Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.26.6.1
      1  1.26.6.1       mjf /*	$NetBSD: crypto.c,v 1.26.6.1 2008/06/02 13:24:31 mjf Exp $ */
      2       1.1  jonathan /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3       1.1  jonathan /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4       1.1  jonathan 
      5  1.26.6.1       mjf /*-
      6  1.26.6.1       mjf  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  1.26.6.1       mjf  * All rights reserved.
      8  1.26.6.1       mjf  *
      9  1.26.6.1       mjf  * This code is derived from software contributed to The NetBSD Foundation
     10  1.26.6.1       mjf  * by Coyote Point Systems, Inc.
     11  1.26.6.1       mjf  *
     12  1.26.6.1       mjf  * Redistribution and use in source and binary forms, with or without
     13  1.26.6.1       mjf  * modification, are permitted provided that the following conditions
     14  1.26.6.1       mjf  * are met:
     15  1.26.6.1       mjf  * 1. Redistributions of source code must retain the above copyright
     16  1.26.6.1       mjf  *    notice, this list of conditions and the following disclaimer.
     17  1.26.6.1       mjf  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.26.6.1       mjf  *    notice, this list of conditions and the following disclaimer in the
     19  1.26.6.1       mjf  *    documentation and/or other materials provided with the distribution.
     20  1.26.6.1       mjf  *
     21  1.26.6.1       mjf  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  1.26.6.1       mjf  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  1.26.6.1       mjf  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  1.26.6.1       mjf  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  1.26.6.1       mjf  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  1.26.6.1       mjf  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  1.26.6.1       mjf  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  1.26.6.1       mjf  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  1.26.6.1       mjf  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  1.26.6.1       mjf  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  1.26.6.1       mjf  * POSSIBILITY OF SUCH DAMAGE.
     32  1.26.6.1       mjf  */
     33  1.26.6.1       mjf 
     34       1.1  jonathan /*
     35       1.1  jonathan  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36       1.1  jonathan  *
     37       1.1  jonathan  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38       1.1  jonathan  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39       1.1  jonathan  * supported the development of this code.
     40       1.1  jonathan  *
     41       1.1  jonathan  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42       1.1  jonathan  *
     43       1.1  jonathan  * Permission to use, copy, and modify this software with or without fee
     44       1.1  jonathan  * is hereby granted, provided that this entire notice is included in
     45       1.1  jonathan  * all source code copies of any software which is or includes a copy or
     46       1.1  jonathan  * modification of this software.
     47       1.1  jonathan  *
     48       1.1  jonathan  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49       1.1  jonathan  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50       1.1  jonathan  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51       1.1  jonathan  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52       1.1  jonathan  * PURPOSE.
     53       1.1  jonathan  */
     54       1.1  jonathan 
     55       1.1  jonathan #include <sys/cdefs.h>
     56  1.26.6.1       mjf __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.26.6.1 2008/06/02 13:24:31 mjf Exp $");
     57       1.1  jonathan 
     58       1.1  jonathan #include <sys/param.h>
     59       1.1  jonathan #include <sys/reboot.h>
     60       1.1  jonathan #include <sys/systm.h>
     61       1.1  jonathan #include <sys/malloc.h>
     62       1.1  jonathan #include <sys/proc.h>
     63       1.1  jonathan #include <sys/pool.h>
     64       1.1  jonathan #include <sys/kthread.h>
     65      1.11   thorpej #include <sys/once.h>
     66      1.13  christos #include <sys/sysctl.h>
     67      1.21        ad #include <sys/intr.h>
     68       1.1  jonathan 
     69      1.23       tls #include "opt_ocf.h"
     70      1.21        ad #include <opencrypto/cryptodev.h>
     71       1.1  jonathan #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     72       1.1  jonathan 
     73      1.23       tls kcondvar_t cryptoret_cv;
     74      1.23       tls kmutex_t crypto_mtx;
     75      1.23       tls 
     76      1.23       tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     77       1.1  jonathan   #define SWI_CRYPTO 17
     78       1.1  jonathan   #define register_swi(lvl, fn)  \
     79      1.21        ad   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
     80      1.21        ad   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     81      1.21        ad   #define setsoftcrypto(x) softint_schedule(x)
     82       1.1  jonathan 
     83       1.1  jonathan #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
     84       1.1  jonathan 
     85       1.1  jonathan /*
     86       1.1  jonathan  * Crypto drivers register themselves by allocating a slot in the
     87       1.1  jonathan  * crypto_drivers table with crypto_get_driverid() and then registering
     88       1.1  jonathan  * each algorithm they support with crypto_register() and crypto_kregister().
     89       1.1  jonathan  */
     90      1.11   thorpej static	struct cryptocap *crypto_drivers;
     91      1.11   thorpej static	int crypto_drivers_num;
     92       1.1  jonathan static	void* softintr_cookie;
     93       1.1  jonathan 
     94       1.1  jonathan /*
     95       1.1  jonathan  * There are two queues for crypto requests; one for symmetric (e.g.
     96       1.1  jonathan  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     97       1.1  jonathan  * See below for how synchronization is handled.
     98       1.1  jonathan  */
     99      1.11   thorpej static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    100      1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_q);
    101      1.11   thorpej static	TAILQ_HEAD(,cryptkop) crp_kq =
    102      1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_kq);
    103       1.1  jonathan 
    104       1.1  jonathan /*
    105       1.1  jonathan  * There are two queues for processing completed crypto requests; one
    106       1.1  jonathan  * for the symmetric and one for the asymmetric ops.  We only need one
    107       1.1  jonathan  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    108       1.1  jonathan  * for how synchronization is handled.
    109       1.1  jonathan  */
    110      1.23       tls static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    111      1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    112      1.23       tls static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    113      1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    114       1.1  jonathan 
    115       1.1  jonathan /*
    116      1.23       tls  * XXX these functions are ghastly hacks for when the submission
    117      1.23       tls  * XXX routines discover a request that was not CBIMM is already
    118      1.23       tls  * XXX done, and must be yanked from the retq (where _done) put it
    119      1.23       tls  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    120      1.23       tls  * XXX as the request is generally the last one queued.
    121      1.23       tls  *
    122      1.23       tls  *	 call with the lock held, or else.
    123      1.23       tls  */
    124      1.23       tls int
    125      1.23       tls crypto_ret_q_remove(struct cryptop *crp)
    126      1.23       tls {
    127      1.23       tls 	struct cryptop * acrp;
    128      1.23       tls 
    129      1.23       tls 	TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
    130      1.23       tls 		if (acrp == crp) {
    131      1.23       tls 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    132      1.23       tls 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    133      1.23       tls 			return 1;
    134      1.23       tls 		}
    135      1.23       tls 	}
    136      1.23       tls 	return 0;
    137      1.23       tls }
    138      1.23       tls 
    139      1.23       tls int
    140      1.23       tls crypto_ret_kq_remove(struct cryptkop *krp)
    141      1.23       tls {
    142      1.23       tls 	struct cryptkop * akrp;
    143      1.23       tls 
    144      1.23       tls 	TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
    145      1.23       tls 		if (akrp == krp) {
    146      1.23       tls 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    147      1.23       tls 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    148      1.23       tls 			return 1;
    149      1.23       tls 		}
    150      1.23       tls 	}
    151      1.23       tls 	return 0;
    152      1.23       tls }
    153      1.23       tls 
    154      1.23       tls /*
    155       1.1  jonathan  * Crypto op and desciptor data structures are allocated
    156       1.1  jonathan  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    157       1.1  jonathan  */
    158       1.1  jonathan struct pool cryptop_pool;
    159       1.1  jonathan struct pool cryptodesc_pool;
    160      1.23       tls struct pool cryptkop_pool;
    161       1.1  jonathan 
    162       1.1  jonathan int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    163       1.1  jonathan int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    164      1.10     perry /*
    165       1.6  jonathan  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    166       1.6  jonathan  * access to hardware versus software transforms as below:
    167       1.6  jonathan  *
    168       1.6  jonathan  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    169       1.6  jonathan  *                              transforms, always
    170       1.6  jonathan  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    171       1.6  jonathan  *                              requests for non-accelerated transforms
    172       1.6  jonathan  *                              (handling the latter in software)
    173       1.6  jonathan  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    174       1.6  jonathan  *                               are hardware-accelerated.
    175       1.6  jonathan  */
    176       1.9  jonathan int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    177       1.6  jonathan 
    178      1.13  christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    179      1.13  christos {
    180      1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    181      1.13  christos 		       CTLFLAG_PERMANENT,
    182      1.13  christos 		       CTLTYPE_NODE, "kern", NULL,
    183      1.13  christos 		       NULL, 0, NULL, 0,
    184      1.13  christos 		       CTL_KERN, CTL_EOL);
    185      1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    186      1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    187      1.13  christos 		       CTLTYPE_INT, "usercrypto",
    188      1.13  christos 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    189      1.13  christos 			   "crypto support"),
    190      1.13  christos 		       NULL, 0, &crypto_usercrypto, 0,
    191      1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    192      1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    193      1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    194      1.13  christos 		       CTLTYPE_INT, "userasymcrypto",
    195      1.13  christos 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    196      1.13  christos 			   "asymmetric crypto support"),
    197      1.13  christos 		       NULL, 0, &crypto_userasymcrypto, 0,
    198      1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    199      1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    200      1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    201      1.13  christos 		       CTLTYPE_INT, "cryptodevallowsoft",
    202      1.13  christos 		       SYSCTL_DESCR("Enable/disable use of software "
    203      1.13  christos 			   "asymmetric crypto support"),
    204      1.13  christos 		       NULL, 0, &crypto_devallowsoft, 0,
    205      1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    206      1.13  christos }
    207       1.1  jonathan 
    208       1.1  jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    209       1.1  jonathan 
    210       1.1  jonathan /*
    211       1.1  jonathan  * Synchronization: read carefully, this is non-trivial.
    212       1.1  jonathan  *
    213       1.1  jonathan  * Crypto requests are submitted via crypto_dispatch.  Typically
    214       1.1  jonathan  * these come in from network protocols at spl0 (output path) or
    215       1.1  jonathan  * spl[,soft]net (input path).
    216       1.1  jonathan  *
    217       1.1  jonathan  * Requests are typically passed on the driver directly, but they
    218       1.1  jonathan  * may also be queued for processing by a software interrupt thread,
    219      1.10     perry  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    220       1.1  jonathan  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    221       1.1  jonathan  * when a request is complete.  Hardware crypto drivers are assumed
    222       1.1  jonathan  * to register their IRQ's as network devices so their interrupt handlers
    223       1.1  jonathan  * and subsequent "done callbacks" happen at spl[imp,net].
    224       1.1  jonathan  *
    225       1.1  jonathan  * Completed crypto ops are queued for a separate kernel thread that
    226       1.1  jonathan  * handles the callbacks at spl0.  This decoupling insures the crypto
    227       1.1  jonathan  * driver interrupt service routine is not delayed while the callback
    228       1.1  jonathan  * takes place and that callbacks are delivered after a context switch
    229       1.1  jonathan  * (as opposed to a software interrupt that clients must block).
    230       1.1  jonathan  *
    231       1.1  jonathan  * This scheme is not intended for SMP machines.
    232      1.10     perry  */
    233       1.1  jonathan static	void cryptointr(void);		/* swi thread to dispatch ops */
    234       1.1  jonathan static	void cryptoret(void);		/* kernel thread for callbacks*/
    235      1.20        ad static	struct lwp *cryptothread;
    236       1.1  jonathan static	void crypto_destroy(void);
    237       1.1  jonathan static	int crypto_invoke(struct cryptop *crp, int hint);
    238       1.1  jonathan static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    239       1.1  jonathan 
    240       1.1  jonathan static struct cryptostats cryptostats;
    241      1.23       tls #ifdef CRYPTO_TIMING
    242       1.1  jonathan static	int crypto_timing = 0;
    243      1.23       tls #endif
    244       1.1  jonathan 
    245      1.12      yamt static int
    246      1.11   thorpej crypto_init0(void)
    247       1.1  jonathan {
    248       1.1  jonathan 	int error;
    249       1.1  jonathan 
    250      1.23       tls 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
    251      1.23       tls 	cv_init(&cryptoret_cv, "crypto_wait");
    252      1.23       tls 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    253      1.23       tls 		  0, "cryptop", NULL, IPL_NET);
    254      1.23       tls 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    255      1.23       tls 		  0, "cryptodesc", NULL, IPL_NET);
    256      1.23       tls 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    257      1.23       tls 		  0, "cryptkop", NULL, IPL_NET);
    258       1.1  jonathan 
    259      1.11   thorpej 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    260       1.1  jonathan 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    261       1.1  jonathan 	if (crypto_drivers == NULL) {
    262       1.1  jonathan 		printf("crypto_init: cannot malloc driver table\n");
    263      1.12      yamt 		return 0;
    264       1.1  jonathan 	}
    265      1.11   thorpej 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    266       1.1  jonathan 
    267       1.1  jonathan 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    268      1.25       tls 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    269      1.24       tls 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
    270       1.1  jonathan 	if (error) {
    271       1.1  jonathan 		printf("crypto_init: cannot start cryptoret thread; error %d",
    272       1.1  jonathan 			error);
    273       1.1  jonathan 		crypto_destroy();
    274       1.1  jonathan 	}
    275      1.20        ad 
    276      1.12      yamt 	return 0;
    277      1.11   thorpej }
    278      1.11   thorpej 
    279      1.11   thorpej void
    280      1.11   thorpej crypto_init(void)
    281      1.11   thorpej {
    282      1.18    daniel 	static ONCE_DECL(crypto_init_once);
    283      1.11   thorpej 
    284      1.11   thorpej 	RUN_ONCE(&crypto_init_once, crypto_init0);
    285       1.1  jonathan }
    286       1.1  jonathan 
    287       1.1  jonathan static void
    288       1.1  jonathan crypto_destroy(void)
    289       1.1  jonathan {
    290       1.1  jonathan 	/* XXX no wait to reclaim zones */
    291       1.1  jonathan 	if (crypto_drivers != NULL)
    292       1.1  jonathan 		free(crypto_drivers, M_CRYPTO_DATA);
    293       1.1  jonathan 	unregister_swi(SWI_CRYPTO, cryptointr);
    294       1.1  jonathan }
    295       1.1  jonathan 
    296       1.1  jonathan /*
    297      1.23       tls  * Create a new session.  Must be called with crypto_mtx held.
    298       1.1  jonathan  */
    299       1.1  jonathan int
    300       1.1  jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    301       1.1  jonathan {
    302       1.1  jonathan 	struct cryptoini *cr;
    303       1.1  jonathan 	u_int32_t hid, lid;
    304       1.1  jonathan 	int err = EINVAL;
    305       1.1  jonathan 
    306      1.23       tls 	KASSERT(mutex_owned(&crypto_mtx));
    307       1.1  jonathan 
    308       1.1  jonathan 	if (crypto_drivers == NULL)
    309       1.1  jonathan 		goto done;
    310       1.1  jonathan 
    311       1.1  jonathan 	/*
    312       1.1  jonathan 	 * The algorithm we use here is pretty stupid; just use the
    313       1.1  jonathan 	 * first driver that supports all the algorithms we need.
    314       1.1  jonathan 	 *
    315       1.1  jonathan 	 * XXX We need more smarts here (in real life too, but that's
    316       1.1  jonathan 	 * XXX another story altogether).
    317       1.1  jonathan 	 */
    318       1.1  jonathan 
    319       1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    320       1.1  jonathan 		/*
    321       1.1  jonathan 		 * If it's not initialized or has remaining sessions
    322       1.1  jonathan 		 * referencing it, skip.
    323       1.1  jonathan 		 */
    324       1.1  jonathan 		if (crypto_drivers[hid].cc_newsession == NULL ||
    325       1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    326       1.1  jonathan 			continue;
    327       1.1  jonathan 
    328       1.1  jonathan 		/* Hardware required -- ignore software drivers. */
    329       1.1  jonathan 		if (hard > 0 &&
    330       1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    331       1.1  jonathan 			continue;
    332       1.1  jonathan 		/* Software required -- ignore hardware drivers. */
    333       1.1  jonathan 		if (hard < 0 &&
    334       1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    335       1.1  jonathan 			continue;
    336       1.1  jonathan 
    337       1.1  jonathan 		/* See if all the algorithms are supported. */
    338       1.1  jonathan 		for (cr = cri; cr; cr = cr->cri_next)
    339       1.1  jonathan 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
    340       1.1  jonathan 				break;
    341       1.1  jonathan 
    342       1.1  jonathan 		if (cr == NULL) {
    343       1.1  jonathan 			/* Ok, all algorithms are supported. */
    344       1.1  jonathan 
    345       1.1  jonathan 			/*
    346       1.1  jonathan 			 * Can't do everything in one session.
    347       1.1  jonathan 			 *
    348       1.1  jonathan 			 * XXX Fix this. We need to inject a "virtual" session layer right
    349       1.1  jonathan 			 * XXX about here.
    350       1.1  jonathan 			 */
    351       1.1  jonathan 
    352       1.1  jonathan 			/* Call the driver initialization routine. */
    353       1.1  jonathan 			lid = hid;		/* Pass the driver ID. */
    354       1.1  jonathan 			err = crypto_drivers[hid].cc_newsession(
    355       1.1  jonathan 					crypto_drivers[hid].cc_arg, &lid, cri);
    356       1.1  jonathan 			if (err == 0) {
    357       1.1  jonathan 				(*sid) = hid;
    358       1.1  jonathan 				(*sid) <<= 32;
    359       1.1  jonathan 				(*sid) |= (lid & 0xffffffff);
    360       1.1  jonathan 				crypto_drivers[hid].cc_sessions++;
    361       1.1  jonathan 			}
    362       1.1  jonathan 			goto done;
    363       1.1  jonathan 			/*break;*/
    364       1.1  jonathan 		}
    365       1.1  jonathan 	}
    366       1.1  jonathan done:
    367       1.1  jonathan 	return err;
    368       1.1  jonathan }
    369       1.1  jonathan 
    370       1.1  jonathan /*
    371       1.1  jonathan  * Delete an existing session (or a reserved session on an unregistered
    372      1.23       tls  * driver).  Must be called with crypto_mtx mutex held.
    373       1.1  jonathan  */
    374       1.1  jonathan int
    375       1.1  jonathan crypto_freesession(u_int64_t sid)
    376       1.1  jonathan {
    377       1.1  jonathan 	u_int32_t hid;
    378       1.1  jonathan 	int err = 0;
    379       1.1  jonathan 
    380      1.23       tls 	KASSERT(mutex_owned(&crypto_mtx));
    381       1.1  jonathan 
    382       1.1  jonathan 	if (crypto_drivers == NULL) {
    383       1.1  jonathan 		err = EINVAL;
    384       1.1  jonathan 		goto done;
    385       1.1  jonathan 	}
    386       1.1  jonathan 
    387       1.1  jonathan 	/* Determine two IDs. */
    388       1.1  jonathan 	hid = SESID2HID(sid);
    389       1.1  jonathan 
    390       1.1  jonathan 	if (hid >= crypto_drivers_num) {
    391       1.1  jonathan 		err = ENOENT;
    392       1.1  jonathan 		goto done;
    393       1.1  jonathan 	}
    394       1.1  jonathan 
    395       1.1  jonathan 	if (crypto_drivers[hid].cc_sessions)
    396       1.1  jonathan 		crypto_drivers[hid].cc_sessions--;
    397       1.1  jonathan 
    398       1.1  jonathan 	/* Call the driver cleanup routine, if available. */
    399      1.23       tls 	if (crypto_drivers[hid].cc_freesession) {
    400       1.1  jonathan 		err = crypto_drivers[hid].cc_freesession(
    401       1.1  jonathan 				crypto_drivers[hid].cc_arg, sid);
    402      1.23       tls 	}
    403       1.1  jonathan 	else
    404       1.1  jonathan 		err = 0;
    405       1.1  jonathan 
    406       1.1  jonathan 	/*
    407       1.1  jonathan 	 * If this was the last session of a driver marked as invalid,
    408       1.1  jonathan 	 * make the entry available for reuse.
    409       1.1  jonathan 	 */
    410       1.1  jonathan 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    411       1.1  jonathan 	    crypto_drivers[hid].cc_sessions == 0)
    412       1.1  jonathan 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
    413       1.1  jonathan 
    414       1.1  jonathan done:
    415       1.1  jonathan 	return err;
    416       1.1  jonathan }
    417       1.1  jonathan 
    418       1.1  jonathan /*
    419       1.1  jonathan  * Return an unused driver id.  Used by drivers prior to registering
    420       1.1  jonathan  * support for the algorithms they handle.
    421       1.1  jonathan  */
    422       1.1  jonathan int32_t
    423       1.1  jonathan crypto_get_driverid(u_int32_t flags)
    424       1.1  jonathan {
    425       1.1  jonathan 	struct cryptocap *newdrv;
    426      1.23       tls 	int i;
    427       1.1  jonathan 
    428      1.23       tls 	crypto_init();		/* XXX oh, this is foul! */
    429      1.11   thorpej 
    430      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    431       1.1  jonathan 	for (i = 0; i < crypto_drivers_num; i++)
    432       1.1  jonathan 		if (crypto_drivers[i].cc_process == NULL &&
    433       1.1  jonathan 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    434       1.1  jonathan 		    crypto_drivers[i].cc_sessions == 0)
    435       1.1  jonathan 			break;
    436       1.1  jonathan 
    437       1.1  jonathan 	/* Out of entries, allocate some more. */
    438       1.1  jonathan 	if (i == crypto_drivers_num) {
    439       1.1  jonathan 		/* Be careful about wrap-around. */
    440       1.1  jonathan 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    441      1.23       tls 			mutex_spin_exit(&crypto_mtx);
    442       1.1  jonathan 			printf("crypto: driver count wraparound!\n");
    443       1.1  jonathan 			return -1;
    444       1.1  jonathan 		}
    445       1.1  jonathan 
    446       1.1  jonathan 		newdrv = malloc(2 * crypto_drivers_num *
    447       1.1  jonathan 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    448       1.1  jonathan 		if (newdrv == NULL) {
    449      1.23       tls 			mutex_spin_exit(&crypto_mtx);
    450       1.1  jonathan 			printf("crypto: no space to expand driver table!\n");
    451       1.1  jonathan 			return -1;
    452       1.1  jonathan 		}
    453       1.1  jonathan 
    454       1.1  jonathan 		bcopy(crypto_drivers, newdrv,
    455       1.1  jonathan 		    crypto_drivers_num * sizeof(struct cryptocap));
    456       1.1  jonathan 
    457       1.1  jonathan 		crypto_drivers_num *= 2;
    458       1.1  jonathan 
    459       1.1  jonathan 		free(crypto_drivers, M_CRYPTO_DATA);
    460       1.1  jonathan 		crypto_drivers = newdrv;
    461       1.1  jonathan 	}
    462       1.1  jonathan 
    463       1.1  jonathan 	/* NB: state is zero'd on free */
    464       1.1  jonathan 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    465       1.1  jonathan 	crypto_drivers[i].cc_flags = flags;
    466       1.1  jonathan 
    467       1.1  jonathan 	if (bootverbose)
    468       1.1  jonathan 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    469       1.1  jonathan 
    470      1.23       tls 	mutex_spin_exit(&crypto_mtx);
    471       1.1  jonathan 
    472       1.1  jonathan 	return i;
    473       1.1  jonathan }
    474       1.1  jonathan 
    475       1.1  jonathan static struct cryptocap *
    476       1.1  jonathan crypto_checkdriver(u_int32_t hid)
    477       1.1  jonathan {
    478       1.1  jonathan 	if (crypto_drivers == NULL)
    479       1.1  jonathan 		return NULL;
    480       1.1  jonathan 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    481       1.1  jonathan }
    482       1.1  jonathan 
    483       1.1  jonathan /*
    484       1.1  jonathan  * Register support for a key-related algorithm.  This routine
    485       1.1  jonathan  * is called once for each algorithm supported a driver.
    486       1.1  jonathan  */
    487       1.1  jonathan int
    488       1.1  jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    489       1.1  jonathan     int (*kprocess)(void*, struct cryptkop *, int),
    490       1.1  jonathan     void *karg)
    491       1.1  jonathan {
    492       1.1  jonathan 	struct cryptocap *cap;
    493       1.1  jonathan 	int err;
    494       1.1  jonathan 
    495      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    496       1.1  jonathan 
    497       1.1  jonathan 	cap = crypto_checkdriver(driverid);
    498       1.1  jonathan 	if (cap != NULL &&
    499       1.1  jonathan 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    500       1.1  jonathan 		/*
    501       1.1  jonathan 		 * XXX Do some performance testing to determine placing.
    502       1.1  jonathan 		 * XXX We probably need an auxiliary data structure that
    503       1.1  jonathan 		 * XXX describes relative performances.
    504       1.1  jonathan 		 */
    505       1.1  jonathan 
    506       1.1  jonathan 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    507      1.23       tls 		if (bootverbose) {
    508      1.23       tls 			printf("crypto: driver %u registers key alg %u "
    509      1.23       tls 			       " flags %u\n",
    510      1.23       tls 				driverid,
    511      1.23       tls 				kalg,
    512      1.23       tls 				flags
    513       1.1  jonathan 			);
    514      1.23       tls 		}
    515       1.1  jonathan 
    516       1.1  jonathan 		if (cap->cc_kprocess == NULL) {
    517       1.1  jonathan 			cap->cc_karg = karg;
    518       1.1  jonathan 			cap->cc_kprocess = kprocess;
    519       1.1  jonathan 		}
    520       1.1  jonathan 		err = 0;
    521       1.1  jonathan 	} else
    522       1.1  jonathan 		err = EINVAL;
    523       1.1  jonathan 
    524      1.23       tls 	mutex_spin_exit(&crypto_mtx);
    525       1.1  jonathan 	return err;
    526       1.1  jonathan }
    527       1.1  jonathan 
    528       1.1  jonathan /*
    529       1.1  jonathan  * Register support for a non-key-related algorithm.  This routine
    530       1.1  jonathan  * is called once for each such algorithm supported by a driver.
    531       1.1  jonathan  */
    532       1.1  jonathan int
    533       1.1  jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    534       1.1  jonathan     u_int32_t flags,
    535       1.1  jonathan     int (*newses)(void*, u_int32_t*, struct cryptoini*),
    536       1.1  jonathan     int (*freeses)(void*, u_int64_t),
    537       1.1  jonathan     int (*process)(void*, struct cryptop *, int),
    538       1.1  jonathan     void *arg)
    539       1.1  jonathan {
    540       1.1  jonathan 	struct cryptocap *cap;
    541      1.23       tls 	int err;
    542       1.1  jonathan 
    543      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    544       1.1  jonathan 
    545       1.1  jonathan 	cap = crypto_checkdriver(driverid);
    546       1.1  jonathan 	/* NB: algorithms are in the range [1..max] */
    547       1.1  jonathan 	if (cap != NULL &&
    548       1.1  jonathan 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    549       1.1  jonathan 		/*
    550       1.1  jonathan 		 * XXX Do some performance testing to determine placing.
    551       1.1  jonathan 		 * XXX We probably need an auxiliary data structure that
    552       1.1  jonathan 		 * XXX describes relative performances.
    553       1.1  jonathan 		 */
    554       1.1  jonathan 
    555       1.1  jonathan 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    556       1.1  jonathan 		cap->cc_max_op_len[alg] = maxoplen;
    557      1.23       tls 		if (bootverbose) {
    558      1.23       tls 			printf("crypto: driver %u registers alg %u "
    559      1.23       tls 				"flags %u maxoplen %u\n",
    560      1.23       tls 				driverid,
    561      1.23       tls 				alg,
    562      1.23       tls 				flags,
    563      1.23       tls 				maxoplen
    564       1.1  jonathan 			);
    565      1.23       tls 		}
    566       1.1  jonathan 
    567       1.1  jonathan 		if (cap->cc_process == NULL) {
    568       1.1  jonathan 			cap->cc_arg = arg;
    569       1.1  jonathan 			cap->cc_newsession = newses;
    570       1.1  jonathan 			cap->cc_process = process;
    571       1.1  jonathan 			cap->cc_freesession = freeses;
    572       1.1  jonathan 			cap->cc_sessions = 0;		/* Unmark */
    573       1.1  jonathan 		}
    574       1.1  jonathan 		err = 0;
    575       1.1  jonathan 	} else
    576       1.1  jonathan 		err = EINVAL;
    577       1.1  jonathan 
    578      1.23       tls 	mutex_spin_exit(&crypto_mtx);
    579       1.1  jonathan 	return err;
    580       1.1  jonathan }
    581       1.1  jonathan 
    582       1.1  jonathan /*
    583       1.1  jonathan  * Unregister a crypto driver. If there are pending sessions using it,
    584       1.1  jonathan  * leave enough information around so that subsequent calls using those
    585       1.1  jonathan  * sessions will correctly detect the driver has been unregistered and
    586       1.1  jonathan  * reroute requests.
    587       1.1  jonathan  */
    588       1.1  jonathan int
    589       1.1  jonathan crypto_unregister(u_int32_t driverid, int alg)
    590       1.1  jonathan {
    591      1.23       tls 	int i, err;
    592       1.1  jonathan 	u_int32_t ses;
    593       1.1  jonathan 	struct cryptocap *cap;
    594       1.1  jonathan 
    595      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    596       1.1  jonathan 
    597       1.1  jonathan 	cap = crypto_checkdriver(driverid);
    598       1.1  jonathan 	if (cap != NULL &&
    599       1.1  jonathan 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    600       1.1  jonathan 	    cap->cc_alg[alg] != 0) {
    601       1.1  jonathan 		cap->cc_alg[alg] = 0;
    602       1.1  jonathan 		cap->cc_max_op_len[alg] = 0;
    603       1.1  jonathan 
    604       1.1  jonathan 		/* Was this the last algorithm ? */
    605       1.1  jonathan 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    606       1.1  jonathan 			if (cap->cc_alg[i] != 0)
    607       1.1  jonathan 				break;
    608       1.1  jonathan 
    609       1.1  jonathan 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    610       1.1  jonathan 			ses = cap->cc_sessions;
    611       1.1  jonathan 			bzero(cap, sizeof(struct cryptocap));
    612       1.1  jonathan 			if (ses != 0) {
    613       1.1  jonathan 				/*
    614       1.1  jonathan 				 * If there are pending sessions, just mark as invalid.
    615       1.1  jonathan 				 */
    616       1.1  jonathan 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    617       1.1  jonathan 				cap->cc_sessions = ses;
    618       1.1  jonathan 			}
    619       1.1  jonathan 		}
    620       1.1  jonathan 		err = 0;
    621       1.1  jonathan 	} else
    622       1.1  jonathan 		err = EINVAL;
    623       1.1  jonathan 
    624      1.23       tls 	mutex_spin_exit(&crypto_mtx);
    625       1.1  jonathan 	return err;
    626       1.1  jonathan }
    627       1.1  jonathan 
    628       1.1  jonathan /*
    629       1.1  jonathan  * Unregister all algorithms associated with a crypto driver.
    630       1.1  jonathan  * If there are pending sessions using it, leave enough information
    631       1.1  jonathan  * around so that subsequent calls using those sessions will
    632       1.1  jonathan  * correctly detect the driver has been unregistered and reroute
    633       1.1  jonathan  * requests.
    634      1.23       tls  *
    635      1.23       tls  * XXX careful.  Don't change this to call crypto_unregister() for each
    636      1.23       tls  * XXX registered algorithm unless you drop the mutex across the calls;
    637      1.23       tls  * XXX you can't take it recursively.
    638       1.1  jonathan  */
    639       1.1  jonathan int
    640       1.1  jonathan crypto_unregister_all(u_int32_t driverid)
    641       1.1  jonathan {
    642      1.23       tls 	int i, err;
    643       1.1  jonathan 	u_int32_t ses;
    644       1.1  jonathan 	struct cryptocap *cap;
    645       1.1  jonathan 
    646      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    647       1.1  jonathan 	cap = crypto_checkdriver(driverid);
    648       1.1  jonathan 	if (cap != NULL) {
    649       1.1  jonathan 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    650       1.1  jonathan 			cap->cc_alg[i] = 0;
    651       1.1  jonathan 			cap->cc_max_op_len[i] = 0;
    652       1.1  jonathan 		}
    653       1.1  jonathan 		ses = cap->cc_sessions;
    654       1.1  jonathan 		bzero(cap, sizeof(struct cryptocap));
    655       1.1  jonathan 		if (ses != 0) {
    656       1.1  jonathan 			/*
    657       1.1  jonathan 			 * If there are pending sessions, just mark as invalid.
    658       1.1  jonathan 			 */
    659       1.1  jonathan 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    660       1.1  jonathan 			cap->cc_sessions = ses;
    661       1.1  jonathan 		}
    662       1.1  jonathan 		err = 0;
    663       1.1  jonathan 	} else
    664       1.1  jonathan 		err = EINVAL;
    665       1.1  jonathan 
    666      1.23       tls 	mutex_spin_exit(&crypto_mtx);
    667       1.1  jonathan 	return err;
    668       1.1  jonathan }
    669       1.1  jonathan 
    670       1.1  jonathan /*
    671       1.1  jonathan  * Clear blockage on a driver.  The what parameter indicates whether
    672       1.1  jonathan  * the driver is now ready for cryptop's and/or cryptokop's.
    673       1.1  jonathan  */
    674       1.1  jonathan int
    675       1.1  jonathan crypto_unblock(u_int32_t driverid, int what)
    676       1.1  jonathan {
    677       1.1  jonathan 	struct cryptocap *cap;
    678      1.23       tls 	int needwakeup, err;
    679       1.1  jonathan 
    680      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    681       1.1  jonathan 	cap = crypto_checkdriver(driverid);
    682       1.1  jonathan 	if (cap != NULL) {
    683       1.1  jonathan 		needwakeup = 0;
    684       1.1  jonathan 		if (what & CRYPTO_SYMQ) {
    685       1.1  jonathan 			needwakeup |= cap->cc_qblocked;
    686       1.1  jonathan 			cap->cc_qblocked = 0;
    687       1.1  jonathan 		}
    688       1.1  jonathan 		if (what & CRYPTO_ASYMQ) {
    689       1.1  jonathan 			needwakeup |= cap->cc_kqblocked;
    690       1.1  jonathan 			cap->cc_kqblocked = 0;
    691       1.1  jonathan 		}
    692      1.24       tls 		err = 0;
    693      1.24       tls 		mutex_spin_exit(&crypto_mtx);
    694      1.24       tls 		if (needwakeup)
    695       1.1  jonathan 			setsoftcrypto(softintr_cookie);
    696      1.24       tls 	} else {
    697       1.1  jonathan 		err = EINVAL;
    698      1.24       tls 		mutex_spin_exit(&crypto_mtx);
    699      1.24       tls 	}
    700       1.1  jonathan 
    701       1.1  jonathan 	return err;
    702       1.1  jonathan }
    703       1.1  jonathan 
    704       1.1  jonathan /*
    705       1.1  jonathan  * Dispatch a crypto request to a driver or queue
    706       1.1  jonathan  * it, to be processed by the kernel thread.
    707       1.1  jonathan  */
    708       1.1  jonathan int
    709       1.1  jonathan crypto_dispatch(struct cryptop *crp)
    710       1.1  jonathan {
    711       1.1  jonathan 	u_int32_t hid = SESID2HID(crp->crp_sid);
    712      1.23       tls 	int result;
    713       1.1  jonathan 
    714      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    715       1.1  jonathan 
    716       1.1  jonathan 	cryptostats.cs_ops++;
    717       1.1  jonathan 
    718       1.1  jonathan #ifdef CRYPTO_TIMING
    719       1.1  jonathan 	if (crypto_timing)
    720       1.1  jonathan 		nanouptime(&crp->crp_tstamp);
    721       1.1  jonathan #endif
    722       1.1  jonathan 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    723       1.1  jonathan 		struct cryptocap *cap;
    724       1.1  jonathan 		/*
    725       1.1  jonathan 		 * Caller marked the request to be processed
    726       1.1  jonathan 		 * immediately; dispatch it directly to the
    727       1.1  jonathan 		 * driver unless the driver is currently blocked.
    728       1.1  jonathan 		 */
    729       1.1  jonathan 		cap = crypto_checkdriver(hid);
    730       1.1  jonathan 		if (cap && !cap->cc_qblocked) {
    731      1.23       tls 			mutex_spin_exit(&crypto_mtx);
    732       1.1  jonathan 			result = crypto_invoke(crp, 0);
    733       1.1  jonathan 			if (result == ERESTART) {
    734       1.1  jonathan 				/*
    735       1.1  jonathan 				 * The driver ran out of resources, mark the
    736       1.1  jonathan 				 * driver ``blocked'' for cryptop's and put
    737       1.1  jonathan 				 * the op on the queue.
    738       1.1  jonathan 				 */
    739      1.23       tls 				mutex_spin_enter(&crypto_mtx);
    740       1.1  jonathan 				crypto_drivers[hid].cc_qblocked = 1;
    741       1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    742       1.1  jonathan 				cryptostats.cs_blocks++;
    743      1.24       tls 				mutex_spin_exit(&crypto_mtx);
    744       1.1  jonathan 			}
    745      1.23       tls 			goto out_released;
    746       1.1  jonathan 		} else {
    747       1.1  jonathan 			/*
    748       1.1  jonathan 			 * The driver is blocked, just queue the op until
    749       1.1  jonathan 			 * it unblocks and the swi thread gets kicked.
    750       1.1  jonathan 			 */
    751       1.1  jonathan 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    752       1.1  jonathan 			result = 0;
    753       1.1  jonathan 		}
    754       1.1  jonathan 	} else {
    755       1.1  jonathan 		int wasempty = TAILQ_EMPTY(&crp_q);
    756       1.1  jonathan 		/*
    757       1.1  jonathan 		 * Caller marked the request as ``ok to delay'';
    758       1.1  jonathan 		 * queue it for the swi thread.  This is desirable
    759       1.1  jonathan 		 * when the operation is low priority and/or suitable
    760       1.1  jonathan 		 * for batching.
    761       1.1  jonathan 		 */
    762       1.1  jonathan 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    763       1.1  jonathan 		if (wasempty) {
    764      1.23       tls 			mutex_spin_exit(&crypto_mtx);
    765       1.1  jonathan 			setsoftcrypto(softintr_cookie);
    766      1.23       tls 			result = 0;
    767      1.23       tls 			goto out_released;
    768       1.1  jonathan 		}
    769       1.1  jonathan 
    770       1.1  jonathan 		result = 0;
    771       1.1  jonathan 	}
    772       1.1  jonathan 
    773      1.23       tls 	mutex_spin_exit(&crypto_mtx);
    774      1.23       tls out_released:
    775       1.1  jonathan 	return result;
    776       1.1  jonathan }
    777       1.1  jonathan 
    778       1.1  jonathan /*
    779       1.1  jonathan  * Add an asymetric crypto request to a queue,
    780       1.1  jonathan  * to be processed by the kernel thread.
    781       1.1  jonathan  */
    782       1.1  jonathan int
    783       1.1  jonathan crypto_kdispatch(struct cryptkop *krp)
    784       1.1  jonathan {
    785       1.1  jonathan 	struct cryptocap *cap;
    786      1.23       tls 	int result;
    787       1.1  jonathan 
    788      1.23       tls 	mutex_spin_enter(&crypto_mtx);
    789       1.1  jonathan 	cryptostats.cs_kops++;
    790       1.1  jonathan 
    791       1.1  jonathan 	cap = crypto_checkdriver(krp->krp_hid);
    792       1.1  jonathan 	if (cap && !cap->cc_kqblocked) {
    793      1.23       tls 		mutex_spin_exit(&crypto_mtx);
    794       1.1  jonathan 		result = crypto_kinvoke(krp, 0);
    795       1.1  jonathan 		if (result == ERESTART) {
    796       1.1  jonathan 			/*
    797       1.1  jonathan 			 * The driver ran out of resources, mark the
    798       1.1  jonathan 			 * driver ``blocked'' for cryptop's and put
    799       1.1  jonathan 			 * the op on the queue.
    800       1.1  jonathan 			 */
    801      1.23       tls 			mutex_spin_enter(&crypto_mtx);
    802       1.1  jonathan 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    803       1.1  jonathan 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    804       1.1  jonathan 			cryptostats.cs_kblocks++;
    805      1.24       tls 			mutex_spin_exit(&crypto_mtx);
    806       1.1  jonathan 		}
    807       1.1  jonathan 	} else {
    808       1.1  jonathan 		/*
    809       1.1  jonathan 		 * The driver is blocked, just queue the op until
    810       1.1  jonathan 		 * it unblocks and the swi thread gets kicked.
    811       1.1  jonathan 		 */
    812       1.1  jonathan 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    813       1.1  jonathan 		result = 0;
    814      1.24       tls 		mutex_spin_exit(&crypto_mtx);
    815       1.1  jonathan 	}
    816       1.1  jonathan 
    817       1.1  jonathan 	return result;
    818       1.1  jonathan }
    819       1.1  jonathan 
    820       1.1  jonathan /*
    821       1.1  jonathan  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    822       1.1  jonathan  */
    823       1.1  jonathan static int
    824       1.1  jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
    825       1.1  jonathan {
    826       1.1  jonathan 	u_int32_t hid;
    827       1.1  jonathan 	int error;
    828       1.1  jonathan 
    829       1.1  jonathan 	/* Sanity checks. */
    830       1.1  jonathan 	if (krp == NULL)
    831       1.1  jonathan 		return EINVAL;
    832       1.1  jonathan 	if (krp->krp_callback == NULL) {
    833      1.23       tls 		pool_put(&cryptkop_pool, krp);
    834       1.1  jonathan 		return EINVAL;
    835       1.1  jonathan 	}
    836       1.1  jonathan 
    837       1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    838       1.1  jonathan 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    839       1.1  jonathan 		    crypto_devallowsoft == 0)
    840       1.1  jonathan 			continue;
    841       1.1  jonathan 		if (crypto_drivers[hid].cc_kprocess == NULL)
    842       1.1  jonathan 			continue;
    843       1.1  jonathan 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    844       1.1  jonathan 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    845       1.1  jonathan 			continue;
    846       1.1  jonathan 		break;
    847       1.1  jonathan 	}
    848       1.1  jonathan 	if (hid < crypto_drivers_num) {
    849       1.1  jonathan 		krp->krp_hid = hid;
    850       1.1  jonathan 		error = crypto_drivers[hid].cc_kprocess(
    851       1.1  jonathan 				crypto_drivers[hid].cc_karg, krp, hint);
    852       1.1  jonathan 	} else {
    853       1.1  jonathan 		error = ENODEV;
    854       1.1  jonathan 	}
    855       1.1  jonathan 
    856       1.1  jonathan 	if (error) {
    857       1.1  jonathan 		krp->krp_status = error;
    858       1.1  jonathan 		crypto_kdone(krp);
    859       1.1  jonathan 	}
    860       1.1  jonathan 	return 0;
    861       1.1  jonathan }
    862       1.1  jonathan 
    863       1.1  jonathan #ifdef CRYPTO_TIMING
    864       1.1  jonathan static void
    865       1.1  jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    866       1.1  jonathan {
    867       1.1  jonathan 	struct timespec now, t;
    868       1.1  jonathan 
    869       1.1  jonathan 	nanouptime(&now);
    870       1.1  jonathan 	t.tv_sec = now.tv_sec - tv->tv_sec;
    871       1.1  jonathan 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    872       1.1  jonathan 	if (t.tv_nsec < 0) {
    873       1.1  jonathan 		t.tv_sec--;
    874       1.1  jonathan 		t.tv_nsec += 1000000000;
    875       1.1  jonathan 	}
    876       1.1  jonathan 	timespecadd(&ts->acc, &t, &t);
    877       1.1  jonathan 	if (timespeccmp(&t, &ts->min, <))
    878       1.1  jonathan 		ts->min = t;
    879       1.1  jonathan 	if (timespeccmp(&t, &ts->max, >))
    880       1.1  jonathan 		ts->max = t;
    881       1.1  jonathan 	ts->count++;
    882       1.1  jonathan 
    883       1.1  jonathan 	*tv = now;
    884       1.1  jonathan }
    885       1.1  jonathan #endif
    886       1.1  jonathan 
    887       1.1  jonathan /*
    888       1.1  jonathan  * Dispatch a crypto request to the appropriate crypto devices.
    889       1.1  jonathan  */
    890       1.1  jonathan static int
    891       1.1  jonathan crypto_invoke(struct cryptop *crp, int hint)
    892       1.1  jonathan {
    893       1.1  jonathan 	u_int32_t hid;
    894       1.1  jonathan 	int (*process)(void*, struct cryptop *, int);
    895       1.1  jonathan 
    896       1.1  jonathan #ifdef CRYPTO_TIMING
    897       1.1  jonathan 	if (crypto_timing)
    898       1.1  jonathan 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    899       1.1  jonathan #endif
    900       1.1  jonathan 	/* Sanity checks. */
    901       1.1  jonathan 	if (crp == NULL)
    902       1.1  jonathan 		return EINVAL;
    903       1.1  jonathan 	if (crp->crp_callback == NULL) {
    904       1.1  jonathan 		crypto_freereq(crp);
    905       1.1  jonathan 		return EINVAL;
    906       1.1  jonathan 	}
    907       1.1  jonathan 	if (crp->crp_desc == NULL) {
    908       1.1  jonathan 		crp->crp_etype = EINVAL;
    909       1.1  jonathan 		crypto_done(crp);
    910       1.1  jonathan 		return 0;
    911       1.1  jonathan 	}
    912       1.1  jonathan 
    913       1.1  jonathan 	hid = SESID2HID(crp->crp_sid);
    914       1.1  jonathan 	if (hid < crypto_drivers_num) {
    915      1.23       tls 		mutex_enter(&crypto_mtx);
    916       1.1  jonathan 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    917       1.1  jonathan 			crypto_freesession(crp->crp_sid);
    918       1.1  jonathan 		process = crypto_drivers[hid].cc_process;
    919      1.23       tls 		mutex_exit(&crypto_mtx);
    920       1.1  jonathan 	} else {
    921       1.1  jonathan 		process = NULL;
    922       1.1  jonathan 	}
    923       1.1  jonathan 
    924       1.1  jonathan 	if (process == NULL) {
    925       1.1  jonathan 		struct cryptodesc *crd;
    926      1.16       mrg 		u_int64_t nid = 0;
    927       1.1  jonathan 
    928       1.1  jonathan 		/*
    929       1.1  jonathan 		 * Driver has unregistered; migrate the session and return
    930       1.1  jonathan 		 * an error to the caller so they'll resubmit the op.
    931       1.1  jonathan 		 */
    932      1.23       tls 		mutex_enter(&crypto_mtx);
    933       1.1  jonathan 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    934       1.1  jonathan 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    935       1.1  jonathan 
    936       1.1  jonathan 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    937       1.1  jonathan 			crp->crp_sid = nid;
    938       1.1  jonathan 
    939       1.1  jonathan 		crp->crp_etype = EAGAIN;
    940      1.23       tls 		mutex_exit(&crypto_mtx);
    941      1.23       tls 
    942       1.1  jonathan 		crypto_done(crp);
    943       1.1  jonathan 		return 0;
    944       1.1  jonathan 	} else {
    945       1.1  jonathan 		/*
    946       1.1  jonathan 		 * Invoke the driver to process the request.
    947       1.1  jonathan 		 */
    948      1.23       tls 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
    949       1.1  jonathan 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
    950       1.1  jonathan 	}
    951       1.1  jonathan }
    952       1.1  jonathan 
    953       1.1  jonathan /*
    954       1.1  jonathan  * Release a set of crypto descriptors.
    955       1.1  jonathan  */
    956       1.1  jonathan void
    957       1.1  jonathan crypto_freereq(struct cryptop *crp)
    958       1.1  jonathan {
    959       1.1  jonathan 	struct cryptodesc *crd;
    960       1.1  jonathan 
    961       1.1  jonathan 	if (crp == NULL)
    962       1.1  jonathan 		return;
    963       1.1  jonathan 
    964       1.1  jonathan 	while ((crd = crp->crp_desc) != NULL) {
    965       1.1  jonathan 		crp->crp_desc = crd->crd_next;
    966       1.1  jonathan 		pool_put(&cryptodesc_pool, crd);
    967       1.1  jonathan 	}
    968       1.1  jonathan 	pool_put(&cryptop_pool, crp);
    969       1.1  jonathan }
    970       1.1  jonathan 
    971       1.1  jonathan /*
    972       1.1  jonathan  * Acquire a set of crypto descriptors.
    973       1.1  jonathan  */
    974       1.1  jonathan struct cryptop *
    975       1.1  jonathan crypto_getreq(int num)
    976       1.1  jonathan {
    977       1.1  jonathan 	struct cryptodesc *crd;
    978       1.1  jonathan 	struct cryptop *crp;
    979       1.1  jonathan 
    980       1.1  jonathan 	crp = pool_get(&cryptop_pool, 0);
    981       1.1  jonathan 	if (crp == NULL) {
    982       1.1  jonathan 		return NULL;
    983       1.1  jonathan 	}
    984       1.1  jonathan 	bzero(crp, sizeof(struct cryptop));
    985      1.23       tls 	cv_init(&crp->crp_cv, "crydev");
    986       1.1  jonathan 
    987       1.1  jonathan 	while (num--) {
    988       1.1  jonathan 		crd = pool_get(&cryptodesc_pool, 0);
    989       1.1  jonathan 		if (crd == NULL) {
    990       1.1  jonathan 			crypto_freereq(crp);
    991       1.1  jonathan 			return NULL;
    992       1.1  jonathan 		}
    993       1.1  jonathan 
    994       1.1  jonathan 		bzero(crd, sizeof(struct cryptodesc));
    995       1.1  jonathan 		crd->crd_next = crp->crp_desc;
    996       1.1  jonathan 		crp->crp_desc = crd;
    997       1.1  jonathan 	}
    998       1.1  jonathan 
    999       1.1  jonathan 	return crp;
   1000       1.1  jonathan }
   1001       1.1  jonathan 
   1002       1.1  jonathan /*
   1003       1.1  jonathan  * Invoke the callback on behalf of the driver.
   1004       1.1  jonathan  */
   1005       1.1  jonathan void
   1006       1.1  jonathan crypto_done(struct cryptop *crp)
   1007       1.1  jonathan {
   1008      1.23       tls 	int wasempty;
   1009      1.23       tls 
   1010       1.1  jonathan 	if (crp->crp_etype != 0)
   1011       1.1  jonathan 		cryptostats.cs_errs++;
   1012       1.1  jonathan #ifdef CRYPTO_TIMING
   1013       1.1  jonathan 	if (crypto_timing)
   1014       1.1  jonathan 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1015       1.1  jonathan #endif
   1016  1.26.6.1       mjf 
   1017  1.26.6.1       mjf 	crp->crp_flags |= CRYPTO_F_DONE;
   1018  1.26.6.1       mjf 
   1019       1.1  jonathan 	/*
   1020      1.23       tls 	 * Normal case; queue the callback for the thread.
   1021      1.23       tls 	 *
   1022      1.23       tls 	 * The return queue is manipulated by the swi thread
   1023      1.23       tls 	 * and, potentially, by crypto device drivers calling
   1024      1.23       tls 	 * back to mark operations completed.  Thus we need
   1025      1.23       tls 	 * to mask both while manipulating the return queue.
   1026       1.1  jonathan 	 */
   1027  1.26.6.1       mjf   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1028  1.26.6.1       mjf 		/*
   1029  1.26.6.1       mjf 	 	* Do the callback directly.  This is ok when the
   1030  1.26.6.1       mjf   	 	* callback routine does very little (e.g. the
   1031  1.26.6.1       mjf 	 	* /dev/crypto callback method just does a wakeup).
   1032  1.26.6.1       mjf 	 	*/
   1033  1.26.6.1       mjf #ifdef CRYPTO_TIMING
   1034  1.26.6.1       mjf 		if (crypto_timing) {
   1035  1.26.6.1       mjf 			/*
   1036  1.26.6.1       mjf 		 	* NB: We must copy the timestamp before
   1037  1.26.6.1       mjf 		 	* doing the callback as the cryptop is
   1038  1.26.6.1       mjf 		 	* likely to be reclaimed.
   1039  1.26.6.1       mjf 		 	*/
   1040  1.26.6.1       mjf 			struct timespec t = crp->crp_tstamp;
   1041  1.26.6.1       mjf 			crypto_tstat(&cryptostats.cs_cb, &t);
   1042  1.26.6.1       mjf 			crp->crp_callback(crp);
   1043  1.26.6.1       mjf 			crypto_tstat(&cryptostats.cs_finis, &t);
   1044  1.26.6.1       mjf 		} else
   1045  1.26.6.1       mjf #endif
   1046  1.26.6.1       mjf 		crp->crp_callback(crp);
   1047  1.26.6.1       mjf 	} else {
   1048  1.26.6.1       mjf 		mutex_spin_enter(&crypto_mtx);
   1049  1.26.6.1       mjf 		wasempty = TAILQ_EMPTY(&crp_ret_q);
   1050  1.26.6.1       mjf 		DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
   1051  1.26.6.1       mjf 		crp->crp_flags |= CRYPTO_F_ONRETQ;
   1052  1.26.6.1       mjf 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1053  1.26.6.1       mjf 		if (wasempty) {
   1054  1.26.6.1       mjf 			DPRINTF(("crypto_done: waking cryptoret, %08x " \
   1055  1.26.6.1       mjf 				"hit empty queue\n.", (uint32_t)crp));
   1056  1.26.6.1       mjf 			cv_signal(&cryptoret_cv);
   1057  1.26.6.1       mjf 		}
   1058  1.26.6.1       mjf 		mutex_spin_exit(&crypto_mtx);
   1059       1.1  jonathan 	}
   1060       1.1  jonathan }
   1061       1.1  jonathan 
   1062       1.1  jonathan /*
   1063       1.1  jonathan  * Invoke the callback on behalf of the driver.
   1064       1.1  jonathan  */
   1065       1.1  jonathan void
   1066       1.1  jonathan crypto_kdone(struct cryptkop *krp)
   1067       1.1  jonathan {
   1068      1.23       tls 	int wasempty;
   1069       1.1  jonathan 
   1070       1.1  jonathan 	if (krp->krp_status != 0)
   1071       1.1  jonathan 		cryptostats.cs_kerrs++;
   1072  1.26.6.1       mjf 
   1073  1.26.6.1       mjf 	krp->krp_flags |= CRYPTO_F_DONE;
   1074  1.26.6.1       mjf 
   1075       1.1  jonathan 	/*
   1076       1.1  jonathan 	 * The return queue is manipulated by the swi thread
   1077       1.1  jonathan 	 * and, potentially, by crypto device drivers calling
   1078       1.1  jonathan 	 * back to mark operations completed.  Thus we need
   1079       1.1  jonathan 	 * to mask both while manipulating the return queue.
   1080       1.1  jonathan 	 */
   1081  1.26.6.1       mjf 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1082  1.26.6.1       mjf 		krp->krp_callback(krp);
   1083  1.26.6.1       mjf 	} else {
   1084  1.26.6.1       mjf 		mutex_spin_enter(&crypto_mtx);
   1085  1.26.6.1       mjf 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1086  1.26.6.1       mjf 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1087  1.26.6.1       mjf 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1088  1.26.6.1       mjf 		if (wasempty)
   1089  1.26.6.1       mjf 			cv_signal(&cryptoret_cv);
   1090  1.26.6.1       mjf 		mutex_spin_exit(&crypto_mtx);
   1091  1.26.6.1       mjf 	}
   1092       1.1  jonathan }
   1093       1.1  jonathan 
   1094       1.1  jonathan int
   1095       1.1  jonathan crypto_getfeat(int *featp)
   1096       1.1  jonathan {
   1097       1.1  jonathan 	int hid, kalg, feat = 0;
   1098       1.1  jonathan 
   1099      1.23       tls 	mutex_spin_enter(&crypto_mtx);
   1100       1.1  jonathan 
   1101       1.1  jonathan 	if (crypto_userasymcrypto == 0)
   1102      1.10     perry 		goto out;
   1103       1.1  jonathan 
   1104       1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1105       1.1  jonathan 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1106       1.7  jonathan 		    crypto_devallowsoft == 0) {
   1107       1.1  jonathan 			continue;
   1108       1.1  jonathan 		}
   1109       1.1  jonathan 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1110       1.1  jonathan 			continue;
   1111       1.1  jonathan 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1112       1.1  jonathan 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1113       1.1  jonathan 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1114       1.1  jonathan 				feat |=  1 << kalg;
   1115       1.1  jonathan 	}
   1116       1.1  jonathan out:
   1117      1.23       tls 	mutex_spin_exit(&crypto_mtx);
   1118       1.1  jonathan 	*featp = feat;
   1119       1.1  jonathan 	return (0);
   1120       1.1  jonathan }
   1121       1.1  jonathan 
   1122       1.1  jonathan /*
   1123       1.1  jonathan  * Software interrupt thread to dispatch crypto requests.
   1124       1.1  jonathan  */
   1125       1.1  jonathan static void
   1126       1.1  jonathan cryptointr(void)
   1127       1.1  jonathan {
   1128       1.1  jonathan 	struct cryptop *crp, *submit;
   1129       1.1  jonathan 	struct cryptkop *krp;
   1130       1.1  jonathan 	struct cryptocap *cap;
   1131      1.23       tls 	int result, hint;
   1132       1.1  jonathan 
   1133       1.1  jonathan 	printf("crypto softint\n");
   1134       1.1  jonathan 	cryptostats.cs_intrs++;
   1135      1.23       tls 	mutex_spin_enter(&crypto_mtx);
   1136       1.1  jonathan 	do {
   1137       1.1  jonathan 		/*
   1138       1.1  jonathan 		 * Find the first element in the queue that can be
   1139       1.1  jonathan 		 * processed and look-ahead to see if multiple ops
   1140       1.1  jonathan 		 * are ready for the same driver.
   1141       1.1  jonathan 		 */
   1142       1.1  jonathan 		submit = NULL;
   1143       1.1  jonathan 		hint = 0;
   1144       1.1  jonathan 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
   1145       1.1  jonathan 			u_int32_t hid = SESID2HID(crp->crp_sid);
   1146       1.1  jonathan 			cap = crypto_checkdriver(hid);
   1147       1.1  jonathan 			if (cap == NULL || cap->cc_process == NULL) {
   1148       1.1  jonathan 				/* Op needs to be migrated, process it. */
   1149       1.1  jonathan 				if (submit == NULL)
   1150       1.1  jonathan 					submit = crp;
   1151       1.1  jonathan 				break;
   1152       1.1  jonathan 			}
   1153       1.1  jonathan 			if (!cap->cc_qblocked) {
   1154       1.1  jonathan 				if (submit != NULL) {
   1155       1.1  jonathan 					/*
   1156       1.1  jonathan 					 * We stop on finding another op,
   1157       1.1  jonathan 					 * regardless whether its for the same
   1158       1.1  jonathan 					 * driver or not.  We could keep
   1159       1.1  jonathan 					 * searching the queue but it might be
   1160       1.1  jonathan 					 * better to just use a per-driver
   1161       1.1  jonathan 					 * queue instead.
   1162       1.1  jonathan 					 */
   1163       1.1  jonathan 					if (SESID2HID(submit->crp_sid) == hid)
   1164       1.1  jonathan 						hint = CRYPTO_HINT_MORE;
   1165       1.1  jonathan 					break;
   1166       1.1  jonathan 				} else {
   1167       1.1  jonathan 					submit = crp;
   1168       1.1  jonathan 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1169       1.1  jonathan 						break;
   1170       1.1  jonathan 					/* keep scanning for more are q'd */
   1171       1.1  jonathan 				}
   1172       1.1  jonathan 			}
   1173       1.1  jonathan 		}
   1174       1.1  jonathan 		if (submit != NULL) {
   1175       1.1  jonathan 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1176      1.23       tls 			mutex_spin_exit(&crypto_mtx);
   1177       1.1  jonathan 			result = crypto_invoke(submit, hint);
   1178      1.23       tls 			/* we must take here as the TAILQ op or kinvoke
   1179      1.23       tls 			   may need this mutex below.  sigh. */
   1180      1.23       tls 			mutex_spin_enter(&crypto_mtx);
   1181       1.1  jonathan 			if (result == ERESTART) {
   1182       1.1  jonathan 				/*
   1183       1.1  jonathan 				 * The driver ran out of resources, mark the
   1184       1.1  jonathan 				 * driver ``blocked'' for cryptop's and put
   1185       1.1  jonathan 				 * the request back in the queue.  It would
   1186       1.1  jonathan 				 * best to put the request back where we got
   1187       1.1  jonathan 				 * it but that's hard so for now we put it
   1188       1.1  jonathan 				 * at the front.  This should be ok; putting
   1189       1.1  jonathan 				 * it at the end does not work.
   1190       1.1  jonathan 				 */
   1191       1.1  jonathan 				/* XXX validate sid again? */
   1192       1.1  jonathan 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1193       1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1194       1.1  jonathan 				cryptostats.cs_blocks++;
   1195       1.1  jonathan 			}
   1196       1.1  jonathan 		}
   1197       1.1  jonathan 
   1198       1.1  jonathan 		/* As above, but for key ops */
   1199       1.1  jonathan 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
   1200       1.1  jonathan 			cap = crypto_checkdriver(krp->krp_hid);
   1201       1.1  jonathan 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1202       1.1  jonathan 				/* Op needs to be migrated, process it. */
   1203       1.1  jonathan 				break;
   1204       1.1  jonathan 			}
   1205       1.1  jonathan 			if (!cap->cc_kqblocked)
   1206       1.1  jonathan 				break;
   1207       1.1  jonathan 		}
   1208       1.1  jonathan 		if (krp != NULL) {
   1209       1.1  jonathan 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1210      1.23       tls 			mutex_spin_exit(&crypto_mtx);
   1211       1.1  jonathan 			result = crypto_kinvoke(krp, 0);
   1212      1.23       tls 			/* the next iteration will want the mutex. :-/ */
   1213      1.23       tls 			mutex_spin_enter(&crypto_mtx);
   1214       1.1  jonathan 			if (result == ERESTART) {
   1215       1.1  jonathan 				/*
   1216       1.1  jonathan 				 * The driver ran out of resources, mark the
   1217       1.1  jonathan 				 * driver ``blocked'' for cryptkop's and put
   1218       1.1  jonathan 				 * the request back in the queue.  It would
   1219       1.1  jonathan 				 * best to put the request back where we got
   1220       1.1  jonathan 				 * it but that's hard so for now we put it
   1221       1.1  jonathan 				 * at the front.  This should be ok; putting
   1222       1.1  jonathan 				 * it at the end does not work.
   1223       1.1  jonathan 				 */
   1224       1.1  jonathan 				/* XXX validate sid again? */
   1225       1.1  jonathan 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1226       1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1227       1.1  jonathan 				cryptostats.cs_kblocks++;
   1228       1.1  jonathan 			}
   1229       1.1  jonathan 		}
   1230       1.1  jonathan 	} while (submit != NULL || krp != NULL);
   1231      1.23       tls 	mutex_spin_exit(&crypto_mtx);
   1232       1.1  jonathan }
   1233       1.1  jonathan 
   1234       1.1  jonathan /*
   1235       1.1  jonathan  * Kernel thread to do callbacks.
   1236       1.1  jonathan  */
   1237       1.1  jonathan static void
   1238       1.1  jonathan cryptoret(void)
   1239       1.1  jonathan {
   1240       1.1  jonathan 	struct cryptop *crp;
   1241       1.1  jonathan 	struct cryptkop *krp;
   1242       1.1  jonathan 
   1243      1.26        ad 	mutex_spin_enter(&crypto_mtx);
   1244       1.1  jonathan 	for (;;) {
   1245       1.1  jonathan 		crp = TAILQ_FIRST(&crp_ret_q);
   1246      1.23       tls 		if (crp != NULL) {
   1247       1.1  jonathan 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1248      1.23       tls 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1249      1.23       tls 		}
   1250       1.1  jonathan 		krp = TAILQ_FIRST(&crp_ret_kq);
   1251      1.23       tls 		if (krp != NULL) {
   1252       1.1  jonathan 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1253      1.23       tls 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1254      1.23       tls 		}
   1255       1.1  jonathan 
   1256      1.23       tls 		/* drop before calling any callbacks. */
   1257      1.26        ad 		if (crp == NULL && krp == NULL) {
   1258      1.26        ad 			cryptostats.cs_rets++;
   1259      1.26        ad 			cv_wait(&cryptoret_cv, &crypto_mtx);
   1260      1.26        ad 			continue;
   1261      1.26        ad 		}
   1262      1.26        ad 
   1263      1.23       tls 		mutex_spin_exit(&crypto_mtx);
   1264      1.26        ad 
   1265      1.26        ad 		if (crp != NULL) {
   1266       1.1  jonathan #ifdef CRYPTO_TIMING
   1267      1.26        ad 			if (crypto_timing) {
   1268      1.26        ad 				/*
   1269      1.26        ad 				 * NB: We must copy the timestamp before
   1270      1.26        ad 				 * doing the callback as the cryptop is
   1271      1.26        ad 				 * likely to be reclaimed.
   1272      1.26        ad 				 */
   1273      1.26        ad 				struct timespec t = crp->crp_tstamp;
   1274      1.26        ad 				crypto_tstat(&cryptostats.cs_cb, &t);
   1275      1.26        ad 				crp->crp_callback(crp);
   1276      1.26        ad 				crypto_tstat(&cryptostats.cs_finis, &t);
   1277      1.26        ad 			} else
   1278       1.1  jonathan #endif
   1279      1.26        ad 			{
   1280      1.26        ad 				crp->crp_callback(crp);
   1281       1.1  jonathan 			}
   1282       1.1  jonathan 		}
   1283      1.26        ad 		if (krp != NULL)
   1284      1.26        ad 			krp->krp_callback(krp);
   1285      1.26        ad 
   1286      1.26        ad 		mutex_spin_enter(&crypto_mtx);
   1287       1.1  jonathan 	}
   1288       1.1  jonathan }
   1289