nfs_subs.c revision 1.96 1 /* $NetBSD: nfs_subs.c,v 1.96 2001/09/15 16:13:01 chs Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include "fs_nfs.h"
77 #include "opt_nfs.h"
78 #include "opt_nfsserver.h"
79 #include "opt_iso.h"
80 #include "opt_inet.h"
81
82 /*
83 * These functions support the macros and help fiddle mbuf chains for
84 * the nfs op functions. They do things like create the rpc header and
85 * copy data between mbuf chains and uio lists.
86 */
87 #include <sys/param.h>
88 #include <sys/proc.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 static u_int32_t nfs_xid = 0;
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142
143 /* NFS client/server stats. */
144 struct nfsstats nfsstats;
145
146 /*
147 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
148 */
149 const int nfsv3_procid[NFS_NPROCS] = {
150 NFSPROC_NULL,
151 NFSPROC_GETATTR,
152 NFSPROC_SETATTR,
153 NFSPROC_NOOP,
154 NFSPROC_LOOKUP,
155 NFSPROC_READLINK,
156 NFSPROC_READ,
157 NFSPROC_NOOP,
158 NFSPROC_WRITE,
159 NFSPROC_CREATE,
160 NFSPROC_REMOVE,
161 NFSPROC_RENAME,
162 NFSPROC_LINK,
163 NFSPROC_SYMLINK,
164 NFSPROC_MKDIR,
165 NFSPROC_RMDIR,
166 NFSPROC_READDIR,
167 NFSPROC_FSSTAT,
168 NFSPROC_NOOP,
169 NFSPROC_NOOP,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 };
209
210 /*
211 * Maps errno values to nfs error numbers.
212 * Use NFSERR_IO as the catch all for ones not specifically defined in
213 * RFC 1094.
214 */
215 static const u_char nfsrv_v2errmap[ELAST] = {
216 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
217 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
220 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
229 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO,
233 };
234
235 /*
236 * Maps errno values to nfs error numbers.
237 * Although it is not obvious whether or not NFS clients really care if
238 * a returned error value is in the specified list for the procedure, the
239 * safest thing to do is filter them appropriately. For Version 2, the
240 * X/Open XNFS document is the only specification that defines error values
241 * for each RPC (The RFC simply lists all possible error values for all RPCs),
242 * so I have decided to not do this for Version 2.
243 * The first entry is the default error return and the rest are the valid
244 * errors for that RPC in increasing numeric order.
245 */
246 static const short nfsv3err_null[] = {
247 0,
248 0,
249 };
250
251 static const short nfsv3err_getattr[] = {
252 NFSERR_IO,
253 NFSERR_IO,
254 NFSERR_STALE,
255 NFSERR_BADHANDLE,
256 NFSERR_SERVERFAULT,
257 0,
258 };
259
260 static const short nfsv3err_setattr[] = {
261 NFSERR_IO,
262 NFSERR_PERM,
263 NFSERR_IO,
264 NFSERR_ACCES,
265 NFSERR_INVAL,
266 NFSERR_NOSPC,
267 NFSERR_ROFS,
268 NFSERR_DQUOT,
269 NFSERR_STALE,
270 NFSERR_BADHANDLE,
271 NFSERR_NOT_SYNC,
272 NFSERR_SERVERFAULT,
273 0,
274 };
275
276 static const short nfsv3err_lookup[] = {
277 NFSERR_IO,
278 NFSERR_NOENT,
279 NFSERR_IO,
280 NFSERR_ACCES,
281 NFSERR_NOTDIR,
282 NFSERR_NAMETOL,
283 NFSERR_STALE,
284 NFSERR_BADHANDLE,
285 NFSERR_SERVERFAULT,
286 0,
287 };
288
289 static const short nfsv3err_access[] = {
290 NFSERR_IO,
291 NFSERR_IO,
292 NFSERR_STALE,
293 NFSERR_BADHANDLE,
294 NFSERR_SERVERFAULT,
295 0,
296 };
297
298 static const short nfsv3err_readlink[] = {
299 NFSERR_IO,
300 NFSERR_IO,
301 NFSERR_ACCES,
302 NFSERR_INVAL,
303 NFSERR_STALE,
304 NFSERR_BADHANDLE,
305 NFSERR_NOTSUPP,
306 NFSERR_SERVERFAULT,
307 0,
308 };
309
310 static const short nfsv3err_read[] = {
311 NFSERR_IO,
312 NFSERR_IO,
313 NFSERR_NXIO,
314 NFSERR_ACCES,
315 NFSERR_INVAL,
316 NFSERR_STALE,
317 NFSERR_BADHANDLE,
318 NFSERR_SERVERFAULT,
319 NFSERR_JUKEBOX,
320 0,
321 };
322
323 static const short nfsv3err_write[] = {
324 NFSERR_IO,
325 NFSERR_IO,
326 NFSERR_ACCES,
327 NFSERR_INVAL,
328 NFSERR_FBIG,
329 NFSERR_NOSPC,
330 NFSERR_ROFS,
331 NFSERR_DQUOT,
332 NFSERR_STALE,
333 NFSERR_BADHANDLE,
334 NFSERR_SERVERFAULT,
335 NFSERR_JUKEBOX,
336 0,
337 };
338
339 static const short nfsv3err_create[] = {
340 NFSERR_IO,
341 NFSERR_IO,
342 NFSERR_ACCES,
343 NFSERR_EXIST,
344 NFSERR_NOTDIR,
345 NFSERR_NOSPC,
346 NFSERR_ROFS,
347 NFSERR_NAMETOL,
348 NFSERR_DQUOT,
349 NFSERR_STALE,
350 NFSERR_BADHANDLE,
351 NFSERR_NOTSUPP,
352 NFSERR_SERVERFAULT,
353 0,
354 };
355
356 static const short nfsv3err_mkdir[] = {
357 NFSERR_IO,
358 NFSERR_IO,
359 NFSERR_ACCES,
360 NFSERR_EXIST,
361 NFSERR_NOTDIR,
362 NFSERR_NOSPC,
363 NFSERR_ROFS,
364 NFSERR_NAMETOL,
365 NFSERR_DQUOT,
366 NFSERR_STALE,
367 NFSERR_BADHANDLE,
368 NFSERR_NOTSUPP,
369 NFSERR_SERVERFAULT,
370 0,
371 };
372
373 static const short nfsv3err_symlink[] = {
374 NFSERR_IO,
375 NFSERR_IO,
376 NFSERR_ACCES,
377 NFSERR_EXIST,
378 NFSERR_NOTDIR,
379 NFSERR_NOSPC,
380 NFSERR_ROFS,
381 NFSERR_NAMETOL,
382 NFSERR_DQUOT,
383 NFSERR_STALE,
384 NFSERR_BADHANDLE,
385 NFSERR_NOTSUPP,
386 NFSERR_SERVERFAULT,
387 0,
388 };
389
390 static const short nfsv3err_mknod[] = {
391 NFSERR_IO,
392 NFSERR_IO,
393 NFSERR_ACCES,
394 NFSERR_EXIST,
395 NFSERR_NOTDIR,
396 NFSERR_NOSPC,
397 NFSERR_ROFS,
398 NFSERR_NAMETOL,
399 NFSERR_DQUOT,
400 NFSERR_STALE,
401 NFSERR_BADHANDLE,
402 NFSERR_NOTSUPP,
403 NFSERR_SERVERFAULT,
404 NFSERR_BADTYPE,
405 0,
406 };
407
408 static const short nfsv3err_remove[] = {
409 NFSERR_IO,
410 NFSERR_NOENT,
411 NFSERR_IO,
412 NFSERR_ACCES,
413 NFSERR_NOTDIR,
414 NFSERR_ROFS,
415 NFSERR_NAMETOL,
416 NFSERR_STALE,
417 NFSERR_BADHANDLE,
418 NFSERR_SERVERFAULT,
419 0,
420 };
421
422 static const short nfsv3err_rmdir[] = {
423 NFSERR_IO,
424 NFSERR_NOENT,
425 NFSERR_IO,
426 NFSERR_ACCES,
427 NFSERR_EXIST,
428 NFSERR_NOTDIR,
429 NFSERR_INVAL,
430 NFSERR_ROFS,
431 NFSERR_NAMETOL,
432 NFSERR_NOTEMPTY,
433 NFSERR_STALE,
434 NFSERR_BADHANDLE,
435 NFSERR_NOTSUPP,
436 NFSERR_SERVERFAULT,
437 0,
438 };
439
440 static const short nfsv3err_rename[] = {
441 NFSERR_IO,
442 NFSERR_NOENT,
443 NFSERR_IO,
444 NFSERR_ACCES,
445 NFSERR_EXIST,
446 NFSERR_XDEV,
447 NFSERR_NOTDIR,
448 NFSERR_ISDIR,
449 NFSERR_INVAL,
450 NFSERR_NOSPC,
451 NFSERR_ROFS,
452 NFSERR_MLINK,
453 NFSERR_NAMETOL,
454 NFSERR_NOTEMPTY,
455 NFSERR_DQUOT,
456 NFSERR_STALE,
457 NFSERR_BADHANDLE,
458 NFSERR_NOTSUPP,
459 NFSERR_SERVERFAULT,
460 0,
461 };
462
463 static const short nfsv3err_link[] = {
464 NFSERR_IO,
465 NFSERR_IO,
466 NFSERR_ACCES,
467 NFSERR_EXIST,
468 NFSERR_XDEV,
469 NFSERR_NOTDIR,
470 NFSERR_INVAL,
471 NFSERR_NOSPC,
472 NFSERR_ROFS,
473 NFSERR_MLINK,
474 NFSERR_NAMETOL,
475 NFSERR_DQUOT,
476 NFSERR_STALE,
477 NFSERR_BADHANDLE,
478 NFSERR_NOTSUPP,
479 NFSERR_SERVERFAULT,
480 0,
481 };
482
483 static const short nfsv3err_readdir[] = {
484 NFSERR_IO,
485 NFSERR_IO,
486 NFSERR_ACCES,
487 NFSERR_NOTDIR,
488 NFSERR_STALE,
489 NFSERR_BADHANDLE,
490 NFSERR_BAD_COOKIE,
491 NFSERR_TOOSMALL,
492 NFSERR_SERVERFAULT,
493 0,
494 };
495
496 static const short nfsv3err_readdirplus[] = {
497 NFSERR_IO,
498 NFSERR_IO,
499 NFSERR_ACCES,
500 NFSERR_NOTDIR,
501 NFSERR_STALE,
502 NFSERR_BADHANDLE,
503 NFSERR_BAD_COOKIE,
504 NFSERR_NOTSUPP,
505 NFSERR_TOOSMALL,
506 NFSERR_SERVERFAULT,
507 0,
508 };
509
510 static const short nfsv3err_fsstat[] = {
511 NFSERR_IO,
512 NFSERR_IO,
513 NFSERR_STALE,
514 NFSERR_BADHANDLE,
515 NFSERR_SERVERFAULT,
516 0,
517 };
518
519 static const short nfsv3err_fsinfo[] = {
520 NFSERR_STALE,
521 NFSERR_STALE,
522 NFSERR_BADHANDLE,
523 NFSERR_SERVERFAULT,
524 0,
525 };
526
527 static const short nfsv3err_pathconf[] = {
528 NFSERR_STALE,
529 NFSERR_STALE,
530 NFSERR_BADHANDLE,
531 NFSERR_SERVERFAULT,
532 0,
533 };
534
535 static const short nfsv3err_commit[] = {
536 NFSERR_IO,
537 NFSERR_IO,
538 NFSERR_STALE,
539 NFSERR_BADHANDLE,
540 NFSERR_SERVERFAULT,
541 0,
542 };
543
544 static const short * const nfsrv_v3errmap[] = {
545 nfsv3err_null,
546 nfsv3err_getattr,
547 nfsv3err_setattr,
548 nfsv3err_lookup,
549 nfsv3err_access,
550 nfsv3err_readlink,
551 nfsv3err_read,
552 nfsv3err_write,
553 nfsv3err_create,
554 nfsv3err_mkdir,
555 nfsv3err_symlink,
556 nfsv3err_mknod,
557 nfsv3err_remove,
558 nfsv3err_rmdir,
559 nfsv3err_rename,
560 nfsv3err_link,
561 nfsv3err_readdir,
562 nfsv3err_readdirplus,
563 nfsv3err_fsstat,
564 nfsv3err_fsinfo,
565 nfsv3err_pathconf,
566 nfsv3err_commit,
567 };
568
569 extern struct nfsrtt nfsrtt;
570 extern time_t nqnfsstarttime;
571 extern int nqsrv_clockskew;
572 extern int nqsrv_writeslack;
573 extern int nqsrv_maxlease;
574 extern const int nqnfs_piggy[NFS_NPROCS];
575 extern struct nfsnodehashhead *nfsnodehashtbl;
576 extern u_long nfsnodehash;
577
578 LIST_HEAD(nfsnodehashhead, nfsnode);
579 u_long nfsdirhashmask;
580
581 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
582
583 /*
584 * Create the header for an rpc request packet
585 * The hsiz is the size of the rest of the nfs request header.
586 * (just used to decide if a cluster is a good idea)
587 */
588 struct mbuf *
589 nfsm_reqh(vp, procid, hsiz, bposp)
590 struct vnode *vp;
591 u_long procid;
592 int hsiz;
593 caddr_t *bposp;
594 {
595 struct mbuf *mb;
596 caddr_t bpos;
597 struct nfsmount *nmp;
598 #ifndef NFS_V2_ONLY
599 u_int32_t *tl;
600 struct mbuf *mb2;
601 int nqflag;
602 #endif
603
604 MGET(mb, M_WAIT, MT_DATA);
605 if (hsiz >= MINCLSIZE)
606 MCLGET(mb, M_WAIT);
607 mb->m_len = 0;
608 bpos = mtod(mb, caddr_t);
609
610 /*
611 * For NQNFS, add lease request.
612 */
613 if (vp) {
614 nmp = VFSTONFS(vp->v_mount);
615 #ifndef NFS_V2_ONLY
616 if (nmp->nm_flag & NFSMNT_NQNFS) {
617 nqflag = NQNFS_NEEDLEASE(vp, procid);
618 if (nqflag) {
619 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
620 *tl++ = txdr_unsigned(nqflag);
621 *tl = txdr_unsigned(nmp->nm_leaseterm);
622 } else {
623 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
624 *tl = 0;
625 }
626 }
627 #endif
628 }
629 /* Finally, return values */
630 *bposp = bpos;
631 return (mb);
632 }
633
634 /*
635 * Build the RPC header and fill in the authorization info.
636 * The authorization string argument is only used when the credentials
637 * come from outside of the kernel.
638 * Returns the head of the mbuf list.
639 */
640 struct mbuf *
641 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
642 verf_str, mrest, mrest_len, mbp, xidp)
643 struct ucred *cr;
644 int nmflag;
645 int procid;
646 int auth_type;
647 int auth_len;
648 char *auth_str;
649 int verf_len;
650 char *verf_str;
651 struct mbuf *mrest;
652 int mrest_len;
653 struct mbuf **mbp;
654 u_int32_t *xidp;
655 {
656 struct mbuf *mb;
657 u_int32_t *tl;
658 caddr_t bpos;
659 int i;
660 struct mbuf *mreq, *mb2;
661 int siz, grpsiz, authsiz;
662 struct timeval tv;
663 static u_int32_t base;
664
665 authsiz = nfsm_rndup(auth_len);
666 MGETHDR(mb, M_WAIT, MT_DATA);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 MCLGET(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 /*
684 * derive initial xid from system time
685 * XXX time is invalid if root not yet mounted
686 */
687 if (!base && (rootvp)) {
688 microtime(&tv);
689 base = tv.tv_sec << 12;
690 nfs_xid = base;
691 }
692 /*
693 * Skip zero xid if it should ever happen.
694 */
695 if (++nfs_xid == 0)
696 nfs_xid++;
697
698 *tl++ = *xidp = txdr_unsigned(nfs_xid);
699 *tl++ = rpc_call;
700 *tl++ = rpc_vers;
701 if (nmflag & NFSMNT_NQNFS) {
702 *tl++ = txdr_unsigned(NQNFS_PROG);
703 *tl++ = txdr_unsigned(NQNFS_VER3);
704 } else {
705 *tl++ = txdr_unsigned(NFS_PROG);
706 if (nmflag & NFSMNT_NFSV3)
707 *tl++ = txdr_unsigned(NFS_VER3);
708 else
709 *tl++ = txdr_unsigned(NFS_VER2);
710 }
711 if (nmflag & NFSMNT_NFSV3)
712 *tl++ = txdr_unsigned(procid);
713 else
714 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
715
716 /*
717 * And then the authorization cred.
718 */
719 *tl++ = txdr_unsigned(auth_type);
720 *tl = txdr_unsigned(authsiz);
721 switch (auth_type) {
722 case RPCAUTH_UNIX:
723 nfsm_build(tl, u_int32_t *, auth_len);
724 *tl++ = 0; /* stamp ?? */
725 *tl++ = 0; /* NULL hostname */
726 *tl++ = txdr_unsigned(cr->cr_uid);
727 *tl++ = txdr_unsigned(cr->cr_gid);
728 grpsiz = (auth_len >> 2) - 5;
729 *tl++ = txdr_unsigned(grpsiz);
730 for (i = 0; i < grpsiz; i++)
731 *tl++ = txdr_unsigned(cr->cr_groups[i]);
732 break;
733 case RPCAUTH_KERB4:
734 siz = auth_len;
735 while (siz > 0) {
736 if (M_TRAILINGSPACE(mb) == 0) {
737 MGET(mb2, M_WAIT, MT_DATA);
738 if (siz >= MINCLSIZE)
739 MCLGET(mb2, M_WAIT);
740 mb->m_next = mb2;
741 mb = mb2;
742 mb->m_len = 0;
743 bpos = mtod(mb, caddr_t);
744 }
745 i = min(siz, M_TRAILINGSPACE(mb));
746 memcpy(bpos, auth_str, i);
747 mb->m_len += i;
748 auth_str += i;
749 bpos += i;
750 siz -= i;
751 }
752 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
753 for (i = 0; i < siz; i++)
754 *bpos++ = '\0';
755 mb->m_len += siz;
756 }
757 break;
758 };
759
760 /*
761 * And the verifier...
762 */
763 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
764 if (verf_str) {
765 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
766 *tl = txdr_unsigned(verf_len);
767 siz = verf_len;
768 while (siz > 0) {
769 if (M_TRAILINGSPACE(mb) == 0) {
770 MGET(mb2, M_WAIT, MT_DATA);
771 if (siz >= MINCLSIZE)
772 MCLGET(mb2, M_WAIT);
773 mb->m_next = mb2;
774 mb = mb2;
775 mb->m_len = 0;
776 bpos = mtod(mb, caddr_t);
777 }
778 i = min(siz, M_TRAILINGSPACE(mb));
779 memcpy(bpos, verf_str, i);
780 mb->m_len += i;
781 verf_str += i;
782 bpos += i;
783 siz -= i;
784 }
785 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
786 for (i = 0; i < siz; i++)
787 *bpos++ = '\0';
788 mb->m_len += siz;
789 }
790 } else {
791 *tl++ = txdr_unsigned(RPCAUTH_NULL);
792 *tl = 0;
793 }
794 mb->m_next = mrest;
795 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
796 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
797 *mbp = mb;
798 return (mreq);
799 }
800
801 /*
802 * copies mbuf chain to the uio scatter/gather list
803 */
804 int
805 nfsm_mbuftouio(mrep, uiop, siz, dpos)
806 struct mbuf **mrep;
807 struct uio *uiop;
808 int siz;
809 caddr_t *dpos;
810 {
811 char *mbufcp, *uiocp;
812 int xfer, left, len;
813 struct mbuf *mp;
814 long uiosiz, rem;
815 int error = 0;
816
817 mp = *mrep;
818 mbufcp = *dpos;
819 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
820 rem = nfsm_rndup(siz)-siz;
821 while (siz > 0) {
822 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
823 return (EFBIG);
824 left = uiop->uio_iov->iov_len;
825 uiocp = uiop->uio_iov->iov_base;
826 if (left > siz)
827 left = siz;
828 uiosiz = left;
829 while (left > 0) {
830 while (len == 0) {
831 mp = mp->m_next;
832 if (mp == NULL)
833 return (EBADRPC);
834 mbufcp = mtod(mp, caddr_t);
835 len = mp->m_len;
836 }
837 xfer = (left > len) ? len : left;
838 #ifdef notdef
839 /* Not Yet.. */
840 if (uiop->uio_iov->iov_op != NULL)
841 (*(uiop->uio_iov->iov_op))
842 (mbufcp, uiocp, xfer);
843 else
844 #endif
845 if (uiop->uio_segflg == UIO_SYSSPACE)
846 memcpy(uiocp, mbufcp, xfer);
847 else
848 copyout(mbufcp, uiocp, xfer);
849 left -= xfer;
850 len -= xfer;
851 mbufcp += xfer;
852 uiocp += xfer;
853 uiop->uio_offset += xfer;
854 uiop->uio_resid -= xfer;
855 }
856 if (uiop->uio_iov->iov_len <= siz) {
857 uiop->uio_iovcnt--;
858 uiop->uio_iov++;
859 } else {
860 uiop->uio_iov->iov_base =
861 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
862 uiop->uio_iov->iov_len -= uiosiz;
863 }
864 siz -= uiosiz;
865 }
866 *dpos = mbufcp;
867 *mrep = mp;
868 if (rem > 0) {
869 if (len < rem)
870 error = nfs_adv(mrep, dpos, rem, len);
871 else
872 *dpos += rem;
873 }
874 return (error);
875 }
876
877 /*
878 * copies a uio scatter/gather list to an mbuf chain.
879 * NOTE: can ony handle iovcnt == 1
880 */
881 int
882 nfsm_uiotombuf(uiop, mq, siz, bpos)
883 struct uio *uiop;
884 struct mbuf **mq;
885 int siz;
886 caddr_t *bpos;
887 {
888 char *uiocp;
889 struct mbuf *mp, *mp2;
890 int xfer, left, mlen;
891 int uiosiz, clflg, rem;
892 char *cp;
893
894 #ifdef DIAGNOSTIC
895 if (uiop->uio_iovcnt != 1)
896 panic("nfsm_uiotombuf: iovcnt != 1");
897 #endif
898
899 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
900 clflg = 1;
901 else
902 clflg = 0;
903 rem = nfsm_rndup(siz)-siz;
904 mp = mp2 = *mq;
905 while (siz > 0) {
906 left = uiop->uio_iov->iov_len;
907 uiocp = uiop->uio_iov->iov_base;
908 if (left > siz)
909 left = siz;
910 uiosiz = left;
911 while (left > 0) {
912 mlen = M_TRAILINGSPACE(mp);
913 if (mlen == 0) {
914 MGET(mp, M_WAIT, MT_DATA);
915 if (clflg)
916 MCLGET(mp, M_WAIT);
917 mp->m_len = 0;
918 mp2->m_next = mp;
919 mp2 = mp;
920 mlen = M_TRAILINGSPACE(mp);
921 }
922 xfer = (left > mlen) ? mlen : left;
923 #ifdef notdef
924 /* Not Yet.. */
925 if (uiop->uio_iov->iov_op != NULL)
926 (*(uiop->uio_iov->iov_op))
927 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
928 else
929 #endif
930 if (uiop->uio_segflg == UIO_SYSSPACE)
931 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
932 else
933 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
934 mp->m_len += xfer;
935 left -= xfer;
936 uiocp += xfer;
937 uiop->uio_offset += xfer;
938 uiop->uio_resid -= xfer;
939 }
940 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
941 uiosiz;
942 uiop->uio_iov->iov_len -= uiosiz;
943 siz -= uiosiz;
944 }
945 if (rem > 0) {
946 if (rem > M_TRAILINGSPACE(mp)) {
947 MGET(mp, M_WAIT, MT_DATA);
948 mp->m_len = 0;
949 mp2->m_next = mp;
950 }
951 cp = mtod(mp, caddr_t)+mp->m_len;
952 for (left = 0; left < rem; left++)
953 *cp++ = '\0';
954 mp->m_len += rem;
955 *bpos = cp;
956 } else
957 *bpos = mtod(mp, caddr_t)+mp->m_len;
958 *mq = mp;
959 return (0);
960 }
961
962 /*
963 * Get at least "siz" bytes of correctly aligned data.
964 * When called the mbuf pointers are not necessarily correct,
965 * dsosp points to what ought to be in m_data and left contains
966 * what ought to be in m_len.
967 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
968 * cases. (The macros use the vars. dpos and dpos2)
969 */
970 int
971 nfsm_disct(mdp, dposp, siz, left, cp2)
972 struct mbuf **mdp;
973 caddr_t *dposp;
974 int siz;
975 int left;
976 caddr_t *cp2;
977 {
978 struct mbuf *m1, *m2;
979 struct mbuf *havebuf = NULL;
980 caddr_t src = *dposp;
981 caddr_t dst;
982 int len;
983
984 #ifdef DEBUG
985 if (left < 0)
986 panic("nfsm_disct: left < 0");
987 #endif
988 m1 = *mdp;
989 /*
990 * Skip through the mbuf chain looking for an mbuf with
991 * some data. If the first mbuf found has enough data
992 * and it is correctly aligned return it.
993 */
994 while (left == 0) {
995 havebuf = m1;
996 *mdp = m1 = m1->m_next;
997 if (m1 == NULL)
998 return (EBADRPC);
999 src = mtod(m1, caddr_t);
1000 left = m1->m_len;
1001 /*
1002 * If we start a new mbuf and it is big enough
1003 * and correctly aligned just return it, don't
1004 * do any pull up.
1005 */
1006 if (left >= siz && nfsm_aligned(src)) {
1007 *cp2 = src;
1008 *dposp = src + siz;
1009 return (0);
1010 }
1011 }
1012 if (m1->m_flags & M_EXT) {
1013 if (havebuf) {
1014 /* If the first mbuf with data has external data
1015 * and there is a previous empty mbuf use it
1016 * to move the data into.
1017 */
1018 m2 = m1;
1019 *mdp = m1 = havebuf;
1020 if (m1->m_flags & M_EXT) {
1021 MEXTREMOVE(m1);
1022 }
1023 } else {
1024 /*
1025 * If the first mbuf has a external data
1026 * and there is no previous empty mbuf
1027 * allocate a new mbuf and move the external
1028 * data to the new mbuf. Also make the first
1029 * mbuf look empty.
1030 */
1031 m2 = m_get(M_WAIT, MT_DATA);
1032 m2->m_ext = m1->m_ext;
1033 m2->m_data = src;
1034 m2->m_len = left;
1035 MCLADDREFERENCE(m1, m2);
1036 MEXTREMOVE(m1);
1037 m2->m_next = m1->m_next;
1038 m1->m_next = m2;
1039 }
1040 m1->m_len = 0;
1041 dst = m1->m_dat;
1042 } else {
1043 /*
1044 * If the first mbuf has no external data
1045 * move the data to the front of the mbuf.
1046 */
1047 if ((dst = m1->m_dat) != src)
1048 memmove(dst, src, left);
1049 dst += left;
1050 m1->m_len = left;
1051 m2 = m1->m_next;
1052 }
1053 m1->m_flags &= ~M_PKTHDR;
1054 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1055 *dposp = mtod(m1, caddr_t) + siz;
1056 /*
1057 * Loop through mbufs pulling data up into first mbuf until
1058 * the first mbuf is full or there is no more data to
1059 * pullup.
1060 */
1061 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1062 if ((len = min(len, m2->m_len)) != 0)
1063 memcpy(dst, m2->m_data, len);
1064 m1->m_len += len;
1065 dst += len;
1066 m2->m_data += len;
1067 m2->m_len -= len;
1068 m2 = m2->m_next;
1069 }
1070 if (m1->m_len < siz)
1071 return (EBADRPC);
1072 return (0);
1073 }
1074
1075 /*
1076 * Advance the position in the mbuf chain.
1077 */
1078 int
1079 nfs_adv(mdp, dposp, offs, left)
1080 struct mbuf **mdp;
1081 caddr_t *dposp;
1082 int offs;
1083 int left;
1084 {
1085 struct mbuf *m;
1086 int s;
1087
1088 m = *mdp;
1089 s = left;
1090 while (s < offs) {
1091 offs -= s;
1092 m = m->m_next;
1093 if (m == NULL)
1094 return (EBADRPC);
1095 s = m->m_len;
1096 }
1097 *mdp = m;
1098 *dposp = mtod(m, caddr_t)+offs;
1099 return (0);
1100 }
1101
1102 /*
1103 * Copy a string into mbufs for the hard cases...
1104 */
1105 int
1106 nfsm_strtmbuf(mb, bpos, cp, siz)
1107 struct mbuf **mb;
1108 char **bpos;
1109 const char *cp;
1110 long siz;
1111 {
1112 struct mbuf *m1 = NULL, *m2;
1113 long left, xfer, len, tlen;
1114 u_int32_t *tl;
1115 int putsize;
1116
1117 putsize = 1;
1118 m2 = *mb;
1119 left = M_TRAILINGSPACE(m2);
1120 if (left > 0) {
1121 tl = ((u_int32_t *)(*bpos));
1122 *tl++ = txdr_unsigned(siz);
1123 putsize = 0;
1124 left -= NFSX_UNSIGNED;
1125 m2->m_len += NFSX_UNSIGNED;
1126 if (left > 0) {
1127 memcpy((caddr_t) tl, cp, left);
1128 siz -= left;
1129 cp += left;
1130 m2->m_len += left;
1131 left = 0;
1132 }
1133 }
1134 /* Loop around adding mbufs */
1135 while (siz > 0) {
1136 MGET(m1, M_WAIT, MT_DATA);
1137 if (siz > MLEN)
1138 MCLGET(m1, M_WAIT);
1139 m1->m_len = NFSMSIZ(m1);
1140 m2->m_next = m1;
1141 m2 = m1;
1142 tl = mtod(m1, u_int32_t *);
1143 tlen = 0;
1144 if (putsize) {
1145 *tl++ = txdr_unsigned(siz);
1146 m1->m_len -= NFSX_UNSIGNED;
1147 tlen = NFSX_UNSIGNED;
1148 putsize = 0;
1149 }
1150 if (siz < m1->m_len) {
1151 len = nfsm_rndup(siz);
1152 xfer = siz;
1153 if (xfer < len)
1154 *(tl+(xfer>>2)) = 0;
1155 } else {
1156 xfer = len = m1->m_len;
1157 }
1158 memcpy((caddr_t) tl, cp, xfer);
1159 m1->m_len = len+tlen;
1160 siz -= xfer;
1161 cp += xfer;
1162 }
1163 *mb = m1;
1164 *bpos = mtod(m1, caddr_t)+m1->m_len;
1165 return (0);
1166 }
1167
1168 /*
1169 * Directory caching routines. They work as follows:
1170 * - a cache is maintained per VDIR nfsnode.
1171 * - for each offset cookie that is exported to userspace, and can
1172 * thus be thrown back at us as an offset to VOP_READDIR, store
1173 * information in the cache.
1174 * - cached are:
1175 * - cookie itself
1176 * - blocknumber (essentially just a search key in the buffer cache)
1177 * - entry number in block.
1178 * - offset cookie of block in which this entry is stored
1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1180 * - entries are looked up in a hash table
1181 * - also maintained is an LRU list of entries, used to determine
1182 * which ones to delete if the cache grows too large.
1183 * - if 32 <-> 64 translation mode is requested for a filesystem,
1184 * the cache also functions as a translation table
1185 * - in the translation case, invalidating the cache does not mean
1186 * flushing it, but just marking entries as invalid, except for
1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1188 * still be able to use the cache as a translation table.
1189 * - 32 bit cookies are uniquely created by combining the hash table
1190 * entry value, and one generation count per hash table entry,
1191 * incremented each time an entry is appended to the chain.
1192 * - the cache is invalidated each time a direcory is modified
1193 * - sanity checks are also done; if an entry in a block turns
1194 * out not to have a matching cookie, the cache is invalidated
1195 * and a new block starting from the wanted offset is fetched from
1196 * the server.
1197 * - directory entries as read from the server are extended to contain
1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1199 * the cache and exporting them to userspace through the cookie
1200 * argument to VOP_READDIR.
1201 */
1202
1203 u_long
1204 nfs_dirhash(off)
1205 off_t off;
1206 {
1207 int i;
1208 char *cp = (char *)&off;
1209 u_long sum = 0L;
1210
1211 for (i = 0 ; i < sizeof (off); i++)
1212 sum += *cp++;
1213
1214 return sum;
1215 }
1216
1217 void
1218 nfs_initdircache(vp)
1219 struct vnode *vp;
1220 {
1221 struct nfsnode *np = VTONFS(vp);
1222 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1223
1224 np->n_dircachesize = 0;
1225 np->n_dblkno = 1;
1226 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1227 M_WAITOK, &nfsdirhashmask);
1228 TAILQ_INIT(&np->n_dirchain);
1229 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1230 MALLOC(np->n_dirgens, unsigned *,
1231 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1232 M_WAITOK);
1233 memset((caddr_t)np->n_dirgens, 0,
1234 NFS_DIRHASHSIZ * sizeof (unsigned));
1235 }
1236 }
1237
1238 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1239
1240 struct nfsdircache *
1241 nfs_searchdircache(vp, off, do32, hashent)
1242 struct vnode *vp;
1243 off_t off;
1244 int do32;
1245 int *hashent;
1246 {
1247 struct nfsdirhashhead *ndhp;
1248 struct nfsdircache *ndp = NULL;
1249 struct nfsnode *np = VTONFS(vp);
1250 unsigned ent;
1251
1252 /*
1253 * Zero is always a valid cookie.
1254 */
1255 if (off == 0)
1256 return &dzero;
1257
1258 /*
1259 * We use a 32bit cookie as search key, directly reconstruct
1260 * the hashentry. Else use the hashfunction.
1261 */
1262 if (do32) {
1263 ent = (u_int32_t)off >> 24;
1264 if (ent >= NFS_DIRHASHSIZ)
1265 return NULL;
1266 ndhp = &np->n_dircache[ent];
1267 } else {
1268 ndhp = NFSDIRHASH(np, off);
1269 }
1270
1271 if (hashent)
1272 *hashent = (int)(ndhp - np->n_dircache);
1273 if (do32) {
1274 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1275 if (ndp->dc_cookie32 == (u_int32_t)off) {
1276 /*
1277 * An invalidated entry will become the
1278 * start of a new block fetched from
1279 * the server.
1280 */
1281 if (ndp->dc_blkno == -1) {
1282 ndp->dc_blkcookie = ndp->dc_cookie;
1283 ndp->dc_blkno = np->n_dblkno++;
1284 ndp->dc_entry = 0;
1285 }
1286 break;
1287 }
1288 }
1289 } else {
1290 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1291 if (ndp->dc_cookie == off)
1292 break;
1293 }
1294 return ndp;
1295 }
1296
1297
1298 struct nfsdircache *
1299 nfs_enterdircache(vp, off, blkoff, en, blkno)
1300 struct vnode *vp;
1301 off_t off, blkoff;
1302 daddr_t blkno;
1303 int en;
1304 {
1305 struct nfsnode *np = VTONFS(vp);
1306 struct nfsdirhashhead *ndhp;
1307 struct nfsdircache *ndp = NULL, *first;
1308 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1309 int hashent, gen, overwrite;
1310
1311 if (!np->n_dircache)
1312 /*
1313 * XXX would like to do this in nfs_nget but vtype
1314 * isn't known at that time.
1315 */
1316 nfs_initdircache(vp);
1317
1318 /*
1319 * XXX refuse entries for offset 0. amd(8) erroneously sets
1320 * cookie 0 for the '.' entry, making this necessary. This
1321 * isn't so bad, as 0 is a special case anyway.
1322 */
1323 if (off == 0)
1324 return &dzero;
1325
1326 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1327
1328 if (ndp && ndp->dc_blkno != -1) {
1329 /*
1330 * Overwriting an old entry. Check if it's the same.
1331 * If so, just return. If not, remove the old entry.
1332 */
1333 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1334 return ndp;
1335 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1336 LIST_REMOVE(ndp, dc_hash);
1337 FREE(ndp, M_NFSDIROFF);
1338 ndp = 0;
1339 }
1340
1341 ndhp = &np->n_dircache[hashent];
1342
1343 if (!ndp) {
1344 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1345 M_WAITOK);
1346 overwrite = 0;
1347 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1348 /*
1349 * We're allocating a new entry, so bump the
1350 * generation number.
1351 */
1352 gen = ++np->n_dirgens[hashent];
1353 if (gen == 0) {
1354 np->n_dirgens[hashent]++;
1355 gen++;
1356 }
1357 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1358 }
1359 } else
1360 overwrite = 1;
1361
1362 /*
1363 * If the entry number is 0, we are at the start of a new block, so
1364 * allocate a new blocknumber.
1365 */
1366 if (en == 0)
1367 ndp->dc_blkno = np->n_dblkno++;
1368 else
1369 ndp->dc_blkno = blkno;
1370
1371 ndp->dc_cookie = off;
1372 ndp->dc_blkcookie = blkoff;
1373 ndp->dc_entry = en;
1374
1375 if (overwrite)
1376 return ndp;
1377
1378 /*
1379 * If the maximum directory cookie cache size has been reached
1380 * for this node, take one off the front. The idea is that
1381 * directories are typically read front-to-back once, so that
1382 * the oldest entries can be thrown away without much performance
1383 * loss.
1384 */
1385 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1386 first = np->n_dirchain.tqh_first;
1387 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1388 LIST_REMOVE(first, dc_hash);
1389 FREE(first, M_NFSDIROFF);
1390 } else
1391 np->n_dircachesize++;
1392
1393 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1394 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1395 return ndp;
1396 }
1397
1398 void
1399 nfs_invaldircache(vp, forcefree)
1400 struct vnode *vp;
1401 int forcefree;
1402 {
1403 struct nfsnode *np = VTONFS(vp);
1404 struct nfsdircache *ndp = NULL;
1405 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1406
1407 #ifdef DIAGNOSTIC
1408 if (vp->v_type != VDIR)
1409 panic("nfs: invaldircache: not dir");
1410 #endif
1411
1412 if (!np->n_dircache)
1413 return;
1414
1415 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1416 while ((ndp = np->n_dirchain.tqh_first)) {
1417 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1418 LIST_REMOVE(ndp, dc_hash);
1419 FREE(ndp, M_NFSDIROFF);
1420 }
1421 np->n_dircachesize = 0;
1422 if (forcefree && np->n_dirgens) {
1423 FREE(np->n_dirgens, M_NFSDIROFF);
1424 }
1425 } else {
1426 for (ndp = np->n_dirchain.tqh_first; ndp;
1427 ndp = ndp->dc_chain.tqe_next)
1428 ndp->dc_blkno = -1;
1429 }
1430
1431 np->n_dblkno = 1;
1432 }
1433
1434 /*
1435 * Called once before VFS init to initialize shared and
1436 * server-specific data structures.
1437 */
1438 void
1439 nfs_init()
1440 {
1441 nfsrtt.pos = 0;
1442 rpc_vers = txdr_unsigned(RPC_VER2);
1443 rpc_call = txdr_unsigned(RPC_CALL);
1444 rpc_reply = txdr_unsigned(RPC_REPLY);
1445 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1446 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1447 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1448 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1449 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1450 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1451 nfs_prog = txdr_unsigned(NFS_PROG);
1452 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1453 nfs_true = txdr_unsigned(TRUE);
1454 nfs_false = txdr_unsigned(FALSE);
1455 nfs_xdrneg1 = txdr_unsigned(-1);
1456 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1457 if (nfs_ticks < 1)
1458 nfs_ticks = 1;
1459 #ifdef NFSSERVER
1460 nfsrv_init(0); /* Init server data structures */
1461 nfsrv_initcache(); /* Init the server request cache */
1462 #endif /* NFSSERVER */
1463
1464 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1465 /*
1466 * Initialize the nqnfs data structures.
1467 */
1468 if (nqnfsstarttime == 0) {
1469 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1470 + nqsrv_clockskew + nqsrv_writeslack;
1471 NQLOADNOVRAM(nqnfsstarttime);
1472 CIRCLEQ_INIT(&nqtimerhead);
1473 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1474 M_WAITOK, &nqfhhash);
1475 }
1476 #endif
1477
1478 /*
1479 * Initialize reply list and start timer
1480 */
1481 TAILQ_INIT(&nfs_reqq);
1482 nfs_timer(NULL);
1483 }
1484
1485 #ifdef NFS
1486 /*
1487 * Called once at VFS init to initialize client-specific data structures.
1488 */
1489 void
1490 nfs_vfs_init()
1491 {
1492 nfs_nhinit(); /* Init the nfsnode table */
1493 }
1494
1495 void
1496 nfs_vfs_reinit()
1497 {
1498 nfs_nhreinit();
1499 }
1500
1501 void
1502 nfs_vfs_done()
1503 {
1504 nfs_nhdone();
1505 }
1506
1507 /*
1508 * Attribute cache routines.
1509 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1510 * that are on the mbuf list
1511 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1512 * error otherwise
1513 */
1514
1515 /*
1516 * Load the attribute cache (that lives in the nfsnode entry) with
1517 * the values on the mbuf list and
1518 * Iff vap not NULL
1519 * copy the attributes to *vaper
1520 */
1521 int
1522 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1523 struct vnode **vpp;
1524 struct mbuf **mdp;
1525 caddr_t *dposp;
1526 struct vattr *vaper;
1527 {
1528 int32_t t1;
1529 caddr_t cp2;
1530 int error = 0;
1531 struct mbuf *md;
1532 int v3 = NFS_ISV3(*vpp);
1533
1534 md = *mdp;
1535 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1536 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1537 if (error)
1538 return (error);
1539 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1540 }
1541
1542 int
1543 nfs_loadattrcache(vpp, fp, vaper)
1544 struct vnode **vpp;
1545 struct nfs_fattr *fp;
1546 struct vattr *vaper;
1547 {
1548 struct vnode *vp = *vpp;
1549 struct vattr *vap;
1550 int v3 = NFS_ISV3(vp);
1551 enum vtype vtyp;
1552 u_short vmode;
1553 struct timespec mtime;
1554 struct vnode *nvp;
1555 int32_t rdev;
1556 struct nfsnode *np;
1557 extern int (**spec_nfsv2nodeop_p) __P((void *));
1558
1559 if (v3) {
1560 vtyp = nfsv3tov_type(fp->fa_type);
1561 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1562 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1563 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1564 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1565 } else {
1566 vtyp = nfsv2tov_type(fp->fa_type);
1567 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1568 if (vtyp == VNON || vtyp == VREG)
1569 vtyp = IFTOVT(vmode);
1570 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1571 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1572
1573 /*
1574 * Really ugly NFSv2 kludge.
1575 */
1576 if (vtyp == VCHR && rdev == 0xffffffff)
1577 vtyp = VFIFO;
1578 }
1579
1580 /*
1581 * If v_type == VNON it is a new node, so fill in the v_type,
1582 * n_mtime fields. Check to see if it represents a special
1583 * device, and if so, check for a possible alias. Once the
1584 * correct vnode has been obtained, fill in the rest of the
1585 * information.
1586 */
1587 np = VTONFS(vp);
1588 if (vp->v_type == VNON) {
1589 vp->v_type = vtyp;
1590 if (vp->v_type == VFIFO) {
1591 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1592 vp->v_op = fifo_nfsv2nodeop_p;
1593 }
1594 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1595 vp->v_op = spec_nfsv2nodeop_p;
1596 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1597 if (nvp) {
1598 /*
1599 * Discard unneeded vnode, but save its nfsnode.
1600 * Since the nfsnode does not have a lock, its
1601 * vnode lock has to be carried over.
1602 */
1603 /*
1604 * XXX is the old node sure to be locked here?
1605 */
1606 KASSERT(lockstatus(&vp->v_lock) ==
1607 LK_EXCLUSIVE);
1608 nvp->v_data = vp->v_data;
1609 vp->v_data = NULL;
1610 VOP_UNLOCK(vp, 0);
1611 vp->v_op = spec_vnodeop_p;
1612 vrele(vp);
1613 vgone(vp);
1614 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1615 &nvp->v_interlock);
1616 /*
1617 * Reinitialize aliased node.
1618 */
1619 np->n_vnode = nvp;
1620 *vpp = vp = nvp;
1621 }
1622 }
1623 np->n_mtime = mtime.tv_sec;
1624 }
1625 vap = np->n_vattr;
1626 vap->va_type = vtyp;
1627 vap->va_mode = vmode & ALLPERMS;
1628 vap->va_rdev = (dev_t)rdev;
1629 vap->va_mtime = mtime;
1630 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1631 switch (vtyp) {
1632 case VDIR:
1633 vap->va_blocksize = NFS_DIRFRAGSIZ;
1634 break;
1635 case VBLK:
1636 vap->va_blocksize = BLKDEV_IOSIZE;
1637 break;
1638 case VCHR:
1639 vap->va_blocksize = MAXBSIZE;
1640 break;
1641 default:
1642 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1643 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1644 break;
1645 }
1646 if (v3) {
1647 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1648 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1649 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1650 vap->va_size = fxdr_hyper(&fp->fa3_size);
1651 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1652 vap->va_fileid = fxdr_unsigned(int32_t,
1653 fp->fa3_fileid.nfsuquad[1]);
1654 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1655 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1656 vap->va_flags = 0;
1657 vap->va_filerev = 0;
1658 } else {
1659 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1660 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1661 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1662 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1663 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1664 * NFS_FABLKSIZE;
1665 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1666 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1667 vap->va_flags = 0;
1668 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1669 fp->fa2_ctime.nfsv2_sec);
1670 vap->va_ctime.tv_nsec = 0;
1671 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1672 vap->va_filerev = 0;
1673 }
1674 if (vap->va_size != np->n_size) {
1675 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1676 vap->va_size = np->n_size;
1677 } else {
1678 np->n_size = vap->va_size;
1679 if (vap->va_type == VREG) {
1680 uvm_vnp_setsize(vp, np->n_size);
1681 }
1682 }
1683 }
1684 np->n_attrstamp = time.tv_sec;
1685 if (vaper != NULL) {
1686 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1687 if (np->n_flag & NCHG) {
1688 if (np->n_flag & NACC)
1689 vaper->va_atime = np->n_atim;
1690 if (np->n_flag & NUPD)
1691 vaper->va_mtime = np->n_mtim;
1692 }
1693 }
1694 return (0);
1695 }
1696
1697 /*
1698 * Check the time stamp
1699 * If the cache is valid, copy contents to *vap and return 0
1700 * otherwise return an error
1701 */
1702 int
1703 nfs_getattrcache(vp, vaper)
1704 struct vnode *vp;
1705 struct vattr *vaper;
1706 {
1707 struct nfsnode *np = VTONFS(vp);
1708 struct vattr *vap;
1709
1710 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1711 nfsstats.attrcache_misses++;
1712 return (ENOENT);
1713 }
1714 nfsstats.attrcache_hits++;
1715 vap = np->n_vattr;
1716 if (vap->va_size != np->n_size) {
1717 if (vap->va_type == VREG) {
1718 if (np->n_flag & NMODIFIED) {
1719 if (vap->va_size < np->n_size)
1720 vap->va_size = np->n_size;
1721 else
1722 np->n_size = vap->va_size;
1723 } else
1724 np->n_size = vap->va_size;
1725 uvm_vnp_setsize(vp, np->n_size);
1726 } else
1727 np->n_size = vap->va_size;
1728 }
1729 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1730 if (np->n_flag & NCHG) {
1731 if (np->n_flag & NACC)
1732 vaper->va_atime = np->n_atim;
1733 if (np->n_flag & NUPD)
1734 vaper->va_mtime = np->n_mtim;
1735 }
1736 return (0);
1737 }
1738
1739 /*
1740 * Heuristic to see if the server XDR encodes directory cookies or not.
1741 * it is not supposed to, but a lot of servers may do this. Also, since
1742 * most/all servers will implement V2 as well, it is expected that they
1743 * may return just 32 bits worth of cookie information, so we need to
1744 * find out in which 32 bits this information is available. We do this
1745 * to avoid trouble with emulated binaries that can't handle 64 bit
1746 * directory offsets.
1747 */
1748
1749 void
1750 nfs_cookieheuristic(vp, flagp, p, cred)
1751 struct vnode *vp;
1752 int *flagp;
1753 struct proc *p;
1754 struct ucred *cred;
1755 {
1756 struct uio auio;
1757 struct iovec aiov;
1758 caddr_t buf, cp;
1759 struct dirent *dp;
1760 off_t *cookies = NULL, *cop;
1761 int error, eof, nc, len;
1762
1763 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1764
1765 aiov.iov_base = buf;
1766 aiov.iov_len = NFS_DIRFRAGSIZ;
1767 auio.uio_iov = &aiov;
1768 auio.uio_iovcnt = 1;
1769 auio.uio_rw = UIO_READ;
1770 auio.uio_segflg = UIO_SYSSPACE;
1771 auio.uio_procp = p;
1772 auio.uio_resid = NFS_DIRFRAGSIZ;
1773 auio.uio_offset = 0;
1774
1775 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1776
1777 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1778 if (error || len == 0) {
1779 FREE(buf, M_TEMP);
1780 if (cookies)
1781 free(cookies, M_TEMP);
1782 return;
1783 }
1784
1785 /*
1786 * Find the first valid entry and look at its offset cookie.
1787 */
1788
1789 cp = buf;
1790 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1791 dp = (struct dirent *)cp;
1792 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1793 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1794 *flagp |= NFSMNT_SWAPCOOKIE;
1795 nfs_invaldircache(vp, 0);
1796 nfs_vinvalbuf(vp, 0, cred, p, 1);
1797 }
1798 break;
1799 }
1800 cop++;
1801 cp += dp->d_reclen;
1802 }
1803
1804 FREE(buf, M_TEMP);
1805 free(cookies, M_TEMP);
1806 }
1807 #endif /* NFS */
1808
1809 /*
1810 * Set up nameidata for a lookup() call and do it.
1811 *
1812 * If pubflag is set, this call is done for a lookup operation on the
1813 * public filehandle. In that case we allow crossing mountpoints and
1814 * absolute pathnames. However, the caller is expected to check that
1815 * the lookup result is within the public fs, and deny access if
1816 * it is not.
1817 */
1818 int
1819 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1820 struct nameidata *ndp;
1821 fhandle_t *fhp;
1822 int len;
1823 struct nfssvc_sock *slp;
1824 struct mbuf *nam;
1825 struct mbuf **mdp;
1826 caddr_t *dposp;
1827 struct vnode **retdirp;
1828 struct proc *p;
1829 int kerbflag, pubflag;
1830 {
1831 int i, rem;
1832 struct mbuf *md;
1833 char *fromcp, *tocp, *cp;
1834 struct iovec aiov;
1835 struct uio auio;
1836 struct vnode *dp;
1837 int error, rdonly, linklen;
1838 struct componentname *cnp = &ndp->ni_cnd;
1839
1840 *retdirp = (struct vnode *)0;
1841
1842 if ((len + 1) > MAXPATHLEN)
1843 return (ENAMETOOLONG);
1844 cnp->cn_pnbuf = PNBUF_GET();
1845
1846 /*
1847 * Copy the name from the mbuf list to ndp->ni_pnbuf
1848 * and set the various ndp fields appropriately.
1849 */
1850 fromcp = *dposp;
1851 tocp = cnp->cn_pnbuf;
1852 md = *mdp;
1853 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1854 for (i = 0; i < len; i++) {
1855 while (rem == 0) {
1856 md = md->m_next;
1857 if (md == NULL) {
1858 error = EBADRPC;
1859 goto out;
1860 }
1861 fromcp = mtod(md, caddr_t);
1862 rem = md->m_len;
1863 }
1864 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1865 error = EACCES;
1866 goto out;
1867 }
1868 *tocp++ = *fromcp++;
1869 rem--;
1870 }
1871 *tocp = '\0';
1872 *mdp = md;
1873 *dposp = fromcp;
1874 len = nfsm_rndup(len)-len;
1875 if (len > 0) {
1876 if (rem >= len)
1877 *dposp += len;
1878 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1879 goto out;
1880 }
1881
1882 /*
1883 * Extract and set starting directory.
1884 */
1885 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1886 nam, &rdonly, kerbflag, pubflag);
1887 if (error)
1888 goto out;
1889 if (dp->v_type != VDIR) {
1890 vrele(dp);
1891 error = ENOTDIR;
1892 goto out;
1893 }
1894
1895 if (rdonly)
1896 cnp->cn_flags |= RDONLY;
1897
1898 *retdirp = dp;
1899
1900 if (pubflag) {
1901 /*
1902 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1903 * and the 'native path' indicator.
1904 */
1905 cp = PNBUF_GET();
1906 fromcp = cnp->cn_pnbuf;
1907 tocp = cp;
1908 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1909 switch ((unsigned char)*fromcp) {
1910 case WEBNFS_NATIVE_CHAR:
1911 /*
1912 * 'Native' path for us is the same
1913 * as a path according to the NFS spec,
1914 * just skip the escape char.
1915 */
1916 fromcp++;
1917 break;
1918 /*
1919 * More may be added in the future, range 0x80-0xff
1920 */
1921 default:
1922 error = EIO;
1923 FREE(cp, M_NAMEI);
1924 goto out;
1925 }
1926 }
1927 /*
1928 * Translate the '%' escapes, URL-style.
1929 */
1930 while (*fromcp != '\0') {
1931 if (*fromcp == WEBNFS_ESC_CHAR) {
1932 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1933 fromcp++;
1934 *tocp++ = HEXSTRTOI(fromcp);
1935 fromcp += 2;
1936 continue;
1937 } else {
1938 error = ENOENT;
1939 FREE(cp, M_NAMEI);
1940 goto out;
1941 }
1942 } else
1943 *tocp++ = *fromcp++;
1944 }
1945 *tocp = '\0';
1946 PNBUF_PUT(cnp->cn_pnbuf);
1947 cnp->cn_pnbuf = cp;
1948 }
1949
1950 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1951 ndp->ni_segflg = UIO_SYSSPACE;
1952
1953 if (pubflag) {
1954 ndp->ni_rootdir = rootvnode;
1955 ndp->ni_loopcnt = 0;
1956 if (cnp->cn_pnbuf[0] == '/')
1957 dp = rootvnode;
1958 } else {
1959 cnp->cn_flags |= NOCROSSMOUNT;
1960 }
1961
1962 cnp->cn_proc = p;
1963 VREF(dp);
1964
1965 for (;;) {
1966 cnp->cn_nameptr = cnp->cn_pnbuf;
1967 ndp->ni_startdir = dp;
1968 /*
1969 * And call lookup() to do the real work
1970 */
1971 error = lookup(ndp);
1972 if (error) {
1973 PNBUF_PUT(cnp->cn_pnbuf);
1974 return (error);
1975 }
1976 /*
1977 * Check for encountering a symbolic link
1978 */
1979 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1980 if (cnp->cn_flags & (SAVENAME | SAVESTART))
1981 cnp->cn_flags |= HASBUF;
1982 else
1983 PNBUF_PUT(cnp->cn_pnbuf);
1984 return (0);
1985 } else {
1986 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
1987 VOP_UNLOCK(ndp->ni_dvp, 0);
1988 if (!pubflag) {
1989 error = EINVAL;
1990 break;
1991 }
1992
1993 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1994 error = ELOOP;
1995 break;
1996 }
1997 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
1998 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
1999 cnp->cn_proc);
2000 if (error != 0)
2001 break;
2002 }
2003 if (ndp->ni_pathlen > 1)
2004 cp = PNBUF_GET();
2005 else
2006 cp = cnp->cn_pnbuf;
2007 aiov.iov_base = cp;
2008 aiov.iov_len = MAXPATHLEN;
2009 auio.uio_iov = &aiov;
2010 auio.uio_iovcnt = 1;
2011 auio.uio_offset = 0;
2012 auio.uio_rw = UIO_READ;
2013 auio.uio_segflg = UIO_SYSSPACE;
2014 auio.uio_procp = (struct proc *)0;
2015 auio.uio_resid = MAXPATHLEN;
2016 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2017 if (error) {
2018 badlink:
2019 if (ndp->ni_pathlen > 1)
2020 PNBUF_PUT(cp);
2021 break;
2022 }
2023 linklen = MAXPATHLEN - auio.uio_resid;
2024 if (linklen == 0) {
2025 error = ENOENT;
2026 goto badlink;
2027 }
2028 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2029 error = ENAMETOOLONG;
2030 goto badlink;
2031 }
2032 if (ndp->ni_pathlen > 1) {
2033 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2034 PNBUF_PUT(cnp->cn_pnbuf);
2035 cnp->cn_pnbuf = cp;
2036 } else
2037 cnp->cn_pnbuf[linklen] = '\0';
2038 ndp->ni_pathlen += linklen;
2039 vput(ndp->ni_vp);
2040 dp = ndp->ni_dvp;
2041 /*
2042 * Check if root directory should replace current directory.
2043 */
2044 if (cnp->cn_pnbuf[0] == '/') {
2045 vrele(dp);
2046 dp = ndp->ni_rootdir;
2047 VREF(dp);
2048 }
2049 }
2050 }
2051 vrele(ndp->ni_dvp);
2052 vput(ndp->ni_vp);
2053 ndp->ni_vp = NULL;
2054 out:
2055 PNBUF_PUT(cnp->cn_pnbuf);
2056 return (error);
2057 }
2058
2059 /*
2060 * A fiddled version of m_adj() that ensures null fill to a long
2061 * boundary and only trims off the back end
2062 */
2063 void
2064 nfsm_adj(mp, len, nul)
2065 struct mbuf *mp;
2066 int len;
2067 int nul;
2068 {
2069 struct mbuf *m;
2070 int count, i;
2071 char *cp;
2072
2073 /*
2074 * Trim from tail. Scan the mbuf chain,
2075 * calculating its length and finding the last mbuf.
2076 * If the adjustment only affects this mbuf, then just
2077 * adjust and return. Otherwise, rescan and truncate
2078 * after the remaining size.
2079 */
2080 count = 0;
2081 m = mp;
2082 for (;;) {
2083 count += m->m_len;
2084 if (m->m_next == (struct mbuf *)0)
2085 break;
2086 m = m->m_next;
2087 }
2088 if (m->m_len > len) {
2089 m->m_len -= len;
2090 if (nul > 0) {
2091 cp = mtod(m, caddr_t)+m->m_len-nul;
2092 for (i = 0; i < nul; i++)
2093 *cp++ = '\0';
2094 }
2095 return;
2096 }
2097 count -= len;
2098 if (count < 0)
2099 count = 0;
2100 /*
2101 * Correct length for chain is "count".
2102 * Find the mbuf with last data, adjust its length,
2103 * and toss data from remaining mbufs on chain.
2104 */
2105 for (m = mp; m; m = m->m_next) {
2106 if (m->m_len >= count) {
2107 m->m_len = count;
2108 if (nul > 0) {
2109 cp = mtod(m, caddr_t)+m->m_len-nul;
2110 for (i = 0; i < nul; i++)
2111 *cp++ = '\0';
2112 }
2113 break;
2114 }
2115 count -= m->m_len;
2116 }
2117 for (m = m->m_next;m;m = m->m_next)
2118 m->m_len = 0;
2119 }
2120
2121 /*
2122 * Make these functions instead of macros, so that the kernel text size
2123 * doesn't get too big...
2124 */
2125 void
2126 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2127 struct nfsrv_descript *nfsd;
2128 int before_ret;
2129 struct vattr *before_vap;
2130 int after_ret;
2131 struct vattr *after_vap;
2132 struct mbuf **mbp;
2133 char **bposp;
2134 {
2135 struct mbuf *mb = *mbp, *mb2;
2136 char *bpos = *bposp;
2137 u_int32_t *tl;
2138
2139 if (before_ret) {
2140 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2141 *tl = nfs_false;
2142 } else {
2143 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2144 *tl++ = nfs_true;
2145 txdr_hyper(before_vap->va_size, tl);
2146 tl += 2;
2147 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2148 tl += 2;
2149 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2150 }
2151 *bposp = bpos;
2152 *mbp = mb;
2153 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2154 }
2155
2156 void
2157 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2158 struct nfsrv_descript *nfsd;
2159 int after_ret;
2160 struct vattr *after_vap;
2161 struct mbuf **mbp;
2162 char **bposp;
2163 {
2164 struct mbuf *mb = *mbp, *mb2;
2165 char *bpos = *bposp;
2166 u_int32_t *tl;
2167 struct nfs_fattr *fp;
2168
2169 if (after_ret) {
2170 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2171 *tl = nfs_false;
2172 } else {
2173 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2174 *tl++ = nfs_true;
2175 fp = (struct nfs_fattr *)tl;
2176 nfsm_srvfattr(nfsd, after_vap, fp);
2177 }
2178 *mbp = mb;
2179 *bposp = bpos;
2180 }
2181
2182 void
2183 nfsm_srvfattr(nfsd, vap, fp)
2184 struct nfsrv_descript *nfsd;
2185 struct vattr *vap;
2186 struct nfs_fattr *fp;
2187 {
2188
2189 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2190 fp->fa_uid = txdr_unsigned(vap->va_uid);
2191 fp->fa_gid = txdr_unsigned(vap->va_gid);
2192 if (nfsd->nd_flag & ND_NFSV3) {
2193 fp->fa_type = vtonfsv3_type(vap->va_type);
2194 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2195 txdr_hyper(vap->va_size, &fp->fa3_size);
2196 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2197 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2198 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2199 fp->fa3_fsid.nfsuquad[0] = 0;
2200 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2201 fp->fa3_fileid.nfsuquad[0] = 0;
2202 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2203 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2204 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2205 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2206 } else {
2207 fp->fa_type = vtonfsv2_type(vap->va_type);
2208 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2209 fp->fa2_size = txdr_unsigned(vap->va_size);
2210 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2211 if (vap->va_type == VFIFO)
2212 fp->fa2_rdev = 0xffffffff;
2213 else
2214 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2215 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2216 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2217 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2218 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2219 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2220 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2221 }
2222 }
2223
2224 /*
2225 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2226 * - look up fsid in mount list (if not found ret error)
2227 * - get vp and export rights by calling VFS_FHTOVP()
2228 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2229 * - if not lockflag unlock it with VOP_UNLOCK()
2230 */
2231 int
2232 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2233 fhandle_t *fhp;
2234 int lockflag;
2235 struct vnode **vpp;
2236 struct ucred *cred;
2237 struct nfssvc_sock *slp;
2238 struct mbuf *nam;
2239 int *rdonlyp;
2240 int kerbflag;
2241 {
2242 struct mount *mp;
2243 int i;
2244 struct ucred *credanon;
2245 int error, exflags;
2246 struct sockaddr_in *saddr;
2247
2248 *vpp = (struct vnode *)0;
2249
2250 if (nfs_ispublicfh(fhp)) {
2251 if (!pubflag || !nfs_pub.np_valid)
2252 return (ESTALE);
2253 fhp = &nfs_pub.np_handle;
2254 }
2255
2256 mp = vfs_getvfs(&fhp->fh_fsid);
2257 if (!mp)
2258 return (ESTALE);
2259 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2260 if (error)
2261 return (error);
2262 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2263 if (error)
2264 return (error);
2265
2266 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2267 saddr = mtod(nam, struct sockaddr_in *);
2268 if ((saddr->sin_family == AF_INET) &&
2269 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2270 vput(*vpp);
2271 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2272 }
2273 #ifdef INET6
2274 if ((saddr->sin_family == AF_INET6) &&
2275 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2276 vput(*vpp);
2277 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2278 }
2279 #endif
2280 }
2281 /*
2282 * Check/setup credentials.
2283 */
2284 if (exflags & MNT_EXKERB) {
2285 if (!kerbflag) {
2286 vput(*vpp);
2287 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2288 }
2289 } else if (kerbflag) {
2290 vput(*vpp);
2291 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2292 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2293 cred->cr_uid = credanon->cr_uid;
2294 cred->cr_gid = credanon->cr_gid;
2295 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2296 cred->cr_groups[i] = credanon->cr_groups[i];
2297 cred->cr_ngroups = i;
2298 }
2299 if (exflags & MNT_EXRDONLY)
2300 *rdonlyp = 1;
2301 else
2302 *rdonlyp = 0;
2303 if (!lockflag)
2304 VOP_UNLOCK(*vpp, 0);
2305 return (0);
2306 }
2307
2308 /*
2309 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2310 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2311 * transformed this to all zeroes in both cases, so check for it.
2312 */
2313 int
2314 nfs_ispublicfh(fhp)
2315 fhandle_t *fhp;
2316 {
2317 char *cp = (char *)fhp;
2318 int i;
2319
2320 for (i = 0; i < NFSX_V3FH; i++)
2321 if (*cp++ != 0)
2322 return (FALSE);
2323 return (TRUE);
2324 }
2325
2326 /*
2327 * This function compares two net addresses by family and returns TRUE
2328 * if they are the same host.
2329 * If there is any doubt, return FALSE.
2330 * The AF_INET family is handled as a special case so that address mbufs
2331 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2332 */
2333 int
2334 netaddr_match(family, haddr, nam)
2335 int family;
2336 union nethostaddr *haddr;
2337 struct mbuf *nam;
2338 {
2339 struct sockaddr_in *inetaddr;
2340
2341 switch (family) {
2342 case AF_INET:
2343 inetaddr = mtod(nam, struct sockaddr_in *);
2344 if (inetaddr->sin_family == AF_INET &&
2345 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2346 return (1);
2347 break;
2348 #ifdef INET6
2349 case AF_INET6:
2350 {
2351 struct sockaddr_in6 *sin6_1, *sin6_2;
2352
2353 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2354 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2355 if (sin6_1->sin6_family == AF_INET6 &&
2356 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2357 return 1;
2358 }
2359 #endif
2360 #ifdef ISO
2361 case AF_ISO:
2362 {
2363 struct sockaddr_iso *isoaddr1, *isoaddr2;
2364
2365 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2366 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2367 if (isoaddr1->siso_family == AF_ISO &&
2368 isoaddr1->siso_nlen > 0 &&
2369 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2370 SAME_ISOADDR(isoaddr1, isoaddr2))
2371 return (1);
2372 break;
2373 }
2374 #endif /* ISO */
2375 default:
2376 break;
2377 };
2378 return (0);
2379 }
2380
2381 /*
2382 * The write verifier has changed (probably due to a server reboot), so all
2383 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2384 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2385 * flag. Once done the new write verifier can be set for the mount point.
2386 */
2387 void
2388 nfs_clearcommit(mp)
2389 struct mount *mp;
2390 {
2391 struct vnode *vp;
2392 struct nfsnode *np;
2393 struct vm_page *pg;
2394 int s;
2395
2396 s = splbio();
2397 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2398 KASSERT(vp->v_mount == mp);
2399 if (vp->v_type == VNON)
2400 continue;
2401 np = VTONFS(vp);
2402 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2403 np->n_pushedhi = 0;
2404 np->n_commitflags &=
2405 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2406 simple_lock(&vp->v_uvm.u_obj.vmobjlock);
2407 TAILQ_FOREACH(pg, &vp->v_uvm.u_obj.memq, listq) {
2408 pg->flags &= ~PG_NEEDCOMMIT;
2409 }
2410 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
2411 }
2412 splx(s);
2413 }
2414
2415 void
2416 nfs_merge_commit_ranges(vp)
2417 struct vnode *vp;
2418 {
2419 struct nfsnode *np = VTONFS(vp);
2420
2421 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2422 np->n_pushedlo = np->n_pushlo;
2423 np->n_pushedhi = np->n_pushhi;
2424 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2425 } else {
2426 if (np->n_pushlo < np->n_pushedlo)
2427 np->n_pushedlo = np->n_pushlo;
2428 if (np->n_pushhi > np->n_pushedhi)
2429 np->n_pushedhi = np->n_pushhi;
2430 }
2431
2432 np->n_pushlo = np->n_pushhi = 0;
2433 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2434
2435 #ifdef fvdl_debug
2436 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2437 (unsigned)np->n_pushedhi);
2438 #endif
2439 }
2440
2441 int
2442 nfs_in_committed_range(vp, off, len)
2443 struct vnode *vp;
2444 off_t off, len;
2445 {
2446 struct nfsnode *np = VTONFS(vp);
2447 off_t lo, hi;
2448
2449 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2450 return 0;
2451 lo = off;
2452 hi = lo + len;
2453
2454 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2455 }
2456
2457 int
2458 nfs_in_tobecommitted_range(vp, off, len)
2459 struct vnode *vp;
2460 off_t off, len;
2461 {
2462 struct nfsnode *np = VTONFS(vp);
2463 off_t lo, hi;
2464
2465 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2466 return 0;
2467 lo = off;
2468 hi = lo + len;
2469
2470 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2471 }
2472
2473 void
2474 nfs_add_committed_range(vp, off, len)
2475 struct vnode *vp;
2476 off_t off, len;
2477 {
2478 struct nfsnode *np = VTONFS(vp);
2479 off_t lo, hi;
2480
2481 lo = off;
2482 hi = lo + len;
2483
2484 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2485 np->n_pushedlo = lo;
2486 np->n_pushedhi = hi;
2487 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2488 } else {
2489 if (hi > np->n_pushedhi)
2490 np->n_pushedhi = hi;
2491 if (lo < np->n_pushedlo)
2492 np->n_pushedlo = lo;
2493 }
2494 #ifdef fvdl_debug
2495 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2496 (unsigned)np->n_pushedhi);
2497 #endif
2498 }
2499
2500 void
2501 nfs_del_committed_range(vp, off, len)
2502 struct vnode *vp;
2503 off_t off, len;
2504 {
2505 struct nfsnode *np = VTONFS(vp);
2506 off_t lo, hi;
2507
2508 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2509 return;
2510
2511 lo = off;
2512 hi = lo + len;
2513
2514 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2515 return;
2516 if (lo <= np->n_pushedlo)
2517 np->n_pushedlo = hi;
2518 else if (hi >= np->n_pushedhi)
2519 np->n_pushedhi = lo;
2520 else {
2521 /*
2522 * XXX There's only one range. If the deleted range
2523 * is in the middle, pick the largest of the
2524 * contiguous ranges that it leaves.
2525 */
2526 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2527 np->n_pushedhi = lo;
2528 else
2529 np->n_pushedlo = hi;
2530 }
2531 #ifdef fvdl_debug
2532 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2533 (unsigned)np->n_pushedhi);
2534 #endif
2535 }
2536
2537 void
2538 nfs_add_tobecommitted_range(vp, off, len)
2539 struct vnode *vp;
2540 off_t off, len;
2541 {
2542 struct nfsnode *np = VTONFS(vp);
2543 off_t lo, hi;
2544
2545 lo = off;
2546 hi = lo + len;
2547
2548 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2549 np->n_pushlo = lo;
2550 np->n_pushhi = hi;
2551 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2552 } else {
2553 if (lo < np->n_pushlo)
2554 np->n_pushlo = lo;
2555 if (hi > np->n_pushhi)
2556 np->n_pushhi = hi;
2557 }
2558 #ifdef fvdl_debug
2559 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2560 (unsigned)np->n_pushhi);
2561 #endif
2562 }
2563
2564 void
2565 nfs_del_tobecommitted_range(vp, off, len)
2566 struct vnode *vp;
2567 off_t off, len;
2568 {
2569 struct nfsnode *np = VTONFS(vp);
2570 off_t lo, hi;
2571
2572 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2573 return;
2574
2575 lo = off;
2576 hi = lo + len;
2577
2578 if (lo > np->n_pushhi || hi < np->n_pushlo)
2579 return;
2580
2581 if (lo <= np->n_pushlo)
2582 np->n_pushlo = hi;
2583 else if (hi >= np->n_pushhi)
2584 np->n_pushhi = lo;
2585 else {
2586 /*
2587 * XXX There's only one range. If the deleted range
2588 * is in the middle, pick the largest of the
2589 * contiguous ranges that it leaves.
2590 */
2591 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2592 np->n_pushhi = lo;
2593 else
2594 np->n_pushlo = hi;
2595 }
2596 #ifdef fvdl_debug
2597 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2598 (unsigned)np->n_pushhi);
2599 #endif
2600 }
2601
2602 /*
2603 * Map errnos to NFS error numbers. For Version 3 also filter out error
2604 * numbers not specified for the associated procedure.
2605 */
2606 int
2607 nfsrv_errmap(nd, err)
2608 struct nfsrv_descript *nd;
2609 int err;
2610 {
2611 const short *defaulterrp, *errp;
2612
2613 if (nd->nd_flag & ND_NFSV3) {
2614 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2615 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2616 while (*++errp) {
2617 if (*errp == err)
2618 return (err);
2619 else if (*errp > err)
2620 break;
2621 }
2622 return ((int)*defaulterrp);
2623 } else
2624 return (err & 0xffff);
2625 }
2626 if (err <= ELAST)
2627 return ((int)nfsrv_v2errmap[err - 1]);
2628 return (NFSERR_IO);
2629 }
2630
2631 /*
2632 * Sort the group list in increasing numerical order.
2633 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2634 * that used to be here.)
2635 */
2636 void
2637 nfsrvw_sort(list, num)
2638 gid_t *list;
2639 int num;
2640 {
2641 int i, j;
2642 gid_t v;
2643
2644 /* Insertion sort. */
2645 for (i = 1; i < num; i++) {
2646 v = list[i];
2647 /* find correct slot for value v, moving others up */
2648 for (j = i; --j >= 0 && v < list[j];)
2649 list[j + 1] = list[j];
2650 list[j + 1] = v;
2651 }
2652 }
2653
2654 /*
2655 * copy credentials making sure that the result can be compared with memcmp().
2656 */
2657 void
2658 nfsrv_setcred(incred, outcred)
2659 struct ucred *incred, *outcred;
2660 {
2661 int i;
2662
2663 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2664 outcred->cr_ref = 1;
2665 outcred->cr_uid = incred->cr_uid;
2666 outcred->cr_gid = incred->cr_gid;
2667 outcred->cr_ngroups = incred->cr_ngroups;
2668 for (i = 0; i < incred->cr_ngroups; i++)
2669 outcred->cr_groups[i] = incred->cr_groups[i];
2670 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2671 }
2672