crypto.c revision 1.23 1 1.23 tls /* $NetBSD: crypto.c,v 1.23 2008/02/04 00:35:34 tls Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.1 jonathan /*
6 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 1.1 jonathan *
8 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 1.1 jonathan * supported the development of this code.
11 1.1 jonathan *
12 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 1.1 jonathan *
14 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
15 1.1 jonathan * is hereby granted, provided that this entire notice is included in
16 1.1 jonathan * all source code copies of any software which is or includes a copy or
17 1.1 jonathan * modification of this software.
18 1.1 jonathan *
19 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 1.1 jonathan * PURPOSE.
24 1.1 jonathan */
25 1.1 jonathan
26 1.1 jonathan #include <sys/cdefs.h>
27 1.23 tls __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.23 2008/02/04 00:35:34 tls Exp $");
28 1.1 jonathan
29 1.1 jonathan #include <sys/param.h>
30 1.1 jonathan #include <sys/reboot.h>
31 1.1 jonathan #include <sys/systm.h>
32 1.1 jonathan #include <sys/malloc.h>
33 1.1 jonathan #include <sys/proc.h>
34 1.1 jonathan #include <sys/pool.h>
35 1.1 jonathan #include <sys/kthread.h>
36 1.11 thorpej #include <sys/once.h>
37 1.13 christos #include <sys/sysctl.h>
38 1.21 ad #include <sys/intr.h>
39 1.1 jonathan
40 1.23 tls #include "opt_ocf.h"
41 1.21 ad #include <opencrypto/cryptodev.h>
42 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
43 1.1 jonathan
44 1.23 tls kcondvar_t cryptoret_cv;
45 1.23 tls kmutex_t crypto_mtx;
46 1.23 tls
47 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
48 1.1 jonathan #define SWI_CRYPTO 17
49 1.1 jonathan #define register_swi(lvl, fn) \
50 1.21 ad softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
51 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
52 1.21 ad #define setsoftcrypto(x) softint_schedule(x)
53 1.1 jonathan
54 1.1 jonathan #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff)
55 1.1 jonathan
56 1.1 jonathan /*
57 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
58 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
59 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
60 1.1 jonathan */
61 1.11 thorpej static struct cryptocap *crypto_drivers;
62 1.11 thorpej static int crypto_drivers_num;
63 1.1 jonathan static void* softintr_cookie;
64 1.1 jonathan
65 1.1 jonathan /*
66 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
67 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
68 1.1 jonathan * See below for how synchronization is handled.
69 1.1 jonathan */
70 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
71 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
72 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
73 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
74 1.1 jonathan
75 1.1 jonathan /*
76 1.1 jonathan * There are two queues for processing completed crypto requests; one
77 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
78 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
79 1.1 jonathan * for how synchronization is handled.
80 1.1 jonathan */
81 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
82 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
83 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
84 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
85 1.1 jonathan
86 1.1 jonathan /*
87 1.23 tls * XXX these functions are ghastly hacks for when the submission
88 1.23 tls * XXX routines discover a request that was not CBIMM is already
89 1.23 tls * XXX done, and must be yanked from the retq (where _done) put it
90 1.23 tls * XXX as cryptoret won't get the chance. The queue is walked backwards
91 1.23 tls * XXX as the request is generally the last one queued.
92 1.23 tls *
93 1.23 tls * call with the lock held, or else.
94 1.23 tls */
95 1.23 tls int
96 1.23 tls crypto_ret_q_remove(struct cryptop *crp)
97 1.23 tls {
98 1.23 tls struct cryptop * acrp;
99 1.23 tls
100 1.23 tls TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
101 1.23 tls if (acrp == crp) {
102 1.23 tls TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
103 1.23 tls crp->crp_flags &= (~CRYPTO_F_ONRETQ);
104 1.23 tls return 1;
105 1.23 tls }
106 1.23 tls }
107 1.23 tls return 0;
108 1.23 tls }
109 1.23 tls
110 1.23 tls int
111 1.23 tls crypto_ret_kq_remove(struct cryptkop *krp)
112 1.23 tls {
113 1.23 tls struct cryptkop * akrp;
114 1.23 tls
115 1.23 tls TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
116 1.23 tls if (akrp == krp) {
117 1.23 tls TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
118 1.23 tls krp->krp_flags &= (~CRYPTO_F_ONRETQ);
119 1.23 tls return 1;
120 1.23 tls }
121 1.23 tls }
122 1.23 tls return 0;
123 1.23 tls }
124 1.23 tls
125 1.23 tls /*
126 1.1 jonathan * Crypto op and desciptor data structures are allocated
127 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
128 1.1 jonathan */
129 1.1 jonathan struct pool cryptop_pool;
130 1.1 jonathan struct pool cryptodesc_pool;
131 1.23 tls struct pool cryptkop_pool;
132 1.1 jonathan
133 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
134 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
135 1.10 perry /*
136 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
137 1.6 jonathan * access to hardware versus software transforms as below:
138 1.6 jonathan *
139 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
140 1.6 jonathan * transforms, always
141 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
142 1.6 jonathan * requests for non-accelerated transforms
143 1.6 jonathan * (handling the latter in software)
144 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
145 1.6 jonathan * are hardware-accelerated.
146 1.6 jonathan */
147 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
148 1.6 jonathan
149 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
150 1.13 christos {
151 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
152 1.13 christos CTLFLAG_PERMANENT,
153 1.13 christos CTLTYPE_NODE, "kern", NULL,
154 1.13 christos NULL, 0, NULL, 0,
155 1.13 christos CTL_KERN, CTL_EOL);
156 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
157 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
158 1.13 christos CTLTYPE_INT, "usercrypto",
159 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
160 1.13 christos "crypto support"),
161 1.13 christos NULL, 0, &crypto_usercrypto, 0,
162 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
163 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
164 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
165 1.13 christos CTLTYPE_INT, "userasymcrypto",
166 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
167 1.13 christos "asymmetric crypto support"),
168 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
169 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
170 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
171 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
172 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
173 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
174 1.13 christos "asymmetric crypto support"),
175 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
176 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
177 1.13 christos }
178 1.1 jonathan
179 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
180 1.1 jonathan
181 1.1 jonathan /*
182 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
183 1.1 jonathan *
184 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
185 1.1 jonathan * these come in from network protocols at spl0 (output path) or
186 1.1 jonathan * spl[,soft]net (input path).
187 1.1 jonathan *
188 1.1 jonathan * Requests are typically passed on the driver directly, but they
189 1.1 jonathan * may also be queued for processing by a software interrupt thread,
190 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
191 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
192 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
193 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
194 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
195 1.1 jonathan *
196 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
197 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
198 1.1 jonathan * driver interrupt service routine is not delayed while the callback
199 1.1 jonathan * takes place and that callbacks are delivered after a context switch
200 1.1 jonathan * (as opposed to a software interrupt that clients must block).
201 1.1 jonathan *
202 1.1 jonathan * This scheme is not intended for SMP machines.
203 1.10 perry */
204 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
205 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
206 1.20 ad static struct lwp *cryptothread;
207 1.1 jonathan static void crypto_destroy(void);
208 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
209 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
210 1.1 jonathan
211 1.1 jonathan static struct cryptostats cryptostats;
212 1.23 tls #ifdef CRYPTO_TIMING
213 1.1 jonathan static int crypto_timing = 0;
214 1.23 tls #endif
215 1.1 jonathan
216 1.12 yamt static int
217 1.11 thorpej crypto_init0(void)
218 1.1 jonathan {
219 1.1 jonathan int error;
220 1.1 jonathan
221 1.23 tls mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
222 1.23 tls cv_init(&cryptoret_cv, "crypto_wait");
223 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
224 1.23 tls 0, "cryptop", NULL, IPL_NET);
225 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
226 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
227 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
228 1.23 tls 0, "cryptkop", NULL, IPL_NET);
229 1.1 jonathan
230 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
231 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
232 1.1 jonathan if (crypto_drivers == NULL) {
233 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
234 1.12 yamt return 0;
235 1.1 jonathan }
236 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
237 1.1 jonathan
238 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
239 1.20 ad error = kthread_create(PRI_NONE, 0, NULL, (void (*)(void*))cryptoret,
240 1.20 ad NULL, &cryptothread, "cryptoret");
241 1.1 jonathan if (error) {
242 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
243 1.1 jonathan error);
244 1.1 jonathan crypto_destroy();
245 1.1 jonathan }
246 1.20 ad
247 1.12 yamt return 0;
248 1.11 thorpej }
249 1.11 thorpej
250 1.11 thorpej void
251 1.11 thorpej crypto_init(void)
252 1.11 thorpej {
253 1.18 daniel static ONCE_DECL(crypto_init_once);
254 1.11 thorpej
255 1.11 thorpej RUN_ONCE(&crypto_init_once, crypto_init0);
256 1.1 jonathan }
257 1.1 jonathan
258 1.1 jonathan static void
259 1.1 jonathan crypto_destroy(void)
260 1.1 jonathan {
261 1.1 jonathan /* XXX no wait to reclaim zones */
262 1.1 jonathan if (crypto_drivers != NULL)
263 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
264 1.1 jonathan unregister_swi(SWI_CRYPTO, cryptointr);
265 1.1 jonathan }
266 1.1 jonathan
267 1.1 jonathan /*
268 1.23 tls * Create a new session. Must be called with crypto_mtx held.
269 1.1 jonathan */
270 1.1 jonathan int
271 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
272 1.1 jonathan {
273 1.1 jonathan struct cryptoini *cr;
274 1.1 jonathan u_int32_t hid, lid;
275 1.1 jonathan int err = EINVAL;
276 1.1 jonathan
277 1.23 tls KASSERT(mutex_owned(&crypto_mtx));
278 1.1 jonathan
279 1.1 jonathan if (crypto_drivers == NULL)
280 1.1 jonathan goto done;
281 1.1 jonathan
282 1.1 jonathan /*
283 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
284 1.1 jonathan * first driver that supports all the algorithms we need.
285 1.1 jonathan *
286 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
287 1.1 jonathan * XXX another story altogether).
288 1.1 jonathan */
289 1.1 jonathan
290 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
291 1.1 jonathan /*
292 1.1 jonathan * If it's not initialized or has remaining sessions
293 1.1 jonathan * referencing it, skip.
294 1.1 jonathan */
295 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
296 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
297 1.1 jonathan continue;
298 1.1 jonathan
299 1.1 jonathan /* Hardware required -- ignore software drivers. */
300 1.1 jonathan if (hard > 0 &&
301 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
302 1.1 jonathan continue;
303 1.1 jonathan /* Software required -- ignore hardware drivers. */
304 1.1 jonathan if (hard < 0 &&
305 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
306 1.1 jonathan continue;
307 1.1 jonathan
308 1.1 jonathan /* See if all the algorithms are supported. */
309 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
310 1.1 jonathan if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
311 1.1 jonathan break;
312 1.1 jonathan
313 1.1 jonathan if (cr == NULL) {
314 1.1 jonathan /* Ok, all algorithms are supported. */
315 1.1 jonathan
316 1.1 jonathan /*
317 1.1 jonathan * Can't do everything in one session.
318 1.1 jonathan *
319 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
320 1.1 jonathan * XXX about here.
321 1.1 jonathan */
322 1.1 jonathan
323 1.1 jonathan /* Call the driver initialization routine. */
324 1.1 jonathan lid = hid; /* Pass the driver ID. */
325 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
326 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
327 1.1 jonathan if (err == 0) {
328 1.1 jonathan (*sid) = hid;
329 1.1 jonathan (*sid) <<= 32;
330 1.1 jonathan (*sid) |= (lid & 0xffffffff);
331 1.1 jonathan crypto_drivers[hid].cc_sessions++;
332 1.1 jonathan }
333 1.1 jonathan goto done;
334 1.1 jonathan /*break;*/
335 1.1 jonathan }
336 1.1 jonathan }
337 1.1 jonathan done:
338 1.1 jonathan return err;
339 1.1 jonathan }
340 1.1 jonathan
341 1.1 jonathan /*
342 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
343 1.23 tls * driver). Must be called with crypto_mtx mutex held.
344 1.1 jonathan */
345 1.1 jonathan int
346 1.1 jonathan crypto_freesession(u_int64_t sid)
347 1.1 jonathan {
348 1.1 jonathan u_int32_t hid;
349 1.1 jonathan int err = 0;
350 1.1 jonathan
351 1.23 tls KASSERT(mutex_owned(&crypto_mtx));
352 1.1 jonathan
353 1.1 jonathan if (crypto_drivers == NULL) {
354 1.1 jonathan err = EINVAL;
355 1.1 jonathan goto done;
356 1.1 jonathan }
357 1.1 jonathan
358 1.1 jonathan /* Determine two IDs. */
359 1.1 jonathan hid = SESID2HID(sid);
360 1.1 jonathan
361 1.1 jonathan if (hid >= crypto_drivers_num) {
362 1.1 jonathan err = ENOENT;
363 1.1 jonathan goto done;
364 1.1 jonathan }
365 1.1 jonathan
366 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
367 1.1 jonathan crypto_drivers[hid].cc_sessions--;
368 1.1 jonathan
369 1.1 jonathan /* Call the driver cleanup routine, if available. */
370 1.23 tls if (crypto_drivers[hid].cc_freesession) {
371 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
372 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
373 1.23 tls }
374 1.1 jonathan else
375 1.1 jonathan err = 0;
376 1.1 jonathan
377 1.1 jonathan /*
378 1.1 jonathan * If this was the last session of a driver marked as invalid,
379 1.1 jonathan * make the entry available for reuse.
380 1.1 jonathan */
381 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
382 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
383 1.1 jonathan bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
384 1.1 jonathan
385 1.1 jonathan done:
386 1.1 jonathan return err;
387 1.1 jonathan }
388 1.1 jonathan
389 1.1 jonathan /*
390 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
391 1.1 jonathan * support for the algorithms they handle.
392 1.1 jonathan */
393 1.1 jonathan int32_t
394 1.1 jonathan crypto_get_driverid(u_int32_t flags)
395 1.1 jonathan {
396 1.1 jonathan struct cryptocap *newdrv;
397 1.23 tls int i;
398 1.1 jonathan
399 1.23 tls crypto_init(); /* XXX oh, this is foul! */
400 1.11 thorpej
401 1.23 tls mutex_spin_enter(&crypto_mtx);
402 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
403 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
404 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
405 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
406 1.1 jonathan break;
407 1.1 jonathan
408 1.1 jonathan /* Out of entries, allocate some more. */
409 1.1 jonathan if (i == crypto_drivers_num) {
410 1.1 jonathan /* Be careful about wrap-around. */
411 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
412 1.23 tls mutex_spin_exit(&crypto_mtx);
413 1.1 jonathan printf("crypto: driver count wraparound!\n");
414 1.1 jonathan return -1;
415 1.1 jonathan }
416 1.1 jonathan
417 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
418 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
419 1.1 jonathan if (newdrv == NULL) {
420 1.23 tls mutex_spin_exit(&crypto_mtx);
421 1.1 jonathan printf("crypto: no space to expand driver table!\n");
422 1.1 jonathan return -1;
423 1.1 jonathan }
424 1.1 jonathan
425 1.1 jonathan bcopy(crypto_drivers, newdrv,
426 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
427 1.1 jonathan
428 1.1 jonathan crypto_drivers_num *= 2;
429 1.1 jonathan
430 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
431 1.1 jonathan crypto_drivers = newdrv;
432 1.1 jonathan }
433 1.1 jonathan
434 1.1 jonathan /* NB: state is zero'd on free */
435 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
436 1.1 jonathan crypto_drivers[i].cc_flags = flags;
437 1.1 jonathan
438 1.1 jonathan if (bootverbose)
439 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
440 1.1 jonathan
441 1.23 tls mutex_spin_exit(&crypto_mtx);
442 1.1 jonathan
443 1.1 jonathan return i;
444 1.1 jonathan }
445 1.1 jonathan
446 1.1 jonathan static struct cryptocap *
447 1.1 jonathan crypto_checkdriver(u_int32_t hid)
448 1.1 jonathan {
449 1.1 jonathan if (crypto_drivers == NULL)
450 1.1 jonathan return NULL;
451 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
452 1.1 jonathan }
453 1.1 jonathan
454 1.1 jonathan /*
455 1.1 jonathan * Register support for a key-related algorithm. This routine
456 1.1 jonathan * is called once for each algorithm supported a driver.
457 1.1 jonathan */
458 1.1 jonathan int
459 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
460 1.1 jonathan int (*kprocess)(void*, struct cryptkop *, int),
461 1.1 jonathan void *karg)
462 1.1 jonathan {
463 1.1 jonathan struct cryptocap *cap;
464 1.1 jonathan int err;
465 1.1 jonathan
466 1.23 tls mutex_spin_enter(&crypto_mtx);
467 1.1 jonathan
468 1.1 jonathan cap = crypto_checkdriver(driverid);
469 1.1 jonathan if (cap != NULL &&
470 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
471 1.1 jonathan /*
472 1.1 jonathan * XXX Do some performance testing to determine placing.
473 1.1 jonathan * XXX We probably need an auxiliary data structure that
474 1.1 jonathan * XXX describes relative performances.
475 1.1 jonathan */
476 1.1 jonathan
477 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
478 1.23 tls if (bootverbose) {
479 1.23 tls printf("crypto: driver %u registers key alg %u "
480 1.23 tls " flags %u\n",
481 1.23 tls driverid,
482 1.23 tls kalg,
483 1.23 tls flags
484 1.1 jonathan );
485 1.23 tls }
486 1.1 jonathan
487 1.1 jonathan if (cap->cc_kprocess == NULL) {
488 1.1 jonathan cap->cc_karg = karg;
489 1.1 jonathan cap->cc_kprocess = kprocess;
490 1.1 jonathan }
491 1.1 jonathan err = 0;
492 1.1 jonathan } else
493 1.1 jonathan err = EINVAL;
494 1.1 jonathan
495 1.23 tls mutex_spin_exit(&crypto_mtx);
496 1.1 jonathan return err;
497 1.1 jonathan }
498 1.1 jonathan
499 1.1 jonathan /*
500 1.1 jonathan * Register support for a non-key-related algorithm. This routine
501 1.1 jonathan * is called once for each such algorithm supported by a driver.
502 1.1 jonathan */
503 1.1 jonathan int
504 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
505 1.1 jonathan u_int32_t flags,
506 1.1 jonathan int (*newses)(void*, u_int32_t*, struct cryptoini*),
507 1.1 jonathan int (*freeses)(void*, u_int64_t),
508 1.1 jonathan int (*process)(void*, struct cryptop *, int),
509 1.1 jonathan void *arg)
510 1.1 jonathan {
511 1.1 jonathan struct cryptocap *cap;
512 1.23 tls int err;
513 1.1 jonathan
514 1.23 tls mutex_spin_enter(&crypto_mtx);
515 1.1 jonathan
516 1.1 jonathan cap = crypto_checkdriver(driverid);
517 1.1 jonathan /* NB: algorithms are in the range [1..max] */
518 1.1 jonathan if (cap != NULL &&
519 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
520 1.1 jonathan /*
521 1.1 jonathan * XXX Do some performance testing to determine placing.
522 1.1 jonathan * XXX We probably need an auxiliary data structure that
523 1.1 jonathan * XXX describes relative performances.
524 1.1 jonathan */
525 1.1 jonathan
526 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
527 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
528 1.23 tls if (bootverbose) {
529 1.23 tls printf("crypto: driver %u registers alg %u "
530 1.23 tls "flags %u maxoplen %u\n",
531 1.23 tls driverid,
532 1.23 tls alg,
533 1.23 tls flags,
534 1.23 tls maxoplen
535 1.1 jonathan );
536 1.23 tls }
537 1.1 jonathan
538 1.1 jonathan if (cap->cc_process == NULL) {
539 1.1 jonathan cap->cc_arg = arg;
540 1.1 jonathan cap->cc_newsession = newses;
541 1.1 jonathan cap->cc_process = process;
542 1.1 jonathan cap->cc_freesession = freeses;
543 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
544 1.1 jonathan }
545 1.1 jonathan err = 0;
546 1.1 jonathan } else
547 1.1 jonathan err = EINVAL;
548 1.1 jonathan
549 1.23 tls mutex_spin_exit(&crypto_mtx);
550 1.1 jonathan return err;
551 1.1 jonathan }
552 1.1 jonathan
553 1.1 jonathan /*
554 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
555 1.1 jonathan * leave enough information around so that subsequent calls using those
556 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
557 1.1 jonathan * reroute requests.
558 1.1 jonathan */
559 1.1 jonathan int
560 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
561 1.1 jonathan {
562 1.23 tls int i, err;
563 1.1 jonathan u_int32_t ses;
564 1.1 jonathan struct cryptocap *cap;
565 1.1 jonathan
566 1.23 tls mutex_spin_enter(&crypto_mtx);
567 1.1 jonathan
568 1.1 jonathan cap = crypto_checkdriver(driverid);
569 1.1 jonathan if (cap != NULL &&
570 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
571 1.1 jonathan cap->cc_alg[alg] != 0) {
572 1.1 jonathan cap->cc_alg[alg] = 0;
573 1.1 jonathan cap->cc_max_op_len[alg] = 0;
574 1.1 jonathan
575 1.1 jonathan /* Was this the last algorithm ? */
576 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
577 1.1 jonathan if (cap->cc_alg[i] != 0)
578 1.1 jonathan break;
579 1.1 jonathan
580 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
581 1.1 jonathan ses = cap->cc_sessions;
582 1.1 jonathan bzero(cap, sizeof(struct cryptocap));
583 1.1 jonathan if (ses != 0) {
584 1.1 jonathan /*
585 1.1 jonathan * If there are pending sessions, just mark as invalid.
586 1.1 jonathan */
587 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
588 1.1 jonathan cap->cc_sessions = ses;
589 1.1 jonathan }
590 1.1 jonathan }
591 1.1 jonathan err = 0;
592 1.1 jonathan } else
593 1.1 jonathan err = EINVAL;
594 1.1 jonathan
595 1.23 tls mutex_spin_exit(&crypto_mtx);
596 1.1 jonathan return err;
597 1.1 jonathan }
598 1.1 jonathan
599 1.1 jonathan /*
600 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
601 1.1 jonathan * If there are pending sessions using it, leave enough information
602 1.1 jonathan * around so that subsequent calls using those sessions will
603 1.1 jonathan * correctly detect the driver has been unregistered and reroute
604 1.1 jonathan * requests.
605 1.23 tls *
606 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
607 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
608 1.23 tls * XXX you can't take it recursively.
609 1.1 jonathan */
610 1.1 jonathan int
611 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
612 1.1 jonathan {
613 1.23 tls int i, err;
614 1.1 jonathan u_int32_t ses;
615 1.1 jonathan struct cryptocap *cap;
616 1.1 jonathan
617 1.23 tls mutex_spin_enter(&crypto_mtx);
618 1.1 jonathan cap = crypto_checkdriver(driverid);
619 1.1 jonathan if (cap != NULL) {
620 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
621 1.1 jonathan cap->cc_alg[i] = 0;
622 1.1 jonathan cap->cc_max_op_len[i] = 0;
623 1.1 jonathan }
624 1.1 jonathan ses = cap->cc_sessions;
625 1.1 jonathan bzero(cap, sizeof(struct cryptocap));
626 1.1 jonathan if (ses != 0) {
627 1.1 jonathan /*
628 1.1 jonathan * If there are pending sessions, just mark as invalid.
629 1.1 jonathan */
630 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
631 1.1 jonathan cap->cc_sessions = ses;
632 1.1 jonathan }
633 1.1 jonathan err = 0;
634 1.1 jonathan } else
635 1.1 jonathan err = EINVAL;
636 1.1 jonathan
637 1.23 tls mutex_spin_exit(&crypto_mtx);
638 1.1 jonathan return err;
639 1.1 jonathan }
640 1.1 jonathan
641 1.1 jonathan /*
642 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
643 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
644 1.1 jonathan */
645 1.1 jonathan int
646 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
647 1.1 jonathan {
648 1.1 jonathan struct cryptocap *cap;
649 1.23 tls int needwakeup, err;
650 1.1 jonathan
651 1.23 tls mutex_spin_enter(&crypto_mtx);
652 1.1 jonathan cap = crypto_checkdriver(driverid);
653 1.1 jonathan if (cap != NULL) {
654 1.1 jonathan needwakeup = 0;
655 1.1 jonathan if (what & CRYPTO_SYMQ) {
656 1.1 jonathan needwakeup |= cap->cc_qblocked;
657 1.1 jonathan cap->cc_qblocked = 0;
658 1.1 jonathan }
659 1.1 jonathan if (what & CRYPTO_ASYMQ) {
660 1.1 jonathan needwakeup |= cap->cc_kqblocked;
661 1.1 jonathan cap->cc_kqblocked = 0;
662 1.1 jonathan }
663 1.1 jonathan if (needwakeup) {
664 1.23 tls mutex_spin_exit(&crypto_mtx);
665 1.1 jonathan setsoftcrypto(softintr_cookie);
666 1.1 jonathan }
667 1.1 jonathan err = 0;
668 1.1 jonathan } else
669 1.1 jonathan err = EINVAL;
670 1.23 tls mutex_spin_exit(&crypto_mtx);
671 1.1 jonathan
672 1.1 jonathan return err;
673 1.1 jonathan }
674 1.1 jonathan
675 1.1 jonathan /*
676 1.1 jonathan * Dispatch a crypto request to a driver or queue
677 1.1 jonathan * it, to be processed by the kernel thread.
678 1.1 jonathan */
679 1.1 jonathan int
680 1.1 jonathan crypto_dispatch(struct cryptop *crp)
681 1.1 jonathan {
682 1.1 jonathan u_int32_t hid = SESID2HID(crp->crp_sid);
683 1.23 tls int result;
684 1.1 jonathan
685 1.23 tls mutex_spin_enter(&crypto_mtx);
686 1.1 jonathan
687 1.1 jonathan cryptostats.cs_ops++;
688 1.1 jonathan
689 1.1 jonathan #ifdef CRYPTO_TIMING
690 1.1 jonathan if (crypto_timing)
691 1.1 jonathan nanouptime(&crp->crp_tstamp);
692 1.1 jonathan #endif
693 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
694 1.1 jonathan struct cryptocap *cap;
695 1.1 jonathan /*
696 1.1 jonathan * Caller marked the request to be processed
697 1.1 jonathan * immediately; dispatch it directly to the
698 1.1 jonathan * driver unless the driver is currently blocked.
699 1.1 jonathan */
700 1.1 jonathan cap = crypto_checkdriver(hid);
701 1.1 jonathan if (cap && !cap->cc_qblocked) {
702 1.23 tls mutex_spin_exit(&crypto_mtx);
703 1.1 jonathan result = crypto_invoke(crp, 0);
704 1.1 jonathan if (result == ERESTART) {
705 1.1 jonathan /*
706 1.1 jonathan * The driver ran out of resources, mark the
707 1.1 jonathan * driver ``blocked'' for cryptop's and put
708 1.1 jonathan * the op on the queue.
709 1.1 jonathan */
710 1.23 tls mutex_spin_enter(&crypto_mtx);
711 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
712 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
713 1.1 jonathan cryptostats.cs_blocks++;
714 1.1 jonathan }
715 1.23 tls goto out_released;
716 1.1 jonathan } else {
717 1.1 jonathan /*
718 1.1 jonathan * The driver is blocked, just queue the op until
719 1.1 jonathan * it unblocks and the swi thread gets kicked.
720 1.1 jonathan */
721 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
722 1.1 jonathan result = 0;
723 1.1 jonathan }
724 1.1 jonathan } else {
725 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
726 1.1 jonathan /*
727 1.1 jonathan * Caller marked the request as ``ok to delay'';
728 1.1 jonathan * queue it for the swi thread. This is desirable
729 1.1 jonathan * when the operation is low priority and/or suitable
730 1.1 jonathan * for batching.
731 1.1 jonathan */
732 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
733 1.1 jonathan if (wasempty) {
734 1.23 tls mutex_spin_exit(&crypto_mtx);
735 1.1 jonathan setsoftcrypto(softintr_cookie);
736 1.23 tls result = 0;
737 1.23 tls goto out_released;
738 1.1 jonathan }
739 1.1 jonathan
740 1.1 jonathan result = 0;
741 1.1 jonathan }
742 1.1 jonathan
743 1.23 tls mutex_spin_exit(&crypto_mtx);
744 1.23 tls out_released:
745 1.1 jonathan return result;
746 1.1 jonathan }
747 1.1 jonathan
748 1.1 jonathan /*
749 1.1 jonathan * Add an asymetric crypto request to a queue,
750 1.1 jonathan * to be processed by the kernel thread.
751 1.1 jonathan */
752 1.1 jonathan int
753 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
754 1.1 jonathan {
755 1.1 jonathan struct cryptocap *cap;
756 1.23 tls int result;
757 1.1 jonathan
758 1.23 tls mutex_spin_enter(&crypto_mtx);
759 1.1 jonathan cryptostats.cs_kops++;
760 1.1 jonathan
761 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
762 1.1 jonathan if (cap && !cap->cc_kqblocked) {
763 1.23 tls mutex_spin_exit(&crypto_mtx);
764 1.1 jonathan result = crypto_kinvoke(krp, 0);
765 1.1 jonathan if (result == ERESTART) {
766 1.1 jonathan /*
767 1.1 jonathan * The driver ran out of resources, mark the
768 1.1 jonathan * driver ``blocked'' for cryptop's and put
769 1.1 jonathan * the op on the queue.
770 1.1 jonathan */
771 1.23 tls mutex_spin_enter(&crypto_mtx);
772 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
773 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
774 1.1 jonathan cryptostats.cs_kblocks++;
775 1.1 jonathan }
776 1.1 jonathan } else {
777 1.1 jonathan /*
778 1.1 jonathan * The driver is blocked, just queue the op until
779 1.1 jonathan * it unblocks and the swi thread gets kicked.
780 1.1 jonathan */
781 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
782 1.1 jonathan result = 0;
783 1.1 jonathan }
784 1.23 tls mutex_spin_exit(&crypto_mtx);
785 1.1 jonathan
786 1.1 jonathan return result;
787 1.1 jonathan }
788 1.1 jonathan
789 1.1 jonathan /*
790 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
791 1.1 jonathan */
792 1.1 jonathan static int
793 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
794 1.1 jonathan {
795 1.1 jonathan u_int32_t hid;
796 1.1 jonathan int error;
797 1.1 jonathan
798 1.1 jonathan /* Sanity checks. */
799 1.1 jonathan if (krp == NULL)
800 1.1 jonathan return EINVAL;
801 1.1 jonathan if (krp->krp_callback == NULL) {
802 1.23 tls pool_put(&cryptkop_pool, krp);
803 1.1 jonathan return EINVAL;
804 1.1 jonathan }
805 1.1 jonathan
806 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
807 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
808 1.1 jonathan crypto_devallowsoft == 0)
809 1.1 jonathan continue;
810 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
811 1.1 jonathan continue;
812 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
813 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
814 1.1 jonathan continue;
815 1.1 jonathan break;
816 1.1 jonathan }
817 1.1 jonathan if (hid < crypto_drivers_num) {
818 1.1 jonathan krp->krp_hid = hid;
819 1.1 jonathan error = crypto_drivers[hid].cc_kprocess(
820 1.1 jonathan crypto_drivers[hid].cc_karg, krp, hint);
821 1.1 jonathan } else {
822 1.1 jonathan error = ENODEV;
823 1.1 jonathan }
824 1.1 jonathan
825 1.1 jonathan if (error) {
826 1.1 jonathan krp->krp_status = error;
827 1.1 jonathan crypto_kdone(krp);
828 1.1 jonathan }
829 1.1 jonathan return 0;
830 1.1 jonathan }
831 1.1 jonathan
832 1.1 jonathan #ifdef CRYPTO_TIMING
833 1.1 jonathan static void
834 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
835 1.1 jonathan {
836 1.1 jonathan struct timespec now, t;
837 1.1 jonathan
838 1.1 jonathan nanouptime(&now);
839 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
840 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
841 1.1 jonathan if (t.tv_nsec < 0) {
842 1.1 jonathan t.tv_sec--;
843 1.1 jonathan t.tv_nsec += 1000000000;
844 1.1 jonathan }
845 1.1 jonathan timespecadd(&ts->acc, &t, &t);
846 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
847 1.1 jonathan ts->min = t;
848 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
849 1.1 jonathan ts->max = t;
850 1.1 jonathan ts->count++;
851 1.1 jonathan
852 1.1 jonathan *tv = now;
853 1.1 jonathan }
854 1.1 jonathan #endif
855 1.1 jonathan
856 1.1 jonathan /*
857 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
858 1.1 jonathan */
859 1.1 jonathan static int
860 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
861 1.1 jonathan {
862 1.1 jonathan u_int32_t hid;
863 1.1 jonathan int (*process)(void*, struct cryptop *, int);
864 1.1 jonathan
865 1.1 jonathan #ifdef CRYPTO_TIMING
866 1.1 jonathan if (crypto_timing)
867 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
868 1.1 jonathan #endif
869 1.1 jonathan /* Sanity checks. */
870 1.1 jonathan if (crp == NULL)
871 1.1 jonathan return EINVAL;
872 1.1 jonathan if (crp->crp_callback == NULL) {
873 1.1 jonathan crypto_freereq(crp);
874 1.1 jonathan return EINVAL;
875 1.1 jonathan }
876 1.1 jonathan if (crp->crp_desc == NULL) {
877 1.1 jonathan crp->crp_etype = EINVAL;
878 1.1 jonathan crypto_done(crp);
879 1.1 jonathan return 0;
880 1.1 jonathan }
881 1.1 jonathan
882 1.1 jonathan hid = SESID2HID(crp->crp_sid);
883 1.1 jonathan if (hid < crypto_drivers_num) {
884 1.23 tls mutex_enter(&crypto_mtx);
885 1.1 jonathan if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
886 1.1 jonathan crypto_freesession(crp->crp_sid);
887 1.1 jonathan process = crypto_drivers[hid].cc_process;
888 1.23 tls mutex_exit(&crypto_mtx);
889 1.1 jonathan } else {
890 1.1 jonathan process = NULL;
891 1.1 jonathan }
892 1.1 jonathan
893 1.1 jonathan if (process == NULL) {
894 1.1 jonathan struct cryptodesc *crd;
895 1.16 mrg u_int64_t nid = 0;
896 1.1 jonathan
897 1.1 jonathan /*
898 1.1 jonathan * Driver has unregistered; migrate the session and return
899 1.1 jonathan * an error to the caller so they'll resubmit the op.
900 1.1 jonathan */
901 1.23 tls mutex_enter(&crypto_mtx);
902 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
903 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
904 1.1 jonathan
905 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
906 1.1 jonathan crp->crp_sid = nid;
907 1.1 jonathan
908 1.1 jonathan crp->crp_etype = EAGAIN;
909 1.23 tls mutex_exit(&crypto_mtx);
910 1.23 tls
911 1.1 jonathan crypto_done(crp);
912 1.1 jonathan return 0;
913 1.1 jonathan } else {
914 1.1 jonathan /*
915 1.1 jonathan * Invoke the driver to process the request.
916 1.1 jonathan */
917 1.23 tls DPRINTF(("calling process for %08x\n", (uint32_t)crp));
918 1.1 jonathan return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
919 1.1 jonathan }
920 1.1 jonathan }
921 1.1 jonathan
922 1.1 jonathan /*
923 1.1 jonathan * Release a set of crypto descriptors.
924 1.1 jonathan */
925 1.1 jonathan void
926 1.1 jonathan crypto_freereq(struct cryptop *crp)
927 1.1 jonathan {
928 1.1 jonathan struct cryptodesc *crd;
929 1.1 jonathan
930 1.1 jonathan if (crp == NULL)
931 1.1 jonathan return;
932 1.1 jonathan
933 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
934 1.1 jonathan crp->crp_desc = crd->crd_next;
935 1.1 jonathan pool_put(&cryptodesc_pool, crd);
936 1.1 jonathan }
937 1.1 jonathan pool_put(&cryptop_pool, crp);
938 1.1 jonathan }
939 1.1 jonathan
940 1.1 jonathan /*
941 1.1 jonathan * Acquire a set of crypto descriptors.
942 1.1 jonathan */
943 1.1 jonathan struct cryptop *
944 1.1 jonathan crypto_getreq(int num)
945 1.1 jonathan {
946 1.1 jonathan struct cryptodesc *crd;
947 1.1 jonathan struct cryptop *crp;
948 1.1 jonathan
949 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
950 1.1 jonathan if (crp == NULL) {
951 1.1 jonathan return NULL;
952 1.1 jonathan }
953 1.1 jonathan bzero(crp, sizeof(struct cryptop));
954 1.23 tls cv_init(&crp->crp_cv, "crydev");
955 1.1 jonathan
956 1.1 jonathan while (num--) {
957 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
958 1.1 jonathan if (crd == NULL) {
959 1.1 jonathan crypto_freereq(crp);
960 1.1 jonathan return NULL;
961 1.1 jonathan }
962 1.1 jonathan
963 1.1 jonathan bzero(crd, sizeof(struct cryptodesc));
964 1.1 jonathan crd->crd_next = crp->crp_desc;
965 1.1 jonathan crp->crp_desc = crd;
966 1.1 jonathan }
967 1.1 jonathan
968 1.1 jonathan return crp;
969 1.1 jonathan }
970 1.1 jonathan
971 1.1 jonathan /*
972 1.1 jonathan * Invoke the callback on behalf of the driver.
973 1.1 jonathan */
974 1.1 jonathan void
975 1.1 jonathan crypto_done(struct cryptop *crp)
976 1.1 jonathan {
977 1.23 tls int wasempty;
978 1.23 tls
979 1.1 jonathan if (crp->crp_etype != 0)
980 1.1 jonathan cryptostats.cs_errs++;
981 1.1 jonathan #ifdef CRYPTO_TIMING
982 1.1 jonathan if (crypto_timing)
983 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
984 1.1 jonathan #endif
985 1.1 jonathan /*
986 1.23 tls * Normal case; queue the callback for the thread.
987 1.23 tls *
988 1.23 tls * The return queue is manipulated by the swi thread
989 1.23 tls * and, potentially, by crypto device drivers calling
990 1.23 tls * back to mark operations completed. Thus we need
991 1.23 tls * to mask both while manipulating the return queue.
992 1.1 jonathan */
993 1.23 tls mutex_spin_enter(&crypto_mtx);
994 1.23 tls wasempty = TAILQ_EMPTY(&crp_ret_q);
995 1.23 tls DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
996 1.23 tls crp->crp_flags |= CRYPTO_F_ONRETQ|CRYPTO_F_DONE;
997 1.23 tls TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
998 1.23 tls if (wasempty) {
999 1.23 tls DPRINTF(("crypto_done: waking cryptoret, %08x " \
1000 1.23 tls "hit empty queue\n.", (uint32_t)crp));
1001 1.23 tls cv_signal(&cryptoret_cv);
1002 1.1 jonathan }
1003 1.23 tls mutex_spin_exit(&crypto_mtx);
1004 1.1 jonathan }
1005 1.1 jonathan
1006 1.1 jonathan /*
1007 1.1 jonathan * Invoke the callback on behalf of the driver.
1008 1.1 jonathan */
1009 1.1 jonathan void
1010 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1011 1.1 jonathan {
1012 1.23 tls int wasempty;
1013 1.1 jonathan
1014 1.1 jonathan if (krp->krp_status != 0)
1015 1.1 jonathan cryptostats.cs_kerrs++;
1016 1.1 jonathan /*
1017 1.1 jonathan * The return queue is manipulated by the swi thread
1018 1.1 jonathan * and, potentially, by crypto device drivers calling
1019 1.1 jonathan * back to mark operations completed. Thus we need
1020 1.1 jonathan * to mask both while manipulating the return queue.
1021 1.1 jonathan */
1022 1.23 tls mutex_spin_enter(&crypto_mtx);
1023 1.1 jonathan wasempty = TAILQ_EMPTY(&crp_ret_kq);
1024 1.23 tls krp->krp_flags |= CRYPTO_F_ONRETQ|CRYPTO_F_DONE;
1025 1.1 jonathan TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1026 1.1 jonathan if (wasempty)
1027 1.23 tls cv_signal(&cryptoret_cv);
1028 1.23 tls mutex_spin_exit(&crypto_mtx);
1029 1.1 jonathan }
1030 1.1 jonathan
1031 1.1 jonathan int
1032 1.1 jonathan crypto_getfeat(int *featp)
1033 1.1 jonathan {
1034 1.1 jonathan int hid, kalg, feat = 0;
1035 1.1 jonathan
1036 1.23 tls mutex_spin_enter(&crypto_mtx);
1037 1.1 jonathan
1038 1.1 jonathan if (crypto_userasymcrypto == 0)
1039 1.10 perry goto out;
1040 1.1 jonathan
1041 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1042 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1043 1.7 jonathan crypto_devallowsoft == 0) {
1044 1.1 jonathan continue;
1045 1.1 jonathan }
1046 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1047 1.1 jonathan continue;
1048 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1049 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1050 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1051 1.1 jonathan feat |= 1 << kalg;
1052 1.1 jonathan }
1053 1.1 jonathan out:
1054 1.23 tls mutex_spin_exit(&crypto_mtx);
1055 1.1 jonathan *featp = feat;
1056 1.1 jonathan return (0);
1057 1.1 jonathan }
1058 1.1 jonathan
1059 1.1 jonathan /*
1060 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1061 1.1 jonathan */
1062 1.1 jonathan static void
1063 1.1 jonathan cryptointr(void)
1064 1.1 jonathan {
1065 1.1 jonathan struct cryptop *crp, *submit;
1066 1.1 jonathan struct cryptkop *krp;
1067 1.1 jonathan struct cryptocap *cap;
1068 1.23 tls int result, hint;
1069 1.1 jonathan
1070 1.1 jonathan printf("crypto softint\n");
1071 1.1 jonathan cryptostats.cs_intrs++;
1072 1.23 tls mutex_spin_enter(&crypto_mtx);
1073 1.1 jonathan do {
1074 1.1 jonathan /*
1075 1.1 jonathan * Find the first element in the queue that can be
1076 1.1 jonathan * processed and look-ahead to see if multiple ops
1077 1.1 jonathan * are ready for the same driver.
1078 1.1 jonathan */
1079 1.1 jonathan submit = NULL;
1080 1.1 jonathan hint = 0;
1081 1.1 jonathan TAILQ_FOREACH(crp, &crp_q, crp_next) {
1082 1.1 jonathan u_int32_t hid = SESID2HID(crp->crp_sid);
1083 1.1 jonathan cap = crypto_checkdriver(hid);
1084 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1085 1.1 jonathan /* Op needs to be migrated, process it. */
1086 1.1 jonathan if (submit == NULL)
1087 1.1 jonathan submit = crp;
1088 1.1 jonathan break;
1089 1.1 jonathan }
1090 1.1 jonathan if (!cap->cc_qblocked) {
1091 1.1 jonathan if (submit != NULL) {
1092 1.1 jonathan /*
1093 1.1 jonathan * We stop on finding another op,
1094 1.1 jonathan * regardless whether its for the same
1095 1.1 jonathan * driver or not. We could keep
1096 1.1 jonathan * searching the queue but it might be
1097 1.1 jonathan * better to just use a per-driver
1098 1.1 jonathan * queue instead.
1099 1.1 jonathan */
1100 1.1 jonathan if (SESID2HID(submit->crp_sid) == hid)
1101 1.1 jonathan hint = CRYPTO_HINT_MORE;
1102 1.1 jonathan break;
1103 1.1 jonathan } else {
1104 1.1 jonathan submit = crp;
1105 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1106 1.1 jonathan break;
1107 1.1 jonathan /* keep scanning for more are q'd */
1108 1.1 jonathan }
1109 1.1 jonathan }
1110 1.1 jonathan }
1111 1.1 jonathan if (submit != NULL) {
1112 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1113 1.23 tls mutex_spin_exit(&crypto_mtx);
1114 1.1 jonathan result = crypto_invoke(submit, hint);
1115 1.23 tls /* we must take here as the TAILQ op or kinvoke
1116 1.23 tls may need this mutex below. sigh. */
1117 1.23 tls mutex_spin_enter(&crypto_mtx);
1118 1.1 jonathan if (result == ERESTART) {
1119 1.1 jonathan /*
1120 1.1 jonathan * The driver ran out of resources, mark the
1121 1.1 jonathan * driver ``blocked'' for cryptop's and put
1122 1.1 jonathan * the request back in the queue. It would
1123 1.1 jonathan * best to put the request back where we got
1124 1.1 jonathan * it but that's hard so for now we put it
1125 1.1 jonathan * at the front. This should be ok; putting
1126 1.1 jonathan * it at the end does not work.
1127 1.1 jonathan */
1128 1.1 jonathan /* XXX validate sid again? */
1129 1.1 jonathan crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1130 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1131 1.1 jonathan cryptostats.cs_blocks++;
1132 1.1 jonathan }
1133 1.1 jonathan }
1134 1.1 jonathan
1135 1.1 jonathan /* As above, but for key ops */
1136 1.1 jonathan TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1137 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1138 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1139 1.1 jonathan /* Op needs to be migrated, process it. */
1140 1.1 jonathan break;
1141 1.1 jonathan }
1142 1.1 jonathan if (!cap->cc_kqblocked)
1143 1.1 jonathan break;
1144 1.1 jonathan }
1145 1.1 jonathan if (krp != NULL) {
1146 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1147 1.23 tls mutex_spin_exit(&crypto_mtx);
1148 1.1 jonathan result = crypto_kinvoke(krp, 0);
1149 1.23 tls /* the next iteration will want the mutex. :-/ */
1150 1.23 tls mutex_spin_enter(&crypto_mtx);
1151 1.1 jonathan if (result == ERESTART) {
1152 1.1 jonathan /*
1153 1.1 jonathan * The driver ran out of resources, mark the
1154 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1155 1.1 jonathan * the request back in the queue. It would
1156 1.1 jonathan * best to put the request back where we got
1157 1.1 jonathan * it but that's hard so for now we put it
1158 1.1 jonathan * at the front. This should be ok; putting
1159 1.1 jonathan * it at the end does not work.
1160 1.1 jonathan */
1161 1.1 jonathan /* XXX validate sid again? */
1162 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1163 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1164 1.1 jonathan cryptostats.cs_kblocks++;
1165 1.1 jonathan }
1166 1.1 jonathan }
1167 1.1 jonathan } while (submit != NULL || krp != NULL);
1168 1.23 tls mutex_spin_exit(&crypto_mtx);
1169 1.1 jonathan }
1170 1.1 jonathan
1171 1.1 jonathan /*
1172 1.1 jonathan * Kernel thread to do callbacks.
1173 1.1 jonathan */
1174 1.1 jonathan static void
1175 1.1 jonathan cryptoret(void)
1176 1.1 jonathan {
1177 1.1 jonathan struct cryptop *crp;
1178 1.1 jonathan struct cryptkop *krp;
1179 1.1 jonathan
1180 1.1 jonathan for (;;) {
1181 1.23 tls mutex_spin_enter(&crypto_mtx);
1182 1.23 tls
1183 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1184 1.23 tls if (crp != NULL) {
1185 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1186 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1187 1.23 tls }
1188 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1189 1.23 tls if (krp != NULL) {
1190 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1191 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1192 1.23 tls }
1193 1.1 jonathan
1194 1.23 tls /* drop before calling any callbacks. */
1195 1.23 tls mutex_spin_exit(&crypto_mtx);
1196 1.1 jonathan if (crp != NULL || krp != NULL) {
1197 1.1 jonathan if (crp != NULL) {
1198 1.1 jonathan #ifdef CRYPTO_TIMING
1199 1.1 jonathan if (crypto_timing) {
1200 1.1 jonathan /*
1201 1.1 jonathan * NB: We must copy the timestamp before
1202 1.1 jonathan * doing the callback as the cryptop is
1203 1.1 jonathan * likely to be reclaimed.
1204 1.1 jonathan */
1205 1.1 jonathan struct timespec t = crp->crp_tstamp;
1206 1.1 jonathan crypto_tstat(&cryptostats.cs_cb, &t);
1207 1.1 jonathan crp->crp_callback(crp);
1208 1.1 jonathan crypto_tstat(&cryptostats.cs_finis, &t);
1209 1.1 jonathan } else
1210 1.1 jonathan #endif
1211 1.23 tls {
1212 1.1 jonathan crp->crp_callback(crp);
1213 1.23 tls }
1214 1.1 jonathan }
1215 1.1 jonathan if (krp != NULL)
1216 1.1 jonathan krp->krp_callback(krp);
1217 1.1 jonathan } else {
1218 1.23 tls mutex_spin_enter(&crypto_mtx);
1219 1.23 tls cv_wait(&cryptoret_cv, &crypto_mtx);
1220 1.23 tls mutex_spin_exit(&crypto_mtx);
1221 1.1 jonathan cryptostats.cs_rets++;
1222 1.1 jonathan }
1223 1.1 jonathan }
1224 1.1 jonathan }
1225