crypto.c revision 1.27 1 1.27 tls /* $NetBSD: crypto.c,v 1.27 2008/04/10 22:48:42 tls Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.27 tls /*-
6 1.27 tls * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 1.27 tls * All rights reserved.
8 1.27 tls *
9 1.27 tls * This code is derived from software contributed to The NetBSD Foundation
10 1.27 tls * by Coyote Point Systems, Inc.
11 1.27 tls *
12 1.27 tls * Redistribution and use in source and binary forms, with or without
13 1.27 tls * modification, are permitted provided that the following conditions
14 1.27 tls * are met:
15 1.27 tls * 1. Redistributions of source code must retain the above copyright
16 1.27 tls * notice, this list of conditions and the following disclaimer.
17 1.27 tls * 2. Redistributions in binary form must reproduce the above copyright
18 1.27 tls * notice, this list of conditions and the following disclaimer in the
19 1.27 tls * documentation and/or other materials provided with the distribution.
20 1.27 tls * 3. All advertising materials mentioning features or use of this software
21 1.27 tls * must display the following acknowledgement:
22 1.27 tls * This product includes software developed by the NetBSD
23 1.27 tls * Foundation, Inc. and its contributors.
24 1.27 tls * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.27 tls * contributors may be used to endorse or promote products derived
26 1.27 tls * from this software without specific prior written permission.
27 1.27 tls *
28 1.27 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.27 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.27 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.27 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.27 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.27 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.27 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.27 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.27 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.27 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.27 tls * POSSIBILITY OF SUCH DAMAGE.
39 1.27 tls */
40 1.27 tls
41 1.1 jonathan /*
42 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
43 1.1 jonathan *
44 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
45 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
46 1.1 jonathan * supported the development of this code.
47 1.1 jonathan *
48 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
49 1.1 jonathan *
50 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
51 1.1 jonathan * is hereby granted, provided that this entire notice is included in
52 1.1 jonathan * all source code copies of any software which is or includes a copy or
53 1.1 jonathan * modification of this software.
54 1.1 jonathan *
55 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
56 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
57 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
58 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
59 1.1 jonathan * PURPOSE.
60 1.1 jonathan */
61 1.1 jonathan
62 1.1 jonathan #include <sys/cdefs.h>
63 1.27 tls __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.27 2008/04/10 22:48:42 tls Exp $");
64 1.1 jonathan
65 1.1 jonathan #include <sys/param.h>
66 1.1 jonathan #include <sys/reboot.h>
67 1.1 jonathan #include <sys/systm.h>
68 1.1 jonathan #include <sys/malloc.h>
69 1.1 jonathan #include <sys/proc.h>
70 1.1 jonathan #include <sys/pool.h>
71 1.1 jonathan #include <sys/kthread.h>
72 1.11 thorpej #include <sys/once.h>
73 1.13 christos #include <sys/sysctl.h>
74 1.21 ad #include <sys/intr.h>
75 1.1 jonathan
76 1.23 tls #include "opt_ocf.h"
77 1.21 ad #include <opencrypto/cryptodev.h>
78 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
79 1.1 jonathan
80 1.23 tls kcondvar_t cryptoret_cv;
81 1.23 tls kmutex_t crypto_mtx;
82 1.23 tls
83 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 1.1 jonathan #define SWI_CRYPTO 17
85 1.1 jonathan #define register_swi(lvl, fn) \
86 1.21 ad softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
87 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 1.21 ad #define setsoftcrypto(x) softint_schedule(x)
89 1.1 jonathan
90 1.1 jonathan #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff)
91 1.1 jonathan
92 1.1 jonathan /*
93 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
94 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
95 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
96 1.1 jonathan */
97 1.11 thorpej static struct cryptocap *crypto_drivers;
98 1.11 thorpej static int crypto_drivers_num;
99 1.1 jonathan static void* softintr_cookie;
100 1.1 jonathan
101 1.1 jonathan /*
102 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
103 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
104 1.1 jonathan * See below for how synchronization is handled.
105 1.1 jonathan */
106 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
107 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
108 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
109 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
110 1.1 jonathan
111 1.1 jonathan /*
112 1.1 jonathan * There are two queues for processing completed crypto requests; one
113 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
114 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
115 1.1 jonathan * for how synchronization is handled.
116 1.1 jonathan */
117 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
118 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121 1.1 jonathan
122 1.1 jonathan /*
123 1.23 tls * XXX these functions are ghastly hacks for when the submission
124 1.23 tls * XXX routines discover a request that was not CBIMM is already
125 1.23 tls * XXX done, and must be yanked from the retq (where _done) put it
126 1.23 tls * XXX as cryptoret won't get the chance. The queue is walked backwards
127 1.23 tls * XXX as the request is generally the last one queued.
128 1.23 tls *
129 1.23 tls * call with the lock held, or else.
130 1.23 tls */
131 1.23 tls int
132 1.23 tls crypto_ret_q_remove(struct cryptop *crp)
133 1.23 tls {
134 1.23 tls struct cryptop * acrp;
135 1.23 tls
136 1.23 tls TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
137 1.23 tls if (acrp == crp) {
138 1.23 tls TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 1.23 tls crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 1.23 tls return 1;
141 1.23 tls }
142 1.23 tls }
143 1.23 tls return 0;
144 1.23 tls }
145 1.23 tls
146 1.23 tls int
147 1.23 tls crypto_ret_kq_remove(struct cryptkop *krp)
148 1.23 tls {
149 1.23 tls struct cryptkop * akrp;
150 1.23 tls
151 1.23 tls TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
152 1.23 tls if (akrp == krp) {
153 1.23 tls TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 1.23 tls krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 1.23 tls return 1;
156 1.23 tls }
157 1.23 tls }
158 1.23 tls return 0;
159 1.23 tls }
160 1.23 tls
161 1.23 tls /*
162 1.1 jonathan * Crypto op and desciptor data structures are allocated
163 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164 1.1 jonathan */
165 1.1 jonathan struct pool cryptop_pool;
166 1.1 jonathan struct pool cryptodesc_pool;
167 1.23 tls struct pool cryptkop_pool;
168 1.1 jonathan
169 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
170 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
171 1.10 perry /*
172 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173 1.6 jonathan * access to hardware versus software transforms as below:
174 1.6 jonathan *
175 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
176 1.6 jonathan * transforms, always
177 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
178 1.6 jonathan * requests for non-accelerated transforms
179 1.6 jonathan * (handling the latter in software)
180 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
181 1.6 jonathan * are hardware-accelerated.
182 1.6 jonathan */
183 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
184 1.6 jonathan
185 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 1.13 christos {
187 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
188 1.13 christos CTLFLAG_PERMANENT,
189 1.13 christos CTLTYPE_NODE, "kern", NULL,
190 1.13 christos NULL, 0, NULL, 0,
191 1.13 christos CTL_KERN, CTL_EOL);
192 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
193 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 1.13 christos CTLTYPE_INT, "usercrypto",
195 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
196 1.13 christos "crypto support"),
197 1.13 christos NULL, 0, &crypto_usercrypto, 0,
198 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
199 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
200 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 1.13 christos CTLTYPE_INT, "userasymcrypto",
202 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
203 1.13 christos "asymmetric crypto support"),
204 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
205 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
206 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
207 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
209 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
210 1.13 christos "asymmetric crypto support"),
211 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
212 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
213 1.13 christos }
214 1.1 jonathan
215 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216 1.1 jonathan
217 1.1 jonathan /*
218 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
219 1.1 jonathan *
220 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
221 1.1 jonathan * these come in from network protocols at spl0 (output path) or
222 1.1 jonathan * spl[,soft]net (input path).
223 1.1 jonathan *
224 1.1 jonathan * Requests are typically passed on the driver directly, but they
225 1.1 jonathan * may also be queued for processing by a software interrupt thread,
226 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
227 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
228 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
229 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
230 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
231 1.1 jonathan *
232 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
233 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
234 1.1 jonathan * driver interrupt service routine is not delayed while the callback
235 1.1 jonathan * takes place and that callbacks are delivered after a context switch
236 1.1 jonathan * (as opposed to a software interrupt that clients must block).
237 1.1 jonathan *
238 1.1 jonathan * This scheme is not intended for SMP machines.
239 1.10 perry */
240 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
241 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
242 1.20 ad static struct lwp *cryptothread;
243 1.1 jonathan static void crypto_destroy(void);
244 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
245 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
246 1.1 jonathan
247 1.1 jonathan static struct cryptostats cryptostats;
248 1.23 tls #ifdef CRYPTO_TIMING
249 1.1 jonathan static int crypto_timing = 0;
250 1.23 tls #endif
251 1.1 jonathan
252 1.12 yamt static int
253 1.11 thorpej crypto_init0(void)
254 1.1 jonathan {
255 1.1 jonathan int error;
256 1.1 jonathan
257 1.23 tls mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
258 1.23 tls cv_init(&cryptoret_cv, "crypto_wait");
259 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
260 1.23 tls 0, "cryptop", NULL, IPL_NET);
261 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
262 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
263 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
264 1.23 tls 0, "cryptkop", NULL, IPL_NET);
265 1.1 jonathan
266 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
267 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
268 1.1 jonathan if (crypto_drivers == NULL) {
269 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
270 1.12 yamt return 0;
271 1.1 jonathan }
272 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
273 1.1 jonathan
274 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
275 1.25 tls error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
276 1.24 tls (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
277 1.1 jonathan if (error) {
278 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
279 1.1 jonathan error);
280 1.1 jonathan crypto_destroy();
281 1.1 jonathan }
282 1.20 ad
283 1.12 yamt return 0;
284 1.11 thorpej }
285 1.11 thorpej
286 1.11 thorpej void
287 1.11 thorpej crypto_init(void)
288 1.11 thorpej {
289 1.18 daniel static ONCE_DECL(crypto_init_once);
290 1.11 thorpej
291 1.11 thorpej RUN_ONCE(&crypto_init_once, crypto_init0);
292 1.1 jonathan }
293 1.1 jonathan
294 1.1 jonathan static void
295 1.1 jonathan crypto_destroy(void)
296 1.1 jonathan {
297 1.1 jonathan /* XXX no wait to reclaim zones */
298 1.1 jonathan if (crypto_drivers != NULL)
299 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
300 1.1 jonathan unregister_swi(SWI_CRYPTO, cryptointr);
301 1.1 jonathan }
302 1.1 jonathan
303 1.1 jonathan /*
304 1.23 tls * Create a new session. Must be called with crypto_mtx held.
305 1.1 jonathan */
306 1.1 jonathan int
307 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
308 1.1 jonathan {
309 1.1 jonathan struct cryptoini *cr;
310 1.1 jonathan u_int32_t hid, lid;
311 1.1 jonathan int err = EINVAL;
312 1.1 jonathan
313 1.23 tls KASSERT(mutex_owned(&crypto_mtx));
314 1.1 jonathan
315 1.1 jonathan if (crypto_drivers == NULL)
316 1.1 jonathan goto done;
317 1.1 jonathan
318 1.1 jonathan /*
319 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
320 1.1 jonathan * first driver that supports all the algorithms we need.
321 1.1 jonathan *
322 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
323 1.1 jonathan * XXX another story altogether).
324 1.1 jonathan */
325 1.1 jonathan
326 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
327 1.1 jonathan /*
328 1.1 jonathan * If it's not initialized or has remaining sessions
329 1.1 jonathan * referencing it, skip.
330 1.1 jonathan */
331 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
332 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
333 1.1 jonathan continue;
334 1.1 jonathan
335 1.1 jonathan /* Hardware required -- ignore software drivers. */
336 1.1 jonathan if (hard > 0 &&
337 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
338 1.1 jonathan continue;
339 1.1 jonathan /* Software required -- ignore hardware drivers. */
340 1.1 jonathan if (hard < 0 &&
341 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
342 1.1 jonathan continue;
343 1.1 jonathan
344 1.1 jonathan /* See if all the algorithms are supported. */
345 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
346 1.1 jonathan if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
347 1.1 jonathan break;
348 1.1 jonathan
349 1.1 jonathan if (cr == NULL) {
350 1.1 jonathan /* Ok, all algorithms are supported. */
351 1.1 jonathan
352 1.1 jonathan /*
353 1.1 jonathan * Can't do everything in one session.
354 1.1 jonathan *
355 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
356 1.1 jonathan * XXX about here.
357 1.1 jonathan */
358 1.1 jonathan
359 1.1 jonathan /* Call the driver initialization routine. */
360 1.1 jonathan lid = hid; /* Pass the driver ID. */
361 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
362 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
363 1.1 jonathan if (err == 0) {
364 1.1 jonathan (*sid) = hid;
365 1.1 jonathan (*sid) <<= 32;
366 1.1 jonathan (*sid) |= (lid & 0xffffffff);
367 1.1 jonathan crypto_drivers[hid].cc_sessions++;
368 1.1 jonathan }
369 1.1 jonathan goto done;
370 1.1 jonathan /*break;*/
371 1.1 jonathan }
372 1.1 jonathan }
373 1.1 jonathan done:
374 1.1 jonathan return err;
375 1.1 jonathan }
376 1.1 jonathan
377 1.1 jonathan /*
378 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
379 1.23 tls * driver). Must be called with crypto_mtx mutex held.
380 1.1 jonathan */
381 1.1 jonathan int
382 1.1 jonathan crypto_freesession(u_int64_t sid)
383 1.1 jonathan {
384 1.1 jonathan u_int32_t hid;
385 1.1 jonathan int err = 0;
386 1.1 jonathan
387 1.23 tls KASSERT(mutex_owned(&crypto_mtx));
388 1.1 jonathan
389 1.1 jonathan if (crypto_drivers == NULL) {
390 1.1 jonathan err = EINVAL;
391 1.1 jonathan goto done;
392 1.1 jonathan }
393 1.1 jonathan
394 1.1 jonathan /* Determine two IDs. */
395 1.1 jonathan hid = SESID2HID(sid);
396 1.1 jonathan
397 1.1 jonathan if (hid >= crypto_drivers_num) {
398 1.1 jonathan err = ENOENT;
399 1.1 jonathan goto done;
400 1.1 jonathan }
401 1.1 jonathan
402 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
403 1.1 jonathan crypto_drivers[hid].cc_sessions--;
404 1.1 jonathan
405 1.1 jonathan /* Call the driver cleanup routine, if available. */
406 1.23 tls if (crypto_drivers[hid].cc_freesession) {
407 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
408 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
409 1.23 tls }
410 1.1 jonathan else
411 1.1 jonathan err = 0;
412 1.1 jonathan
413 1.1 jonathan /*
414 1.1 jonathan * If this was the last session of a driver marked as invalid,
415 1.1 jonathan * make the entry available for reuse.
416 1.1 jonathan */
417 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
418 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
419 1.1 jonathan bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
420 1.1 jonathan
421 1.1 jonathan done:
422 1.1 jonathan return err;
423 1.1 jonathan }
424 1.1 jonathan
425 1.1 jonathan /*
426 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
427 1.1 jonathan * support for the algorithms they handle.
428 1.1 jonathan */
429 1.1 jonathan int32_t
430 1.1 jonathan crypto_get_driverid(u_int32_t flags)
431 1.1 jonathan {
432 1.1 jonathan struct cryptocap *newdrv;
433 1.23 tls int i;
434 1.1 jonathan
435 1.23 tls crypto_init(); /* XXX oh, this is foul! */
436 1.11 thorpej
437 1.23 tls mutex_spin_enter(&crypto_mtx);
438 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
439 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
440 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
441 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
442 1.1 jonathan break;
443 1.1 jonathan
444 1.1 jonathan /* Out of entries, allocate some more. */
445 1.1 jonathan if (i == crypto_drivers_num) {
446 1.1 jonathan /* Be careful about wrap-around. */
447 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
448 1.23 tls mutex_spin_exit(&crypto_mtx);
449 1.1 jonathan printf("crypto: driver count wraparound!\n");
450 1.1 jonathan return -1;
451 1.1 jonathan }
452 1.1 jonathan
453 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
454 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
455 1.1 jonathan if (newdrv == NULL) {
456 1.23 tls mutex_spin_exit(&crypto_mtx);
457 1.1 jonathan printf("crypto: no space to expand driver table!\n");
458 1.1 jonathan return -1;
459 1.1 jonathan }
460 1.1 jonathan
461 1.1 jonathan bcopy(crypto_drivers, newdrv,
462 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
463 1.1 jonathan
464 1.1 jonathan crypto_drivers_num *= 2;
465 1.1 jonathan
466 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
467 1.1 jonathan crypto_drivers = newdrv;
468 1.1 jonathan }
469 1.1 jonathan
470 1.1 jonathan /* NB: state is zero'd on free */
471 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
472 1.1 jonathan crypto_drivers[i].cc_flags = flags;
473 1.1 jonathan
474 1.1 jonathan if (bootverbose)
475 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
476 1.1 jonathan
477 1.23 tls mutex_spin_exit(&crypto_mtx);
478 1.1 jonathan
479 1.1 jonathan return i;
480 1.1 jonathan }
481 1.1 jonathan
482 1.1 jonathan static struct cryptocap *
483 1.1 jonathan crypto_checkdriver(u_int32_t hid)
484 1.1 jonathan {
485 1.1 jonathan if (crypto_drivers == NULL)
486 1.1 jonathan return NULL;
487 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
488 1.1 jonathan }
489 1.1 jonathan
490 1.1 jonathan /*
491 1.1 jonathan * Register support for a key-related algorithm. This routine
492 1.1 jonathan * is called once for each algorithm supported a driver.
493 1.1 jonathan */
494 1.1 jonathan int
495 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
496 1.1 jonathan int (*kprocess)(void*, struct cryptkop *, int),
497 1.1 jonathan void *karg)
498 1.1 jonathan {
499 1.1 jonathan struct cryptocap *cap;
500 1.1 jonathan int err;
501 1.1 jonathan
502 1.23 tls mutex_spin_enter(&crypto_mtx);
503 1.1 jonathan
504 1.1 jonathan cap = crypto_checkdriver(driverid);
505 1.1 jonathan if (cap != NULL &&
506 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
507 1.1 jonathan /*
508 1.1 jonathan * XXX Do some performance testing to determine placing.
509 1.1 jonathan * XXX We probably need an auxiliary data structure that
510 1.1 jonathan * XXX describes relative performances.
511 1.1 jonathan */
512 1.1 jonathan
513 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
514 1.23 tls if (bootverbose) {
515 1.23 tls printf("crypto: driver %u registers key alg %u "
516 1.23 tls " flags %u\n",
517 1.23 tls driverid,
518 1.23 tls kalg,
519 1.23 tls flags
520 1.1 jonathan );
521 1.23 tls }
522 1.1 jonathan
523 1.1 jonathan if (cap->cc_kprocess == NULL) {
524 1.1 jonathan cap->cc_karg = karg;
525 1.1 jonathan cap->cc_kprocess = kprocess;
526 1.1 jonathan }
527 1.1 jonathan err = 0;
528 1.1 jonathan } else
529 1.1 jonathan err = EINVAL;
530 1.1 jonathan
531 1.23 tls mutex_spin_exit(&crypto_mtx);
532 1.1 jonathan return err;
533 1.1 jonathan }
534 1.1 jonathan
535 1.1 jonathan /*
536 1.1 jonathan * Register support for a non-key-related algorithm. This routine
537 1.1 jonathan * is called once for each such algorithm supported by a driver.
538 1.1 jonathan */
539 1.1 jonathan int
540 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
541 1.1 jonathan u_int32_t flags,
542 1.1 jonathan int (*newses)(void*, u_int32_t*, struct cryptoini*),
543 1.1 jonathan int (*freeses)(void*, u_int64_t),
544 1.1 jonathan int (*process)(void*, struct cryptop *, int),
545 1.1 jonathan void *arg)
546 1.1 jonathan {
547 1.1 jonathan struct cryptocap *cap;
548 1.23 tls int err;
549 1.1 jonathan
550 1.23 tls mutex_spin_enter(&crypto_mtx);
551 1.1 jonathan
552 1.1 jonathan cap = crypto_checkdriver(driverid);
553 1.1 jonathan /* NB: algorithms are in the range [1..max] */
554 1.1 jonathan if (cap != NULL &&
555 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
556 1.1 jonathan /*
557 1.1 jonathan * XXX Do some performance testing to determine placing.
558 1.1 jonathan * XXX We probably need an auxiliary data structure that
559 1.1 jonathan * XXX describes relative performances.
560 1.1 jonathan */
561 1.1 jonathan
562 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
563 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
564 1.23 tls if (bootverbose) {
565 1.23 tls printf("crypto: driver %u registers alg %u "
566 1.23 tls "flags %u maxoplen %u\n",
567 1.23 tls driverid,
568 1.23 tls alg,
569 1.23 tls flags,
570 1.23 tls maxoplen
571 1.1 jonathan );
572 1.23 tls }
573 1.1 jonathan
574 1.1 jonathan if (cap->cc_process == NULL) {
575 1.1 jonathan cap->cc_arg = arg;
576 1.1 jonathan cap->cc_newsession = newses;
577 1.1 jonathan cap->cc_process = process;
578 1.1 jonathan cap->cc_freesession = freeses;
579 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
580 1.1 jonathan }
581 1.1 jonathan err = 0;
582 1.1 jonathan } else
583 1.1 jonathan err = EINVAL;
584 1.1 jonathan
585 1.23 tls mutex_spin_exit(&crypto_mtx);
586 1.1 jonathan return err;
587 1.1 jonathan }
588 1.1 jonathan
589 1.1 jonathan /*
590 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
591 1.1 jonathan * leave enough information around so that subsequent calls using those
592 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
593 1.1 jonathan * reroute requests.
594 1.1 jonathan */
595 1.1 jonathan int
596 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
597 1.1 jonathan {
598 1.23 tls int i, err;
599 1.1 jonathan u_int32_t ses;
600 1.1 jonathan struct cryptocap *cap;
601 1.1 jonathan
602 1.23 tls mutex_spin_enter(&crypto_mtx);
603 1.1 jonathan
604 1.1 jonathan cap = crypto_checkdriver(driverid);
605 1.1 jonathan if (cap != NULL &&
606 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
607 1.1 jonathan cap->cc_alg[alg] != 0) {
608 1.1 jonathan cap->cc_alg[alg] = 0;
609 1.1 jonathan cap->cc_max_op_len[alg] = 0;
610 1.1 jonathan
611 1.1 jonathan /* Was this the last algorithm ? */
612 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
613 1.1 jonathan if (cap->cc_alg[i] != 0)
614 1.1 jonathan break;
615 1.1 jonathan
616 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
617 1.1 jonathan ses = cap->cc_sessions;
618 1.1 jonathan bzero(cap, sizeof(struct cryptocap));
619 1.1 jonathan if (ses != 0) {
620 1.1 jonathan /*
621 1.1 jonathan * If there are pending sessions, just mark as invalid.
622 1.1 jonathan */
623 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
624 1.1 jonathan cap->cc_sessions = ses;
625 1.1 jonathan }
626 1.1 jonathan }
627 1.1 jonathan err = 0;
628 1.1 jonathan } else
629 1.1 jonathan err = EINVAL;
630 1.1 jonathan
631 1.23 tls mutex_spin_exit(&crypto_mtx);
632 1.1 jonathan return err;
633 1.1 jonathan }
634 1.1 jonathan
635 1.1 jonathan /*
636 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
637 1.1 jonathan * If there are pending sessions using it, leave enough information
638 1.1 jonathan * around so that subsequent calls using those sessions will
639 1.1 jonathan * correctly detect the driver has been unregistered and reroute
640 1.1 jonathan * requests.
641 1.23 tls *
642 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
643 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
644 1.23 tls * XXX you can't take it recursively.
645 1.1 jonathan */
646 1.1 jonathan int
647 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
648 1.1 jonathan {
649 1.23 tls int i, err;
650 1.1 jonathan u_int32_t ses;
651 1.1 jonathan struct cryptocap *cap;
652 1.1 jonathan
653 1.23 tls mutex_spin_enter(&crypto_mtx);
654 1.1 jonathan cap = crypto_checkdriver(driverid);
655 1.1 jonathan if (cap != NULL) {
656 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
657 1.1 jonathan cap->cc_alg[i] = 0;
658 1.1 jonathan cap->cc_max_op_len[i] = 0;
659 1.1 jonathan }
660 1.1 jonathan ses = cap->cc_sessions;
661 1.1 jonathan bzero(cap, sizeof(struct cryptocap));
662 1.1 jonathan if (ses != 0) {
663 1.1 jonathan /*
664 1.1 jonathan * If there are pending sessions, just mark as invalid.
665 1.1 jonathan */
666 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
667 1.1 jonathan cap->cc_sessions = ses;
668 1.1 jonathan }
669 1.1 jonathan err = 0;
670 1.1 jonathan } else
671 1.1 jonathan err = EINVAL;
672 1.1 jonathan
673 1.23 tls mutex_spin_exit(&crypto_mtx);
674 1.1 jonathan return err;
675 1.1 jonathan }
676 1.1 jonathan
677 1.1 jonathan /*
678 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
679 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
680 1.1 jonathan */
681 1.1 jonathan int
682 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
683 1.1 jonathan {
684 1.1 jonathan struct cryptocap *cap;
685 1.23 tls int needwakeup, err;
686 1.1 jonathan
687 1.23 tls mutex_spin_enter(&crypto_mtx);
688 1.1 jonathan cap = crypto_checkdriver(driverid);
689 1.1 jonathan if (cap != NULL) {
690 1.1 jonathan needwakeup = 0;
691 1.1 jonathan if (what & CRYPTO_SYMQ) {
692 1.1 jonathan needwakeup |= cap->cc_qblocked;
693 1.1 jonathan cap->cc_qblocked = 0;
694 1.1 jonathan }
695 1.1 jonathan if (what & CRYPTO_ASYMQ) {
696 1.1 jonathan needwakeup |= cap->cc_kqblocked;
697 1.1 jonathan cap->cc_kqblocked = 0;
698 1.1 jonathan }
699 1.24 tls err = 0;
700 1.24 tls mutex_spin_exit(&crypto_mtx);
701 1.24 tls if (needwakeup)
702 1.1 jonathan setsoftcrypto(softintr_cookie);
703 1.24 tls } else {
704 1.1 jonathan err = EINVAL;
705 1.24 tls mutex_spin_exit(&crypto_mtx);
706 1.24 tls }
707 1.1 jonathan
708 1.1 jonathan return err;
709 1.1 jonathan }
710 1.1 jonathan
711 1.1 jonathan /*
712 1.1 jonathan * Dispatch a crypto request to a driver or queue
713 1.1 jonathan * it, to be processed by the kernel thread.
714 1.1 jonathan */
715 1.1 jonathan int
716 1.1 jonathan crypto_dispatch(struct cryptop *crp)
717 1.1 jonathan {
718 1.1 jonathan u_int32_t hid = SESID2HID(crp->crp_sid);
719 1.23 tls int result;
720 1.1 jonathan
721 1.23 tls mutex_spin_enter(&crypto_mtx);
722 1.1 jonathan
723 1.1 jonathan cryptostats.cs_ops++;
724 1.1 jonathan
725 1.1 jonathan #ifdef CRYPTO_TIMING
726 1.1 jonathan if (crypto_timing)
727 1.1 jonathan nanouptime(&crp->crp_tstamp);
728 1.1 jonathan #endif
729 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
730 1.1 jonathan struct cryptocap *cap;
731 1.1 jonathan /*
732 1.1 jonathan * Caller marked the request to be processed
733 1.1 jonathan * immediately; dispatch it directly to the
734 1.1 jonathan * driver unless the driver is currently blocked.
735 1.1 jonathan */
736 1.1 jonathan cap = crypto_checkdriver(hid);
737 1.1 jonathan if (cap && !cap->cc_qblocked) {
738 1.23 tls mutex_spin_exit(&crypto_mtx);
739 1.1 jonathan result = crypto_invoke(crp, 0);
740 1.1 jonathan if (result == ERESTART) {
741 1.1 jonathan /*
742 1.1 jonathan * The driver ran out of resources, mark the
743 1.1 jonathan * driver ``blocked'' for cryptop's and put
744 1.1 jonathan * the op on the queue.
745 1.1 jonathan */
746 1.23 tls mutex_spin_enter(&crypto_mtx);
747 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
748 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
749 1.1 jonathan cryptostats.cs_blocks++;
750 1.24 tls mutex_spin_exit(&crypto_mtx);
751 1.1 jonathan }
752 1.23 tls goto out_released;
753 1.1 jonathan } else {
754 1.1 jonathan /*
755 1.1 jonathan * The driver is blocked, just queue the op until
756 1.1 jonathan * it unblocks and the swi thread gets kicked.
757 1.1 jonathan */
758 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
759 1.1 jonathan result = 0;
760 1.1 jonathan }
761 1.1 jonathan } else {
762 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
763 1.1 jonathan /*
764 1.1 jonathan * Caller marked the request as ``ok to delay'';
765 1.1 jonathan * queue it for the swi thread. This is desirable
766 1.1 jonathan * when the operation is low priority and/or suitable
767 1.1 jonathan * for batching.
768 1.1 jonathan */
769 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
770 1.1 jonathan if (wasempty) {
771 1.23 tls mutex_spin_exit(&crypto_mtx);
772 1.1 jonathan setsoftcrypto(softintr_cookie);
773 1.23 tls result = 0;
774 1.23 tls goto out_released;
775 1.1 jonathan }
776 1.1 jonathan
777 1.1 jonathan result = 0;
778 1.1 jonathan }
779 1.1 jonathan
780 1.23 tls mutex_spin_exit(&crypto_mtx);
781 1.23 tls out_released:
782 1.1 jonathan return result;
783 1.1 jonathan }
784 1.1 jonathan
785 1.1 jonathan /*
786 1.1 jonathan * Add an asymetric crypto request to a queue,
787 1.1 jonathan * to be processed by the kernel thread.
788 1.1 jonathan */
789 1.1 jonathan int
790 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
791 1.1 jonathan {
792 1.1 jonathan struct cryptocap *cap;
793 1.23 tls int result;
794 1.1 jonathan
795 1.23 tls mutex_spin_enter(&crypto_mtx);
796 1.1 jonathan cryptostats.cs_kops++;
797 1.1 jonathan
798 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
799 1.1 jonathan if (cap && !cap->cc_kqblocked) {
800 1.23 tls mutex_spin_exit(&crypto_mtx);
801 1.1 jonathan result = crypto_kinvoke(krp, 0);
802 1.1 jonathan if (result == ERESTART) {
803 1.1 jonathan /*
804 1.1 jonathan * The driver ran out of resources, mark the
805 1.1 jonathan * driver ``blocked'' for cryptop's and put
806 1.1 jonathan * the op on the queue.
807 1.1 jonathan */
808 1.23 tls mutex_spin_enter(&crypto_mtx);
809 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
810 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
811 1.1 jonathan cryptostats.cs_kblocks++;
812 1.24 tls mutex_spin_exit(&crypto_mtx);
813 1.1 jonathan }
814 1.1 jonathan } else {
815 1.1 jonathan /*
816 1.1 jonathan * The driver is blocked, just queue the op until
817 1.1 jonathan * it unblocks and the swi thread gets kicked.
818 1.1 jonathan */
819 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
820 1.1 jonathan result = 0;
821 1.24 tls mutex_spin_exit(&crypto_mtx);
822 1.1 jonathan }
823 1.1 jonathan
824 1.1 jonathan return result;
825 1.1 jonathan }
826 1.1 jonathan
827 1.1 jonathan /*
828 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
829 1.1 jonathan */
830 1.1 jonathan static int
831 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
832 1.1 jonathan {
833 1.1 jonathan u_int32_t hid;
834 1.1 jonathan int error;
835 1.1 jonathan
836 1.1 jonathan /* Sanity checks. */
837 1.1 jonathan if (krp == NULL)
838 1.1 jonathan return EINVAL;
839 1.1 jonathan if (krp->krp_callback == NULL) {
840 1.23 tls pool_put(&cryptkop_pool, krp);
841 1.1 jonathan return EINVAL;
842 1.1 jonathan }
843 1.1 jonathan
844 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
845 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
846 1.1 jonathan crypto_devallowsoft == 0)
847 1.1 jonathan continue;
848 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
849 1.1 jonathan continue;
850 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
851 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
852 1.1 jonathan continue;
853 1.1 jonathan break;
854 1.1 jonathan }
855 1.1 jonathan if (hid < crypto_drivers_num) {
856 1.1 jonathan krp->krp_hid = hid;
857 1.1 jonathan error = crypto_drivers[hid].cc_kprocess(
858 1.1 jonathan crypto_drivers[hid].cc_karg, krp, hint);
859 1.1 jonathan } else {
860 1.1 jonathan error = ENODEV;
861 1.1 jonathan }
862 1.1 jonathan
863 1.1 jonathan if (error) {
864 1.1 jonathan krp->krp_status = error;
865 1.1 jonathan crypto_kdone(krp);
866 1.1 jonathan }
867 1.1 jonathan return 0;
868 1.1 jonathan }
869 1.1 jonathan
870 1.1 jonathan #ifdef CRYPTO_TIMING
871 1.1 jonathan static void
872 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
873 1.1 jonathan {
874 1.1 jonathan struct timespec now, t;
875 1.1 jonathan
876 1.1 jonathan nanouptime(&now);
877 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
878 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
879 1.1 jonathan if (t.tv_nsec < 0) {
880 1.1 jonathan t.tv_sec--;
881 1.1 jonathan t.tv_nsec += 1000000000;
882 1.1 jonathan }
883 1.1 jonathan timespecadd(&ts->acc, &t, &t);
884 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
885 1.1 jonathan ts->min = t;
886 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
887 1.1 jonathan ts->max = t;
888 1.1 jonathan ts->count++;
889 1.1 jonathan
890 1.1 jonathan *tv = now;
891 1.1 jonathan }
892 1.1 jonathan #endif
893 1.1 jonathan
894 1.1 jonathan /*
895 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
896 1.1 jonathan */
897 1.1 jonathan static int
898 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
899 1.1 jonathan {
900 1.1 jonathan u_int32_t hid;
901 1.1 jonathan int (*process)(void*, struct cryptop *, int);
902 1.1 jonathan
903 1.1 jonathan #ifdef CRYPTO_TIMING
904 1.1 jonathan if (crypto_timing)
905 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
906 1.1 jonathan #endif
907 1.1 jonathan /* Sanity checks. */
908 1.1 jonathan if (crp == NULL)
909 1.1 jonathan return EINVAL;
910 1.1 jonathan if (crp->crp_callback == NULL) {
911 1.1 jonathan crypto_freereq(crp);
912 1.1 jonathan return EINVAL;
913 1.1 jonathan }
914 1.1 jonathan if (crp->crp_desc == NULL) {
915 1.1 jonathan crp->crp_etype = EINVAL;
916 1.1 jonathan crypto_done(crp);
917 1.1 jonathan return 0;
918 1.1 jonathan }
919 1.1 jonathan
920 1.1 jonathan hid = SESID2HID(crp->crp_sid);
921 1.1 jonathan if (hid < crypto_drivers_num) {
922 1.23 tls mutex_enter(&crypto_mtx);
923 1.1 jonathan if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
924 1.1 jonathan crypto_freesession(crp->crp_sid);
925 1.1 jonathan process = crypto_drivers[hid].cc_process;
926 1.23 tls mutex_exit(&crypto_mtx);
927 1.1 jonathan } else {
928 1.1 jonathan process = NULL;
929 1.1 jonathan }
930 1.1 jonathan
931 1.1 jonathan if (process == NULL) {
932 1.1 jonathan struct cryptodesc *crd;
933 1.16 mrg u_int64_t nid = 0;
934 1.1 jonathan
935 1.1 jonathan /*
936 1.1 jonathan * Driver has unregistered; migrate the session and return
937 1.1 jonathan * an error to the caller so they'll resubmit the op.
938 1.1 jonathan */
939 1.23 tls mutex_enter(&crypto_mtx);
940 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
941 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
942 1.1 jonathan
943 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
944 1.1 jonathan crp->crp_sid = nid;
945 1.1 jonathan
946 1.1 jonathan crp->crp_etype = EAGAIN;
947 1.23 tls mutex_exit(&crypto_mtx);
948 1.23 tls
949 1.1 jonathan crypto_done(crp);
950 1.1 jonathan return 0;
951 1.1 jonathan } else {
952 1.1 jonathan /*
953 1.1 jonathan * Invoke the driver to process the request.
954 1.1 jonathan */
955 1.23 tls DPRINTF(("calling process for %08x\n", (uint32_t)crp));
956 1.1 jonathan return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
957 1.1 jonathan }
958 1.1 jonathan }
959 1.1 jonathan
960 1.1 jonathan /*
961 1.1 jonathan * Release a set of crypto descriptors.
962 1.1 jonathan */
963 1.1 jonathan void
964 1.1 jonathan crypto_freereq(struct cryptop *crp)
965 1.1 jonathan {
966 1.1 jonathan struct cryptodesc *crd;
967 1.1 jonathan
968 1.1 jonathan if (crp == NULL)
969 1.1 jonathan return;
970 1.1 jonathan
971 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
972 1.1 jonathan crp->crp_desc = crd->crd_next;
973 1.1 jonathan pool_put(&cryptodesc_pool, crd);
974 1.1 jonathan }
975 1.1 jonathan pool_put(&cryptop_pool, crp);
976 1.1 jonathan }
977 1.1 jonathan
978 1.1 jonathan /*
979 1.1 jonathan * Acquire a set of crypto descriptors.
980 1.1 jonathan */
981 1.1 jonathan struct cryptop *
982 1.1 jonathan crypto_getreq(int num)
983 1.1 jonathan {
984 1.1 jonathan struct cryptodesc *crd;
985 1.1 jonathan struct cryptop *crp;
986 1.1 jonathan
987 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
988 1.1 jonathan if (crp == NULL) {
989 1.1 jonathan return NULL;
990 1.1 jonathan }
991 1.1 jonathan bzero(crp, sizeof(struct cryptop));
992 1.23 tls cv_init(&crp->crp_cv, "crydev");
993 1.1 jonathan
994 1.1 jonathan while (num--) {
995 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
996 1.1 jonathan if (crd == NULL) {
997 1.1 jonathan crypto_freereq(crp);
998 1.1 jonathan return NULL;
999 1.1 jonathan }
1000 1.1 jonathan
1001 1.1 jonathan bzero(crd, sizeof(struct cryptodesc));
1002 1.1 jonathan crd->crd_next = crp->crp_desc;
1003 1.1 jonathan crp->crp_desc = crd;
1004 1.1 jonathan }
1005 1.1 jonathan
1006 1.1 jonathan return crp;
1007 1.1 jonathan }
1008 1.1 jonathan
1009 1.1 jonathan /*
1010 1.1 jonathan * Invoke the callback on behalf of the driver.
1011 1.1 jonathan */
1012 1.1 jonathan void
1013 1.1 jonathan crypto_done(struct cryptop *crp)
1014 1.1 jonathan {
1015 1.23 tls int wasempty;
1016 1.23 tls
1017 1.1 jonathan if (crp->crp_etype != 0)
1018 1.1 jonathan cryptostats.cs_errs++;
1019 1.1 jonathan #ifdef CRYPTO_TIMING
1020 1.1 jonathan if (crypto_timing)
1021 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1022 1.1 jonathan #endif
1023 1.27 tls
1024 1.27 tls crp->crp_flags |= CRYPTO_F_DONE;
1025 1.27 tls
1026 1.1 jonathan /*
1027 1.23 tls * Normal case; queue the callback for the thread.
1028 1.23 tls *
1029 1.23 tls * The return queue is manipulated by the swi thread
1030 1.23 tls * and, potentially, by crypto device drivers calling
1031 1.23 tls * back to mark operations completed. Thus we need
1032 1.23 tls * to mask both while manipulating the return queue.
1033 1.1 jonathan */
1034 1.27 tls if (crp->crp_flags & CRYPTO_F_CBIMM) {
1035 1.27 tls /*
1036 1.27 tls * Do the callback directly. This is ok when the
1037 1.27 tls * callback routine does very little (e.g. the
1038 1.27 tls * /dev/crypto callback method just does a wakeup).
1039 1.27 tls */
1040 1.27 tls #ifdef CRYPTO_TIMING
1041 1.27 tls if (crypto_timing) {
1042 1.27 tls /*
1043 1.27 tls * NB: We must copy the timestamp before
1044 1.27 tls * doing the callback as the cryptop is
1045 1.27 tls * likely to be reclaimed.
1046 1.27 tls */
1047 1.27 tls struct timespec t = crp->crp_tstamp;
1048 1.27 tls crypto_tstat(&cryptostats.cs_cb, &t);
1049 1.27 tls crp->crp_callback(crp);
1050 1.27 tls crypto_tstat(&cryptostats.cs_finis, &t);
1051 1.27 tls } else
1052 1.27 tls #endif
1053 1.27 tls crp->crp_callback(crp);
1054 1.27 tls } else {
1055 1.27 tls mutex_spin_enter(&crypto_mtx);
1056 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_q);
1057 1.27 tls DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
1058 1.27 tls crp->crp_flags |= CRYPTO_F_ONRETQ;
1059 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1060 1.27 tls if (wasempty) {
1061 1.27 tls DPRINTF(("crypto_done: waking cryptoret, %08x " \
1062 1.27 tls "hit empty queue\n.", (uint32_t)crp));
1063 1.27 tls cv_signal(&cryptoret_cv);
1064 1.27 tls }
1065 1.27 tls mutex_spin_exit(&crypto_mtx);
1066 1.1 jonathan }
1067 1.1 jonathan }
1068 1.1 jonathan
1069 1.1 jonathan /*
1070 1.1 jonathan * Invoke the callback on behalf of the driver.
1071 1.1 jonathan */
1072 1.1 jonathan void
1073 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1074 1.1 jonathan {
1075 1.23 tls int wasempty;
1076 1.1 jonathan
1077 1.1 jonathan if (krp->krp_status != 0)
1078 1.1 jonathan cryptostats.cs_kerrs++;
1079 1.27 tls
1080 1.27 tls krp->krp_flags |= CRYPTO_F_DONE;
1081 1.27 tls
1082 1.1 jonathan /*
1083 1.1 jonathan * The return queue is manipulated by the swi thread
1084 1.1 jonathan * and, potentially, by crypto device drivers calling
1085 1.1 jonathan * back to mark operations completed. Thus we need
1086 1.1 jonathan * to mask both while manipulating the return queue.
1087 1.1 jonathan */
1088 1.27 tls if (krp->krp_flags & CRYPTO_F_CBIMM) {
1089 1.27 tls krp->krp_callback(krp);
1090 1.27 tls } else {
1091 1.27 tls mutex_spin_enter(&crypto_mtx);
1092 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_kq);
1093 1.27 tls krp->krp_flags |= CRYPTO_F_ONRETQ;
1094 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1095 1.27 tls if (wasempty)
1096 1.27 tls cv_signal(&cryptoret_cv);
1097 1.27 tls mutex_spin_exit(&crypto_mtx);
1098 1.27 tls }
1099 1.1 jonathan }
1100 1.1 jonathan
1101 1.1 jonathan int
1102 1.1 jonathan crypto_getfeat(int *featp)
1103 1.1 jonathan {
1104 1.1 jonathan int hid, kalg, feat = 0;
1105 1.1 jonathan
1106 1.23 tls mutex_spin_enter(&crypto_mtx);
1107 1.1 jonathan
1108 1.1 jonathan if (crypto_userasymcrypto == 0)
1109 1.10 perry goto out;
1110 1.1 jonathan
1111 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1112 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1113 1.7 jonathan crypto_devallowsoft == 0) {
1114 1.1 jonathan continue;
1115 1.1 jonathan }
1116 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1117 1.1 jonathan continue;
1118 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1119 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1120 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1121 1.1 jonathan feat |= 1 << kalg;
1122 1.1 jonathan }
1123 1.1 jonathan out:
1124 1.23 tls mutex_spin_exit(&crypto_mtx);
1125 1.1 jonathan *featp = feat;
1126 1.1 jonathan return (0);
1127 1.1 jonathan }
1128 1.1 jonathan
1129 1.1 jonathan /*
1130 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1131 1.1 jonathan */
1132 1.1 jonathan static void
1133 1.1 jonathan cryptointr(void)
1134 1.1 jonathan {
1135 1.1 jonathan struct cryptop *crp, *submit;
1136 1.1 jonathan struct cryptkop *krp;
1137 1.1 jonathan struct cryptocap *cap;
1138 1.23 tls int result, hint;
1139 1.1 jonathan
1140 1.1 jonathan printf("crypto softint\n");
1141 1.1 jonathan cryptostats.cs_intrs++;
1142 1.23 tls mutex_spin_enter(&crypto_mtx);
1143 1.1 jonathan do {
1144 1.1 jonathan /*
1145 1.1 jonathan * Find the first element in the queue that can be
1146 1.1 jonathan * processed and look-ahead to see if multiple ops
1147 1.1 jonathan * are ready for the same driver.
1148 1.1 jonathan */
1149 1.1 jonathan submit = NULL;
1150 1.1 jonathan hint = 0;
1151 1.1 jonathan TAILQ_FOREACH(crp, &crp_q, crp_next) {
1152 1.1 jonathan u_int32_t hid = SESID2HID(crp->crp_sid);
1153 1.1 jonathan cap = crypto_checkdriver(hid);
1154 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1155 1.1 jonathan /* Op needs to be migrated, process it. */
1156 1.1 jonathan if (submit == NULL)
1157 1.1 jonathan submit = crp;
1158 1.1 jonathan break;
1159 1.1 jonathan }
1160 1.1 jonathan if (!cap->cc_qblocked) {
1161 1.1 jonathan if (submit != NULL) {
1162 1.1 jonathan /*
1163 1.1 jonathan * We stop on finding another op,
1164 1.1 jonathan * regardless whether its for the same
1165 1.1 jonathan * driver or not. We could keep
1166 1.1 jonathan * searching the queue but it might be
1167 1.1 jonathan * better to just use a per-driver
1168 1.1 jonathan * queue instead.
1169 1.1 jonathan */
1170 1.1 jonathan if (SESID2HID(submit->crp_sid) == hid)
1171 1.1 jonathan hint = CRYPTO_HINT_MORE;
1172 1.1 jonathan break;
1173 1.1 jonathan } else {
1174 1.1 jonathan submit = crp;
1175 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1176 1.1 jonathan break;
1177 1.1 jonathan /* keep scanning for more are q'd */
1178 1.1 jonathan }
1179 1.1 jonathan }
1180 1.1 jonathan }
1181 1.1 jonathan if (submit != NULL) {
1182 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1183 1.23 tls mutex_spin_exit(&crypto_mtx);
1184 1.1 jonathan result = crypto_invoke(submit, hint);
1185 1.23 tls /* we must take here as the TAILQ op or kinvoke
1186 1.23 tls may need this mutex below. sigh. */
1187 1.23 tls mutex_spin_enter(&crypto_mtx);
1188 1.1 jonathan if (result == ERESTART) {
1189 1.1 jonathan /*
1190 1.1 jonathan * The driver ran out of resources, mark the
1191 1.1 jonathan * driver ``blocked'' for cryptop's and put
1192 1.1 jonathan * the request back in the queue. It would
1193 1.1 jonathan * best to put the request back where we got
1194 1.1 jonathan * it but that's hard so for now we put it
1195 1.1 jonathan * at the front. This should be ok; putting
1196 1.1 jonathan * it at the end does not work.
1197 1.1 jonathan */
1198 1.1 jonathan /* XXX validate sid again? */
1199 1.1 jonathan crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1200 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1201 1.1 jonathan cryptostats.cs_blocks++;
1202 1.1 jonathan }
1203 1.1 jonathan }
1204 1.1 jonathan
1205 1.1 jonathan /* As above, but for key ops */
1206 1.1 jonathan TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1207 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1208 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1209 1.1 jonathan /* Op needs to be migrated, process it. */
1210 1.1 jonathan break;
1211 1.1 jonathan }
1212 1.1 jonathan if (!cap->cc_kqblocked)
1213 1.1 jonathan break;
1214 1.1 jonathan }
1215 1.1 jonathan if (krp != NULL) {
1216 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1217 1.23 tls mutex_spin_exit(&crypto_mtx);
1218 1.1 jonathan result = crypto_kinvoke(krp, 0);
1219 1.23 tls /* the next iteration will want the mutex. :-/ */
1220 1.23 tls mutex_spin_enter(&crypto_mtx);
1221 1.1 jonathan if (result == ERESTART) {
1222 1.1 jonathan /*
1223 1.1 jonathan * The driver ran out of resources, mark the
1224 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1225 1.1 jonathan * the request back in the queue. It would
1226 1.1 jonathan * best to put the request back where we got
1227 1.1 jonathan * it but that's hard so for now we put it
1228 1.1 jonathan * at the front. This should be ok; putting
1229 1.1 jonathan * it at the end does not work.
1230 1.1 jonathan */
1231 1.1 jonathan /* XXX validate sid again? */
1232 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1233 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1234 1.1 jonathan cryptostats.cs_kblocks++;
1235 1.1 jonathan }
1236 1.1 jonathan }
1237 1.1 jonathan } while (submit != NULL || krp != NULL);
1238 1.23 tls mutex_spin_exit(&crypto_mtx);
1239 1.1 jonathan }
1240 1.1 jonathan
1241 1.1 jonathan /*
1242 1.1 jonathan * Kernel thread to do callbacks.
1243 1.1 jonathan */
1244 1.1 jonathan static void
1245 1.1 jonathan cryptoret(void)
1246 1.1 jonathan {
1247 1.1 jonathan struct cryptop *crp;
1248 1.1 jonathan struct cryptkop *krp;
1249 1.1 jonathan
1250 1.26 ad mutex_spin_enter(&crypto_mtx);
1251 1.1 jonathan for (;;) {
1252 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1253 1.23 tls if (crp != NULL) {
1254 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1255 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1256 1.23 tls }
1257 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1258 1.23 tls if (krp != NULL) {
1259 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1260 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1261 1.23 tls }
1262 1.1 jonathan
1263 1.23 tls /* drop before calling any callbacks. */
1264 1.26 ad if (crp == NULL && krp == NULL) {
1265 1.26 ad cryptostats.cs_rets++;
1266 1.26 ad cv_wait(&cryptoret_cv, &crypto_mtx);
1267 1.26 ad continue;
1268 1.26 ad }
1269 1.26 ad
1270 1.23 tls mutex_spin_exit(&crypto_mtx);
1271 1.26 ad
1272 1.26 ad if (crp != NULL) {
1273 1.1 jonathan #ifdef CRYPTO_TIMING
1274 1.26 ad if (crypto_timing) {
1275 1.26 ad /*
1276 1.26 ad * NB: We must copy the timestamp before
1277 1.26 ad * doing the callback as the cryptop is
1278 1.26 ad * likely to be reclaimed.
1279 1.26 ad */
1280 1.26 ad struct timespec t = crp->crp_tstamp;
1281 1.26 ad crypto_tstat(&cryptostats.cs_cb, &t);
1282 1.26 ad crp->crp_callback(crp);
1283 1.26 ad crypto_tstat(&cryptostats.cs_finis, &t);
1284 1.26 ad } else
1285 1.1 jonathan #endif
1286 1.26 ad {
1287 1.26 ad crp->crp_callback(crp);
1288 1.1 jonathan }
1289 1.1 jonathan }
1290 1.26 ad if (krp != NULL)
1291 1.26 ad krp->krp_callback(krp);
1292 1.26 ad
1293 1.26 ad mutex_spin_enter(&crypto_mtx);
1294 1.1 jonathan }
1295 1.1 jonathan }
1296