
337 NFSERR_STALE,
338 NFSERR_BADHANDLE,
339 NFSERR_SERVERFAULT,
340 NFSERR_JUKEBOX,
341 0,
342 };
343
344 static const short nfsv3err_create[] = {
345 NFSERR_IO,
346 NFSERR_IO,
347 NFSERR_ACCES,
348 NFSERR_EXIST,
349 NFSERR_NOTDIR,
350 NFSERR_NOSPC,
351 NFSERR_ROFS,
352 NFSERR_NAMETOL,
353 NFSERR_DQUOT,
354 NFSERR_STALE,
355 NFSERR_BADHANDLE,
356 NFSERR_NOTSUPP,
357 NFSERR_SERVERFAULT,
358 0,
359 };
360
361 static const short nfsv3err_mkdir[] = {
362 NFSERR_IO,
363 NFSERR_IO,
364 NFSERR_ACCES,
365 NFSERR_EXIST,
366 NFSERR_NOTDIR,
367 NFSERR_NOSPC,
368 NFSERR_ROFS,
369 NFSERR_NAMETOL,
370 NFSERR_DQUOT,
371 NFSERR_STALE,
372 NFSERR_BADHANDLE,
373 NFSERR_NOTSUPP,
374 NFSERR_SERVERFAULT,
375 0,
376 };
377
378 static const short nfsv3err_symlink[] = {
379 NFSERR_IO,
380 NFSERR_IO,
381 NFSERR_ACCES,
382 NFSERR_EXIST,
383 NFSERR_NOTDIR,
384 NFSERR_NOSPC,
385 NFSERR_ROFS,
386 NFSERR_NAMETOL,
387 NFSERR_DQUOT,
388 NFSERR_STALE,
389 NFSERR_BADHANDLE,
390 NFSERR_NOTSUPP,
391 NFSERR_SERVERFAULT,
392 0,
393 };
394
395 static const short nfsv3err_mknod[] = {
396 NFSERR_IO,
397 NFSERR_IO,
398 NFSERR_ACCES,
399 NFSERR_EXIST,
400 NFSERR_NOTDIR,
401 NFSERR_NOSPC,
402 NFSERR_ROFS,
403 NFSERR_NAMETOL,
404 NFSERR_DQUOT,
405 NFSERR_STALE,
406 NFSERR_BADHANDLE,
407 NFSERR_NOTSUPP,
408 NFSERR_SERVERFAULT,
409 NFSERR_BADTYPE,
410 0,
411 };
412
413 static const short nfsv3err_remove[] = {
414 NFSERR_IO,
415 NFSERR_NOENT,
416 NFSERR_IO,
417 NFSERR_ACCES,
418 NFSERR_NOTDIR,
419 NFSERR_ROFS,
420 NFSERR_NAMETOL,
421 NFSERR_STALE,
422 NFSERR_BADHANDLE,
423 NFSERR_SERVERFAULT,
424 0,
425 };
426
427 static const short nfsv3err_rmdir[] = {
428 NFSERR_IO,
429 NFSERR_NOENT,
430 NFSERR_IO,
431 NFSERR_ACCES,
432 NFSERR_EXIST,
433 NFSERR_NOTDIR,
434 NFSERR_INVAL,
435 NFSERR_ROFS,
436 NFSERR_NAMETOL,
437 NFSERR_NOTEMPTY,
438 NFSERR_STALE,
439 NFSERR_BADHANDLE,
440 NFSERR_NOTSUPP,
441 NFSERR_SERVERFAULT,
442 0,
443 };
444
445 static const short nfsv3err_rename[] = {
446 NFSERR_IO,
447 NFSERR_NOENT,
448 NFSERR_IO,
449 NFSERR_ACCES,
450 NFSERR_EXIST,
451 NFSERR_XDEV,
452 NFSERR_NOTDIR,
453 NFSERR_ISDIR,
454 NFSERR_INVAL,
455 NFSERR_NOSPC,
456 NFSERR_ROFS,
457 NFSERR_MLINK,
458 NFSERR_NAMETOL,
459 NFSERR_NOTEMPTY,
460 NFSERR_DQUOT,
461 NFSERR_STALE,
462 NFSERR_BADHANDLE,
463 NFSERR_NOTSUPP,
464 NFSERR_SERVERFAULT,
465 0,
466 };
467
468 static const short nfsv3err_link[] = {
469 NFSERR_IO,
470 NFSERR_IO,
471 NFSERR_ACCES,
472 NFSERR_EXIST,
473 NFSERR_XDEV,
474 NFSERR_NOTDIR,
475 NFSERR_INVAL,
476 NFSERR_NOSPC,
477 NFSERR_ROFS,
478 NFSERR_MLINK,
479 NFSERR_NAMETOL,
480 NFSERR_DQUOT,
481 NFSERR_STALE,
482 NFSERR_BADHANDLE,
483 NFSERR_NOTSUPP,
484 NFSERR_SERVERFAULT,
485 0,
486 };
487
488 static const short nfsv3err_readdir[] = {
489 NFSERR_IO,
490 NFSERR_IO,
491 NFSERR_ACCES,
492 NFSERR_NOTDIR,
493 NFSERR_STALE,
494 NFSERR_BADHANDLE,
495 NFSERR_BAD_COOKIE,
496 NFSERR_TOOSMALL,
497 NFSERR_SERVERFAULT,
498 0,
499 };
500
501 static const short nfsv3err_readdirplus[] = {
502 NFSERR_IO,
503 NFSERR_IO,
504 NFSERR_ACCES,
505 NFSERR_NOTDIR,
506 NFSERR_STALE,
507 NFSERR_BADHANDLE,
508 NFSERR_BAD_COOKIE,
509 NFSERR_NOTSUPP,
510 NFSERR_TOOSMALL,
511 NFSERR_SERVERFAULT,
512 0,
513 };
514
515 static const short nfsv3err_fsstat[] = {
516 NFSERR_IO,
517 NFSERR_IO,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_fsinfo[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_pathconf[] = {
533 NFSERR_STALE,
534 NFSERR_STALE,
535 NFSERR_BADHANDLE,
536 NFSERR_SERVERFAULT,
537 0,
538 };
539
540 static const short nfsv3err_commit[] = {
541 NFSERR_IO,
542 NFSERR_IO,
543 NFSERR_STALE,
544 NFSERR_BADHANDLE,
545 NFSERR_SERVERFAULT,
546 0,
547 };
548
549 static const short * const nfsrv_v3errmap[] = {
550 nfsv3err_null,
551 nfsv3err_getattr,
552 nfsv3err_setattr,
553 nfsv3err_lookup,
554 nfsv3err_access,
555 nfsv3err_readlink,
556 nfsv3err_read,
557 nfsv3err_write,
558 nfsv3err_create,
559 nfsv3err_mkdir,
560 nfsv3err_symlink,
561 nfsv3err_mknod,
562 nfsv3err_remove,
563 nfsv3err_rmdir,
564 nfsv3err_rename,
565 nfsv3err_link,
566 nfsv3err_readdir,
567 nfsv3err_readdirplus,
568 nfsv3err_fsstat,
569 nfsv3err_fsinfo,
570 nfsv3err_pathconf,
571 nfsv3err_commit,
572 };
573
574 extern struct nfsrtt nfsrtt;
575 extern time_t nqnfsstarttime;
576 extern int nqsrv_clockskew;
577 extern int nqsrv_writeslack;
578 extern int nqsrv_maxlease;
579 extern const int nqnfs_piggy[NFS_NPROCS];
580 extern struct nfsnodehashhead *nfsnodehashtbl;
581 extern u_long nfsnodehash;
582
583 u_long nfsdirhashmask;
584
585 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
586
587 /*
588 * Create the header for an rpc request packet
589 * The hsiz is the size of the rest of the nfs request header.
590 * (just used to decide if a cluster is a good idea)
591 */
592 struct mbuf *
593 nfsm_reqh(vp, procid, hsiz, bposp)
594 struct vnode *vp;
595 u_long procid;
596 int hsiz;
597 caddr_t *bposp;
598 {
599 struct mbuf *mb;
600 caddr_t bpos;
601 struct nfsmount *nmp;
602 #ifndef NFS_V2_ONLY
603 u_int32_t *tl;
604 struct mbuf *mb2;
605 int nqflag;
606 #endif
607
608 MGET(mb, M_WAIT, MT_DATA);
609 if (hsiz >= MINCLSIZE)
610 MCLGET(mb, M_WAIT);
611 mb->m_len = 0;
612 bpos = mtod(mb, caddr_t);
613
614 /*
615 * For NQNFS, add lease request.
616 */
617 if (vp) {
618 nmp = VFSTONFS(vp->v_mount);
619 #ifndef NFS_V2_ONLY
620 if (nmp->nm_flag & NFSMNT_NQNFS) {
621 nqflag = NQNFS_NEEDLEASE(vp, procid);
622 if (nqflag) {
623 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
624 *tl++ = txdr_unsigned(nqflag);
625 *tl = txdr_unsigned(nmp->nm_leaseterm);
626 } else {
627 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
628 *tl = 0;
629 }
630 }
631 #endif
632 }
633 /* Finally, return values */
634 *bposp = bpos;
635 return (mb);
636 }
637
638 /*
639 * Build the RPC header and fill in the authorization info.
640 * The authorization string argument is only used when the credentials
641 * come from outside of the kernel.
642 * Returns the head of the mbuf list.
643 */
644 struct mbuf *
645 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
646 verf_str, mrest, mrest_len, mbp, xidp)
647 struct ucred *cr;
648 int nmflag;
649 int procid;
650 int auth_type;
651 int auth_len;
652 char *auth_str;
653 int verf_len;
654 char *verf_str;
655 struct mbuf *mrest;
656 int mrest_len;
657 struct mbuf **mbp;
658 u_int32_t *xidp;
659 {
660 struct mbuf *mb;
661 u_int32_t *tl;
662 caddr_t bpos;
663 int i;
664 struct mbuf *mreq, *mb2;
665 int siz, grpsiz, authsiz;
666 struct timeval tv;
667 static u_int32_t base;
668
669 authsiz = nfsm_rndup(auth_len);
670 MGETHDR(mb, M_WAIT, MT_DATA);
671 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
672 MCLGET(mb, M_WAIT);
673 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
674 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
675 } else {
676 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
677 }
678 mb->m_len = 0;
679 mreq = mb;
680 bpos = mtod(mb, caddr_t);
681
682 /*
683 * First the RPC header.
684 */
685 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
686
687 /*
688 * derive initial xid from system time
689 * XXX time is invalid if root not yet mounted
690 */
691 if (!base && (rootvp)) {
692 microtime(&tv);
693 base = tv.tv_sec << 12;
694 nfs_xid = base;
695 }
696 /*
697 * Skip zero xid if it should ever happen.
698 */
699 if (++nfs_xid == 0)
700 nfs_xid++;
701
702 *tl++ = *xidp = txdr_unsigned(nfs_xid);
703 *tl++ = rpc_call;
704 *tl++ = rpc_vers;
705 if (nmflag & NFSMNT_NQNFS) {
706 *tl++ = txdr_unsigned(NQNFS_PROG);
707 *tl++ = txdr_unsigned(NQNFS_VER3);
708 } else {
709 *tl++ = txdr_unsigned(NFS_PROG);
710 if (nmflag & NFSMNT_NFSV3)
711 *tl++ = txdr_unsigned(NFS_VER3);
712 else
713 *tl++ = txdr_unsigned(NFS_VER2);
714 }
715 if (nmflag & NFSMNT_NFSV3)
716 *tl++ = txdr_unsigned(procid);
717 else
718 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
719
720 /*
721 * And then the authorization cred.
722 */
723 *tl++ = txdr_unsigned(auth_type);
724 *tl = txdr_unsigned(authsiz);
725 switch (auth_type) {
726 case RPCAUTH_UNIX:
727 nfsm_build(tl, u_int32_t *, auth_len);
728 *tl++ = 0; /* stamp ?? */
729 *tl++ = 0; /* NULL hostname */
730 *tl++ = txdr_unsigned(cr->cr_uid);
731 *tl++ = txdr_unsigned(cr->cr_gid);
732 grpsiz = (auth_len >> 2) - 5;
733 *tl++ = txdr_unsigned(grpsiz);
734 for (i = 0; i < grpsiz; i++)
735 *tl++ = txdr_unsigned(cr->cr_groups[i]);
736 break;
737 case RPCAUTH_KERB4:
738 siz = auth_len;
739 while (siz > 0) {
740 if (M_TRAILINGSPACE(mb) == 0) {
741 MGET(mb2, M_WAIT, MT_DATA);
742 if (siz >= MINCLSIZE)
743 MCLGET(mb2, M_WAIT);
744 mb->m_next = mb2;
745 mb = mb2;
746 mb->m_len = 0;
747 bpos = mtod(mb, caddr_t);
748 }
749 i = min(siz, M_TRAILINGSPACE(mb));
750 memcpy(bpos, auth_str, i);
751 mb->m_len += i;
752 auth_str += i;
753 bpos += i;
754 siz -= i;
755 }
756 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
757 for (i = 0; i < siz; i++)
758 *bpos++ = '\0';
759 mb->m_len += siz;
760 }
761 break;
762 };
763
764 /*
765 * And the verifier...
766 */
767 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
768 if (verf_str) {
769 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
770 *tl = txdr_unsigned(verf_len);
771 siz = verf_len;
772 while (siz > 0) {
773 if (M_TRAILINGSPACE(mb) == 0) {
774 MGET(mb2, M_WAIT, MT_DATA);
775 if (siz >= MINCLSIZE)
776 MCLGET(mb2, M_WAIT);
777 mb->m_next = mb2;
778 mb = mb2;
779 mb->m_len = 0;
780 bpos = mtod(mb, caddr_t);
781 }
782 i = min(siz, M_TRAILINGSPACE(mb));
783 memcpy(bpos, verf_str, i);
784 mb->m_len += i;
785 verf_str += i;
786 bpos += i;
787 siz -= i;
788 }
789 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
790 for (i = 0; i < siz; i++)
791 *bpos++ = '\0';
792 mb->m_len += siz;
793 }
794 } else {
795 *tl++ = txdr_unsigned(RPCAUTH_NULL);
796 *tl = 0;
797 }
798 mb->m_next = mrest;
799 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
800 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
801 *mbp = mb;
802 return (mreq);
803 }
804
805 /*
806 * copies mbuf chain to the uio scatter/gather list
807 */
808 int
809 nfsm_mbuftouio(mrep, uiop, siz, dpos)
810 struct mbuf **mrep;
811 struct uio *uiop;
812 int siz;
813 caddr_t *dpos;
814 {
815 char *mbufcp, *uiocp;
816 int xfer, left, len;
817 struct mbuf *mp;
818 long uiosiz, rem;
819 int error = 0;
820
821 mp = *mrep;
822 mbufcp = *dpos;
823 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
824 rem = nfsm_rndup(siz)-siz;
825 while (siz > 0) {
826 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
827 return (EFBIG);
828 left = uiop->uio_iov->iov_len;
829 uiocp = uiop->uio_iov->iov_base;
830 if (left > siz)
831 left = siz;
832 uiosiz = left;
833 while (left > 0) {
834 while (len == 0) {
835 mp = mp->m_next;
836 if (mp == NULL)
837 return (EBADRPC);
838 mbufcp = mtod(mp, caddr_t);
839 len = mp->m_len;
840 }
841 xfer = (left > len) ? len : left;
842 #ifdef notdef
843 /* Not Yet.. */
844 if (uiop->uio_iov->iov_op != NULL)
845 (*(uiop->uio_iov->iov_op))
846 (mbufcp, uiocp, xfer);
847 else
848 #endif
849 if (uiop->uio_segflg == UIO_SYSSPACE)
850 memcpy(uiocp, mbufcp, xfer);
851 else
852 copyout(mbufcp, uiocp, xfer);
853 left -= xfer;
854 len -= xfer;
855 mbufcp += xfer;
856 uiocp += xfer;
857 uiop->uio_offset += xfer;
858 uiop->uio_resid -= xfer;
859 }
860 if (uiop->uio_iov->iov_len <= siz) {
861 uiop->uio_iovcnt--;
862 uiop->uio_iov++;
863 } else {
864 uiop->uio_iov->iov_base =
865 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
866 uiop->uio_iov->iov_len -= uiosiz;
867 }
868 siz -= uiosiz;
869 }
870 *dpos = mbufcp;
871 *mrep = mp;
872 if (rem > 0) {
873 if (len < rem)
874 error = nfs_adv(mrep, dpos, rem, len);
875 else
876 *dpos += rem;
877 }
878 return (error);
879 }
880
881 /*
882 * copies a uio scatter/gather list to an mbuf chain.
883 * NOTE: can ony handle iovcnt == 1
884 */
885 int
886 nfsm_uiotombuf(uiop, mq, siz, bpos)
887 struct uio *uiop;
888 struct mbuf **mq;
889 int siz;
890 caddr_t *bpos;
891 {
892 char *uiocp;
893 struct mbuf *mp, *mp2;
894 int xfer, left, mlen;
895 int uiosiz, clflg, rem;
896 char *cp;
897
898 #ifdef DIAGNOSTIC
899 if (uiop->uio_iovcnt != 1)
900 panic("nfsm_uiotombuf: iovcnt != 1");
901 #endif
902
903 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
904 clflg = 1;
905 else
906 clflg = 0;
907 rem = nfsm_rndup(siz)-siz;
908 mp = mp2 = *mq;
909 while (siz > 0) {
910 left = uiop->uio_iov->iov_len;
911 uiocp = uiop->uio_iov->iov_base;
912 if (left > siz)
913 left = siz;
914 uiosiz = left;
915 while (left > 0) {
916 mlen = M_TRAILINGSPACE(mp);
917 if (mlen == 0) {
918 MGET(mp, M_WAIT, MT_DATA);
919 if (clflg)
920 MCLGET(mp, M_WAIT);
921 mp->m_len = 0;
922 mp2->m_next = mp;
923 mp2 = mp;
924 mlen = M_TRAILINGSPACE(mp);
925 }
926 xfer = (left > mlen) ? mlen : left;
927 #ifdef notdef
928 /* Not Yet.. */
929 if (uiop->uio_iov->iov_op != NULL)
930 (*(uiop->uio_iov->iov_op))
931 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
932 else
933 #endif
934 if (uiop->uio_segflg == UIO_SYSSPACE)
935 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
936 else
937 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
938 mp->m_len += xfer;
939 left -= xfer;
940 uiocp += xfer;
941 uiop->uio_offset += xfer;
942 uiop->uio_resid -= xfer;
943 }
944 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
945 uiosiz;
946 uiop->uio_iov->iov_len -= uiosiz;
947 siz -= uiosiz;
948 }
949 if (rem > 0) {
950 if (rem > M_TRAILINGSPACE(mp)) {
951 MGET(mp, M_WAIT, MT_DATA);
952 mp->m_len = 0;
953 mp2->m_next = mp;
954 }
955 cp = mtod(mp, caddr_t)+mp->m_len;
956 for (left = 0; left < rem; left++)
957 *cp++ = '\0';
958 mp->m_len += rem;
959 *bpos = cp;
960 } else
961 *bpos = mtod(mp, caddr_t)+mp->m_len;
962 *mq = mp;
963 return (0);
964 }
965
966 /*
967 * Get at least "siz" bytes of correctly aligned data.
968 * When called the mbuf pointers are not necessarily correct,
969 * dsosp points to what ought to be in m_data and left contains
970 * what ought to be in m_len.
971 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
972 * cases. (The macros use the vars. dpos and dpos2)
973 */
974 int
975 nfsm_disct(mdp, dposp, siz, left, cp2)
976 struct mbuf **mdp;
977 caddr_t *dposp;
978 int siz;
979 int left;
980 caddr_t *cp2;
981 {
982 struct mbuf *m1, *m2;
983 struct mbuf *havebuf = NULL;
984 caddr_t src = *dposp;
985 caddr_t dst;
986 int len;
987
988 #ifdef DEBUG
989 if (left < 0)
990 panic("nfsm_disct: left < 0");
991 #endif
992 m1 = *mdp;
993 /*
994 * Skip through the mbuf chain looking for an mbuf with
995 * some data. If the first mbuf found has enough data
996 * and it is correctly aligned return it.
997 */
998 while (left == 0) {
999 havebuf = m1;
1000 *mdp = m1 = m1->m_next;
1001 if (m1 == NULL)
1002 return (EBADRPC);
1003 src = mtod(m1, caddr_t);
1004 left = m1->m_len;
1005 /*
1006 * If we start a new mbuf and it is big enough
1007 * and correctly aligned just return it, don't
1008 * do any pull up.
1009 */
1010 if (left >= siz && nfsm_aligned(src)) {
1011 *cp2 = src;
1012 *dposp = src + siz;
1013 return (0);
1014 }
1015 }
1016 if (m1->m_flags & M_EXT) {
1017 if (havebuf) {
1018 /* If the first mbuf with data has external data
1019 * and there is a previous empty mbuf use it
1020 * to move the data into.
1021 */
1022 m2 = m1;
1023 *mdp = m1 = havebuf;
1024 if (m1->m_flags & M_EXT) {
1025 MEXTREMOVE(m1);
1026 }
1027 } else {
1028 /*
1029 * If the first mbuf has a external data
1030 * and there is no previous empty mbuf
1031 * allocate a new mbuf and move the external
1032 * data to the new mbuf. Also make the first
1033 * mbuf look empty.
1034 */
1035 m2 = m_get(M_WAIT, MT_DATA);
1036 m2->m_ext = m1->m_ext;
1037 m2->m_data = src;
1038 m2->m_len = left;
1039 MCLADDREFERENCE(m1, m2);
1040 MEXTREMOVE(m1);
1041 m2->m_next = m1->m_next;
1042 m1->m_next = m2;
1043 }
1044 m1->m_len = 0;
1045 dst = m1->m_dat;
1046 } else {
1047 /*
1048 * If the first mbuf has no external data
1049 * move the data to the front of the mbuf.
1050 */
1051 if ((dst = m1->m_dat) != src)
1052 memmove(dst, src, left);
1053 dst += left;
1054 m1->m_len = left;
1055 m2 = m1->m_next;
1056 }
1057 m1->m_flags &= ~M_PKTHDR;
1058 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1059 *dposp = mtod(m1, caddr_t) + siz;
1060 /*
1061 * Loop through mbufs pulling data up into first mbuf until
1062 * the first mbuf is full or there is no more data to
1063 * pullup.
1064 */
1065 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1066 if ((len = min(len, m2->m_len)) != 0)
1067 memcpy(dst, m2->m_data, len);
1068 m1->m_len += len;
1069 dst += len;
1070 m2->m_data += len;
1071 m2->m_len -= len;
1072 m2 = m2->m_next;
1073 }
1074 if (m1->m_len < siz)
1075 return (EBADRPC);
1076 return (0);
1077 }
1078
1079 /*
1080 * Advance the position in the mbuf chain.
1081 */
1082 int
1083 nfs_adv(mdp, dposp, offs, left)
1084 struct mbuf **mdp;
1085 caddr_t *dposp;
1086 int offs;
1087 int left;
1088 {
1089 struct mbuf *m;
1090 int s;
1091
1092 m = *mdp;
1093 s = left;
1094 while (s < offs) {
1095 offs -= s;
1096 m = m->m_next;
1097 if (m == NULL)
1098 return (EBADRPC);
1099 s = m->m_len;
1100 }
1101 *mdp = m;
1102 *dposp = mtod(m, caddr_t)+offs;
1103 return (0);
1104 }
1105
1106 /*
1107 * Copy a string into mbufs for the hard cases...
1108 */
1109 int
1110 nfsm_strtmbuf(mb, bpos, cp, siz)
1111 struct mbuf **mb;
1112 char **bpos;
1113 const char *cp;
1114 long siz;
1115 {
1116 struct mbuf *m1 = NULL, *m2;
1117 long left, xfer, len, tlen;
1118 u_int32_t *tl;
1119 int putsize;
1120
1121 putsize = 1;
1122 m2 = *mb;
1123 left = M_TRAILINGSPACE(m2);
1124 if (left > 0) {
1125 tl = ((u_int32_t *)(*bpos));
1126 *tl++ = txdr_unsigned(siz);
1127 putsize = 0;
1128 left -= NFSX_UNSIGNED;
1129 m2->m_len += NFSX_UNSIGNED;
1130 if (left > 0) {
1131 memcpy((caddr_t) tl, cp, left);
1132 siz -= left;
1133 cp += left;
1134 m2->m_len += left;
1135 left = 0;
1136 }
1137 }
1138 /* Loop around adding mbufs */
1139 while (siz > 0) {
1140 MGET(m1, M_WAIT, MT_DATA);
1141 if (siz > MLEN)
1142 MCLGET(m1, M_WAIT);
1143 m1->m_len = NFSMSIZ(m1);
1144 m2->m_next = m1;
1145 m2 = m1;
1146 tl = mtod(m1, u_int32_t *);
1147 tlen = 0;
1148 if (putsize) {
1149 *tl++ = txdr_unsigned(siz);
1150 m1->m_len -= NFSX_UNSIGNED;
1151 tlen = NFSX_UNSIGNED;
1152 putsize = 0;
1153 }
1154 if (siz < m1->m_len) {
1155 len = nfsm_rndup(siz);
1156 xfer = siz;
1157 if (xfer < len)
1158 *(tl+(xfer>>2)) = 0;
1159 } else {
1160 xfer = len = m1->m_len;
1161 }
1162 memcpy((caddr_t) tl, cp, xfer);
1163 m1->m_len = len+tlen;
1164 siz -= xfer;
1165 cp += xfer;
1166 }
1167 *mb = m1;
1168 *bpos = mtod(m1, caddr_t)+m1->m_len;
1169 return (0);
1170 }
1171
1172 /*
1173 * Directory caching routines. They work as follows:
1174 * - a cache is maintained per VDIR nfsnode.
1175 * - for each offset cookie that is exported to userspace, and can
1176 * thus be thrown back at us as an offset to VOP_READDIR, store
1177 * information in the cache.
1178 * - cached are:
1179 * - cookie itself
1180 * - blocknumber (essentially just a search key in the buffer cache)
1181 * - entry number in block.
1182 * - offset cookie of block in which this entry is stored
1183 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1184 * - entries are looked up in a hash table
1185 * - also maintained is an LRU list of entries, used to determine
1186 * which ones to delete if the cache grows too large.
1187 * - if 32 <-> 64 translation mode is requested for a filesystem,
1188 * the cache also functions as a translation table
1189 * - in the translation case, invalidating the cache does not mean
1190 * flushing it, but just marking entries as invalid, except for
1191 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1192 * still be able to use the cache as a translation table.
1193 * - 32 bit cookies are uniquely created by combining the hash table
1194 * entry value, and one generation count per hash table entry,
1195 * incremented each time an entry is appended to the chain.
1196 * - the cache is invalidated each time a direcory is modified
1197 * - sanity checks are also done; if an entry in a block turns
1198 * out not to have a matching cookie, the cache is invalidated
1199 * and a new block starting from the wanted offset is fetched from
1200 * the server.
1201 * - directory entries as read from the server are extended to contain
1202 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1203 * the cache and exporting them to userspace through the cookie
1204 * argument to VOP_READDIR.
1205 */
1206
1207 u_long
1208 nfs_dirhash(off)
1209 off_t off;
1210 {
1211 int i;
1212 char *cp = (char *)&off;
1213 u_long sum = 0L;
1214
1215 for (i = 0 ; i < sizeof (off); i++)
1216 sum += *cp++;
1217
1218 return sum;
1219 }
1220
1221 void
1222 nfs_initdircache(vp)
1223 struct vnode *vp;
1224 {
1225 struct nfsnode *np = VTONFS(vp);
1226 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1227
1228 np->n_dircachesize = 0;
1229 np->n_dblkno = 1;
1230 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1231 M_WAITOK, &nfsdirhashmask);
1232 TAILQ_INIT(&np->n_dirchain);
1233 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1234 MALLOC(np->n_dirgens, unsigned *,
1235 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1236 M_WAITOK);
1237 memset((caddr_t)np->n_dirgens, 0,
1238 NFS_DIRHASHSIZ * sizeof (unsigned));
1239 }
1240 }
1241
1242 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1243
1244 struct nfsdircache *
1245 nfs_searchdircache(vp, off, do32, hashent)
1246 struct vnode *vp;
1247 off_t off;
1248 int do32;
1249 int *hashent;
1250 {
1251 struct nfsdirhashhead *ndhp;
1252 struct nfsdircache *ndp = NULL;
1253 struct nfsnode *np = VTONFS(vp);
1254 unsigned ent;
1255
1256 /*
1257 * Zero is always a valid cookie.
1258 */
1259 if (off == 0)
1260 return &dzero;
1261
1262 /*
1263 * We use a 32bit cookie as search key, directly reconstruct
1264 * the hashentry. Else use the hashfunction.
1265 */
1266 if (do32) {
1267 ent = (u_int32_t)off >> 24;
1268 if (ent >= NFS_DIRHASHSIZ)
1269 return NULL;
1270 ndhp = &np->n_dircache[ent];
1271 } else {
1272 ndhp = NFSDIRHASH(np, off);
1273 }
1274
1275 if (hashent)
1276 *hashent = (int)(ndhp - np->n_dircache);
1277 if (do32) {
1278 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1279 if (ndp->dc_cookie32 == (u_int32_t)off) {
1280 /*
1281 * An invalidated entry will become the
1282 * start of a new block fetched from
1283 * the server.
1284 */
1285 if (ndp->dc_blkno == -1) {
1286 ndp->dc_blkcookie = ndp->dc_cookie;
1287 ndp->dc_blkno = np->n_dblkno++;
1288 ndp->dc_entry = 0;
1289 }
1290 break;
1291 }
1292 }
1293 } else {
1294 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1295 if (ndp->dc_cookie == off)
1296 break;
1297 }
1298 return ndp;
1299 }
1300
1301
1302 struct nfsdircache *
1303 nfs_enterdircache(vp, off, blkoff, en, blkno)
1304 struct vnode *vp;
1305 off_t off, blkoff;
1306 int en;
1307 daddr_t blkno;
1308 {
1309 struct nfsnode *np = VTONFS(vp);
1310 struct nfsdirhashhead *ndhp;
1311 struct nfsdircache *ndp = NULL, *first;
1312 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1313 int hashent, gen, overwrite;
1314
1315 if (!np->n_dircache)
1316 /*
1317 * XXX would like to do this in nfs_nget but vtype
1318 * isn't known at that time.
1319 */
1320 nfs_initdircache(vp);
1321
1322 /*
1323 * XXX refuse entries for offset 0. amd(8) erroneously sets
1324 * cookie 0 for the '.' entry, making this necessary. This
1325 * isn't so bad, as 0 is a special case anyway.
1326 */
1327 if (off == 0)
1328 return &dzero;
1329
1330 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1331
1332 if (ndp && ndp->dc_blkno != -1) {
1333 /*
1334 * Overwriting an old entry. Check if it's the same.
1335 * If so, just return. If not, remove the old entry.
1336 */
1337 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1338 return ndp;
1339 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1340 LIST_REMOVE(ndp, dc_hash);
1341 FREE(ndp, M_NFSDIROFF);
1342 ndp = 0;
1343 }
1344
1345 ndhp = &np->n_dircache[hashent];
1346
1347 if (!ndp) {
1348 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1349 M_WAITOK);
1350 overwrite = 0;
1351 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1352 /*
1353 * We're allocating a new entry, so bump the
1354 * generation number.
1355 */
1356 gen = ++np->n_dirgens[hashent];
1357 if (gen == 0) {
1358 np->n_dirgens[hashent]++;
1359 gen++;
1360 }
1361 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1362 }
1363 } else
1364 overwrite = 1;
1365
1366 /*
1367 * If the entry number is 0, we are at the start of a new block, so
1368 * allocate a new blocknumber.
1369 */
1370 if (en == 0)
1371 ndp->dc_blkno = np->n_dblkno++;
1372 else
1373 ndp->dc_blkno = blkno;
1374
1375 ndp->dc_cookie = off;
1376 ndp->dc_blkcookie = blkoff;
1377 ndp->dc_entry = en;
1378
1379 if (overwrite)
1380 return ndp;
1381
1382 /*
1383 * If the maximum directory cookie cache size has been reached
1384 * for this node, take one off the front. The idea is that
1385 * directories are typically read front-to-back once, so that
1386 * the oldest entries can be thrown away without much performance
1387 * loss.
1388 */
1389 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1390 first = np->n_dirchain.tqh_first;
1391 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1392 LIST_REMOVE(first, dc_hash);
1393 FREE(first, M_NFSDIROFF);
1394 } else
1395 np->n_dircachesize++;
1396
1397 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1398 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1399 return ndp;
1400 }
1401
1402 void
1403 nfs_invaldircache(vp, forcefree)
1404 struct vnode *vp;
1405 int forcefree;
1406 {
1407 struct nfsnode *np = VTONFS(vp);
1408 struct nfsdircache *ndp = NULL;
1409 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1410
1411 #ifdef DIAGNOSTIC
1412 if (vp->v_type != VDIR)
1413 panic("nfs: invaldircache: not dir");
1414 #endif
1415
1416 if (!np->n_dircache)
1417 return;
1418
1419 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1420 while ((ndp = np->n_dirchain.tqh_first)) {
1421 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1422 LIST_REMOVE(ndp, dc_hash);
1423 FREE(ndp, M_NFSDIROFF);
1424 }
1425 np->n_dircachesize = 0;
1426 if (forcefree && np->n_dirgens) {
1427 FREE(np->n_dirgens, M_NFSDIROFF);
1428 }
1429 } else {
1430 for (ndp = np->n_dirchain.tqh_first; ndp;
1431 ndp = ndp->dc_chain.tqe_next)
1432 ndp->dc_blkno = -1;
1433 }
1434
1435 np->n_dblkno = 1;
1436 }
1437
1438 /*
1439 * Called once before VFS init to initialize shared and
1440 * server-specific data structures.
1441 */
1442 void
1443 nfs_init()
1444 {
1445 nfsrtt.pos = 0;
1446 rpc_vers = txdr_unsigned(RPC_VER2);
1447 rpc_call = txdr_unsigned(RPC_CALL);
1448 rpc_reply = txdr_unsigned(RPC_REPLY);
1449 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1450 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1451 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1452 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1453 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1454 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1455 nfs_prog = txdr_unsigned(NFS_PROG);
1456 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1457 nfs_true = txdr_unsigned(TRUE);
1458 nfs_false = txdr_unsigned(FALSE);
1459 nfs_xdrneg1 = txdr_unsigned(-1);
1460 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1461 if (nfs_ticks < 1)
1462 nfs_ticks = 1;
1463 #ifdef NFSSERVER
1464 nfsrv_init(0); /* Init server data structures */
1465 nfsrv_initcache(); /* Init the server request cache */
1466 #endif /* NFSSERVER */
1467
1468 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1469 /*
1470 * Initialize the nqnfs data structures.
1471 */
1472 if (nqnfsstarttime == 0) {
1473 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1474 + nqsrv_clockskew + nqsrv_writeslack;
1475 NQLOADNOVRAM(nqnfsstarttime);
1476 CIRCLEQ_INIT(&nqtimerhead);
1477 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1478 M_WAITOK, &nqfhhash);
1479 }
1480 #endif
1481
1482 exithook_establish(nfs_exit, NULL);
1483
1484 /*
1485 * Initialize reply list and start timer
1486 */
1487 TAILQ_INIT(&nfs_reqq);
1488 nfs_timer(NULL);
1489
1490 #ifdef NFS
1491 /* Initialize the kqueue structures */
1492 nfs_kqinit();
1493 #endif
1494 }
1495
1496 #ifdef NFS
1497 /*
1498 * Called once at VFS init to initialize client-specific data structures.
1499 */
1500 void
1501 nfs_vfs_init()
1502 {
1503 nfs_nhinit(); /* Init the nfsnode table */
1504 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1505 }
1506
1507 void
1508 nfs_vfs_reinit()
1509 {
1510 nfs_nhreinit();
1511 }
1512
1513 void
1514 nfs_vfs_done()
1515 {
1516 nfs_nhdone();
1517 }
1518
1519 /*
1520 * Attribute cache routines.
1521 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1522 * that are on the mbuf list
1523 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1524 * error otherwise
1525 */
1526
1527 /*
1528 * Load the attribute cache (that lives in the nfsnode entry) with
1529 * the values on the mbuf list and
1530 * Iff vap not NULL
1531 * copy the attributes to *vaper
1532 */
1533 int
1534 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1535 struct vnode **vpp;
1536 struct mbuf **mdp;
1537 caddr_t *dposp;
1538 struct vattr *vaper;
1539 int flags;
1540 {
1541 int32_t t1;
1542 caddr_t cp2;
1543 int error = 0;
1544 struct mbuf *md;
1545 int v3 = NFS_ISV3(*vpp);
1546
1547 md = *mdp;
1548 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1549 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1550 if (error)
1551 return (error);
1552 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1553 }
1554
1555 int
1556 nfs_loadattrcache(vpp, fp, vaper, flags)
1557 struct vnode **vpp;
1558 struct nfs_fattr *fp;
1559 struct vattr *vaper;
1560 int flags;
1561 {
1562 struct vnode *vp = *vpp;
1563 struct vattr *vap;
1564 int v3 = NFS_ISV3(vp);
1565 enum vtype vtyp;
1566 u_short vmode;
1567 struct timespec mtime;
1568 struct vnode *nvp;
1569 int32_t rdev;
1570 struct nfsnode *np;
1571 extern int (**spec_nfsv2nodeop_p) __P((void *));
1572 uid_t uid;
1573 gid_t gid;
1574
1575 if (v3) {
1576 vtyp = nfsv3tov_type(fp->fa_type);
1577 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1578 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1579 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1580 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1581 } else {
1582 vtyp = nfsv2tov_type(fp->fa_type);
1583 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1584 if (vtyp == VNON || vtyp == VREG)
1585 vtyp = IFTOVT(vmode);
1586 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1587 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1588
1589 /*
1590 * Really ugly NFSv2 kludge.
1591 */
1592 if (vtyp == VCHR && rdev == 0xffffffff)
1593 vtyp = VFIFO;
1594 }
1595
1596 vmode &= ALLPERMS;
1597
1598 /*
1599 * If v_type == VNON it is a new node, so fill in the v_type,
1600 * n_mtime fields. Check to see if it represents a special
1601 * device, and if so, check for a possible alias. Once the
1602 * correct vnode has been obtained, fill in the rest of the
1603 * information.
1604 */
1605 np = VTONFS(vp);
1606 if (vp->v_type == VNON) {
1607 vp->v_type = vtyp;
1608 if (vp->v_type == VFIFO) {
1609 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1610 vp->v_op = fifo_nfsv2nodeop_p;
1611 }
1612 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1613 vp->v_op = spec_nfsv2nodeop_p;
1614 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1615 if (nvp) {
1616 /*
1617 * Discard unneeded vnode, but save its nfsnode.
1618 * Since the nfsnode does not have a lock, its
1619 * vnode lock has to be carried over.
1620 */
1621 /*
1622 * XXX is the old node sure to be locked here?
1623 */
1624 KASSERT(lockstatus(&vp->v_lock) ==
1625 LK_EXCLUSIVE);
1626 nvp->v_data = vp->v_data;
1627 vp->v_data = NULL;
1628 VOP_UNLOCK(vp, 0);
1629 vp->v_op = spec_vnodeop_p;
1630 vrele(vp);
1631 vgone(vp);
1632 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1633 &nvp->v_interlock);
1634 /*
1635 * Reinitialize aliased node.
1636 */
1637 np->n_vnode = nvp;
1638 *vpp = vp = nvp;
1639 }
1640 }
1641 np->n_mtime = mtime.tv_sec;
1642 }
1643 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1644 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1645 vap = np->n_vattr;
1646
1647 /*
1648 * Invalidate access cache if uid, gid or mode changed.
1649 */
1650 if (np->n_accstamp != -1 &&
1651 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1652 np->n_accstamp = -1;
1653
1654 vap->va_type = vtyp;
1655 vap->va_mode = vmode;
1656 vap->va_rdev = (dev_t)rdev;
1657 vap->va_mtime = mtime;
1658 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1659 switch (vtyp) {
1660 case VDIR:
1661 vap->va_blocksize = NFS_DIRFRAGSIZ;
1662 break;
1663 case VBLK:
1664 vap->va_blocksize = BLKDEV_IOSIZE;
1665 break;
1666 case VCHR:
1667 vap->va_blocksize = MAXBSIZE;
1668 break;
1669 default:
1670 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1671 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1672 break;
1673 }
1674 if (v3) {
1675 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1676 vap->va_uid = uid;
1677 vap->va_gid = gid;
1678 vap->va_size = fxdr_hyper(&fp->fa3_size);
1679 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1680 vap->va_fileid = fxdr_unsigned(int32_t,
1681 fp->fa3_fileid.nfsuquad[1]);
1682 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1683 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1684 vap->va_flags = 0;
1685 vap->va_filerev = 0;
1686 } else {
1687 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1688 vap->va_uid = uid;
1689 vap->va_gid = gid;
1690 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1691 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1692 * NFS_FABLKSIZE;
1693 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1694 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1695 vap->va_flags = 0;
1696 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1697 fp->fa2_ctime.nfsv2_sec);
1698 vap->va_ctime.tv_nsec = 0;
1699 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1700 vap->va_filerev = 0;
1701 }
1702 if (vap->va_size != np->n_size) {
1703 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1704 vap->va_size = np->n_size;
1705 } else {
1706 np->n_size = vap->va_size;
1707 if (vap->va_type == VREG) {
1708 if ((flags & NAC_NOTRUNC)
1709 && np->n_size < vp->v_size) {
1710 /*
1711 * we can't free pages now because
1712 * the pages can be owned by ourselves.
1713 */
1714 np->n_flag |= NTRUNCDELAYED;
1715 }
1716 else {
1717 uvm_vnp_setsize(vp, np->n_size);
1718 }
1719 }
1720 }
1721 }
1722 np->n_attrstamp = time.tv_sec;
1723 if (vaper != NULL) {
1724 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1725 if (np->n_flag & NCHG) {
1726 if (np->n_flag & NACC)
1727 vaper->va_atime = np->n_atim;
1728 if (np->n_flag & NUPD)
1729 vaper->va_mtime = np->n_mtim;
1730 }
1731 }
1732 return (0);
1733 }
1734
1735 /*
1736 * Check the time stamp
1737 * If the cache is valid, copy contents to *vap and return 0
1738 * otherwise return an error
1739 */
1740 int
1741 nfs_getattrcache(vp, vaper)
1742 struct vnode *vp;
1743 struct vattr *vaper;
1744 {
1745 struct nfsnode *np = VTONFS(vp);
1746 struct vattr *vap;
1747
1748 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1749 nfsstats.attrcache_misses++;
1750 return (ENOENT);
1751 }
1752 nfsstats.attrcache_hits++;
1753 vap = np->n_vattr;
1754 if (vap->va_size != np->n_size) {
1755 if (vap->va_type == VREG) {
1756 if (np->n_flag & NMODIFIED) {
1757 if (vap->va_size < np->n_size)
1758 vap->va_size = np->n_size;
1759 else
1760 np->n_size = vap->va_size;
1761 } else
1762 np->n_size = vap->va_size;
1763 uvm_vnp_setsize(vp, np->n_size);
1764 } else
1765 np->n_size = vap->va_size;
1766 }
1767 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1768 if (np->n_flag & NCHG) {
1769 if (np->n_flag & NACC)
1770 vaper->va_atime = np->n_atim;
1771 if (np->n_flag & NUPD)
1772 vaper->va_mtime = np->n_mtim;
1773 }
1774 return (0);
1775 }
1776
1777 void
1778 nfs_delayedtruncate(vp)
1779 struct vnode *vp;
1780 {
1781 struct nfsnode *np = VTONFS(vp);
1782
1783 if (np->n_flag & NTRUNCDELAYED) {
1784 np->n_flag &= ~NTRUNCDELAYED;
1785 uvm_vnp_setsize(vp, np->n_size);
1786 }
1787 }
1788
1789 /*
1790 * Heuristic to see if the server XDR encodes directory cookies or not.
1791 * it is not supposed to, but a lot of servers may do this. Also, since
1792 * most/all servers will implement V2 as well, it is expected that they
1793 * may return just 32 bits worth of cookie information, so we need to
1794 * find out in which 32 bits this information is available. We do this
1795 * to avoid trouble with emulated binaries that can't handle 64 bit
1796 * directory offsets.
1797 */
1798
1799 void
1800 nfs_cookieheuristic(vp, flagp, p, cred)
1801 struct vnode *vp;
1802 int *flagp;
1803 struct proc *p;
1804 struct ucred *cred;
1805 {
1806 struct uio auio;
1807 struct iovec aiov;
1808 caddr_t buf, cp;
1809 struct dirent *dp;
1810 off_t *cookies = NULL, *cop;
1811 int error, eof, nc, len;
1812
1813 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1814
1815 aiov.iov_base = buf;
1816 aiov.iov_len = NFS_DIRFRAGSIZ;
1817 auio.uio_iov = &aiov;
1818 auio.uio_iovcnt = 1;
1819 auio.uio_rw = UIO_READ;
1820 auio.uio_segflg = UIO_SYSSPACE;
1821 auio.uio_procp = p;
1822 auio.uio_resid = NFS_DIRFRAGSIZ;
1823 auio.uio_offset = 0;
1824
1825 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1826
1827 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1828 if (error || len == 0) {
1829 FREE(buf, M_TEMP);
1830 if (cookies)
1831 free(cookies, M_TEMP);
1832 return;
1833 }
1834
1835 /*
1836 * Find the first valid entry and look at its offset cookie.
1837 */
1838
1839 cp = buf;
1840 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1841 dp = (struct dirent *)cp;
1842 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1843 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1844 *flagp |= NFSMNT_SWAPCOOKIE;
1845 nfs_invaldircache(vp, 0);
1846 nfs_vinvalbuf(vp, 0, cred, p, 1);
1847 }
1848 break;
1849 }
1850 cop++;
1851 cp += dp->d_reclen;
1852 }
1853
1854 FREE(buf, M_TEMP);
1855 free(cookies, M_TEMP);
1856 }
1857 #endif /* NFS */
1858
1859 /*
1860 * Set up nameidata for a lookup() call and do it.
1861 *
1862 * If pubflag is set, this call is done for a lookup operation on the
1863 * public filehandle. In that case we allow crossing mountpoints and
1864 * absolute pathnames. However, the caller is expected to check that
1865 * the lookup result is within the public fs, and deny access if
1866 * it is not.
1867 */
1868 int
1869 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1870 struct nameidata *ndp;
1871 fhandle_t *fhp;
1872 int len;
1873 struct nfssvc_sock *slp;
1874 struct mbuf *nam;
1875 struct mbuf **mdp;
1876 caddr_t *dposp;
1877 struct vnode **retdirp;
1878 struct proc *p;
1879 int kerbflag, pubflag;
1880 {
1881 int i, rem;
1882 struct mbuf *md;
1883 char *fromcp, *tocp, *cp;
1884 struct iovec aiov;
1885 struct uio auio;
1886 struct vnode *dp;
1887 int error, rdonly, linklen;
1888 struct componentname *cnp = &ndp->ni_cnd;
1889
1890 *retdirp = (struct vnode *)0;
1891
1892 if ((len + 1) > MAXPATHLEN)
1893 return (ENAMETOOLONG);
1894 cnp->cn_pnbuf = PNBUF_GET();
1895
1896 /*
1897 * Copy the name from the mbuf list to ndp->ni_pnbuf
1898 * and set the various ndp fields appropriately.
1899 */
1900 fromcp = *dposp;
1901 tocp = cnp->cn_pnbuf;
1902 md = *mdp;
1903 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1904 for (i = 0; i < len; i++) {
1905 while (rem == 0) {
1906 md = md->m_next;
1907 if (md == NULL) {
1908 error = EBADRPC;
1909 goto out;
1910 }
1911 fromcp = mtod(md, caddr_t);
1912 rem = md->m_len;
1913 }
1914 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1915 error = EACCES;
1916 goto out;
1917 }
1918 *tocp++ = *fromcp++;
1919 rem--;
1920 }
1921 *tocp = '\0';
1922 *mdp = md;
1923 *dposp = fromcp;
1924 len = nfsm_rndup(len)-len;
1925 if (len > 0) {
1926 if (rem >= len)
1927 *dposp += len;
1928 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1929 goto out;
1930 }
1931
1932 /*
1933 * Extract and set starting directory.
1934 */
1935 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1936 nam, &rdonly, kerbflag, pubflag);
1937 if (error)
1938 goto out;
1939 if (dp->v_type != VDIR) {
1940 vrele(dp);
1941 error = ENOTDIR;
1942 goto out;
1943 }
1944
1945 if (rdonly)
1946 cnp->cn_flags |= RDONLY;
1947
1948 *retdirp = dp;
1949
1950 if (pubflag) {
1951 /*
1952 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1953 * and the 'native path' indicator.
1954 */
1955 cp = PNBUF_GET();
1956 fromcp = cnp->cn_pnbuf;
1957 tocp = cp;
1958 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1959 switch ((unsigned char)*fromcp) {
1960 case WEBNFS_NATIVE_CHAR:
1961 /*
1962 * 'Native' path for us is the same
1963 * as a path according to the NFS spec,
1964 * just skip the escape char.
1965 */
1966 fromcp++;
1967 break;
1968 /*
1969 * More may be added in the future, range 0x80-0xff
1970 */
1971 default:
1972 error = EIO;
1973 PNBUF_PUT(cp);
1974 goto out;
1975 }
1976 }
1977 /*
1978 * Translate the '%' escapes, URL-style.
1979 */
1980 while (*fromcp != '\0') {
1981 if (*fromcp == WEBNFS_ESC_CHAR) {
1982 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1983 fromcp++;
1984 *tocp++ = HEXSTRTOI(fromcp);
1985 fromcp += 2;
1986 continue;
1987 } else {
1988 error = ENOENT;
1989 PNBUF_PUT(cp);
1990 goto out;
1991 }
1992 } else
1993 *tocp++ = *fromcp++;
1994 }
1995 *tocp = '\0';
1996 PNBUF_PUT(cnp->cn_pnbuf);
1997 cnp->cn_pnbuf = cp;
1998 }
1999
2000 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2001 ndp->ni_segflg = UIO_SYSSPACE;
2002 ndp->ni_rootdir = rootvnode;
2003
2004 if (pubflag) {
2005 ndp->ni_loopcnt = 0;
2006 if (cnp->cn_pnbuf[0] == '/')
2007 dp = rootvnode;
2008 } else {
2009 cnp->cn_flags |= NOCROSSMOUNT;
2010 }
2011
2012 cnp->cn_proc = p;
2013 VREF(dp);
2014
2015 for (;;) {
2016 cnp->cn_nameptr = cnp->cn_pnbuf;
2017 ndp->ni_startdir = dp;
2018 /*
2019 * And call lookup() to do the real work
2020 */
2021 error = lookup(ndp);
2022 if (error) {
2023 PNBUF_PUT(cnp->cn_pnbuf);
2024 return (error);
2025 }
2026 /*
2027 * Check for encountering a symbolic link
2028 */
2029 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2030 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2031 cnp->cn_flags |= HASBUF;
2032 else
2033 PNBUF_PUT(cnp->cn_pnbuf);
2034 return (0);
2035 } else {
2036 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2037 VOP_UNLOCK(ndp->ni_dvp, 0);
2038 if (!pubflag) {
2039 error = EINVAL;
2040 break;
2041 }
2042
2043 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2044 error = ELOOP;
2045 break;
2046 }
2047 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2048 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2049 cnp->cn_proc);
2050 if (error != 0)
2051 break;
2052 }
2053 if (ndp->ni_pathlen > 1)
2054 cp = PNBUF_GET();
2055 else
2056 cp = cnp->cn_pnbuf;
2057 aiov.iov_base = cp;
2058 aiov.iov_len = MAXPATHLEN;
2059 auio.uio_iov = &aiov;
2060 auio.uio_iovcnt = 1;
2061 auio.uio_offset = 0;
2062 auio.uio_rw = UIO_READ;
2063 auio.uio_segflg = UIO_SYSSPACE;
2064 auio.uio_procp = (struct proc *)0;
2065 auio.uio_resid = MAXPATHLEN;
2066 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2067 if (error) {
2068 badlink:
2069 if (ndp->ni_pathlen > 1)
2070 PNBUF_PUT(cp);
2071 break;
2072 }
2073 linklen = MAXPATHLEN - auio.uio_resid;
2074 if (linklen == 0) {
2075 error = ENOENT;
2076 goto badlink;
2077 }
2078 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2079 error = ENAMETOOLONG;
2080 goto badlink;
2081 }
2082 if (ndp->ni_pathlen > 1) {
2083 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2084 PNBUF_PUT(cnp->cn_pnbuf);
2085 cnp->cn_pnbuf = cp;
2086 } else
2087 cnp->cn_pnbuf[linklen] = '\0';
2088 ndp->ni_pathlen += linklen;
2089 vput(ndp->ni_vp);
2090 dp = ndp->ni_dvp;
2091 /*
2092 * Check if root directory should replace current directory.
2093 */
2094 if (cnp->cn_pnbuf[0] == '/') {
2095 vrele(dp);
2096 dp = ndp->ni_rootdir;
2097 VREF(dp);
2098 }
2099 }
2100 }
2101 vrele(ndp->ni_dvp);
2102 vput(ndp->ni_vp);
2103 ndp->ni_vp = NULL;
2104 out:
2105 PNBUF_PUT(cnp->cn_pnbuf);
2106 return (error);
2107 }
2108
2109 /*
2110 * A fiddled version of m_adj() that ensures null fill to a long
2111 * boundary and only trims off the back end
2112 */
2113 void
2114 nfsm_adj(mp, len, nul)
2115 struct mbuf *mp;
2116 int len;
2117 int nul;
2118 {
2119 struct mbuf *m;
2120 int count, i;
2121 char *cp;
2122
2123 /*
2124 * Trim from tail. Scan the mbuf chain,
2125 * calculating its length and finding the last mbuf.
2126 * If the adjustment only affects this mbuf, then just
2127 * adjust and return. Otherwise, rescan and truncate
2128 * after the remaining size.
2129 */
2130 count = 0;
2131 m = mp;
2132 for (;;) {
2133 count += m->m_len;
2134 if (m->m_next == (struct mbuf *)0)
2135 break;
2136 m = m->m_next;
2137 }
2138 if (m->m_len > len) {
2139 m->m_len -= len;
2140 if (nul > 0) {
2141 cp = mtod(m, caddr_t)+m->m_len-nul;
2142 for (i = 0; i < nul; i++)
2143 *cp++ = '\0';
2144 }
2145 return;
2146 }
2147 count -= len;
2148 if (count < 0)
2149 count = 0;
2150 /*
2151 * Correct length for chain is "count".
2152 * Find the mbuf with last data, adjust its length,
2153 * and toss data from remaining mbufs on chain.
2154 */
2155 for (m = mp; m; m = m->m_next) {
2156 if (m->m_len >= count) {
2157 m->m_len = count;
2158 if (nul > 0) {
2159 cp = mtod(m, caddr_t)+m->m_len-nul;
2160 for (i = 0; i < nul; i++)
2161 *cp++ = '\0';
2162 }
2163 break;
2164 }
2165 count -= m->m_len;
2166 }
2167 for (m = m->m_next;m;m = m->m_next)
2168 m->m_len = 0;
2169 }
2170
2171 /*
2172 * Make these functions instead of macros, so that the kernel text size
2173 * doesn't get too big...
2174 */
2175 void
2176 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2177 struct nfsrv_descript *nfsd;
2178 int before_ret;
2179 struct vattr *before_vap;
2180 int after_ret;
2181 struct vattr *after_vap;
2182 struct mbuf **mbp;
2183 char **bposp;
2184 {
2185 struct mbuf *mb = *mbp, *mb2;
2186 char *bpos = *bposp;
2187 u_int32_t *tl;
2188
2189 if (before_ret) {
2190 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2191 *tl = nfs_false;
2192 } else {
2193 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2194 *tl++ = nfs_true;
2195 txdr_hyper(before_vap->va_size, tl);
2196 tl += 2;
2197 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2198 tl += 2;
2199 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2200 }
2201 *bposp = bpos;
2202 *mbp = mb;
2203 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2204 }
2205
2206 void
2207 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2208 struct nfsrv_descript *nfsd;
2209 int after_ret;
2210 struct vattr *after_vap;
2211 struct mbuf **mbp;
2212 char **bposp;
2213 {
2214 struct mbuf *mb = *mbp, *mb2;
2215 char *bpos = *bposp;
2216 u_int32_t *tl;
2217 struct nfs_fattr *fp;
2218
2219 if (after_ret) {
2220 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2221 *tl = nfs_false;
2222 } else {
2223 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2224 *tl++ = nfs_true;
2225 fp = (struct nfs_fattr *)tl;
2226 nfsm_srvfattr(nfsd, after_vap, fp);
2227 }
2228 *mbp = mb;
2229 *bposp = bpos;
2230 }
2231
2232 void
2233 nfsm_srvfattr(nfsd, vap, fp)
2234 struct nfsrv_descript *nfsd;
2235 struct vattr *vap;
2236 struct nfs_fattr *fp;
2237 {
2238
2239 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2240 fp->fa_uid = txdr_unsigned(vap->va_uid);
2241 fp->fa_gid = txdr_unsigned(vap->va_gid);
2242 if (nfsd->nd_flag & ND_NFSV3) {
2243 fp->fa_type = vtonfsv3_type(vap->va_type);
2244 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2245 txdr_hyper(vap->va_size, &fp->fa3_size);
2246 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2247 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2248 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2249 fp->fa3_fsid.nfsuquad[0] = 0;
2250 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2251 fp->fa3_fileid.nfsuquad[0] = 0;
2252 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2253 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2254 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2255 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2256 } else {
2257 fp->fa_type = vtonfsv2_type(vap->va_type);
2258 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2259 fp->fa2_size = txdr_unsigned(vap->va_size);
2260 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2261 if (vap->va_type == VFIFO)
2262 fp->fa2_rdev = 0xffffffff;
2263 else
2264 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2265 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2266 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2267 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2268 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2269 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2270 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2271 }
2272 }
2273
2274 /*
2275 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2276 * - look up fsid in mount list (if not found ret error)
2277 * - get vp and export rights by calling VFS_FHTOVP()
2278 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2279 * - if not lockflag unlock it with VOP_UNLOCK()
2280 */
2281 int
2282 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2283 fhandle_t *fhp;
2284 int lockflag;
2285 struct vnode **vpp;
2286 struct ucred *cred;
2287 struct nfssvc_sock *slp;
2288 struct mbuf *nam;
2289 int *rdonlyp;
2290 int kerbflag;
2291 {
2292 struct mount *mp;
2293 int i;
2294 struct ucred *credanon;
2295 int error, exflags;
2296 struct sockaddr_in *saddr;
2297
2298 *vpp = (struct vnode *)0;
2299
2300 if (nfs_ispublicfh(fhp)) {
2301 if (!pubflag || !nfs_pub.np_valid)
2302 return (ESTALE);
2303 fhp = &nfs_pub.np_handle;
2304 }
2305
2306 mp = vfs_getvfs(&fhp->fh_fsid);
2307 if (!mp)
2308 return (ESTALE);
2309 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2310 if (error)
2311 return (error);
2312 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2313 if (error)
2314 return (error);
2315
2316 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2317 saddr = mtod(nam, struct sockaddr_in *);
2318 if ((saddr->sin_family == AF_INET) &&
2319 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2320 vput(*vpp);
2321 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2322 }
2323 #ifdef INET6
2324 if ((saddr->sin_family == AF_INET6) &&
2325 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2326 vput(*vpp);
2327 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2328 }
2329 #endif
2330 }
2331 /*
2332 * Check/setup credentials.
2333 */
2334 if (exflags & MNT_EXKERB) {
2335 if (!kerbflag) {
2336 vput(*vpp);
2337 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2338 }
2339 } else if (kerbflag) {
2340 vput(*vpp);
2341 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2342 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2343 cred->cr_uid = credanon->cr_uid;
2344 cred->cr_gid = credanon->cr_gid;
2345 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2346 cred->cr_groups[i] = credanon->cr_groups[i];
2347 cred->cr_ngroups = i;
2348 }
2349 if (exflags & MNT_EXRDONLY)
2350 *rdonlyp = 1;
2351 else
2352 *rdonlyp = 0;
2353 if (!lockflag)
2354 VOP_UNLOCK(*vpp, 0);
2355 return (0);
2356 }
2357
2358 /*
2359 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2360 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2361 * transformed this to all zeroes in both cases, so check for it.
2362 */
2363 int
2364 nfs_ispublicfh(fhp)
2365 fhandle_t *fhp;
2366 {
2367 char *cp = (char *)fhp;
2368 int i;
2369
2370 for (i = 0; i < NFSX_V3FH; i++)
2371 if (*cp++ != 0)
2372 return (FALSE);
2373 return (TRUE);
2374 }
2375
2376 /*
2377 * This function compares two net addresses by family and returns TRUE
2378 * if they are the same host.
2379 * If there is any doubt, return FALSE.
2380 * The AF_INET family is handled as a special case so that address mbufs
2381 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2382 */
2383 int
2384 netaddr_match(family, haddr, nam)
2385 int family;
2386 union nethostaddr *haddr;
2387 struct mbuf *nam;
2388 {
2389 struct sockaddr_in *inetaddr;
2390
2391 switch (family) {
2392 case AF_INET:
2393 inetaddr = mtod(nam, struct sockaddr_in *);
2394 if (inetaddr->sin_family == AF_INET &&
2395 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2396 return (1);
2397 break;
2398 #ifdef INET6
2399 case AF_INET6:
2400 {
2401 struct sockaddr_in6 *sin6_1, *sin6_2;
2402
2403 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2404 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2405 if (sin6_1->sin6_family == AF_INET6 &&
2406 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2407 return 1;
2408 }
2409 #endif
2410 #ifdef ISO
2411 case AF_ISO:
2412 {
2413 struct sockaddr_iso *isoaddr1, *isoaddr2;
2414
2415 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2416 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2417 if (isoaddr1->siso_family == AF_ISO &&
2418 isoaddr1->siso_nlen > 0 &&
2419 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2420 SAME_ISOADDR(isoaddr1, isoaddr2))
2421 return (1);
2422 break;
2423 }
2424 #endif /* ISO */
2425 default:
2426 break;
2427 };
2428 return (0);
2429 }
2430
2431 /*
2432 * The write verifier has changed (probably due to a server reboot), so all
2433 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2434 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2435 * flag. Once done the new write verifier can be set for the mount point.
2436 */
2437 void
2438 nfs_clearcommit(mp)
2439 struct mount *mp;
2440 {
2441 struct vnode *vp;
2442 struct nfsnode *np;
2443 struct vm_page *pg;
2444 int s;
2445
2446 s = splbio();
2447 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2448 KASSERT(vp->v_mount == mp);
2449 if (vp->v_type == VNON)
2450 continue;
2451 np = VTONFS(vp);
2452 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2453 np->n_pushedhi = 0;
2454 np->n_commitflags &=
2455 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2456 simple_lock(&vp->v_uobj.vmobjlock);
2457 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2458 pg->flags &= ~PG_NEEDCOMMIT;
2459 }
2460 simple_unlock(&vp->v_uobj.vmobjlock);
2461 }
2462 splx(s);
2463 }
2464
2465 void
2466 nfs_merge_commit_ranges(vp)
2467 struct vnode *vp;
2468 {
2469 struct nfsnode *np = VTONFS(vp);
2470
2471 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2472 np->n_pushedlo = np->n_pushlo;
2473 np->n_pushedhi = np->n_pushhi;
2474 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2475 } else {
2476 if (np->n_pushlo < np->n_pushedlo)
2477 np->n_pushedlo = np->n_pushlo;
2478 if (np->n_pushhi > np->n_pushedhi)
2479 np->n_pushedhi = np->n_pushhi;
2480 }
2481
2482 np->n_pushlo = np->n_pushhi = 0;
2483 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2484
2485 #ifdef fvdl_debug
2486 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2487 (unsigned)np->n_pushedhi);
2488 #endif
2489 }
2490
2491 int
2492 nfs_in_committed_range(vp, off, len)
2493 struct vnode *vp;
2494 off_t off, len;
2495 {
2496 struct nfsnode *np = VTONFS(vp);
2497 off_t lo, hi;
2498
2499 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2500 return 0;
2501 lo = off;
2502 hi = lo + len;
2503
2504 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2505 }
2506
2507 int
2508 nfs_in_tobecommitted_range(vp, off, len)
2509 struct vnode *vp;
2510 off_t off, len;
2511 {
2512 struct nfsnode *np = VTONFS(vp);
2513 off_t lo, hi;
2514
2515 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2516 return 0;
2517 lo = off;
2518 hi = lo + len;
2519
2520 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2521 }
2522
2523 void
2524 nfs_add_committed_range(vp, off, len)
2525 struct vnode *vp;
2526 off_t off, len;
2527 {
2528 struct nfsnode *np = VTONFS(vp);
2529 off_t lo, hi;
2530
2531 lo = off;
2532 hi = lo + len;
2533
2534 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2535 np->n_pushedlo = lo;
2536 np->n_pushedhi = hi;
2537 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2538 } else {
2539 if (hi > np->n_pushedhi)
2540 np->n_pushedhi = hi;
2541 if (lo < np->n_pushedlo)
2542 np->n_pushedlo = lo;
2543 }
2544 #ifdef fvdl_debug
2545 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2546 (unsigned)np->n_pushedhi);
2547 #endif
2548 }
2549
2550 void
2551 nfs_del_committed_range(vp, off, len)
2552 struct vnode *vp;
2553 off_t off, len;
2554 {
2555 struct nfsnode *np = VTONFS(vp);
2556 off_t lo, hi;
2557
2558 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2559 return;
2560
2561 lo = off;
2562 hi = lo + len;
2563
2564 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2565 return;
2566 if (lo <= np->n_pushedlo)
2567 np->n_pushedlo = hi;
2568 else if (hi >= np->n_pushedhi)
2569 np->n_pushedhi = lo;
2570 else {
2571 /*
2572 * XXX There's only one range. If the deleted range
2573 * is in the middle, pick the largest of the
2574 * contiguous ranges that it leaves.
2575 */
2576 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2577 np->n_pushedhi = lo;
2578 else
2579 np->n_pushedlo = hi;
2580 }
2581 #ifdef fvdl_debug
2582 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2583 (unsigned)np->n_pushedhi);
2584 #endif
2585 }
2586
2587 void
2588 nfs_add_tobecommitted_range(vp, off, len)
2589 struct vnode *vp;
2590 off_t off, len;
2591 {
2592 struct nfsnode *np = VTONFS(vp);
2593 off_t lo, hi;
2594
2595 lo = off;
2596 hi = lo + len;
2597
2598 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2599 np->n_pushlo = lo;
2600 np->n_pushhi = hi;
2601 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2602 } else {
2603 if (lo < np->n_pushlo)
2604 np->n_pushlo = lo;
2605 if (hi > np->n_pushhi)
2606 np->n_pushhi = hi;
2607 }
2608 #ifdef fvdl_debug
2609 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2610 (unsigned)np->n_pushhi);
2611 #endif
2612 }
2613
2614 void
2615 nfs_del_tobecommitted_range(vp, off, len)
2616 struct vnode *vp;
2617 off_t off, len;
2618 {
2619 struct nfsnode *np = VTONFS(vp);
2620 off_t lo, hi;
2621
2622 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2623 return;
2624
2625 lo = off;
2626 hi = lo + len;
2627
2628 if (lo > np->n_pushhi || hi < np->n_pushlo)
2629 return;
2630
2631 if (lo <= np->n_pushlo)
2632 np->n_pushlo = hi;
2633 else if (hi >= np->n_pushhi)
2634 np->n_pushhi = lo;
2635 else {
2636 /*
2637 * XXX There's only one range. If the deleted range
2638 * is in the middle, pick the largest of the
2639 * contiguous ranges that it leaves.
2640 */
2641 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2642 np->n_pushhi = lo;
2643 else
2644 np->n_pushlo = hi;
2645 }
2646 #ifdef fvdl_debug
2647 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2648 (unsigned)np->n_pushhi);
2649 #endif
2650 }
2651
2652 /*
2653 * Map errnos to NFS error numbers. For Version 3 also filter out error
2654 * numbers not specified for the associated procedure.
2655 */
2656 int
2657 nfsrv_errmap(nd, err)
2658 struct nfsrv_descript *nd;
2659 int err;
2660 {
2661 const short *defaulterrp, *errp;
2662
2663 if (nd->nd_flag & ND_NFSV3) {
2664 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2665 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2666 while (*++errp) {
2667 if (*errp == err)
2668 return (err);
2669 else if (*errp > err)
2670 break;
2671 }
2672 return ((int)*defaulterrp);
2673 } else
2674 return (err & 0xffff);
2675 }
2676 if (err <= ELAST)
2677 return ((int)nfsrv_v2errmap[err - 1]);
2678 return (NFSERR_IO);
2679 }
2680
2681 /*
2682 * Sort the group list in increasing numerical order.
2683 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2684 * that used to be here.)
2685 */
2686 void
2687 nfsrvw_sort(list, num)
2688 gid_t *list;
2689 int num;
2690 {
2691 int i, j;
2692 gid_t v;
2693
2694 /* Insertion sort. */
2695 for (i = 1; i < num; i++) {
2696 v = list[i];
2697 /* find correct slot for value v, moving others up */
2698 for (j = i; --j >= 0 && v < list[j];)
2699 list[j + 1] = list[j];
2700 list[j + 1] = v;
2701 }
2702 }
2703
2704 /*
2705 * copy credentials making sure that the result can be compared with memcmp().
2706 */
2707 void
2708 nfsrv_setcred(incred, outcred)
2709 struct ucred *incred, *outcred;
2710 {
2711 int i;
2712
2713 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2714 outcred->cr_ref = 1;
2715 outcred->cr_uid = incred->cr_uid;
2716 outcred->cr_gid = incred->cr_gid;
2717 outcred->cr_ngroups = incred->cr_ngroups;
2718 for (i = 0; i < incred->cr_ngroups; i++)
2719 outcred->cr_groups[i] = incred->cr_groups[i];
2720 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2721 }
2722