nfs_subs.c revision 1.99 1 /* $NetBSD: nfs_subs.c,v 1.99 2001/11/10 10:59:10 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.99 2001/11/10 10:59:10 lukem Exp $");
78
79 #include "fs_nfs.h"
80 #include "opt_nfs.h"
81 #include "opt_nfsserver.h"
82 #include "opt_iso.h"
83 #include "opt_inet.h"
84
85 /*
86 * These functions support the macros and help fiddle mbuf chains for
87 * the nfs op functions. They do things like create the rpc header and
88 * copy data between mbuf chains and uio lists.
89 */
90 #include <sys/param.h>
91 #include <sys/proc.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/vnode.h>
96 #include <sys/namei.h>
97 #include <sys/mbuf.h>
98 #include <sys/socket.h>
99 #include <sys/stat.h>
100 #include <sys/malloc.h>
101 #include <sys/filedesc.h>
102 #include <sys/time.h>
103 #include <sys/dirent.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <nfs/rpcv2.h>
108 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs.h>
111 #include <nfs/xdr_subs.h>
112 #include <nfs/nfsm_subs.h>
113 #include <nfs/nfsmount.h>
114 #include <nfs/nqnfs.h>
115 #include <nfs/nfsrtt.h>
116 #include <nfs/nfs_var.h>
117
118 #include <miscfs/specfs/specdev.h>
119
120 #include <netinet/in.h>
121 #ifdef ISO
122 #include <netiso/iso.h>
123 #endif
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 static u_int32_t nfs_xid = 0;
137 const nfstype nfsv2_type[9] =
138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
139 const nfstype nfsv3_type[9] =
140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
141 const enum vtype nv2tov_type[8] =
142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
143 const enum vtype nv3tov_type[8] =
144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
145 int nfs_ticks;
146
147 /* NFS client/server stats. */
148 struct nfsstats nfsstats;
149
150 /*
151 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
152 */
153 const int nfsv3_procid[NFS_NPROCS] = {
154 NFSPROC_NULL,
155 NFSPROC_GETATTR,
156 NFSPROC_SETATTR,
157 NFSPROC_NOOP,
158 NFSPROC_LOOKUP,
159 NFSPROC_READLINK,
160 NFSPROC_READ,
161 NFSPROC_NOOP,
162 NFSPROC_WRITE,
163 NFSPROC_CREATE,
164 NFSPROC_REMOVE,
165 NFSPROC_RENAME,
166 NFSPROC_LINK,
167 NFSPROC_SYMLINK,
168 NFSPROC_MKDIR,
169 NFSPROC_RMDIR,
170 NFSPROC_READDIR,
171 NFSPROC_FSSTAT,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP
180 };
181
182 /*
183 * and the reverse mapping from generic to Version 2 procedure numbers
184 */
185 const int nfsv2_procid[NFS_NPROCS] = {
186 NFSV2PROC_NULL,
187 NFSV2PROC_GETATTR,
188 NFSV2PROC_SETATTR,
189 NFSV2PROC_LOOKUP,
190 NFSV2PROC_NOOP,
191 NFSV2PROC_READLINK,
192 NFSV2PROC_READ,
193 NFSV2PROC_WRITE,
194 NFSV2PROC_CREATE,
195 NFSV2PROC_MKDIR,
196 NFSV2PROC_SYMLINK,
197 NFSV2PROC_CREATE,
198 NFSV2PROC_REMOVE,
199 NFSV2PROC_RMDIR,
200 NFSV2PROC_RENAME,
201 NFSV2PROC_LINK,
202 NFSV2PROC_READDIR,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_STATFS,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 };
213
214 /*
215 * Maps errno values to nfs error numbers.
216 * Use NFSERR_IO as the catch all for ones not specifically defined in
217 * RFC 1094.
218 */
219 static const u_char nfsrv_v2errmap[ELAST] = {
220 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
224 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
233 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
236 NFSERR_IO, NFSERR_IO,
237 };
238
239 /*
240 * Maps errno values to nfs error numbers.
241 * Although it is not obvious whether or not NFS clients really care if
242 * a returned error value is in the specified list for the procedure, the
243 * safest thing to do is filter them appropriately. For Version 2, the
244 * X/Open XNFS document is the only specification that defines error values
245 * for each RPC (The RFC simply lists all possible error values for all RPCs),
246 * so I have decided to not do this for Version 2.
247 * The first entry is the default error return and the rest are the valid
248 * errors for that RPC in increasing numeric order.
249 */
250 static const short nfsv3err_null[] = {
251 0,
252 0,
253 };
254
255 static const short nfsv3err_getattr[] = {
256 NFSERR_IO,
257 NFSERR_IO,
258 NFSERR_STALE,
259 NFSERR_BADHANDLE,
260 NFSERR_SERVERFAULT,
261 0,
262 };
263
264 static const short nfsv3err_setattr[] = {
265 NFSERR_IO,
266 NFSERR_PERM,
267 NFSERR_IO,
268 NFSERR_ACCES,
269 NFSERR_INVAL,
270 NFSERR_NOSPC,
271 NFSERR_ROFS,
272 NFSERR_DQUOT,
273 NFSERR_STALE,
274 NFSERR_BADHANDLE,
275 NFSERR_NOT_SYNC,
276 NFSERR_SERVERFAULT,
277 0,
278 };
279
280 static const short nfsv3err_lookup[] = {
281 NFSERR_IO,
282 NFSERR_NOENT,
283 NFSERR_IO,
284 NFSERR_ACCES,
285 NFSERR_NOTDIR,
286 NFSERR_NAMETOL,
287 NFSERR_STALE,
288 NFSERR_BADHANDLE,
289 NFSERR_SERVERFAULT,
290 0,
291 };
292
293 static const short nfsv3err_access[] = {
294 NFSERR_IO,
295 NFSERR_IO,
296 NFSERR_STALE,
297 NFSERR_BADHANDLE,
298 NFSERR_SERVERFAULT,
299 0,
300 };
301
302 static const short nfsv3err_readlink[] = {
303 NFSERR_IO,
304 NFSERR_IO,
305 NFSERR_ACCES,
306 NFSERR_INVAL,
307 NFSERR_STALE,
308 NFSERR_BADHANDLE,
309 NFSERR_NOTSUPP,
310 NFSERR_SERVERFAULT,
311 0,
312 };
313
314 static const short nfsv3err_read[] = {
315 NFSERR_IO,
316 NFSERR_IO,
317 NFSERR_NXIO,
318 NFSERR_ACCES,
319 NFSERR_INVAL,
320 NFSERR_STALE,
321 NFSERR_BADHANDLE,
322 NFSERR_SERVERFAULT,
323 NFSERR_JUKEBOX,
324 0,
325 };
326
327 static const short nfsv3err_write[] = {
328 NFSERR_IO,
329 NFSERR_IO,
330 NFSERR_ACCES,
331 NFSERR_INVAL,
332 NFSERR_FBIG,
333 NFSERR_NOSPC,
334 NFSERR_ROFS,
335 NFSERR_DQUOT,
336 NFSERR_STALE,
337 NFSERR_BADHANDLE,
338 NFSERR_SERVERFAULT,
339 NFSERR_JUKEBOX,
340 0,
341 };
342
343 static const short nfsv3err_create[] = {
344 NFSERR_IO,
345 NFSERR_IO,
346 NFSERR_ACCES,
347 NFSERR_EXIST,
348 NFSERR_NOTDIR,
349 NFSERR_NOSPC,
350 NFSERR_ROFS,
351 NFSERR_NAMETOL,
352 NFSERR_DQUOT,
353 NFSERR_STALE,
354 NFSERR_BADHANDLE,
355 NFSERR_NOTSUPP,
356 NFSERR_SERVERFAULT,
357 0,
358 };
359
360 static const short nfsv3err_mkdir[] = {
361 NFSERR_IO,
362 NFSERR_IO,
363 NFSERR_ACCES,
364 NFSERR_EXIST,
365 NFSERR_NOTDIR,
366 NFSERR_NOSPC,
367 NFSERR_ROFS,
368 NFSERR_NAMETOL,
369 NFSERR_DQUOT,
370 NFSERR_STALE,
371 NFSERR_BADHANDLE,
372 NFSERR_NOTSUPP,
373 NFSERR_SERVERFAULT,
374 0,
375 };
376
377 static const short nfsv3err_symlink[] = {
378 NFSERR_IO,
379 NFSERR_IO,
380 NFSERR_ACCES,
381 NFSERR_EXIST,
382 NFSERR_NOTDIR,
383 NFSERR_NOSPC,
384 NFSERR_ROFS,
385 NFSERR_NAMETOL,
386 NFSERR_DQUOT,
387 NFSERR_STALE,
388 NFSERR_BADHANDLE,
389 NFSERR_NOTSUPP,
390 NFSERR_SERVERFAULT,
391 0,
392 };
393
394 static const short nfsv3err_mknod[] = {
395 NFSERR_IO,
396 NFSERR_IO,
397 NFSERR_ACCES,
398 NFSERR_EXIST,
399 NFSERR_NOTDIR,
400 NFSERR_NOSPC,
401 NFSERR_ROFS,
402 NFSERR_NAMETOL,
403 NFSERR_DQUOT,
404 NFSERR_STALE,
405 NFSERR_BADHANDLE,
406 NFSERR_NOTSUPP,
407 NFSERR_SERVERFAULT,
408 NFSERR_BADTYPE,
409 0,
410 };
411
412 static const short nfsv3err_remove[] = {
413 NFSERR_IO,
414 NFSERR_NOENT,
415 NFSERR_IO,
416 NFSERR_ACCES,
417 NFSERR_NOTDIR,
418 NFSERR_ROFS,
419 NFSERR_NAMETOL,
420 NFSERR_STALE,
421 NFSERR_BADHANDLE,
422 NFSERR_SERVERFAULT,
423 0,
424 };
425
426 static const short nfsv3err_rmdir[] = {
427 NFSERR_IO,
428 NFSERR_NOENT,
429 NFSERR_IO,
430 NFSERR_ACCES,
431 NFSERR_EXIST,
432 NFSERR_NOTDIR,
433 NFSERR_INVAL,
434 NFSERR_ROFS,
435 NFSERR_NAMETOL,
436 NFSERR_NOTEMPTY,
437 NFSERR_STALE,
438 NFSERR_BADHANDLE,
439 NFSERR_NOTSUPP,
440 NFSERR_SERVERFAULT,
441 0,
442 };
443
444 static const short nfsv3err_rename[] = {
445 NFSERR_IO,
446 NFSERR_NOENT,
447 NFSERR_IO,
448 NFSERR_ACCES,
449 NFSERR_EXIST,
450 NFSERR_XDEV,
451 NFSERR_NOTDIR,
452 NFSERR_ISDIR,
453 NFSERR_INVAL,
454 NFSERR_NOSPC,
455 NFSERR_ROFS,
456 NFSERR_MLINK,
457 NFSERR_NAMETOL,
458 NFSERR_NOTEMPTY,
459 NFSERR_DQUOT,
460 NFSERR_STALE,
461 NFSERR_BADHANDLE,
462 NFSERR_NOTSUPP,
463 NFSERR_SERVERFAULT,
464 0,
465 };
466
467 static const short nfsv3err_link[] = {
468 NFSERR_IO,
469 NFSERR_IO,
470 NFSERR_ACCES,
471 NFSERR_EXIST,
472 NFSERR_XDEV,
473 NFSERR_NOTDIR,
474 NFSERR_INVAL,
475 NFSERR_NOSPC,
476 NFSERR_ROFS,
477 NFSERR_MLINK,
478 NFSERR_NAMETOL,
479 NFSERR_DQUOT,
480 NFSERR_STALE,
481 NFSERR_BADHANDLE,
482 NFSERR_NOTSUPP,
483 NFSERR_SERVERFAULT,
484 0,
485 };
486
487 static const short nfsv3err_readdir[] = {
488 NFSERR_IO,
489 NFSERR_IO,
490 NFSERR_ACCES,
491 NFSERR_NOTDIR,
492 NFSERR_STALE,
493 NFSERR_BADHANDLE,
494 NFSERR_BAD_COOKIE,
495 NFSERR_TOOSMALL,
496 NFSERR_SERVERFAULT,
497 0,
498 };
499
500 static const short nfsv3err_readdirplus[] = {
501 NFSERR_IO,
502 NFSERR_IO,
503 NFSERR_ACCES,
504 NFSERR_NOTDIR,
505 NFSERR_STALE,
506 NFSERR_BADHANDLE,
507 NFSERR_BAD_COOKIE,
508 NFSERR_NOTSUPP,
509 NFSERR_TOOSMALL,
510 NFSERR_SERVERFAULT,
511 0,
512 };
513
514 static const short nfsv3err_fsstat[] = {
515 NFSERR_IO,
516 NFSERR_IO,
517 NFSERR_STALE,
518 NFSERR_BADHANDLE,
519 NFSERR_SERVERFAULT,
520 0,
521 };
522
523 static const short nfsv3err_fsinfo[] = {
524 NFSERR_STALE,
525 NFSERR_STALE,
526 NFSERR_BADHANDLE,
527 NFSERR_SERVERFAULT,
528 0,
529 };
530
531 static const short nfsv3err_pathconf[] = {
532 NFSERR_STALE,
533 NFSERR_STALE,
534 NFSERR_BADHANDLE,
535 NFSERR_SERVERFAULT,
536 0,
537 };
538
539 static const short nfsv3err_commit[] = {
540 NFSERR_IO,
541 NFSERR_IO,
542 NFSERR_STALE,
543 NFSERR_BADHANDLE,
544 NFSERR_SERVERFAULT,
545 0,
546 };
547
548 static const short * const nfsrv_v3errmap[] = {
549 nfsv3err_null,
550 nfsv3err_getattr,
551 nfsv3err_setattr,
552 nfsv3err_lookup,
553 nfsv3err_access,
554 nfsv3err_readlink,
555 nfsv3err_read,
556 nfsv3err_write,
557 nfsv3err_create,
558 nfsv3err_mkdir,
559 nfsv3err_symlink,
560 nfsv3err_mknod,
561 nfsv3err_remove,
562 nfsv3err_rmdir,
563 nfsv3err_rename,
564 nfsv3err_link,
565 nfsv3err_readdir,
566 nfsv3err_readdirplus,
567 nfsv3err_fsstat,
568 nfsv3err_fsinfo,
569 nfsv3err_pathconf,
570 nfsv3err_commit,
571 };
572
573 extern struct nfsrtt nfsrtt;
574 extern time_t nqnfsstarttime;
575 extern int nqsrv_clockskew;
576 extern int nqsrv_writeslack;
577 extern int nqsrv_maxlease;
578 extern const int nqnfs_piggy[NFS_NPROCS];
579 extern struct nfsnodehashhead *nfsnodehashtbl;
580 extern u_long nfsnodehash;
581
582 LIST_HEAD(nfsnodehashhead, nfsnode);
583 u_long nfsdirhashmask;
584
585 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
586
587 /*
588 * Create the header for an rpc request packet
589 * The hsiz is the size of the rest of the nfs request header.
590 * (just used to decide if a cluster is a good idea)
591 */
592 struct mbuf *
593 nfsm_reqh(vp, procid, hsiz, bposp)
594 struct vnode *vp;
595 u_long procid;
596 int hsiz;
597 caddr_t *bposp;
598 {
599 struct mbuf *mb;
600 caddr_t bpos;
601 struct nfsmount *nmp;
602 #ifndef NFS_V2_ONLY
603 u_int32_t *tl;
604 struct mbuf *mb2;
605 int nqflag;
606 #endif
607
608 MGET(mb, M_WAIT, MT_DATA);
609 if (hsiz >= MINCLSIZE)
610 MCLGET(mb, M_WAIT);
611 mb->m_len = 0;
612 bpos = mtod(mb, caddr_t);
613
614 /*
615 * For NQNFS, add lease request.
616 */
617 if (vp) {
618 nmp = VFSTONFS(vp->v_mount);
619 #ifndef NFS_V2_ONLY
620 if (nmp->nm_flag & NFSMNT_NQNFS) {
621 nqflag = NQNFS_NEEDLEASE(vp, procid);
622 if (nqflag) {
623 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
624 *tl++ = txdr_unsigned(nqflag);
625 *tl = txdr_unsigned(nmp->nm_leaseterm);
626 } else {
627 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
628 *tl = 0;
629 }
630 }
631 #endif
632 }
633 /* Finally, return values */
634 *bposp = bpos;
635 return (mb);
636 }
637
638 /*
639 * Build the RPC header and fill in the authorization info.
640 * The authorization string argument is only used when the credentials
641 * come from outside of the kernel.
642 * Returns the head of the mbuf list.
643 */
644 struct mbuf *
645 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
646 verf_str, mrest, mrest_len, mbp, xidp)
647 struct ucred *cr;
648 int nmflag;
649 int procid;
650 int auth_type;
651 int auth_len;
652 char *auth_str;
653 int verf_len;
654 char *verf_str;
655 struct mbuf *mrest;
656 int mrest_len;
657 struct mbuf **mbp;
658 u_int32_t *xidp;
659 {
660 struct mbuf *mb;
661 u_int32_t *tl;
662 caddr_t bpos;
663 int i;
664 struct mbuf *mreq, *mb2;
665 int siz, grpsiz, authsiz;
666 struct timeval tv;
667 static u_int32_t base;
668
669 authsiz = nfsm_rndup(auth_len);
670 MGETHDR(mb, M_WAIT, MT_DATA);
671 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
672 MCLGET(mb, M_WAIT);
673 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
674 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
675 } else {
676 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
677 }
678 mb->m_len = 0;
679 mreq = mb;
680 bpos = mtod(mb, caddr_t);
681
682 /*
683 * First the RPC header.
684 */
685 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
686
687 /*
688 * derive initial xid from system time
689 * XXX time is invalid if root not yet mounted
690 */
691 if (!base && (rootvp)) {
692 microtime(&tv);
693 base = tv.tv_sec << 12;
694 nfs_xid = base;
695 }
696 /*
697 * Skip zero xid if it should ever happen.
698 */
699 if (++nfs_xid == 0)
700 nfs_xid++;
701
702 *tl++ = *xidp = txdr_unsigned(nfs_xid);
703 *tl++ = rpc_call;
704 *tl++ = rpc_vers;
705 if (nmflag & NFSMNT_NQNFS) {
706 *tl++ = txdr_unsigned(NQNFS_PROG);
707 *tl++ = txdr_unsigned(NQNFS_VER3);
708 } else {
709 *tl++ = txdr_unsigned(NFS_PROG);
710 if (nmflag & NFSMNT_NFSV3)
711 *tl++ = txdr_unsigned(NFS_VER3);
712 else
713 *tl++ = txdr_unsigned(NFS_VER2);
714 }
715 if (nmflag & NFSMNT_NFSV3)
716 *tl++ = txdr_unsigned(procid);
717 else
718 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
719
720 /*
721 * And then the authorization cred.
722 */
723 *tl++ = txdr_unsigned(auth_type);
724 *tl = txdr_unsigned(authsiz);
725 switch (auth_type) {
726 case RPCAUTH_UNIX:
727 nfsm_build(tl, u_int32_t *, auth_len);
728 *tl++ = 0; /* stamp ?? */
729 *tl++ = 0; /* NULL hostname */
730 *tl++ = txdr_unsigned(cr->cr_uid);
731 *tl++ = txdr_unsigned(cr->cr_gid);
732 grpsiz = (auth_len >> 2) - 5;
733 *tl++ = txdr_unsigned(grpsiz);
734 for (i = 0; i < grpsiz; i++)
735 *tl++ = txdr_unsigned(cr->cr_groups[i]);
736 break;
737 case RPCAUTH_KERB4:
738 siz = auth_len;
739 while (siz > 0) {
740 if (M_TRAILINGSPACE(mb) == 0) {
741 MGET(mb2, M_WAIT, MT_DATA);
742 if (siz >= MINCLSIZE)
743 MCLGET(mb2, M_WAIT);
744 mb->m_next = mb2;
745 mb = mb2;
746 mb->m_len = 0;
747 bpos = mtod(mb, caddr_t);
748 }
749 i = min(siz, M_TRAILINGSPACE(mb));
750 memcpy(bpos, auth_str, i);
751 mb->m_len += i;
752 auth_str += i;
753 bpos += i;
754 siz -= i;
755 }
756 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
757 for (i = 0; i < siz; i++)
758 *bpos++ = '\0';
759 mb->m_len += siz;
760 }
761 break;
762 };
763
764 /*
765 * And the verifier...
766 */
767 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
768 if (verf_str) {
769 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
770 *tl = txdr_unsigned(verf_len);
771 siz = verf_len;
772 while (siz > 0) {
773 if (M_TRAILINGSPACE(mb) == 0) {
774 MGET(mb2, M_WAIT, MT_DATA);
775 if (siz >= MINCLSIZE)
776 MCLGET(mb2, M_WAIT);
777 mb->m_next = mb2;
778 mb = mb2;
779 mb->m_len = 0;
780 bpos = mtod(mb, caddr_t);
781 }
782 i = min(siz, M_TRAILINGSPACE(mb));
783 memcpy(bpos, verf_str, i);
784 mb->m_len += i;
785 verf_str += i;
786 bpos += i;
787 siz -= i;
788 }
789 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
790 for (i = 0; i < siz; i++)
791 *bpos++ = '\0';
792 mb->m_len += siz;
793 }
794 } else {
795 *tl++ = txdr_unsigned(RPCAUTH_NULL);
796 *tl = 0;
797 }
798 mb->m_next = mrest;
799 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
800 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
801 *mbp = mb;
802 return (mreq);
803 }
804
805 /*
806 * copies mbuf chain to the uio scatter/gather list
807 */
808 int
809 nfsm_mbuftouio(mrep, uiop, siz, dpos)
810 struct mbuf **mrep;
811 struct uio *uiop;
812 int siz;
813 caddr_t *dpos;
814 {
815 char *mbufcp, *uiocp;
816 int xfer, left, len;
817 struct mbuf *mp;
818 long uiosiz, rem;
819 int error = 0;
820
821 mp = *mrep;
822 mbufcp = *dpos;
823 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
824 rem = nfsm_rndup(siz)-siz;
825 while (siz > 0) {
826 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
827 return (EFBIG);
828 left = uiop->uio_iov->iov_len;
829 uiocp = uiop->uio_iov->iov_base;
830 if (left > siz)
831 left = siz;
832 uiosiz = left;
833 while (left > 0) {
834 while (len == 0) {
835 mp = mp->m_next;
836 if (mp == NULL)
837 return (EBADRPC);
838 mbufcp = mtod(mp, caddr_t);
839 len = mp->m_len;
840 }
841 xfer = (left > len) ? len : left;
842 #ifdef notdef
843 /* Not Yet.. */
844 if (uiop->uio_iov->iov_op != NULL)
845 (*(uiop->uio_iov->iov_op))
846 (mbufcp, uiocp, xfer);
847 else
848 #endif
849 if (uiop->uio_segflg == UIO_SYSSPACE)
850 memcpy(uiocp, mbufcp, xfer);
851 else
852 copyout(mbufcp, uiocp, xfer);
853 left -= xfer;
854 len -= xfer;
855 mbufcp += xfer;
856 uiocp += xfer;
857 uiop->uio_offset += xfer;
858 uiop->uio_resid -= xfer;
859 }
860 if (uiop->uio_iov->iov_len <= siz) {
861 uiop->uio_iovcnt--;
862 uiop->uio_iov++;
863 } else {
864 uiop->uio_iov->iov_base =
865 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
866 uiop->uio_iov->iov_len -= uiosiz;
867 }
868 siz -= uiosiz;
869 }
870 *dpos = mbufcp;
871 *mrep = mp;
872 if (rem > 0) {
873 if (len < rem)
874 error = nfs_adv(mrep, dpos, rem, len);
875 else
876 *dpos += rem;
877 }
878 return (error);
879 }
880
881 /*
882 * copies a uio scatter/gather list to an mbuf chain.
883 * NOTE: can ony handle iovcnt == 1
884 */
885 int
886 nfsm_uiotombuf(uiop, mq, siz, bpos)
887 struct uio *uiop;
888 struct mbuf **mq;
889 int siz;
890 caddr_t *bpos;
891 {
892 char *uiocp;
893 struct mbuf *mp, *mp2;
894 int xfer, left, mlen;
895 int uiosiz, clflg, rem;
896 char *cp;
897
898 #ifdef DIAGNOSTIC
899 if (uiop->uio_iovcnt != 1)
900 panic("nfsm_uiotombuf: iovcnt != 1");
901 #endif
902
903 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
904 clflg = 1;
905 else
906 clflg = 0;
907 rem = nfsm_rndup(siz)-siz;
908 mp = mp2 = *mq;
909 while (siz > 0) {
910 left = uiop->uio_iov->iov_len;
911 uiocp = uiop->uio_iov->iov_base;
912 if (left > siz)
913 left = siz;
914 uiosiz = left;
915 while (left > 0) {
916 mlen = M_TRAILINGSPACE(mp);
917 if (mlen == 0) {
918 MGET(mp, M_WAIT, MT_DATA);
919 if (clflg)
920 MCLGET(mp, M_WAIT);
921 mp->m_len = 0;
922 mp2->m_next = mp;
923 mp2 = mp;
924 mlen = M_TRAILINGSPACE(mp);
925 }
926 xfer = (left > mlen) ? mlen : left;
927 #ifdef notdef
928 /* Not Yet.. */
929 if (uiop->uio_iov->iov_op != NULL)
930 (*(uiop->uio_iov->iov_op))
931 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
932 else
933 #endif
934 if (uiop->uio_segflg == UIO_SYSSPACE)
935 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
936 else
937 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
938 mp->m_len += xfer;
939 left -= xfer;
940 uiocp += xfer;
941 uiop->uio_offset += xfer;
942 uiop->uio_resid -= xfer;
943 }
944 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
945 uiosiz;
946 uiop->uio_iov->iov_len -= uiosiz;
947 siz -= uiosiz;
948 }
949 if (rem > 0) {
950 if (rem > M_TRAILINGSPACE(mp)) {
951 MGET(mp, M_WAIT, MT_DATA);
952 mp->m_len = 0;
953 mp2->m_next = mp;
954 }
955 cp = mtod(mp, caddr_t)+mp->m_len;
956 for (left = 0; left < rem; left++)
957 *cp++ = '\0';
958 mp->m_len += rem;
959 *bpos = cp;
960 } else
961 *bpos = mtod(mp, caddr_t)+mp->m_len;
962 *mq = mp;
963 return (0);
964 }
965
966 /*
967 * Get at least "siz" bytes of correctly aligned data.
968 * When called the mbuf pointers are not necessarily correct,
969 * dsosp points to what ought to be in m_data and left contains
970 * what ought to be in m_len.
971 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
972 * cases. (The macros use the vars. dpos and dpos2)
973 */
974 int
975 nfsm_disct(mdp, dposp, siz, left, cp2)
976 struct mbuf **mdp;
977 caddr_t *dposp;
978 int siz;
979 int left;
980 caddr_t *cp2;
981 {
982 struct mbuf *m1, *m2;
983 struct mbuf *havebuf = NULL;
984 caddr_t src = *dposp;
985 caddr_t dst;
986 int len;
987
988 #ifdef DEBUG
989 if (left < 0)
990 panic("nfsm_disct: left < 0");
991 #endif
992 m1 = *mdp;
993 /*
994 * Skip through the mbuf chain looking for an mbuf with
995 * some data. If the first mbuf found has enough data
996 * and it is correctly aligned return it.
997 */
998 while (left == 0) {
999 havebuf = m1;
1000 *mdp = m1 = m1->m_next;
1001 if (m1 == NULL)
1002 return (EBADRPC);
1003 src = mtod(m1, caddr_t);
1004 left = m1->m_len;
1005 /*
1006 * If we start a new mbuf and it is big enough
1007 * and correctly aligned just return it, don't
1008 * do any pull up.
1009 */
1010 if (left >= siz && nfsm_aligned(src)) {
1011 *cp2 = src;
1012 *dposp = src + siz;
1013 return (0);
1014 }
1015 }
1016 if (m1->m_flags & M_EXT) {
1017 if (havebuf) {
1018 /* If the first mbuf with data has external data
1019 * and there is a previous empty mbuf use it
1020 * to move the data into.
1021 */
1022 m2 = m1;
1023 *mdp = m1 = havebuf;
1024 if (m1->m_flags & M_EXT) {
1025 MEXTREMOVE(m1);
1026 }
1027 } else {
1028 /*
1029 * If the first mbuf has a external data
1030 * and there is no previous empty mbuf
1031 * allocate a new mbuf and move the external
1032 * data to the new mbuf. Also make the first
1033 * mbuf look empty.
1034 */
1035 m2 = m_get(M_WAIT, MT_DATA);
1036 m2->m_ext = m1->m_ext;
1037 m2->m_data = src;
1038 m2->m_len = left;
1039 MCLADDREFERENCE(m1, m2);
1040 MEXTREMOVE(m1);
1041 m2->m_next = m1->m_next;
1042 m1->m_next = m2;
1043 }
1044 m1->m_len = 0;
1045 dst = m1->m_dat;
1046 } else {
1047 /*
1048 * If the first mbuf has no external data
1049 * move the data to the front of the mbuf.
1050 */
1051 if ((dst = m1->m_dat) != src)
1052 memmove(dst, src, left);
1053 dst += left;
1054 m1->m_len = left;
1055 m2 = m1->m_next;
1056 }
1057 m1->m_flags &= ~M_PKTHDR;
1058 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1059 *dposp = mtod(m1, caddr_t) + siz;
1060 /*
1061 * Loop through mbufs pulling data up into first mbuf until
1062 * the first mbuf is full or there is no more data to
1063 * pullup.
1064 */
1065 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1066 if ((len = min(len, m2->m_len)) != 0)
1067 memcpy(dst, m2->m_data, len);
1068 m1->m_len += len;
1069 dst += len;
1070 m2->m_data += len;
1071 m2->m_len -= len;
1072 m2 = m2->m_next;
1073 }
1074 if (m1->m_len < siz)
1075 return (EBADRPC);
1076 return (0);
1077 }
1078
1079 /*
1080 * Advance the position in the mbuf chain.
1081 */
1082 int
1083 nfs_adv(mdp, dposp, offs, left)
1084 struct mbuf **mdp;
1085 caddr_t *dposp;
1086 int offs;
1087 int left;
1088 {
1089 struct mbuf *m;
1090 int s;
1091
1092 m = *mdp;
1093 s = left;
1094 while (s < offs) {
1095 offs -= s;
1096 m = m->m_next;
1097 if (m == NULL)
1098 return (EBADRPC);
1099 s = m->m_len;
1100 }
1101 *mdp = m;
1102 *dposp = mtod(m, caddr_t)+offs;
1103 return (0);
1104 }
1105
1106 /*
1107 * Copy a string into mbufs for the hard cases...
1108 */
1109 int
1110 nfsm_strtmbuf(mb, bpos, cp, siz)
1111 struct mbuf **mb;
1112 char **bpos;
1113 const char *cp;
1114 long siz;
1115 {
1116 struct mbuf *m1 = NULL, *m2;
1117 long left, xfer, len, tlen;
1118 u_int32_t *tl;
1119 int putsize;
1120
1121 putsize = 1;
1122 m2 = *mb;
1123 left = M_TRAILINGSPACE(m2);
1124 if (left > 0) {
1125 tl = ((u_int32_t *)(*bpos));
1126 *tl++ = txdr_unsigned(siz);
1127 putsize = 0;
1128 left -= NFSX_UNSIGNED;
1129 m2->m_len += NFSX_UNSIGNED;
1130 if (left > 0) {
1131 memcpy((caddr_t) tl, cp, left);
1132 siz -= left;
1133 cp += left;
1134 m2->m_len += left;
1135 left = 0;
1136 }
1137 }
1138 /* Loop around adding mbufs */
1139 while (siz > 0) {
1140 MGET(m1, M_WAIT, MT_DATA);
1141 if (siz > MLEN)
1142 MCLGET(m1, M_WAIT);
1143 m1->m_len = NFSMSIZ(m1);
1144 m2->m_next = m1;
1145 m2 = m1;
1146 tl = mtod(m1, u_int32_t *);
1147 tlen = 0;
1148 if (putsize) {
1149 *tl++ = txdr_unsigned(siz);
1150 m1->m_len -= NFSX_UNSIGNED;
1151 tlen = NFSX_UNSIGNED;
1152 putsize = 0;
1153 }
1154 if (siz < m1->m_len) {
1155 len = nfsm_rndup(siz);
1156 xfer = siz;
1157 if (xfer < len)
1158 *(tl+(xfer>>2)) = 0;
1159 } else {
1160 xfer = len = m1->m_len;
1161 }
1162 memcpy((caddr_t) tl, cp, xfer);
1163 m1->m_len = len+tlen;
1164 siz -= xfer;
1165 cp += xfer;
1166 }
1167 *mb = m1;
1168 *bpos = mtod(m1, caddr_t)+m1->m_len;
1169 return (0);
1170 }
1171
1172 /*
1173 * Directory caching routines. They work as follows:
1174 * - a cache is maintained per VDIR nfsnode.
1175 * - for each offset cookie that is exported to userspace, and can
1176 * thus be thrown back at us as an offset to VOP_READDIR, store
1177 * information in the cache.
1178 * - cached are:
1179 * - cookie itself
1180 * - blocknumber (essentially just a search key in the buffer cache)
1181 * - entry number in block.
1182 * - offset cookie of block in which this entry is stored
1183 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1184 * - entries are looked up in a hash table
1185 * - also maintained is an LRU list of entries, used to determine
1186 * which ones to delete if the cache grows too large.
1187 * - if 32 <-> 64 translation mode is requested for a filesystem,
1188 * the cache also functions as a translation table
1189 * - in the translation case, invalidating the cache does not mean
1190 * flushing it, but just marking entries as invalid, except for
1191 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1192 * still be able to use the cache as a translation table.
1193 * - 32 bit cookies are uniquely created by combining the hash table
1194 * entry value, and one generation count per hash table entry,
1195 * incremented each time an entry is appended to the chain.
1196 * - the cache is invalidated each time a direcory is modified
1197 * - sanity checks are also done; if an entry in a block turns
1198 * out not to have a matching cookie, the cache is invalidated
1199 * and a new block starting from the wanted offset is fetched from
1200 * the server.
1201 * - directory entries as read from the server are extended to contain
1202 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1203 * the cache and exporting them to userspace through the cookie
1204 * argument to VOP_READDIR.
1205 */
1206
1207 u_long
1208 nfs_dirhash(off)
1209 off_t off;
1210 {
1211 int i;
1212 char *cp = (char *)&off;
1213 u_long sum = 0L;
1214
1215 for (i = 0 ; i < sizeof (off); i++)
1216 sum += *cp++;
1217
1218 return sum;
1219 }
1220
1221 void
1222 nfs_initdircache(vp)
1223 struct vnode *vp;
1224 {
1225 struct nfsnode *np = VTONFS(vp);
1226 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1227
1228 np->n_dircachesize = 0;
1229 np->n_dblkno = 1;
1230 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1231 M_WAITOK, &nfsdirhashmask);
1232 TAILQ_INIT(&np->n_dirchain);
1233 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1234 MALLOC(np->n_dirgens, unsigned *,
1235 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1236 M_WAITOK);
1237 memset((caddr_t)np->n_dirgens, 0,
1238 NFS_DIRHASHSIZ * sizeof (unsigned));
1239 }
1240 }
1241
1242 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1243
1244 struct nfsdircache *
1245 nfs_searchdircache(vp, off, do32, hashent)
1246 struct vnode *vp;
1247 off_t off;
1248 int do32;
1249 int *hashent;
1250 {
1251 struct nfsdirhashhead *ndhp;
1252 struct nfsdircache *ndp = NULL;
1253 struct nfsnode *np = VTONFS(vp);
1254 unsigned ent;
1255
1256 /*
1257 * Zero is always a valid cookie.
1258 */
1259 if (off == 0)
1260 return &dzero;
1261
1262 /*
1263 * We use a 32bit cookie as search key, directly reconstruct
1264 * the hashentry. Else use the hashfunction.
1265 */
1266 if (do32) {
1267 ent = (u_int32_t)off >> 24;
1268 if (ent >= NFS_DIRHASHSIZ)
1269 return NULL;
1270 ndhp = &np->n_dircache[ent];
1271 } else {
1272 ndhp = NFSDIRHASH(np, off);
1273 }
1274
1275 if (hashent)
1276 *hashent = (int)(ndhp - np->n_dircache);
1277 if (do32) {
1278 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1279 if (ndp->dc_cookie32 == (u_int32_t)off) {
1280 /*
1281 * An invalidated entry will become the
1282 * start of a new block fetched from
1283 * the server.
1284 */
1285 if (ndp->dc_blkno == -1) {
1286 ndp->dc_blkcookie = ndp->dc_cookie;
1287 ndp->dc_blkno = np->n_dblkno++;
1288 ndp->dc_entry = 0;
1289 }
1290 break;
1291 }
1292 }
1293 } else {
1294 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1295 if (ndp->dc_cookie == off)
1296 break;
1297 }
1298 return ndp;
1299 }
1300
1301
1302 struct nfsdircache *
1303 nfs_enterdircache(vp, off, blkoff, en, blkno)
1304 struct vnode *vp;
1305 off_t off, blkoff;
1306 daddr_t blkno;
1307 int en;
1308 {
1309 struct nfsnode *np = VTONFS(vp);
1310 struct nfsdirhashhead *ndhp;
1311 struct nfsdircache *ndp = NULL, *first;
1312 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1313 int hashent, gen, overwrite;
1314
1315 if (!np->n_dircache)
1316 /*
1317 * XXX would like to do this in nfs_nget but vtype
1318 * isn't known at that time.
1319 */
1320 nfs_initdircache(vp);
1321
1322 /*
1323 * XXX refuse entries for offset 0. amd(8) erroneously sets
1324 * cookie 0 for the '.' entry, making this necessary. This
1325 * isn't so bad, as 0 is a special case anyway.
1326 */
1327 if (off == 0)
1328 return &dzero;
1329
1330 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1331
1332 if (ndp && ndp->dc_blkno != -1) {
1333 /*
1334 * Overwriting an old entry. Check if it's the same.
1335 * If so, just return. If not, remove the old entry.
1336 */
1337 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1338 return ndp;
1339 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1340 LIST_REMOVE(ndp, dc_hash);
1341 FREE(ndp, M_NFSDIROFF);
1342 ndp = 0;
1343 }
1344
1345 ndhp = &np->n_dircache[hashent];
1346
1347 if (!ndp) {
1348 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1349 M_WAITOK);
1350 overwrite = 0;
1351 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1352 /*
1353 * We're allocating a new entry, so bump the
1354 * generation number.
1355 */
1356 gen = ++np->n_dirgens[hashent];
1357 if (gen == 0) {
1358 np->n_dirgens[hashent]++;
1359 gen++;
1360 }
1361 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1362 }
1363 } else
1364 overwrite = 1;
1365
1366 /*
1367 * If the entry number is 0, we are at the start of a new block, so
1368 * allocate a new blocknumber.
1369 */
1370 if (en == 0)
1371 ndp->dc_blkno = np->n_dblkno++;
1372 else
1373 ndp->dc_blkno = blkno;
1374
1375 ndp->dc_cookie = off;
1376 ndp->dc_blkcookie = blkoff;
1377 ndp->dc_entry = en;
1378
1379 if (overwrite)
1380 return ndp;
1381
1382 /*
1383 * If the maximum directory cookie cache size has been reached
1384 * for this node, take one off the front. The idea is that
1385 * directories are typically read front-to-back once, so that
1386 * the oldest entries can be thrown away without much performance
1387 * loss.
1388 */
1389 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1390 first = np->n_dirchain.tqh_first;
1391 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1392 LIST_REMOVE(first, dc_hash);
1393 FREE(first, M_NFSDIROFF);
1394 } else
1395 np->n_dircachesize++;
1396
1397 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1398 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1399 return ndp;
1400 }
1401
1402 void
1403 nfs_invaldircache(vp, forcefree)
1404 struct vnode *vp;
1405 int forcefree;
1406 {
1407 struct nfsnode *np = VTONFS(vp);
1408 struct nfsdircache *ndp = NULL;
1409 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1410
1411 #ifdef DIAGNOSTIC
1412 if (vp->v_type != VDIR)
1413 panic("nfs: invaldircache: not dir");
1414 #endif
1415
1416 if (!np->n_dircache)
1417 return;
1418
1419 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1420 while ((ndp = np->n_dirchain.tqh_first)) {
1421 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1422 LIST_REMOVE(ndp, dc_hash);
1423 FREE(ndp, M_NFSDIROFF);
1424 }
1425 np->n_dircachesize = 0;
1426 if (forcefree && np->n_dirgens) {
1427 FREE(np->n_dirgens, M_NFSDIROFF);
1428 }
1429 } else {
1430 for (ndp = np->n_dirchain.tqh_first; ndp;
1431 ndp = ndp->dc_chain.tqe_next)
1432 ndp->dc_blkno = -1;
1433 }
1434
1435 np->n_dblkno = 1;
1436 }
1437
1438 /*
1439 * Called once before VFS init to initialize shared and
1440 * server-specific data structures.
1441 */
1442 void
1443 nfs_init()
1444 {
1445 nfsrtt.pos = 0;
1446 rpc_vers = txdr_unsigned(RPC_VER2);
1447 rpc_call = txdr_unsigned(RPC_CALL);
1448 rpc_reply = txdr_unsigned(RPC_REPLY);
1449 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1450 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1451 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1452 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1453 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1454 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1455 nfs_prog = txdr_unsigned(NFS_PROG);
1456 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1457 nfs_true = txdr_unsigned(TRUE);
1458 nfs_false = txdr_unsigned(FALSE);
1459 nfs_xdrneg1 = txdr_unsigned(-1);
1460 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1461 if (nfs_ticks < 1)
1462 nfs_ticks = 1;
1463 #ifdef NFSSERVER
1464 nfsrv_init(0); /* Init server data structures */
1465 nfsrv_initcache(); /* Init the server request cache */
1466 #endif /* NFSSERVER */
1467
1468 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1469 /*
1470 * Initialize the nqnfs data structures.
1471 */
1472 if (nqnfsstarttime == 0) {
1473 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1474 + nqsrv_clockskew + nqsrv_writeslack;
1475 NQLOADNOVRAM(nqnfsstarttime);
1476 CIRCLEQ_INIT(&nqtimerhead);
1477 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1478 M_WAITOK, &nqfhhash);
1479 }
1480 #endif
1481
1482 /*
1483 * Initialize reply list and start timer
1484 */
1485 TAILQ_INIT(&nfs_reqq);
1486 nfs_timer(NULL);
1487 }
1488
1489 #ifdef NFS
1490 /*
1491 * Called once at VFS init to initialize client-specific data structures.
1492 */
1493 void
1494 nfs_vfs_init()
1495 {
1496 nfs_nhinit(); /* Init the nfsnode table */
1497 }
1498
1499 void
1500 nfs_vfs_reinit()
1501 {
1502 nfs_nhreinit();
1503 }
1504
1505 void
1506 nfs_vfs_done()
1507 {
1508 nfs_nhdone();
1509 }
1510
1511 /*
1512 * Attribute cache routines.
1513 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1514 * that are on the mbuf list
1515 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1516 * error otherwise
1517 */
1518
1519 /*
1520 * Load the attribute cache (that lives in the nfsnode entry) with
1521 * the values on the mbuf list and
1522 * Iff vap not NULL
1523 * copy the attributes to *vaper
1524 */
1525 int
1526 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1527 struct vnode **vpp;
1528 struct mbuf **mdp;
1529 caddr_t *dposp;
1530 struct vattr *vaper;
1531 {
1532 int32_t t1;
1533 caddr_t cp2;
1534 int error = 0;
1535 struct mbuf *md;
1536 int v3 = NFS_ISV3(*vpp);
1537
1538 md = *mdp;
1539 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1540 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1541 if (error)
1542 return (error);
1543 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1544 }
1545
1546 int
1547 nfs_loadattrcache(vpp, fp, vaper)
1548 struct vnode **vpp;
1549 struct nfs_fattr *fp;
1550 struct vattr *vaper;
1551 {
1552 struct vnode *vp = *vpp;
1553 struct vattr *vap;
1554 int v3 = NFS_ISV3(vp);
1555 enum vtype vtyp;
1556 u_short vmode;
1557 struct timespec mtime;
1558 struct vnode *nvp;
1559 int32_t rdev;
1560 struct nfsnode *np;
1561 extern int (**spec_nfsv2nodeop_p) __P((void *));
1562
1563 if (v3) {
1564 vtyp = nfsv3tov_type(fp->fa_type);
1565 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1566 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1567 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1568 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1569 } else {
1570 vtyp = nfsv2tov_type(fp->fa_type);
1571 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1572 if (vtyp == VNON || vtyp == VREG)
1573 vtyp = IFTOVT(vmode);
1574 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1575 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1576
1577 /*
1578 * Really ugly NFSv2 kludge.
1579 */
1580 if (vtyp == VCHR && rdev == 0xffffffff)
1581 vtyp = VFIFO;
1582 }
1583
1584 /*
1585 * If v_type == VNON it is a new node, so fill in the v_type,
1586 * n_mtime fields. Check to see if it represents a special
1587 * device, and if so, check for a possible alias. Once the
1588 * correct vnode has been obtained, fill in the rest of the
1589 * information.
1590 */
1591 np = VTONFS(vp);
1592 if (vp->v_type == VNON) {
1593 vp->v_type = vtyp;
1594 if (vp->v_type == VFIFO) {
1595 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1596 vp->v_op = fifo_nfsv2nodeop_p;
1597 }
1598 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1599 vp->v_op = spec_nfsv2nodeop_p;
1600 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1601 if (nvp) {
1602 /*
1603 * Discard unneeded vnode, but save its nfsnode.
1604 * Since the nfsnode does not have a lock, its
1605 * vnode lock has to be carried over.
1606 */
1607 /*
1608 * XXX is the old node sure to be locked here?
1609 */
1610 KASSERT(lockstatus(&vp->v_lock) ==
1611 LK_EXCLUSIVE);
1612 nvp->v_data = vp->v_data;
1613 vp->v_data = NULL;
1614 VOP_UNLOCK(vp, 0);
1615 vp->v_op = spec_vnodeop_p;
1616 vrele(vp);
1617 vgone(vp);
1618 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1619 &nvp->v_interlock);
1620 /*
1621 * Reinitialize aliased node.
1622 */
1623 np->n_vnode = nvp;
1624 *vpp = vp = nvp;
1625 }
1626 }
1627 np->n_mtime = mtime.tv_sec;
1628 }
1629 vap = np->n_vattr;
1630 vap->va_type = vtyp;
1631 vap->va_mode = vmode & ALLPERMS;
1632 vap->va_rdev = (dev_t)rdev;
1633 vap->va_mtime = mtime;
1634 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1635 switch (vtyp) {
1636 case VDIR:
1637 vap->va_blocksize = NFS_DIRFRAGSIZ;
1638 break;
1639 case VBLK:
1640 vap->va_blocksize = BLKDEV_IOSIZE;
1641 break;
1642 case VCHR:
1643 vap->va_blocksize = MAXBSIZE;
1644 break;
1645 default:
1646 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1647 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1648 break;
1649 }
1650 if (v3) {
1651 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1652 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1653 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1654 vap->va_size = fxdr_hyper(&fp->fa3_size);
1655 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1656 vap->va_fileid = fxdr_unsigned(int32_t,
1657 fp->fa3_fileid.nfsuquad[1]);
1658 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1659 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1660 vap->va_flags = 0;
1661 vap->va_filerev = 0;
1662 } else {
1663 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1664 vap->va_uid = fxdr_unsigned(uid_t, fp->fa_uid);
1665 vap->va_gid = fxdr_unsigned(gid_t, fp->fa_gid);
1666 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1667 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1668 * NFS_FABLKSIZE;
1669 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1670 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1671 vap->va_flags = 0;
1672 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1673 fp->fa2_ctime.nfsv2_sec);
1674 vap->va_ctime.tv_nsec = 0;
1675 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1676 vap->va_filerev = 0;
1677 }
1678 if (vap->va_size != np->n_size) {
1679 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1680 vap->va_size = np->n_size;
1681 } else {
1682 np->n_size = vap->va_size;
1683 if (vap->va_type == VREG) {
1684 uvm_vnp_setsize(vp, np->n_size);
1685 }
1686 }
1687 }
1688 np->n_attrstamp = time.tv_sec;
1689 if (vaper != NULL) {
1690 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1691 if (np->n_flag & NCHG) {
1692 if (np->n_flag & NACC)
1693 vaper->va_atime = np->n_atim;
1694 if (np->n_flag & NUPD)
1695 vaper->va_mtime = np->n_mtim;
1696 }
1697 }
1698 return (0);
1699 }
1700
1701 /*
1702 * Check the time stamp
1703 * If the cache is valid, copy contents to *vap and return 0
1704 * otherwise return an error
1705 */
1706 int
1707 nfs_getattrcache(vp, vaper)
1708 struct vnode *vp;
1709 struct vattr *vaper;
1710 {
1711 struct nfsnode *np = VTONFS(vp);
1712 struct vattr *vap;
1713
1714 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1715 nfsstats.attrcache_misses++;
1716 return (ENOENT);
1717 }
1718 nfsstats.attrcache_hits++;
1719 vap = np->n_vattr;
1720 if (vap->va_size != np->n_size) {
1721 if (vap->va_type == VREG) {
1722 if (np->n_flag & NMODIFIED) {
1723 if (vap->va_size < np->n_size)
1724 vap->va_size = np->n_size;
1725 else
1726 np->n_size = vap->va_size;
1727 } else
1728 np->n_size = vap->va_size;
1729 uvm_vnp_setsize(vp, np->n_size);
1730 } else
1731 np->n_size = vap->va_size;
1732 }
1733 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1734 if (np->n_flag & NCHG) {
1735 if (np->n_flag & NACC)
1736 vaper->va_atime = np->n_atim;
1737 if (np->n_flag & NUPD)
1738 vaper->va_mtime = np->n_mtim;
1739 }
1740 return (0);
1741 }
1742
1743 /*
1744 * Heuristic to see if the server XDR encodes directory cookies or not.
1745 * it is not supposed to, but a lot of servers may do this. Also, since
1746 * most/all servers will implement V2 as well, it is expected that they
1747 * may return just 32 bits worth of cookie information, so we need to
1748 * find out in which 32 bits this information is available. We do this
1749 * to avoid trouble with emulated binaries that can't handle 64 bit
1750 * directory offsets.
1751 */
1752
1753 void
1754 nfs_cookieheuristic(vp, flagp, p, cred)
1755 struct vnode *vp;
1756 int *flagp;
1757 struct proc *p;
1758 struct ucred *cred;
1759 {
1760 struct uio auio;
1761 struct iovec aiov;
1762 caddr_t buf, cp;
1763 struct dirent *dp;
1764 off_t *cookies = NULL, *cop;
1765 int error, eof, nc, len;
1766
1767 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1768
1769 aiov.iov_base = buf;
1770 aiov.iov_len = NFS_DIRFRAGSIZ;
1771 auio.uio_iov = &aiov;
1772 auio.uio_iovcnt = 1;
1773 auio.uio_rw = UIO_READ;
1774 auio.uio_segflg = UIO_SYSSPACE;
1775 auio.uio_procp = p;
1776 auio.uio_resid = NFS_DIRFRAGSIZ;
1777 auio.uio_offset = 0;
1778
1779 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1780
1781 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1782 if (error || len == 0) {
1783 FREE(buf, M_TEMP);
1784 if (cookies)
1785 free(cookies, M_TEMP);
1786 return;
1787 }
1788
1789 /*
1790 * Find the first valid entry and look at its offset cookie.
1791 */
1792
1793 cp = buf;
1794 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1795 dp = (struct dirent *)cp;
1796 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1797 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1798 *flagp |= NFSMNT_SWAPCOOKIE;
1799 nfs_invaldircache(vp, 0);
1800 nfs_vinvalbuf(vp, 0, cred, p, 1);
1801 }
1802 break;
1803 }
1804 cop++;
1805 cp += dp->d_reclen;
1806 }
1807
1808 FREE(buf, M_TEMP);
1809 free(cookies, M_TEMP);
1810 }
1811 #endif /* NFS */
1812
1813 /*
1814 * Set up nameidata for a lookup() call and do it.
1815 *
1816 * If pubflag is set, this call is done for a lookup operation on the
1817 * public filehandle. In that case we allow crossing mountpoints and
1818 * absolute pathnames. However, the caller is expected to check that
1819 * the lookup result is within the public fs, and deny access if
1820 * it is not.
1821 */
1822 int
1823 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1824 struct nameidata *ndp;
1825 fhandle_t *fhp;
1826 int len;
1827 struct nfssvc_sock *slp;
1828 struct mbuf *nam;
1829 struct mbuf **mdp;
1830 caddr_t *dposp;
1831 struct vnode **retdirp;
1832 struct proc *p;
1833 int kerbflag, pubflag;
1834 {
1835 int i, rem;
1836 struct mbuf *md;
1837 char *fromcp, *tocp, *cp;
1838 struct iovec aiov;
1839 struct uio auio;
1840 struct vnode *dp;
1841 int error, rdonly, linklen;
1842 struct componentname *cnp = &ndp->ni_cnd;
1843
1844 *retdirp = (struct vnode *)0;
1845
1846 if ((len + 1) > MAXPATHLEN)
1847 return (ENAMETOOLONG);
1848 cnp->cn_pnbuf = PNBUF_GET();
1849
1850 /*
1851 * Copy the name from the mbuf list to ndp->ni_pnbuf
1852 * and set the various ndp fields appropriately.
1853 */
1854 fromcp = *dposp;
1855 tocp = cnp->cn_pnbuf;
1856 md = *mdp;
1857 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1858 for (i = 0; i < len; i++) {
1859 while (rem == 0) {
1860 md = md->m_next;
1861 if (md == NULL) {
1862 error = EBADRPC;
1863 goto out;
1864 }
1865 fromcp = mtod(md, caddr_t);
1866 rem = md->m_len;
1867 }
1868 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1869 error = EACCES;
1870 goto out;
1871 }
1872 *tocp++ = *fromcp++;
1873 rem--;
1874 }
1875 *tocp = '\0';
1876 *mdp = md;
1877 *dposp = fromcp;
1878 len = nfsm_rndup(len)-len;
1879 if (len > 0) {
1880 if (rem >= len)
1881 *dposp += len;
1882 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1883 goto out;
1884 }
1885
1886 /*
1887 * Extract and set starting directory.
1888 */
1889 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1890 nam, &rdonly, kerbflag, pubflag);
1891 if (error)
1892 goto out;
1893 if (dp->v_type != VDIR) {
1894 vrele(dp);
1895 error = ENOTDIR;
1896 goto out;
1897 }
1898
1899 if (rdonly)
1900 cnp->cn_flags |= RDONLY;
1901
1902 *retdirp = dp;
1903
1904 if (pubflag) {
1905 /*
1906 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1907 * and the 'native path' indicator.
1908 */
1909 cp = PNBUF_GET();
1910 fromcp = cnp->cn_pnbuf;
1911 tocp = cp;
1912 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1913 switch ((unsigned char)*fromcp) {
1914 case WEBNFS_NATIVE_CHAR:
1915 /*
1916 * 'Native' path for us is the same
1917 * as a path according to the NFS spec,
1918 * just skip the escape char.
1919 */
1920 fromcp++;
1921 break;
1922 /*
1923 * More may be added in the future, range 0x80-0xff
1924 */
1925 default:
1926 error = EIO;
1927 FREE(cp, M_NAMEI);
1928 goto out;
1929 }
1930 }
1931 /*
1932 * Translate the '%' escapes, URL-style.
1933 */
1934 while (*fromcp != '\0') {
1935 if (*fromcp == WEBNFS_ESC_CHAR) {
1936 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1937 fromcp++;
1938 *tocp++ = HEXSTRTOI(fromcp);
1939 fromcp += 2;
1940 continue;
1941 } else {
1942 error = ENOENT;
1943 FREE(cp, M_NAMEI);
1944 goto out;
1945 }
1946 } else
1947 *tocp++ = *fromcp++;
1948 }
1949 *tocp = '\0';
1950 PNBUF_PUT(cnp->cn_pnbuf);
1951 cnp->cn_pnbuf = cp;
1952 }
1953
1954 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1955 ndp->ni_segflg = UIO_SYSSPACE;
1956 ndp->ni_rootdir = rootvnode;
1957
1958 if (pubflag) {
1959 ndp->ni_loopcnt = 0;
1960 if (cnp->cn_pnbuf[0] == '/')
1961 dp = rootvnode;
1962 } else {
1963 cnp->cn_flags |= NOCROSSMOUNT;
1964 }
1965
1966 cnp->cn_proc = p;
1967 VREF(dp);
1968
1969 for (;;) {
1970 cnp->cn_nameptr = cnp->cn_pnbuf;
1971 ndp->ni_startdir = dp;
1972 /*
1973 * And call lookup() to do the real work
1974 */
1975 error = lookup(ndp);
1976 if (error) {
1977 PNBUF_PUT(cnp->cn_pnbuf);
1978 return (error);
1979 }
1980 /*
1981 * Check for encountering a symbolic link
1982 */
1983 if ((cnp->cn_flags & ISSYMLINK) == 0) {
1984 if (cnp->cn_flags & (SAVENAME | SAVESTART))
1985 cnp->cn_flags |= HASBUF;
1986 else
1987 PNBUF_PUT(cnp->cn_pnbuf);
1988 return (0);
1989 } else {
1990 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
1991 VOP_UNLOCK(ndp->ni_dvp, 0);
1992 if (!pubflag) {
1993 error = EINVAL;
1994 break;
1995 }
1996
1997 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
1998 error = ELOOP;
1999 break;
2000 }
2001 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2002 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2003 cnp->cn_proc);
2004 if (error != 0)
2005 break;
2006 }
2007 if (ndp->ni_pathlen > 1)
2008 cp = PNBUF_GET();
2009 else
2010 cp = cnp->cn_pnbuf;
2011 aiov.iov_base = cp;
2012 aiov.iov_len = MAXPATHLEN;
2013 auio.uio_iov = &aiov;
2014 auio.uio_iovcnt = 1;
2015 auio.uio_offset = 0;
2016 auio.uio_rw = UIO_READ;
2017 auio.uio_segflg = UIO_SYSSPACE;
2018 auio.uio_procp = (struct proc *)0;
2019 auio.uio_resid = MAXPATHLEN;
2020 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2021 if (error) {
2022 badlink:
2023 if (ndp->ni_pathlen > 1)
2024 PNBUF_PUT(cp);
2025 break;
2026 }
2027 linklen = MAXPATHLEN - auio.uio_resid;
2028 if (linklen == 0) {
2029 error = ENOENT;
2030 goto badlink;
2031 }
2032 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2033 error = ENAMETOOLONG;
2034 goto badlink;
2035 }
2036 if (ndp->ni_pathlen > 1) {
2037 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2038 PNBUF_PUT(cnp->cn_pnbuf);
2039 cnp->cn_pnbuf = cp;
2040 } else
2041 cnp->cn_pnbuf[linklen] = '\0';
2042 ndp->ni_pathlen += linklen;
2043 vput(ndp->ni_vp);
2044 dp = ndp->ni_dvp;
2045 /*
2046 * Check if root directory should replace current directory.
2047 */
2048 if (cnp->cn_pnbuf[0] == '/') {
2049 vrele(dp);
2050 dp = ndp->ni_rootdir;
2051 VREF(dp);
2052 }
2053 }
2054 }
2055 vrele(ndp->ni_dvp);
2056 vput(ndp->ni_vp);
2057 ndp->ni_vp = NULL;
2058 out:
2059 PNBUF_PUT(cnp->cn_pnbuf);
2060 return (error);
2061 }
2062
2063 /*
2064 * A fiddled version of m_adj() that ensures null fill to a long
2065 * boundary and only trims off the back end
2066 */
2067 void
2068 nfsm_adj(mp, len, nul)
2069 struct mbuf *mp;
2070 int len;
2071 int nul;
2072 {
2073 struct mbuf *m;
2074 int count, i;
2075 char *cp;
2076
2077 /*
2078 * Trim from tail. Scan the mbuf chain,
2079 * calculating its length and finding the last mbuf.
2080 * If the adjustment only affects this mbuf, then just
2081 * adjust and return. Otherwise, rescan and truncate
2082 * after the remaining size.
2083 */
2084 count = 0;
2085 m = mp;
2086 for (;;) {
2087 count += m->m_len;
2088 if (m->m_next == (struct mbuf *)0)
2089 break;
2090 m = m->m_next;
2091 }
2092 if (m->m_len > len) {
2093 m->m_len -= len;
2094 if (nul > 0) {
2095 cp = mtod(m, caddr_t)+m->m_len-nul;
2096 for (i = 0; i < nul; i++)
2097 *cp++ = '\0';
2098 }
2099 return;
2100 }
2101 count -= len;
2102 if (count < 0)
2103 count = 0;
2104 /*
2105 * Correct length for chain is "count".
2106 * Find the mbuf with last data, adjust its length,
2107 * and toss data from remaining mbufs on chain.
2108 */
2109 for (m = mp; m; m = m->m_next) {
2110 if (m->m_len >= count) {
2111 m->m_len = count;
2112 if (nul > 0) {
2113 cp = mtod(m, caddr_t)+m->m_len-nul;
2114 for (i = 0; i < nul; i++)
2115 *cp++ = '\0';
2116 }
2117 break;
2118 }
2119 count -= m->m_len;
2120 }
2121 for (m = m->m_next;m;m = m->m_next)
2122 m->m_len = 0;
2123 }
2124
2125 /*
2126 * Make these functions instead of macros, so that the kernel text size
2127 * doesn't get too big...
2128 */
2129 void
2130 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2131 struct nfsrv_descript *nfsd;
2132 int before_ret;
2133 struct vattr *before_vap;
2134 int after_ret;
2135 struct vattr *after_vap;
2136 struct mbuf **mbp;
2137 char **bposp;
2138 {
2139 struct mbuf *mb = *mbp, *mb2;
2140 char *bpos = *bposp;
2141 u_int32_t *tl;
2142
2143 if (before_ret) {
2144 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2145 *tl = nfs_false;
2146 } else {
2147 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2148 *tl++ = nfs_true;
2149 txdr_hyper(before_vap->va_size, tl);
2150 tl += 2;
2151 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2152 tl += 2;
2153 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2154 }
2155 *bposp = bpos;
2156 *mbp = mb;
2157 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2158 }
2159
2160 void
2161 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2162 struct nfsrv_descript *nfsd;
2163 int after_ret;
2164 struct vattr *after_vap;
2165 struct mbuf **mbp;
2166 char **bposp;
2167 {
2168 struct mbuf *mb = *mbp, *mb2;
2169 char *bpos = *bposp;
2170 u_int32_t *tl;
2171 struct nfs_fattr *fp;
2172
2173 if (after_ret) {
2174 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2175 *tl = nfs_false;
2176 } else {
2177 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2178 *tl++ = nfs_true;
2179 fp = (struct nfs_fattr *)tl;
2180 nfsm_srvfattr(nfsd, after_vap, fp);
2181 }
2182 *mbp = mb;
2183 *bposp = bpos;
2184 }
2185
2186 void
2187 nfsm_srvfattr(nfsd, vap, fp)
2188 struct nfsrv_descript *nfsd;
2189 struct vattr *vap;
2190 struct nfs_fattr *fp;
2191 {
2192
2193 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2194 fp->fa_uid = txdr_unsigned(vap->va_uid);
2195 fp->fa_gid = txdr_unsigned(vap->va_gid);
2196 if (nfsd->nd_flag & ND_NFSV3) {
2197 fp->fa_type = vtonfsv3_type(vap->va_type);
2198 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2199 txdr_hyper(vap->va_size, &fp->fa3_size);
2200 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2201 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2202 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2203 fp->fa3_fsid.nfsuquad[0] = 0;
2204 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2205 fp->fa3_fileid.nfsuquad[0] = 0;
2206 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2207 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2208 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2209 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2210 } else {
2211 fp->fa_type = vtonfsv2_type(vap->va_type);
2212 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2213 fp->fa2_size = txdr_unsigned(vap->va_size);
2214 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2215 if (vap->va_type == VFIFO)
2216 fp->fa2_rdev = 0xffffffff;
2217 else
2218 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2219 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2220 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2221 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2222 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2223 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2224 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2225 }
2226 }
2227
2228 /*
2229 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2230 * - look up fsid in mount list (if not found ret error)
2231 * - get vp and export rights by calling VFS_FHTOVP()
2232 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2233 * - if not lockflag unlock it with VOP_UNLOCK()
2234 */
2235 int
2236 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2237 fhandle_t *fhp;
2238 int lockflag;
2239 struct vnode **vpp;
2240 struct ucred *cred;
2241 struct nfssvc_sock *slp;
2242 struct mbuf *nam;
2243 int *rdonlyp;
2244 int kerbflag;
2245 {
2246 struct mount *mp;
2247 int i;
2248 struct ucred *credanon;
2249 int error, exflags;
2250 struct sockaddr_in *saddr;
2251
2252 *vpp = (struct vnode *)0;
2253
2254 if (nfs_ispublicfh(fhp)) {
2255 if (!pubflag || !nfs_pub.np_valid)
2256 return (ESTALE);
2257 fhp = &nfs_pub.np_handle;
2258 }
2259
2260 mp = vfs_getvfs(&fhp->fh_fsid);
2261 if (!mp)
2262 return (ESTALE);
2263 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2264 if (error)
2265 return (error);
2266 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2267 if (error)
2268 return (error);
2269
2270 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2271 saddr = mtod(nam, struct sockaddr_in *);
2272 if ((saddr->sin_family == AF_INET) &&
2273 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2274 vput(*vpp);
2275 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2276 }
2277 #ifdef INET6
2278 if ((saddr->sin_family == AF_INET6) &&
2279 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2280 vput(*vpp);
2281 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2282 }
2283 #endif
2284 }
2285 /*
2286 * Check/setup credentials.
2287 */
2288 if (exflags & MNT_EXKERB) {
2289 if (!kerbflag) {
2290 vput(*vpp);
2291 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2292 }
2293 } else if (kerbflag) {
2294 vput(*vpp);
2295 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2296 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2297 cred->cr_uid = credanon->cr_uid;
2298 cred->cr_gid = credanon->cr_gid;
2299 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2300 cred->cr_groups[i] = credanon->cr_groups[i];
2301 cred->cr_ngroups = i;
2302 }
2303 if (exflags & MNT_EXRDONLY)
2304 *rdonlyp = 1;
2305 else
2306 *rdonlyp = 0;
2307 if (!lockflag)
2308 VOP_UNLOCK(*vpp, 0);
2309 return (0);
2310 }
2311
2312 /*
2313 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2314 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2315 * transformed this to all zeroes in both cases, so check for it.
2316 */
2317 int
2318 nfs_ispublicfh(fhp)
2319 fhandle_t *fhp;
2320 {
2321 char *cp = (char *)fhp;
2322 int i;
2323
2324 for (i = 0; i < NFSX_V3FH; i++)
2325 if (*cp++ != 0)
2326 return (FALSE);
2327 return (TRUE);
2328 }
2329
2330 /*
2331 * This function compares two net addresses by family and returns TRUE
2332 * if they are the same host.
2333 * If there is any doubt, return FALSE.
2334 * The AF_INET family is handled as a special case so that address mbufs
2335 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2336 */
2337 int
2338 netaddr_match(family, haddr, nam)
2339 int family;
2340 union nethostaddr *haddr;
2341 struct mbuf *nam;
2342 {
2343 struct sockaddr_in *inetaddr;
2344
2345 switch (family) {
2346 case AF_INET:
2347 inetaddr = mtod(nam, struct sockaddr_in *);
2348 if (inetaddr->sin_family == AF_INET &&
2349 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2350 return (1);
2351 break;
2352 #ifdef INET6
2353 case AF_INET6:
2354 {
2355 struct sockaddr_in6 *sin6_1, *sin6_2;
2356
2357 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2358 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2359 if (sin6_1->sin6_family == AF_INET6 &&
2360 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2361 return 1;
2362 }
2363 #endif
2364 #ifdef ISO
2365 case AF_ISO:
2366 {
2367 struct sockaddr_iso *isoaddr1, *isoaddr2;
2368
2369 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2370 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2371 if (isoaddr1->siso_family == AF_ISO &&
2372 isoaddr1->siso_nlen > 0 &&
2373 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2374 SAME_ISOADDR(isoaddr1, isoaddr2))
2375 return (1);
2376 break;
2377 }
2378 #endif /* ISO */
2379 default:
2380 break;
2381 };
2382 return (0);
2383 }
2384
2385 /*
2386 * The write verifier has changed (probably due to a server reboot), so all
2387 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2388 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2389 * flag. Once done the new write verifier can be set for the mount point.
2390 */
2391 void
2392 nfs_clearcommit(mp)
2393 struct mount *mp;
2394 {
2395 struct vnode *vp;
2396 struct nfsnode *np;
2397 struct vm_page *pg;
2398 int s;
2399
2400 s = splbio();
2401 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2402 KASSERT(vp->v_mount == mp);
2403 if (vp->v_type == VNON)
2404 continue;
2405 np = VTONFS(vp);
2406 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2407 np->n_pushedhi = 0;
2408 np->n_commitflags &=
2409 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2410 simple_lock(&vp->v_uobj.vmobjlock);
2411 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2412 pg->flags &= ~PG_NEEDCOMMIT;
2413 }
2414 simple_unlock(&vp->v_uobj.vmobjlock);
2415 }
2416 splx(s);
2417 }
2418
2419 void
2420 nfs_merge_commit_ranges(vp)
2421 struct vnode *vp;
2422 {
2423 struct nfsnode *np = VTONFS(vp);
2424
2425 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2426 np->n_pushedlo = np->n_pushlo;
2427 np->n_pushedhi = np->n_pushhi;
2428 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2429 } else {
2430 if (np->n_pushlo < np->n_pushedlo)
2431 np->n_pushedlo = np->n_pushlo;
2432 if (np->n_pushhi > np->n_pushedhi)
2433 np->n_pushedhi = np->n_pushhi;
2434 }
2435
2436 np->n_pushlo = np->n_pushhi = 0;
2437 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2438
2439 #ifdef fvdl_debug
2440 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2441 (unsigned)np->n_pushedhi);
2442 #endif
2443 }
2444
2445 int
2446 nfs_in_committed_range(vp, off, len)
2447 struct vnode *vp;
2448 off_t off, len;
2449 {
2450 struct nfsnode *np = VTONFS(vp);
2451 off_t lo, hi;
2452
2453 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2454 return 0;
2455 lo = off;
2456 hi = lo + len;
2457
2458 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2459 }
2460
2461 int
2462 nfs_in_tobecommitted_range(vp, off, len)
2463 struct vnode *vp;
2464 off_t off, len;
2465 {
2466 struct nfsnode *np = VTONFS(vp);
2467 off_t lo, hi;
2468
2469 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2470 return 0;
2471 lo = off;
2472 hi = lo + len;
2473
2474 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2475 }
2476
2477 void
2478 nfs_add_committed_range(vp, off, len)
2479 struct vnode *vp;
2480 off_t off, len;
2481 {
2482 struct nfsnode *np = VTONFS(vp);
2483 off_t lo, hi;
2484
2485 lo = off;
2486 hi = lo + len;
2487
2488 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2489 np->n_pushedlo = lo;
2490 np->n_pushedhi = hi;
2491 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2492 } else {
2493 if (hi > np->n_pushedhi)
2494 np->n_pushedhi = hi;
2495 if (lo < np->n_pushedlo)
2496 np->n_pushedlo = lo;
2497 }
2498 #ifdef fvdl_debug
2499 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2500 (unsigned)np->n_pushedhi);
2501 #endif
2502 }
2503
2504 void
2505 nfs_del_committed_range(vp, off, len)
2506 struct vnode *vp;
2507 off_t off, len;
2508 {
2509 struct nfsnode *np = VTONFS(vp);
2510 off_t lo, hi;
2511
2512 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2513 return;
2514
2515 lo = off;
2516 hi = lo + len;
2517
2518 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2519 return;
2520 if (lo <= np->n_pushedlo)
2521 np->n_pushedlo = hi;
2522 else if (hi >= np->n_pushedhi)
2523 np->n_pushedhi = lo;
2524 else {
2525 /*
2526 * XXX There's only one range. If the deleted range
2527 * is in the middle, pick the largest of the
2528 * contiguous ranges that it leaves.
2529 */
2530 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2531 np->n_pushedhi = lo;
2532 else
2533 np->n_pushedlo = hi;
2534 }
2535 #ifdef fvdl_debug
2536 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2537 (unsigned)np->n_pushedhi);
2538 #endif
2539 }
2540
2541 void
2542 nfs_add_tobecommitted_range(vp, off, len)
2543 struct vnode *vp;
2544 off_t off, len;
2545 {
2546 struct nfsnode *np = VTONFS(vp);
2547 off_t lo, hi;
2548
2549 lo = off;
2550 hi = lo + len;
2551
2552 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2553 np->n_pushlo = lo;
2554 np->n_pushhi = hi;
2555 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2556 } else {
2557 if (lo < np->n_pushlo)
2558 np->n_pushlo = lo;
2559 if (hi > np->n_pushhi)
2560 np->n_pushhi = hi;
2561 }
2562 #ifdef fvdl_debug
2563 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2564 (unsigned)np->n_pushhi);
2565 #endif
2566 }
2567
2568 void
2569 nfs_del_tobecommitted_range(vp, off, len)
2570 struct vnode *vp;
2571 off_t off, len;
2572 {
2573 struct nfsnode *np = VTONFS(vp);
2574 off_t lo, hi;
2575
2576 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2577 return;
2578
2579 lo = off;
2580 hi = lo + len;
2581
2582 if (lo > np->n_pushhi || hi < np->n_pushlo)
2583 return;
2584
2585 if (lo <= np->n_pushlo)
2586 np->n_pushlo = hi;
2587 else if (hi >= np->n_pushhi)
2588 np->n_pushhi = lo;
2589 else {
2590 /*
2591 * XXX There's only one range. If the deleted range
2592 * is in the middle, pick the largest of the
2593 * contiguous ranges that it leaves.
2594 */
2595 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2596 np->n_pushhi = lo;
2597 else
2598 np->n_pushlo = hi;
2599 }
2600 #ifdef fvdl_debug
2601 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2602 (unsigned)np->n_pushhi);
2603 #endif
2604 }
2605
2606 /*
2607 * Map errnos to NFS error numbers. For Version 3 also filter out error
2608 * numbers not specified for the associated procedure.
2609 */
2610 int
2611 nfsrv_errmap(nd, err)
2612 struct nfsrv_descript *nd;
2613 int err;
2614 {
2615 const short *defaulterrp, *errp;
2616
2617 if (nd->nd_flag & ND_NFSV3) {
2618 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2619 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2620 while (*++errp) {
2621 if (*errp == err)
2622 return (err);
2623 else if (*errp > err)
2624 break;
2625 }
2626 return ((int)*defaulterrp);
2627 } else
2628 return (err & 0xffff);
2629 }
2630 if (err <= ELAST)
2631 return ((int)nfsrv_v2errmap[err - 1]);
2632 return (NFSERR_IO);
2633 }
2634
2635 /*
2636 * Sort the group list in increasing numerical order.
2637 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2638 * that used to be here.)
2639 */
2640 void
2641 nfsrvw_sort(list, num)
2642 gid_t *list;
2643 int num;
2644 {
2645 int i, j;
2646 gid_t v;
2647
2648 /* Insertion sort. */
2649 for (i = 1; i < num; i++) {
2650 v = list[i];
2651 /* find correct slot for value v, moving others up */
2652 for (j = i; --j >= 0 && v < list[j];)
2653 list[j + 1] = list[j];
2654 list[j + 1] = v;
2655 }
2656 }
2657
2658 /*
2659 * copy credentials making sure that the result can be compared with memcmp().
2660 */
2661 void
2662 nfsrv_setcred(incred, outcred)
2663 struct ucred *incred, *outcred;
2664 {
2665 int i;
2666
2667 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2668 outcred->cr_ref = 1;
2669 outcred->cr_uid = incred->cr_uid;
2670 outcred->cr_gid = incred->cr_gid;
2671 outcred->cr_ngroups = incred->cr_ngroups;
2672 for (i = 0; i < incred->cr_ngroups; i++)
2673 outcred->cr_groups[i] = incred->cr_groups[i];
2674 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2675 }
2676