Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.27
      1  1.27       tls /*	$NetBSD: crypto.c,v 1.27 2008/04/10 22:48:42 tls Exp $ */
      2   1.1  jonathan /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3   1.1  jonathan /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4   1.1  jonathan 
      5  1.27       tls /*-
      6  1.27       tls  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  1.27       tls  * All rights reserved.
      8  1.27       tls  *
      9  1.27       tls  * This code is derived from software contributed to The NetBSD Foundation
     10  1.27       tls  * by Coyote Point Systems, Inc.
     11  1.27       tls  *
     12  1.27       tls  * Redistribution and use in source and binary forms, with or without
     13  1.27       tls  * modification, are permitted provided that the following conditions
     14  1.27       tls  * are met:
     15  1.27       tls  * 1. Redistributions of source code must retain the above copyright
     16  1.27       tls  *    notice, this list of conditions and the following disclaimer.
     17  1.27       tls  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.27       tls  *    notice, this list of conditions and the following disclaimer in the
     19  1.27       tls  *    documentation and/or other materials provided with the distribution.
     20  1.27       tls  * 3. All advertising materials mentioning features or use of this software
     21  1.27       tls  *    must display the following acknowledgement:
     22  1.27       tls  *	This product includes software developed by the NetBSD
     23  1.27       tls  *	Foundation, Inc. and its contributors.
     24  1.27       tls  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  1.27       tls  *    contributors may be used to endorse or promote products derived
     26  1.27       tls  *    from this software without specific prior written permission.
     27  1.27       tls  *
     28  1.27       tls  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  1.27       tls  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  1.27       tls  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  1.27       tls  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  1.27       tls  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  1.27       tls  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  1.27       tls  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  1.27       tls  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  1.27       tls  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  1.27       tls  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  1.27       tls  * POSSIBILITY OF SUCH DAMAGE.
     39  1.27       tls  */
     40  1.27       tls 
     41   1.1  jonathan /*
     42   1.1  jonathan  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     43   1.1  jonathan  *
     44   1.1  jonathan  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     45   1.1  jonathan  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     46   1.1  jonathan  * supported the development of this code.
     47   1.1  jonathan  *
     48   1.1  jonathan  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     49   1.1  jonathan  *
     50   1.1  jonathan  * Permission to use, copy, and modify this software with or without fee
     51   1.1  jonathan  * is hereby granted, provided that this entire notice is included in
     52   1.1  jonathan  * all source code copies of any software which is or includes a copy or
     53   1.1  jonathan  * modification of this software.
     54   1.1  jonathan  *
     55   1.1  jonathan  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     56   1.1  jonathan  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     57   1.1  jonathan  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     58   1.1  jonathan  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     59   1.1  jonathan  * PURPOSE.
     60   1.1  jonathan  */
     61   1.1  jonathan 
     62   1.1  jonathan #include <sys/cdefs.h>
     63  1.27       tls __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.27 2008/04/10 22:48:42 tls Exp $");
     64   1.1  jonathan 
     65   1.1  jonathan #include <sys/param.h>
     66   1.1  jonathan #include <sys/reboot.h>
     67   1.1  jonathan #include <sys/systm.h>
     68   1.1  jonathan #include <sys/malloc.h>
     69   1.1  jonathan #include <sys/proc.h>
     70   1.1  jonathan #include <sys/pool.h>
     71   1.1  jonathan #include <sys/kthread.h>
     72  1.11   thorpej #include <sys/once.h>
     73  1.13  christos #include <sys/sysctl.h>
     74  1.21        ad #include <sys/intr.h>
     75   1.1  jonathan 
     76  1.23       tls #include "opt_ocf.h"
     77  1.21        ad #include <opencrypto/cryptodev.h>
     78   1.1  jonathan #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     79   1.1  jonathan 
     80  1.23       tls kcondvar_t cryptoret_cv;
     81  1.23       tls kmutex_t crypto_mtx;
     82  1.23       tls 
     83  1.23       tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     84   1.1  jonathan   #define SWI_CRYPTO 17
     85   1.1  jonathan   #define register_swi(lvl, fn)  \
     86  1.21        ad   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
     87  1.21        ad   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     88  1.21        ad   #define setsoftcrypto(x) softint_schedule(x)
     89   1.1  jonathan 
     90   1.1  jonathan #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
     91   1.1  jonathan 
     92   1.1  jonathan /*
     93   1.1  jonathan  * Crypto drivers register themselves by allocating a slot in the
     94   1.1  jonathan  * crypto_drivers table with crypto_get_driverid() and then registering
     95   1.1  jonathan  * each algorithm they support with crypto_register() and crypto_kregister().
     96   1.1  jonathan  */
     97  1.11   thorpej static	struct cryptocap *crypto_drivers;
     98  1.11   thorpej static	int crypto_drivers_num;
     99   1.1  jonathan static	void* softintr_cookie;
    100   1.1  jonathan 
    101   1.1  jonathan /*
    102   1.1  jonathan  * There are two queues for crypto requests; one for symmetric (e.g.
    103   1.1  jonathan  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    104   1.1  jonathan  * See below for how synchronization is handled.
    105   1.1  jonathan  */
    106  1.11   thorpej static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    107  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_q);
    108  1.11   thorpej static	TAILQ_HEAD(,cryptkop) crp_kq =
    109  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_kq);
    110   1.1  jonathan 
    111   1.1  jonathan /*
    112   1.1  jonathan  * There are two queues for processing completed crypto requests; one
    113   1.1  jonathan  * for the symmetric and one for the asymmetric ops.  We only need one
    114   1.1  jonathan  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    115   1.1  jonathan  * for how synchronization is handled.
    116   1.1  jonathan  */
    117  1.23       tls static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    118  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    119  1.23       tls static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    120  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    121   1.1  jonathan 
    122   1.1  jonathan /*
    123  1.23       tls  * XXX these functions are ghastly hacks for when the submission
    124  1.23       tls  * XXX routines discover a request that was not CBIMM is already
    125  1.23       tls  * XXX done, and must be yanked from the retq (where _done) put it
    126  1.23       tls  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    127  1.23       tls  * XXX as the request is generally the last one queued.
    128  1.23       tls  *
    129  1.23       tls  *	 call with the lock held, or else.
    130  1.23       tls  */
    131  1.23       tls int
    132  1.23       tls crypto_ret_q_remove(struct cryptop *crp)
    133  1.23       tls {
    134  1.23       tls 	struct cryptop * acrp;
    135  1.23       tls 
    136  1.23       tls 	TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
    137  1.23       tls 		if (acrp == crp) {
    138  1.23       tls 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    139  1.23       tls 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    140  1.23       tls 			return 1;
    141  1.23       tls 		}
    142  1.23       tls 	}
    143  1.23       tls 	return 0;
    144  1.23       tls }
    145  1.23       tls 
    146  1.23       tls int
    147  1.23       tls crypto_ret_kq_remove(struct cryptkop *krp)
    148  1.23       tls {
    149  1.23       tls 	struct cryptkop * akrp;
    150  1.23       tls 
    151  1.23       tls 	TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
    152  1.23       tls 		if (akrp == krp) {
    153  1.23       tls 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    154  1.23       tls 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    155  1.23       tls 			return 1;
    156  1.23       tls 		}
    157  1.23       tls 	}
    158  1.23       tls 	return 0;
    159  1.23       tls }
    160  1.23       tls 
    161  1.23       tls /*
    162   1.1  jonathan  * Crypto op and desciptor data structures are allocated
    163   1.1  jonathan  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    164   1.1  jonathan  */
    165   1.1  jonathan struct pool cryptop_pool;
    166   1.1  jonathan struct pool cryptodesc_pool;
    167  1.23       tls struct pool cryptkop_pool;
    168   1.1  jonathan 
    169   1.1  jonathan int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    170   1.1  jonathan int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    171  1.10     perry /*
    172   1.6  jonathan  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    173   1.6  jonathan  * access to hardware versus software transforms as below:
    174   1.6  jonathan  *
    175   1.6  jonathan  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    176   1.6  jonathan  *                              transforms, always
    177   1.6  jonathan  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    178   1.6  jonathan  *                              requests for non-accelerated transforms
    179   1.6  jonathan  *                              (handling the latter in software)
    180   1.6  jonathan  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    181   1.6  jonathan  *                               are hardware-accelerated.
    182   1.6  jonathan  */
    183   1.9  jonathan int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    184   1.6  jonathan 
    185  1.13  christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    186  1.13  christos {
    187  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    188  1.13  christos 		       CTLFLAG_PERMANENT,
    189  1.13  christos 		       CTLTYPE_NODE, "kern", NULL,
    190  1.13  christos 		       NULL, 0, NULL, 0,
    191  1.13  christos 		       CTL_KERN, CTL_EOL);
    192  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    193  1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    194  1.13  christos 		       CTLTYPE_INT, "usercrypto",
    195  1.13  christos 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    196  1.13  christos 			   "crypto support"),
    197  1.13  christos 		       NULL, 0, &crypto_usercrypto, 0,
    198  1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    199  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    200  1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    201  1.13  christos 		       CTLTYPE_INT, "userasymcrypto",
    202  1.13  christos 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    203  1.13  christos 			   "asymmetric crypto support"),
    204  1.13  christos 		       NULL, 0, &crypto_userasymcrypto, 0,
    205  1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    206  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    207  1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    208  1.13  christos 		       CTLTYPE_INT, "cryptodevallowsoft",
    209  1.13  christos 		       SYSCTL_DESCR("Enable/disable use of software "
    210  1.13  christos 			   "asymmetric crypto support"),
    211  1.13  christos 		       NULL, 0, &crypto_devallowsoft, 0,
    212  1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213  1.13  christos }
    214   1.1  jonathan 
    215   1.1  jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    216   1.1  jonathan 
    217   1.1  jonathan /*
    218   1.1  jonathan  * Synchronization: read carefully, this is non-trivial.
    219   1.1  jonathan  *
    220   1.1  jonathan  * Crypto requests are submitted via crypto_dispatch.  Typically
    221   1.1  jonathan  * these come in from network protocols at spl0 (output path) or
    222   1.1  jonathan  * spl[,soft]net (input path).
    223   1.1  jonathan  *
    224   1.1  jonathan  * Requests are typically passed on the driver directly, but they
    225   1.1  jonathan  * may also be queued for processing by a software interrupt thread,
    226  1.10     perry  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    227   1.1  jonathan  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    228   1.1  jonathan  * when a request is complete.  Hardware crypto drivers are assumed
    229   1.1  jonathan  * to register their IRQ's as network devices so their interrupt handlers
    230   1.1  jonathan  * and subsequent "done callbacks" happen at spl[imp,net].
    231   1.1  jonathan  *
    232   1.1  jonathan  * Completed crypto ops are queued for a separate kernel thread that
    233   1.1  jonathan  * handles the callbacks at spl0.  This decoupling insures the crypto
    234   1.1  jonathan  * driver interrupt service routine is not delayed while the callback
    235   1.1  jonathan  * takes place and that callbacks are delivered after a context switch
    236   1.1  jonathan  * (as opposed to a software interrupt that clients must block).
    237   1.1  jonathan  *
    238   1.1  jonathan  * This scheme is not intended for SMP machines.
    239  1.10     perry  */
    240   1.1  jonathan static	void cryptointr(void);		/* swi thread to dispatch ops */
    241   1.1  jonathan static	void cryptoret(void);		/* kernel thread for callbacks*/
    242  1.20        ad static	struct lwp *cryptothread;
    243   1.1  jonathan static	void crypto_destroy(void);
    244   1.1  jonathan static	int crypto_invoke(struct cryptop *crp, int hint);
    245   1.1  jonathan static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    246   1.1  jonathan 
    247   1.1  jonathan static struct cryptostats cryptostats;
    248  1.23       tls #ifdef CRYPTO_TIMING
    249   1.1  jonathan static	int crypto_timing = 0;
    250  1.23       tls #endif
    251   1.1  jonathan 
    252  1.12      yamt static int
    253  1.11   thorpej crypto_init0(void)
    254   1.1  jonathan {
    255   1.1  jonathan 	int error;
    256   1.1  jonathan 
    257  1.23       tls 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
    258  1.23       tls 	cv_init(&cryptoret_cv, "crypto_wait");
    259  1.23       tls 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    260  1.23       tls 		  0, "cryptop", NULL, IPL_NET);
    261  1.23       tls 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    262  1.23       tls 		  0, "cryptodesc", NULL, IPL_NET);
    263  1.23       tls 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    264  1.23       tls 		  0, "cryptkop", NULL, IPL_NET);
    265   1.1  jonathan 
    266  1.11   thorpej 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    267   1.1  jonathan 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    268   1.1  jonathan 	if (crypto_drivers == NULL) {
    269   1.1  jonathan 		printf("crypto_init: cannot malloc driver table\n");
    270  1.12      yamt 		return 0;
    271   1.1  jonathan 	}
    272  1.11   thorpej 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    273   1.1  jonathan 
    274   1.1  jonathan 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    275  1.25       tls 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    276  1.24       tls 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
    277   1.1  jonathan 	if (error) {
    278   1.1  jonathan 		printf("crypto_init: cannot start cryptoret thread; error %d",
    279   1.1  jonathan 			error);
    280   1.1  jonathan 		crypto_destroy();
    281   1.1  jonathan 	}
    282  1.20        ad 
    283  1.12      yamt 	return 0;
    284  1.11   thorpej }
    285  1.11   thorpej 
    286  1.11   thorpej void
    287  1.11   thorpej crypto_init(void)
    288  1.11   thorpej {
    289  1.18    daniel 	static ONCE_DECL(crypto_init_once);
    290  1.11   thorpej 
    291  1.11   thorpej 	RUN_ONCE(&crypto_init_once, crypto_init0);
    292   1.1  jonathan }
    293   1.1  jonathan 
    294   1.1  jonathan static void
    295   1.1  jonathan crypto_destroy(void)
    296   1.1  jonathan {
    297   1.1  jonathan 	/* XXX no wait to reclaim zones */
    298   1.1  jonathan 	if (crypto_drivers != NULL)
    299   1.1  jonathan 		free(crypto_drivers, M_CRYPTO_DATA);
    300   1.1  jonathan 	unregister_swi(SWI_CRYPTO, cryptointr);
    301   1.1  jonathan }
    302   1.1  jonathan 
    303   1.1  jonathan /*
    304  1.23       tls  * Create a new session.  Must be called with crypto_mtx held.
    305   1.1  jonathan  */
    306   1.1  jonathan int
    307   1.1  jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    308   1.1  jonathan {
    309   1.1  jonathan 	struct cryptoini *cr;
    310   1.1  jonathan 	u_int32_t hid, lid;
    311   1.1  jonathan 	int err = EINVAL;
    312   1.1  jonathan 
    313  1.23       tls 	KASSERT(mutex_owned(&crypto_mtx));
    314   1.1  jonathan 
    315   1.1  jonathan 	if (crypto_drivers == NULL)
    316   1.1  jonathan 		goto done;
    317   1.1  jonathan 
    318   1.1  jonathan 	/*
    319   1.1  jonathan 	 * The algorithm we use here is pretty stupid; just use the
    320   1.1  jonathan 	 * first driver that supports all the algorithms we need.
    321   1.1  jonathan 	 *
    322   1.1  jonathan 	 * XXX We need more smarts here (in real life too, but that's
    323   1.1  jonathan 	 * XXX another story altogether).
    324   1.1  jonathan 	 */
    325   1.1  jonathan 
    326   1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    327   1.1  jonathan 		/*
    328   1.1  jonathan 		 * If it's not initialized or has remaining sessions
    329   1.1  jonathan 		 * referencing it, skip.
    330   1.1  jonathan 		 */
    331   1.1  jonathan 		if (crypto_drivers[hid].cc_newsession == NULL ||
    332   1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    333   1.1  jonathan 			continue;
    334   1.1  jonathan 
    335   1.1  jonathan 		/* Hardware required -- ignore software drivers. */
    336   1.1  jonathan 		if (hard > 0 &&
    337   1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    338   1.1  jonathan 			continue;
    339   1.1  jonathan 		/* Software required -- ignore hardware drivers. */
    340   1.1  jonathan 		if (hard < 0 &&
    341   1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    342   1.1  jonathan 			continue;
    343   1.1  jonathan 
    344   1.1  jonathan 		/* See if all the algorithms are supported. */
    345   1.1  jonathan 		for (cr = cri; cr; cr = cr->cri_next)
    346   1.1  jonathan 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
    347   1.1  jonathan 				break;
    348   1.1  jonathan 
    349   1.1  jonathan 		if (cr == NULL) {
    350   1.1  jonathan 			/* Ok, all algorithms are supported. */
    351   1.1  jonathan 
    352   1.1  jonathan 			/*
    353   1.1  jonathan 			 * Can't do everything in one session.
    354   1.1  jonathan 			 *
    355   1.1  jonathan 			 * XXX Fix this. We need to inject a "virtual" session layer right
    356   1.1  jonathan 			 * XXX about here.
    357   1.1  jonathan 			 */
    358   1.1  jonathan 
    359   1.1  jonathan 			/* Call the driver initialization routine. */
    360   1.1  jonathan 			lid = hid;		/* Pass the driver ID. */
    361   1.1  jonathan 			err = crypto_drivers[hid].cc_newsession(
    362   1.1  jonathan 					crypto_drivers[hid].cc_arg, &lid, cri);
    363   1.1  jonathan 			if (err == 0) {
    364   1.1  jonathan 				(*sid) = hid;
    365   1.1  jonathan 				(*sid) <<= 32;
    366   1.1  jonathan 				(*sid) |= (lid & 0xffffffff);
    367   1.1  jonathan 				crypto_drivers[hid].cc_sessions++;
    368   1.1  jonathan 			}
    369   1.1  jonathan 			goto done;
    370   1.1  jonathan 			/*break;*/
    371   1.1  jonathan 		}
    372   1.1  jonathan 	}
    373   1.1  jonathan done:
    374   1.1  jonathan 	return err;
    375   1.1  jonathan }
    376   1.1  jonathan 
    377   1.1  jonathan /*
    378   1.1  jonathan  * Delete an existing session (or a reserved session on an unregistered
    379  1.23       tls  * driver).  Must be called with crypto_mtx mutex held.
    380   1.1  jonathan  */
    381   1.1  jonathan int
    382   1.1  jonathan crypto_freesession(u_int64_t sid)
    383   1.1  jonathan {
    384   1.1  jonathan 	u_int32_t hid;
    385   1.1  jonathan 	int err = 0;
    386   1.1  jonathan 
    387  1.23       tls 	KASSERT(mutex_owned(&crypto_mtx));
    388   1.1  jonathan 
    389   1.1  jonathan 	if (crypto_drivers == NULL) {
    390   1.1  jonathan 		err = EINVAL;
    391   1.1  jonathan 		goto done;
    392   1.1  jonathan 	}
    393   1.1  jonathan 
    394   1.1  jonathan 	/* Determine two IDs. */
    395   1.1  jonathan 	hid = SESID2HID(sid);
    396   1.1  jonathan 
    397   1.1  jonathan 	if (hid >= crypto_drivers_num) {
    398   1.1  jonathan 		err = ENOENT;
    399   1.1  jonathan 		goto done;
    400   1.1  jonathan 	}
    401   1.1  jonathan 
    402   1.1  jonathan 	if (crypto_drivers[hid].cc_sessions)
    403   1.1  jonathan 		crypto_drivers[hid].cc_sessions--;
    404   1.1  jonathan 
    405   1.1  jonathan 	/* Call the driver cleanup routine, if available. */
    406  1.23       tls 	if (crypto_drivers[hid].cc_freesession) {
    407   1.1  jonathan 		err = crypto_drivers[hid].cc_freesession(
    408   1.1  jonathan 				crypto_drivers[hid].cc_arg, sid);
    409  1.23       tls 	}
    410   1.1  jonathan 	else
    411   1.1  jonathan 		err = 0;
    412   1.1  jonathan 
    413   1.1  jonathan 	/*
    414   1.1  jonathan 	 * If this was the last session of a driver marked as invalid,
    415   1.1  jonathan 	 * make the entry available for reuse.
    416   1.1  jonathan 	 */
    417   1.1  jonathan 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    418   1.1  jonathan 	    crypto_drivers[hid].cc_sessions == 0)
    419   1.1  jonathan 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
    420   1.1  jonathan 
    421   1.1  jonathan done:
    422   1.1  jonathan 	return err;
    423   1.1  jonathan }
    424   1.1  jonathan 
    425   1.1  jonathan /*
    426   1.1  jonathan  * Return an unused driver id.  Used by drivers prior to registering
    427   1.1  jonathan  * support for the algorithms they handle.
    428   1.1  jonathan  */
    429   1.1  jonathan int32_t
    430   1.1  jonathan crypto_get_driverid(u_int32_t flags)
    431   1.1  jonathan {
    432   1.1  jonathan 	struct cryptocap *newdrv;
    433  1.23       tls 	int i;
    434   1.1  jonathan 
    435  1.23       tls 	crypto_init();		/* XXX oh, this is foul! */
    436  1.11   thorpej 
    437  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    438   1.1  jonathan 	for (i = 0; i < crypto_drivers_num; i++)
    439   1.1  jonathan 		if (crypto_drivers[i].cc_process == NULL &&
    440   1.1  jonathan 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    441   1.1  jonathan 		    crypto_drivers[i].cc_sessions == 0)
    442   1.1  jonathan 			break;
    443   1.1  jonathan 
    444   1.1  jonathan 	/* Out of entries, allocate some more. */
    445   1.1  jonathan 	if (i == crypto_drivers_num) {
    446   1.1  jonathan 		/* Be careful about wrap-around. */
    447   1.1  jonathan 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    448  1.23       tls 			mutex_spin_exit(&crypto_mtx);
    449   1.1  jonathan 			printf("crypto: driver count wraparound!\n");
    450   1.1  jonathan 			return -1;
    451   1.1  jonathan 		}
    452   1.1  jonathan 
    453   1.1  jonathan 		newdrv = malloc(2 * crypto_drivers_num *
    454   1.1  jonathan 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    455   1.1  jonathan 		if (newdrv == NULL) {
    456  1.23       tls 			mutex_spin_exit(&crypto_mtx);
    457   1.1  jonathan 			printf("crypto: no space to expand driver table!\n");
    458   1.1  jonathan 			return -1;
    459   1.1  jonathan 		}
    460   1.1  jonathan 
    461   1.1  jonathan 		bcopy(crypto_drivers, newdrv,
    462   1.1  jonathan 		    crypto_drivers_num * sizeof(struct cryptocap));
    463   1.1  jonathan 
    464   1.1  jonathan 		crypto_drivers_num *= 2;
    465   1.1  jonathan 
    466   1.1  jonathan 		free(crypto_drivers, M_CRYPTO_DATA);
    467   1.1  jonathan 		crypto_drivers = newdrv;
    468   1.1  jonathan 	}
    469   1.1  jonathan 
    470   1.1  jonathan 	/* NB: state is zero'd on free */
    471   1.1  jonathan 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    472   1.1  jonathan 	crypto_drivers[i].cc_flags = flags;
    473   1.1  jonathan 
    474   1.1  jonathan 	if (bootverbose)
    475   1.1  jonathan 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    476   1.1  jonathan 
    477  1.23       tls 	mutex_spin_exit(&crypto_mtx);
    478   1.1  jonathan 
    479   1.1  jonathan 	return i;
    480   1.1  jonathan }
    481   1.1  jonathan 
    482   1.1  jonathan static struct cryptocap *
    483   1.1  jonathan crypto_checkdriver(u_int32_t hid)
    484   1.1  jonathan {
    485   1.1  jonathan 	if (crypto_drivers == NULL)
    486   1.1  jonathan 		return NULL;
    487   1.1  jonathan 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    488   1.1  jonathan }
    489   1.1  jonathan 
    490   1.1  jonathan /*
    491   1.1  jonathan  * Register support for a key-related algorithm.  This routine
    492   1.1  jonathan  * is called once for each algorithm supported a driver.
    493   1.1  jonathan  */
    494   1.1  jonathan int
    495   1.1  jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    496   1.1  jonathan     int (*kprocess)(void*, struct cryptkop *, int),
    497   1.1  jonathan     void *karg)
    498   1.1  jonathan {
    499   1.1  jonathan 	struct cryptocap *cap;
    500   1.1  jonathan 	int err;
    501   1.1  jonathan 
    502  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    503   1.1  jonathan 
    504   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    505   1.1  jonathan 	if (cap != NULL &&
    506   1.1  jonathan 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    507   1.1  jonathan 		/*
    508   1.1  jonathan 		 * XXX Do some performance testing to determine placing.
    509   1.1  jonathan 		 * XXX We probably need an auxiliary data structure that
    510   1.1  jonathan 		 * XXX describes relative performances.
    511   1.1  jonathan 		 */
    512   1.1  jonathan 
    513   1.1  jonathan 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    514  1.23       tls 		if (bootverbose) {
    515  1.23       tls 			printf("crypto: driver %u registers key alg %u "
    516  1.23       tls 			       " flags %u\n",
    517  1.23       tls 				driverid,
    518  1.23       tls 				kalg,
    519  1.23       tls 				flags
    520   1.1  jonathan 			);
    521  1.23       tls 		}
    522   1.1  jonathan 
    523   1.1  jonathan 		if (cap->cc_kprocess == NULL) {
    524   1.1  jonathan 			cap->cc_karg = karg;
    525   1.1  jonathan 			cap->cc_kprocess = kprocess;
    526   1.1  jonathan 		}
    527   1.1  jonathan 		err = 0;
    528   1.1  jonathan 	} else
    529   1.1  jonathan 		err = EINVAL;
    530   1.1  jonathan 
    531  1.23       tls 	mutex_spin_exit(&crypto_mtx);
    532   1.1  jonathan 	return err;
    533   1.1  jonathan }
    534   1.1  jonathan 
    535   1.1  jonathan /*
    536   1.1  jonathan  * Register support for a non-key-related algorithm.  This routine
    537   1.1  jonathan  * is called once for each such algorithm supported by a driver.
    538   1.1  jonathan  */
    539   1.1  jonathan int
    540   1.1  jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    541   1.1  jonathan     u_int32_t flags,
    542   1.1  jonathan     int (*newses)(void*, u_int32_t*, struct cryptoini*),
    543   1.1  jonathan     int (*freeses)(void*, u_int64_t),
    544   1.1  jonathan     int (*process)(void*, struct cryptop *, int),
    545   1.1  jonathan     void *arg)
    546   1.1  jonathan {
    547   1.1  jonathan 	struct cryptocap *cap;
    548  1.23       tls 	int err;
    549   1.1  jonathan 
    550  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    551   1.1  jonathan 
    552   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    553   1.1  jonathan 	/* NB: algorithms are in the range [1..max] */
    554   1.1  jonathan 	if (cap != NULL &&
    555   1.1  jonathan 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    556   1.1  jonathan 		/*
    557   1.1  jonathan 		 * XXX Do some performance testing to determine placing.
    558   1.1  jonathan 		 * XXX We probably need an auxiliary data structure that
    559   1.1  jonathan 		 * XXX describes relative performances.
    560   1.1  jonathan 		 */
    561   1.1  jonathan 
    562   1.1  jonathan 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    563   1.1  jonathan 		cap->cc_max_op_len[alg] = maxoplen;
    564  1.23       tls 		if (bootverbose) {
    565  1.23       tls 			printf("crypto: driver %u registers alg %u "
    566  1.23       tls 				"flags %u maxoplen %u\n",
    567  1.23       tls 				driverid,
    568  1.23       tls 				alg,
    569  1.23       tls 				flags,
    570  1.23       tls 				maxoplen
    571   1.1  jonathan 			);
    572  1.23       tls 		}
    573   1.1  jonathan 
    574   1.1  jonathan 		if (cap->cc_process == NULL) {
    575   1.1  jonathan 			cap->cc_arg = arg;
    576   1.1  jonathan 			cap->cc_newsession = newses;
    577   1.1  jonathan 			cap->cc_process = process;
    578   1.1  jonathan 			cap->cc_freesession = freeses;
    579   1.1  jonathan 			cap->cc_sessions = 0;		/* Unmark */
    580   1.1  jonathan 		}
    581   1.1  jonathan 		err = 0;
    582   1.1  jonathan 	} else
    583   1.1  jonathan 		err = EINVAL;
    584   1.1  jonathan 
    585  1.23       tls 	mutex_spin_exit(&crypto_mtx);
    586   1.1  jonathan 	return err;
    587   1.1  jonathan }
    588   1.1  jonathan 
    589   1.1  jonathan /*
    590   1.1  jonathan  * Unregister a crypto driver. If there are pending sessions using it,
    591   1.1  jonathan  * leave enough information around so that subsequent calls using those
    592   1.1  jonathan  * sessions will correctly detect the driver has been unregistered and
    593   1.1  jonathan  * reroute requests.
    594   1.1  jonathan  */
    595   1.1  jonathan int
    596   1.1  jonathan crypto_unregister(u_int32_t driverid, int alg)
    597   1.1  jonathan {
    598  1.23       tls 	int i, err;
    599   1.1  jonathan 	u_int32_t ses;
    600   1.1  jonathan 	struct cryptocap *cap;
    601   1.1  jonathan 
    602  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    603   1.1  jonathan 
    604   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    605   1.1  jonathan 	if (cap != NULL &&
    606   1.1  jonathan 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    607   1.1  jonathan 	    cap->cc_alg[alg] != 0) {
    608   1.1  jonathan 		cap->cc_alg[alg] = 0;
    609   1.1  jonathan 		cap->cc_max_op_len[alg] = 0;
    610   1.1  jonathan 
    611   1.1  jonathan 		/* Was this the last algorithm ? */
    612   1.1  jonathan 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    613   1.1  jonathan 			if (cap->cc_alg[i] != 0)
    614   1.1  jonathan 				break;
    615   1.1  jonathan 
    616   1.1  jonathan 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    617   1.1  jonathan 			ses = cap->cc_sessions;
    618   1.1  jonathan 			bzero(cap, sizeof(struct cryptocap));
    619   1.1  jonathan 			if (ses != 0) {
    620   1.1  jonathan 				/*
    621   1.1  jonathan 				 * If there are pending sessions, just mark as invalid.
    622   1.1  jonathan 				 */
    623   1.1  jonathan 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    624   1.1  jonathan 				cap->cc_sessions = ses;
    625   1.1  jonathan 			}
    626   1.1  jonathan 		}
    627   1.1  jonathan 		err = 0;
    628   1.1  jonathan 	} else
    629   1.1  jonathan 		err = EINVAL;
    630   1.1  jonathan 
    631  1.23       tls 	mutex_spin_exit(&crypto_mtx);
    632   1.1  jonathan 	return err;
    633   1.1  jonathan }
    634   1.1  jonathan 
    635   1.1  jonathan /*
    636   1.1  jonathan  * Unregister all algorithms associated with a crypto driver.
    637   1.1  jonathan  * If there are pending sessions using it, leave enough information
    638   1.1  jonathan  * around so that subsequent calls using those sessions will
    639   1.1  jonathan  * correctly detect the driver has been unregistered and reroute
    640   1.1  jonathan  * requests.
    641  1.23       tls  *
    642  1.23       tls  * XXX careful.  Don't change this to call crypto_unregister() for each
    643  1.23       tls  * XXX registered algorithm unless you drop the mutex across the calls;
    644  1.23       tls  * XXX you can't take it recursively.
    645   1.1  jonathan  */
    646   1.1  jonathan int
    647   1.1  jonathan crypto_unregister_all(u_int32_t driverid)
    648   1.1  jonathan {
    649  1.23       tls 	int i, err;
    650   1.1  jonathan 	u_int32_t ses;
    651   1.1  jonathan 	struct cryptocap *cap;
    652   1.1  jonathan 
    653  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    654   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    655   1.1  jonathan 	if (cap != NULL) {
    656   1.1  jonathan 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    657   1.1  jonathan 			cap->cc_alg[i] = 0;
    658   1.1  jonathan 			cap->cc_max_op_len[i] = 0;
    659   1.1  jonathan 		}
    660   1.1  jonathan 		ses = cap->cc_sessions;
    661   1.1  jonathan 		bzero(cap, sizeof(struct cryptocap));
    662   1.1  jonathan 		if (ses != 0) {
    663   1.1  jonathan 			/*
    664   1.1  jonathan 			 * If there are pending sessions, just mark as invalid.
    665   1.1  jonathan 			 */
    666   1.1  jonathan 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    667   1.1  jonathan 			cap->cc_sessions = ses;
    668   1.1  jonathan 		}
    669   1.1  jonathan 		err = 0;
    670   1.1  jonathan 	} else
    671   1.1  jonathan 		err = EINVAL;
    672   1.1  jonathan 
    673  1.23       tls 	mutex_spin_exit(&crypto_mtx);
    674   1.1  jonathan 	return err;
    675   1.1  jonathan }
    676   1.1  jonathan 
    677   1.1  jonathan /*
    678   1.1  jonathan  * Clear blockage on a driver.  The what parameter indicates whether
    679   1.1  jonathan  * the driver is now ready for cryptop's and/or cryptokop's.
    680   1.1  jonathan  */
    681   1.1  jonathan int
    682   1.1  jonathan crypto_unblock(u_int32_t driverid, int what)
    683   1.1  jonathan {
    684   1.1  jonathan 	struct cryptocap *cap;
    685  1.23       tls 	int needwakeup, err;
    686   1.1  jonathan 
    687  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    688   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    689   1.1  jonathan 	if (cap != NULL) {
    690   1.1  jonathan 		needwakeup = 0;
    691   1.1  jonathan 		if (what & CRYPTO_SYMQ) {
    692   1.1  jonathan 			needwakeup |= cap->cc_qblocked;
    693   1.1  jonathan 			cap->cc_qblocked = 0;
    694   1.1  jonathan 		}
    695   1.1  jonathan 		if (what & CRYPTO_ASYMQ) {
    696   1.1  jonathan 			needwakeup |= cap->cc_kqblocked;
    697   1.1  jonathan 			cap->cc_kqblocked = 0;
    698   1.1  jonathan 		}
    699  1.24       tls 		err = 0;
    700  1.24       tls 		mutex_spin_exit(&crypto_mtx);
    701  1.24       tls 		if (needwakeup)
    702   1.1  jonathan 			setsoftcrypto(softintr_cookie);
    703  1.24       tls 	} else {
    704   1.1  jonathan 		err = EINVAL;
    705  1.24       tls 		mutex_spin_exit(&crypto_mtx);
    706  1.24       tls 	}
    707   1.1  jonathan 
    708   1.1  jonathan 	return err;
    709   1.1  jonathan }
    710   1.1  jonathan 
    711   1.1  jonathan /*
    712   1.1  jonathan  * Dispatch a crypto request to a driver or queue
    713   1.1  jonathan  * it, to be processed by the kernel thread.
    714   1.1  jonathan  */
    715   1.1  jonathan int
    716   1.1  jonathan crypto_dispatch(struct cryptop *crp)
    717   1.1  jonathan {
    718   1.1  jonathan 	u_int32_t hid = SESID2HID(crp->crp_sid);
    719  1.23       tls 	int result;
    720   1.1  jonathan 
    721  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    722   1.1  jonathan 
    723   1.1  jonathan 	cryptostats.cs_ops++;
    724   1.1  jonathan 
    725   1.1  jonathan #ifdef CRYPTO_TIMING
    726   1.1  jonathan 	if (crypto_timing)
    727   1.1  jonathan 		nanouptime(&crp->crp_tstamp);
    728   1.1  jonathan #endif
    729   1.1  jonathan 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    730   1.1  jonathan 		struct cryptocap *cap;
    731   1.1  jonathan 		/*
    732   1.1  jonathan 		 * Caller marked the request to be processed
    733   1.1  jonathan 		 * immediately; dispatch it directly to the
    734   1.1  jonathan 		 * driver unless the driver is currently blocked.
    735   1.1  jonathan 		 */
    736   1.1  jonathan 		cap = crypto_checkdriver(hid);
    737   1.1  jonathan 		if (cap && !cap->cc_qblocked) {
    738  1.23       tls 			mutex_spin_exit(&crypto_mtx);
    739   1.1  jonathan 			result = crypto_invoke(crp, 0);
    740   1.1  jonathan 			if (result == ERESTART) {
    741   1.1  jonathan 				/*
    742   1.1  jonathan 				 * The driver ran out of resources, mark the
    743   1.1  jonathan 				 * driver ``blocked'' for cryptop's and put
    744   1.1  jonathan 				 * the op on the queue.
    745   1.1  jonathan 				 */
    746  1.23       tls 				mutex_spin_enter(&crypto_mtx);
    747   1.1  jonathan 				crypto_drivers[hid].cc_qblocked = 1;
    748   1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    749   1.1  jonathan 				cryptostats.cs_blocks++;
    750  1.24       tls 				mutex_spin_exit(&crypto_mtx);
    751   1.1  jonathan 			}
    752  1.23       tls 			goto out_released;
    753   1.1  jonathan 		} else {
    754   1.1  jonathan 			/*
    755   1.1  jonathan 			 * The driver is blocked, just queue the op until
    756   1.1  jonathan 			 * it unblocks and the swi thread gets kicked.
    757   1.1  jonathan 			 */
    758   1.1  jonathan 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    759   1.1  jonathan 			result = 0;
    760   1.1  jonathan 		}
    761   1.1  jonathan 	} else {
    762   1.1  jonathan 		int wasempty = TAILQ_EMPTY(&crp_q);
    763   1.1  jonathan 		/*
    764   1.1  jonathan 		 * Caller marked the request as ``ok to delay'';
    765   1.1  jonathan 		 * queue it for the swi thread.  This is desirable
    766   1.1  jonathan 		 * when the operation is low priority and/or suitable
    767   1.1  jonathan 		 * for batching.
    768   1.1  jonathan 		 */
    769   1.1  jonathan 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    770   1.1  jonathan 		if (wasempty) {
    771  1.23       tls 			mutex_spin_exit(&crypto_mtx);
    772   1.1  jonathan 			setsoftcrypto(softintr_cookie);
    773  1.23       tls 			result = 0;
    774  1.23       tls 			goto out_released;
    775   1.1  jonathan 		}
    776   1.1  jonathan 
    777   1.1  jonathan 		result = 0;
    778   1.1  jonathan 	}
    779   1.1  jonathan 
    780  1.23       tls 	mutex_spin_exit(&crypto_mtx);
    781  1.23       tls out_released:
    782   1.1  jonathan 	return result;
    783   1.1  jonathan }
    784   1.1  jonathan 
    785   1.1  jonathan /*
    786   1.1  jonathan  * Add an asymetric crypto request to a queue,
    787   1.1  jonathan  * to be processed by the kernel thread.
    788   1.1  jonathan  */
    789   1.1  jonathan int
    790   1.1  jonathan crypto_kdispatch(struct cryptkop *krp)
    791   1.1  jonathan {
    792   1.1  jonathan 	struct cryptocap *cap;
    793  1.23       tls 	int result;
    794   1.1  jonathan 
    795  1.23       tls 	mutex_spin_enter(&crypto_mtx);
    796   1.1  jonathan 	cryptostats.cs_kops++;
    797   1.1  jonathan 
    798   1.1  jonathan 	cap = crypto_checkdriver(krp->krp_hid);
    799   1.1  jonathan 	if (cap && !cap->cc_kqblocked) {
    800  1.23       tls 		mutex_spin_exit(&crypto_mtx);
    801   1.1  jonathan 		result = crypto_kinvoke(krp, 0);
    802   1.1  jonathan 		if (result == ERESTART) {
    803   1.1  jonathan 			/*
    804   1.1  jonathan 			 * The driver ran out of resources, mark the
    805   1.1  jonathan 			 * driver ``blocked'' for cryptop's and put
    806   1.1  jonathan 			 * the op on the queue.
    807   1.1  jonathan 			 */
    808  1.23       tls 			mutex_spin_enter(&crypto_mtx);
    809   1.1  jonathan 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    810   1.1  jonathan 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    811   1.1  jonathan 			cryptostats.cs_kblocks++;
    812  1.24       tls 			mutex_spin_exit(&crypto_mtx);
    813   1.1  jonathan 		}
    814   1.1  jonathan 	} else {
    815   1.1  jonathan 		/*
    816   1.1  jonathan 		 * The driver is blocked, just queue the op until
    817   1.1  jonathan 		 * it unblocks and the swi thread gets kicked.
    818   1.1  jonathan 		 */
    819   1.1  jonathan 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    820   1.1  jonathan 		result = 0;
    821  1.24       tls 		mutex_spin_exit(&crypto_mtx);
    822   1.1  jonathan 	}
    823   1.1  jonathan 
    824   1.1  jonathan 	return result;
    825   1.1  jonathan }
    826   1.1  jonathan 
    827   1.1  jonathan /*
    828   1.1  jonathan  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    829   1.1  jonathan  */
    830   1.1  jonathan static int
    831   1.1  jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
    832   1.1  jonathan {
    833   1.1  jonathan 	u_int32_t hid;
    834   1.1  jonathan 	int error;
    835   1.1  jonathan 
    836   1.1  jonathan 	/* Sanity checks. */
    837   1.1  jonathan 	if (krp == NULL)
    838   1.1  jonathan 		return EINVAL;
    839   1.1  jonathan 	if (krp->krp_callback == NULL) {
    840  1.23       tls 		pool_put(&cryptkop_pool, krp);
    841   1.1  jonathan 		return EINVAL;
    842   1.1  jonathan 	}
    843   1.1  jonathan 
    844   1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    845   1.1  jonathan 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    846   1.1  jonathan 		    crypto_devallowsoft == 0)
    847   1.1  jonathan 			continue;
    848   1.1  jonathan 		if (crypto_drivers[hid].cc_kprocess == NULL)
    849   1.1  jonathan 			continue;
    850   1.1  jonathan 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    851   1.1  jonathan 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    852   1.1  jonathan 			continue;
    853   1.1  jonathan 		break;
    854   1.1  jonathan 	}
    855   1.1  jonathan 	if (hid < crypto_drivers_num) {
    856   1.1  jonathan 		krp->krp_hid = hid;
    857   1.1  jonathan 		error = crypto_drivers[hid].cc_kprocess(
    858   1.1  jonathan 				crypto_drivers[hid].cc_karg, krp, hint);
    859   1.1  jonathan 	} else {
    860   1.1  jonathan 		error = ENODEV;
    861   1.1  jonathan 	}
    862   1.1  jonathan 
    863   1.1  jonathan 	if (error) {
    864   1.1  jonathan 		krp->krp_status = error;
    865   1.1  jonathan 		crypto_kdone(krp);
    866   1.1  jonathan 	}
    867   1.1  jonathan 	return 0;
    868   1.1  jonathan }
    869   1.1  jonathan 
    870   1.1  jonathan #ifdef CRYPTO_TIMING
    871   1.1  jonathan static void
    872   1.1  jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    873   1.1  jonathan {
    874   1.1  jonathan 	struct timespec now, t;
    875   1.1  jonathan 
    876   1.1  jonathan 	nanouptime(&now);
    877   1.1  jonathan 	t.tv_sec = now.tv_sec - tv->tv_sec;
    878   1.1  jonathan 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    879   1.1  jonathan 	if (t.tv_nsec < 0) {
    880   1.1  jonathan 		t.tv_sec--;
    881   1.1  jonathan 		t.tv_nsec += 1000000000;
    882   1.1  jonathan 	}
    883   1.1  jonathan 	timespecadd(&ts->acc, &t, &t);
    884   1.1  jonathan 	if (timespeccmp(&t, &ts->min, <))
    885   1.1  jonathan 		ts->min = t;
    886   1.1  jonathan 	if (timespeccmp(&t, &ts->max, >))
    887   1.1  jonathan 		ts->max = t;
    888   1.1  jonathan 	ts->count++;
    889   1.1  jonathan 
    890   1.1  jonathan 	*tv = now;
    891   1.1  jonathan }
    892   1.1  jonathan #endif
    893   1.1  jonathan 
    894   1.1  jonathan /*
    895   1.1  jonathan  * Dispatch a crypto request to the appropriate crypto devices.
    896   1.1  jonathan  */
    897   1.1  jonathan static int
    898   1.1  jonathan crypto_invoke(struct cryptop *crp, int hint)
    899   1.1  jonathan {
    900   1.1  jonathan 	u_int32_t hid;
    901   1.1  jonathan 	int (*process)(void*, struct cryptop *, int);
    902   1.1  jonathan 
    903   1.1  jonathan #ifdef CRYPTO_TIMING
    904   1.1  jonathan 	if (crypto_timing)
    905   1.1  jonathan 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    906   1.1  jonathan #endif
    907   1.1  jonathan 	/* Sanity checks. */
    908   1.1  jonathan 	if (crp == NULL)
    909   1.1  jonathan 		return EINVAL;
    910   1.1  jonathan 	if (crp->crp_callback == NULL) {
    911   1.1  jonathan 		crypto_freereq(crp);
    912   1.1  jonathan 		return EINVAL;
    913   1.1  jonathan 	}
    914   1.1  jonathan 	if (crp->crp_desc == NULL) {
    915   1.1  jonathan 		crp->crp_etype = EINVAL;
    916   1.1  jonathan 		crypto_done(crp);
    917   1.1  jonathan 		return 0;
    918   1.1  jonathan 	}
    919   1.1  jonathan 
    920   1.1  jonathan 	hid = SESID2HID(crp->crp_sid);
    921   1.1  jonathan 	if (hid < crypto_drivers_num) {
    922  1.23       tls 		mutex_enter(&crypto_mtx);
    923   1.1  jonathan 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    924   1.1  jonathan 			crypto_freesession(crp->crp_sid);
    925   1.1  jonathan 		process = crypto_drivers[hid].cc_process;
    926  1.23       tls 		mutex_exit(&crypto_mtx);
    927   1.1  jonathan 	} else {
    928   1.1  jonathan 		process = NULL;
    929   1.1  jonathan 	}
    930   1.1  jonathan 
    931   1.1  jonathan 	if (process == NULL) {
    932   1.1  jonathan 		struct cryptodesc *crd;
    933  1.16       mrg 		u_int64_t nid = 0;
    934   1.1  jonathan 
    935   1.1  jonathan 		/*
    936   1.1  jonathan 		 * Driver has unregistered; migrate the session and return
    937   1.1  jonathan 		 * an error to the caller so they'll resubmit the op.
    938   1.1  jonathan 		 */
    939  1.23       tls 		mutex_enter(&crypto_mtx);
    940   1.1  jonathan 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    941   1.1  jonathan 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    942   1.1  jonathan 
    943   1.1  jonathan 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    944   1.1  jonathan 			crp->crp_sid = nid;
    945   1.1  jonathan 
    946   1.1  jonathan 		crp->crp_etype = EAGAIN;
    947  1.23       tls 		mutex_exit(&crypto_mtx);
    948  1.23       tls 
    949   1.1  jonathan 		crypto_done(crp);
    950   1.1  jonathan 		return 0;
    951   1.1  jonathan 	} else {
    952   1.1  jonathan 		/*
    953   1.1  jonathan 		 * Invoke the driver to process the request.
    954   1.1  jonathan 		 */
    955  1.23       tls 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
    956   1.1  jonathan 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
    957   1.1  jonathan 	}
    958   1.1  jonathan }
    959   1.1  jonathan 
    960   1.1  jonathan /*
    961   1.1  jonathan  * Release a set of crypto descriptors.
    962   1.1  jonathan  */
    963   1.1  jonathan void
    964   1.1  jonathan crypto_freereq(struct cryptop *crp)
    965   1.1  jonathan {
    966   1.1  jonathan 	struct cryptodesc *crd;
    967   1.1  jonathan 
    968   1.1  jonathan 	if (crp == NULL)
    969   1.1  jonathan 		return;
    970   1.1  jonathan 
    971   1.1  jonathan 	while ((crd = crp->crp_desc) != NULL) {
    972   1.1  jonathan 		crp->crp_desc = crd->crd_next;
    973   1.1  jonathan 		pool_put(&cryptodesc_pool, crd);
    974   1.1  jonathan 	}
    975   1.1  jonathan 	pool_put(&cryptop_pool, crp);
    976   1.1  jonathan }
    977   1.1  jonathan 
    978   1.1  jonathan /*
    979   1.1  jonathan  * Acquire a set of crypto descriptors.
    980   1.1  jonathan  */
    981   1.1  jonathan struct cryptop *
    982   1.1  jonathan crypto_getreq(int num)
    983   1.1  jonathan {
    984   1.1  jonathan 	struct cryptodesc *crd;
    985   1.1  jonathan 	struct cryptop *crp;
    986   1.1  jonathan 
    987   1.1  jonathan 	crp = pool_get(&cryptop_pool, 0);
    988   1.1  jonathan 	if (crp == NULL) {
    989   1.1  jonathan 		return NULL;
    990   1.1  jonathan 	}
    991   1.1  jonathan 	bzero(crp, sizeof(struct cryptop));
    992  1.23       tls 	cv_init(&crp->crp_cv, "crydev");
    993   1.1  jonathan 
    994   1.1  jonathan 	while (num--) {
    995   1.1  jonathan 		crd = pool_get(&cryptodesc_pool, 0);
    996   1.1  jonathan 		if (crd == NULL) {
    997   1.1  jonathan 			crypto_freereq(crp);
    998   1.1  jonathan 			return NULL;
    999   1.1  jonathan 		}
   1000   1.1  jonathan 
   1001   1.1  jonathan 		bzero(crd, sizeof(struct cryptodesc));
   1002   1.1  jonathan 		crd->crd_next = crp->crp_desc;
   1003   1.1  jonathan 		crp->crp_desc = crd;
   1004   1.1  jonathan 	}
   1005   1.1  jonathan 
   1006   1.1  jonathan 	return crp;
   1007   1.1  jonathan }
   1008   1.1  jonathan 
   1009   1.1  jonathan /*
   1010   1.1  jonathan  * Invoke the callback on behalf of the driver.
   1011   1.1  jonathan  */
   1012   1.1  jonathan void
   1013   1.1  jonathan crypto_done(struct cryptop *crp)
   1014   1.1  jonathan {
   1015  1.23       tls 	int wasempty;
   1016  1.23       tls 
   1017   1.1  jonathan 	if (crp->crp_etype != 0)
   1018   1.1  jonathan 		cryptostats.cs_errs++;
   1019   1.1  jonathan #ifdef CRYPTO_TIMING
   1020   1.1  jonathan 	if (crypto_timing)
   1021   1.1  jonathan 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1022   1.1  jonathan #endif
   1023  1.27       tls 
   1024  1.27       tls 	crp->crp_flags |= CRYPTO_F_DONE;
   1025  1.27       tls 
   1026   1.1  jonathan 	/*
   1027  1.23       tls 	 * Normal case; queue the callback for the thread.
   1028  1.23       tls 	 *
   1029  1.23       tls 	 * The return queue is manipulated by the swi thread
   1030  1.23       tls 	 * and, potentially, by crypto device drivers calling
   1031  1.23       tls 	 * back to mark operations completed.  Thus we need
   1032  1.23       tls 	 * to mask both while manipulating the return queue.
   1033   1.1  jonathan 	 */
   1034  1.27       tls   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1035  1.27       tls 		/*
   1036  1.27       tls 	 	* Do the callback directly.  This is ok when the
   1037  1.27       tls   	 	* callback routine does very little (e.g. the
   1038  1.27       tls 	 	* /dev/crypto callback method just does a wakeup).
   1039  1.27       tls 	 	*/
   1040  1.27       tls #ifdef CRYPTO_TIMING
   1041  1.27       tls 		if (crypto_timing) {
   1042  1.27       tls 			/*
   1043  1.27       tls 		 	* NB: We must copy the timestamp before
   1044  1.27       tls 		 	* doing the callback as the cryptop is
   1045  1.27       tls 		 	* likely to be reclaimed.
   1046  1.27       tls 		 	*/
   1047  1.27       tls 			struct timespec t = crp->crp_tstamp;
   1048  1.27       tls 			crypto_tstat(&cryptostats.cs_cb, &t);
   1049  1.27       tls 			crp->crp_callback(crp);
   1050  1.27       tls 			crypto_tstat(&cryptostats.cs_finis, &t);
   1051  1.27       tls 		} else
   1052  1.27       tls #endif
   1053  1.27       tls 		crp->crp_callback(crp);
   1054  1.27       tls 	} else {
   1055  1.27       tls 		mutex_spin_enter(&crypto_mtx);
   1056  1.27       tls 		wasempty = TAILQ_EMPTY(&crp_ret_q);
   1057  1.27       tls 		DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
   1058  1.27       tls 		crp->crp_flags |= CRYPTO_F_ONRETQ;
   1059  1.27       tls 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1060  1.27       tls 		if (wasempty) {
   1061  1.27       tls 			DPRINTF(("crypto_done: waking cryptoret, %08x " \
   1062  1.27       tls 				"hit empty queue\n.", (uint32_t)crp));
   1063  1.27       tls 			cv_signal(&cryptoret_cv);
   1064  1.27       tls 		}
   1065  1.27       tls 		mutex_spin_exit(&crypto_mtx);
   1066   1.1  jonathan 	}
   1067   1.1  jonathan }
   1068   1.1  jonathan 
   1069   1.1  jonathan /*
   1070   1.1  jonathan  * Invoke the callback on behalf of the driver.
   1071   1.1  jonathan  */
   1072   1.1  jonathan void
   1073   1.1  jonathan crypto_kdone(struct cryptkop *krp)
   1074   1.1  jonathan {
   1075  1.23       tls 	int wasempty;
   1076   1.1  jonathan 
   1077   1.1  jonathan 	if (krp->krp_status != 0)
   1078   1.1  jonathan 		cryptostats.cs_kerrs++;
   1079  1.27       tls 
   1080  1.27       tls 	krp->krp_flags |= CRYPTO_F_DONE;
   1081  1.27       tls 
   1082   1.1  jonathan 	/*
   1083   1.1  jonathan 	 * The return queue is manipulated by the swi thread
   1084   1.1  jonathan 	 * and, potentially, by crypto device drivers calling
   1085   1.1  jonathan 	 * back to mark operations completed.  Thus we need
   1086   1.1  jonathan 	 * to mask both while manipulating the return queue.
   1087   1.1  jonathan 	 */
   1088  1.27       tls 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1089  1.27       tls 		krp->krp_callback(krp);
   1090  1.27       tls 	} else {
   1091  1.27       tls 		mutex_spin_enter(&crypto_mtx);
   1092  1.27       tls 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1093  1.27       tls 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1094  1.27       tls 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1095  1.27       tls 		if (wasempty)
   1096  1.27       tls 			cv_signal(&cryptoret_cv);
   1097  1.27       tls 		mutex_spin_exit(&crypto_mtx);
   1098  1.27       tls 	}
   1099   1.1  jonathan }
   1100   1.1  jonathan 
   1101   1.1  jonathan int
   1102   1.1  jonathan crypto_getfeat(int *featp)
   1103   1.1  jonathan {
   1104   1.1  jonathan 	int hid, kalg, feat = 0;
   1105   1.1  jonathan 
   1106  1.23       tls 	mutex_spin_enter(&crypto_mtx);
   1107   1.1  jonathan 
   1108   1.1  jonathan 	if (crypto_userasymcrypto == 0)
   1109  1.10     perry 		goto out;
   1110   1.1  jonathan 
   1111   1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1112   1.1  jonathan 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1113   1.7  jonathan 		    crypto_devallowsoft == 0) {
   1114   1.1  jonathan 			continue;
   1115   1.1  jonathan 		}
   1116   1.1  jonathan 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1117   1.1  jonathan 			continue;
   1118   1.1  jonathan 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1119   1.1  jonathan 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1120   1.1  jonathan 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1121   1.1  jonathan 				feat |=  1 << kalg;
   1122   1.1  jonathan 	}
   1123   1.1  jonathan out:
   1124  1.23       tls 	mutex_spin_exit(&crypto_mtx);
   1125   1.1  jonathan 	*featp = feat;
   1126   1.1  jonathan 	return (0);
   1127   1.1  jonathan }
   1128   1.1  jonathan 
   1129   1.1  jonathan /*
   1130   1.1  jonathan  * Software interrupt thread to dispatch crypto requests.
   1131   1.1  jonathan  */
   1132   1.1  jonathan static void
   1133   1.1  jonathan cryptointr(void)
   1134   1.1  jonathan {
   1135   1.1  jonathan 	struct cryptop *crp, *submit;
   1136   1.1  jonathan 	struct cryptkop *krp;
   1137   1.1  jonathan 	struct cryptocap *cap;
   1138  1.23       tls 	int result, hint;
   1139   1.1  jonathan 
   1140   1.1  jonathan 	printf("crypto softint\n");
   1141   1.1  jonathan 	cryptostats.cs_intrs++;
   1142  1.23       tls 	mutex_spin_enter(&crypto_mtx);
   1143   1.1  jonathan 	do {
   1144   1.1  jonathan 		/*
   1145   1.1  jonathan 		 * Find the first element in the queue that can be
   1146   1.1  jonathan 		 * processed and look-ahead to see if multiple ops
   1147   1.1  jonathan 		 * are ready for the same driver.
   1148   1.1  jonathan 		 */
   1149   1.1  jonathan 		submit = NULL;
   1150   1.1  jonathan 		hint = 0;
   1151   1.1  jonathan 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
   1152   1.1  jonathan 			u_int32_t hid = SESID2HID(crp->crp_sid);
   1153   1.1  jonathan 			cap = crypto_checkdriver(hid);
   1154   1.1  jonathan 			if (cap == NULL || cap->cc_process == NULL) {
   1155   1.1  jonathan 				/* Op needs to be migrated, process it. */
   1156   1.1  jonathan 				if (submit == NULL)
   1157   1.1  jonathan 					submit = crp;
   1158   1.1  jonathan 				break;
   1159   1.1  jonathan 			}
   1160   1.1  jonathan 			if (!cap->cc_qblocked) {
   1161   1.1  jonathan 				if (submit != NULL) {
   1162   1.1  jonathan 					/*
   1163   1.1  jonathan 					 * We stop on finding another op,
   1164   1.1  jonathan 					 * regardless whether its for the same
   1165   1.1  jonathan 					 * driver or not.  We could keep
   1166   1.1  jonathan 					 * searching the queue but it might be
   1167   1.1  jonathan 					 * better to just use a per-driver
   1168   1.1  jonathan 					 * queue instead.
   1169   1.1  jonathan 					 */
   1170   1.1  jonathan 					if (SESID2HID(submit->crp_sid) == hid)
   1171   1.1  jonathan 						hint = CRYPTO_HINT_MORE;
   1172   1.1  jonathan 					break;
   1173   1.1  jonathan 				} else {
   1174   1.1  jonathan 					submit = crp;
   1175   1.1  jonathan 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1176   1.1  jonathan 						break;
   1177   1.1  jonathan 					/* keep scanning for more are q'd */
   1178   1.1  jonathan 				}
   1179   1.1  jonathan 			}
   1180   1.1  jonathan 		}
   1181   1.1  jonathan 		if (submit != NULL) {
   1182   1.1  jonathan 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1183  1.23       tls 			mutex_spin_exit(&crypto_mtx);
   1184   1.1  jonathan 			result = crypto_invoke(submit, hint);
   1185  1.23       tls 			/* we must take here as the TAILQ op or kinvoke
   1186  1.23       tls 			   may need this mutex below.  sigh. */
   1187  1.23       tls 			mutex_spin_enter(&crypto_mtx);
   1188   1.1  jonathan 			if (result == ERESTART) {
   1189   1.1  jonathan 				/*
   1190   1.1  jonathan 				 * The driver ran out of resources, mark the
   1191   1.1  jonathan 				 * driver ``blocked'' for cryptop's and put
   1192   1.1  jonathan 				 * the request back in the queue.  It would
   1193   1.1  jonathan 				 * best to put the request back where we got
   1194   1.1  jonathan 				 * it but that's hard so for now we put it
   1195   1.1  jonathan 				 * at the front.  This should be ok; putting
   1196   1.1  jonathan 				 * it at the end does not work.
   1197   1.1  jonathan 				 */
   1198   1.1  jonathan 				/* XXX validate sid again? */
   1199   1.1  jonathan 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1200   1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1201   1.1  jonathan 				cryptostats.cs_blocks++;
   1202   1.1  jonathan 			}
   1203   1.1  jonathan 		}
   1204   1.1  jonathan 
   1205   1.1  jonathan 		/* As above, but for key ops */
   1206   1.1  jonathan 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
   1207   1.1  jonathan 			cap = crypto_checkdriver(krp->krp_hid);
   1208   1.1  jonathan 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1209   1.1  jonathan 				/* Op needs to be migrated, process it. */
   1210   1.1  jonathan 				break;
   1211   1.1  jonathan 			}
   1212   1.1  jonathan 			if (!cap->cc_kqblocked)
   1213   1.1  jonathan 				break;
   1214   1.1  jonathan 		}
   1215   1.1  jonathan 		if (krp != NULL) {
   1216   1.1  jonathan 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1217  1.23       tls 			mutex_spin_exit(&crypto_mtx);
   1218   1.1  jonathan 			result = crypto_kinvoke(krp, 0);
   1219  1.23       tls 			/* the next iteration will want the mutex. :-/ */
   1220  1.23       tls 			mutex_spin_enter(&crypto_mtx);
   1221   1.1  jonathan 			if (result == ERESTART) {
   1222   1.1  jonathan 				/*
   1223   1.1  jonathan 				 * The driver ran out of resources, mark the
   1224   1.1  jonathan 				 * driver ``blocked'' for cryptkop's and put
   1225   1.1  jonathan 				 * the request back in the queue.  It would
   1226   1.1  jonathan 				 * best to put the request back where we got
   1227   1.1  jonathan 				 * it but that's hard so for now we put it
   1228   1.1  jonathan 				 * at the front.  This should be ok; putting
   1229   1.1  jonathan 				 * it at the end does not work.
   1230   1.1  jonathan 				 */
   1231   1.1  jonathan 				/* XXX validate sid again? */
   1232   1.1  jonathan 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1233   1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1234   1.1  jonathan 				cryptostats.cs_kblocks++;
   1235   1.1  jonathan 			}
   1236   1.1  jonathan 		}
   1237   1.1  jonathan 	} while (submit != NULL || krp != NULL);
   1238  1.23       tls 	mutex_spin_exit(&crypto_mtx);
   1239   1.1  jonathan }
   1240   1.1  jonathan 
   1241   1.1  jonathan /*
   1242   1.1  jonathan  * Kernel thread to do callbacks.
   1243   1.1  jonathan  */
   1244   1.1  jonathan static void
   1245   1.1  jonathan cryptoret(void)
   1246   1.1  jonathan {
   1247   1.1  jonathan 	struct cryptop *crp;
   1248   1.1  jonathan 	struct cryptkop *krp;
   1249   1.1  jonathan 
   1250  1.26        ad 	mutex_spin_enter(&crypto_mtx);
   1251   1.1  jonathan 	for (;;) {
   1252   1.1  jonathan 		crp = TAILQ_FIRST(&crp_ret_q);
   1253  1.23       tls 		if (crp != NULL) {
   1254   1.1  jonathan 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1255  1.23       tls 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1256  1.23       tls 		}
   1257   1.1  jonathan 		krp = TAILQ_FIRST(&crp_ret_kq);
   1258  1.23       tls 		if (krp != NULL) {
   1259   1.1  jonathan 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1260  1.23       tls 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1261  1.23       tls 		}
   1262   1.1  jonathan 
   1263  1.23       tls 		/* drop before calling any callbacks. */
   1264  1.26        ad 		if (crp == NULL && krp == NULL) {
   1265  1.26        ad 			cryptostats.cs_rets++;
   1266  1.26        ad 			cv_wait(&cryptoret_cv, &crypto_mtx);
   1267  1.26        ad 			continue;
   1268  1.26        ad 		}
   1269  1.26        ad 
   1270  1.23       tls 		mutex_spin_exit(&crypto_mtx);
   1271  1.26        ad 
   1272  1.26        ad 		if (crp != NULL) {
   1273   1.1  jonathan #ifdef CRYPTO_TIMING
   1274  1.26        ad 			if (crypto_timing) {
   1275  1.26        ad 				/*
   1276  1.26        ad 				 * NB: We must copy the timestamp before
   1277  1.26        ad 				 * doing the callback as the cryptop is
   1278  1.26        ad 				 * likely to be reclaimed.
   1279  1.26        ad 				 */
   1280  1.26        ad 				struct timespec t = crp->crp_tstamp;
   1281  1.26        ad 				crypto_tstat(&cryptostats.cs_cb, &t);
   1282  1.26        ad 				crp->crp_callback(crp);
   1283  1.26        ad 				crypto_tstat(&cryptostats.cs_finis, &t);
   1284  1.26        ad 			} else
   1285   1.1  jonathan #endif
   1286  1.26        ad 			{
   1287  1.26        ad 				crp->crp_callback(crp);
   1288   1.1  jonathan 			}
   1289   1.1  jonathan 		}
   1290  1.26        ad 		if (krp != NULL)
   1291  1.26        ad 			krp->krp_callback(krp);
   1292  1.26        ad 
   1293  1.26        ad 		mutex_spin_enter(&crypto_mtx);
   1294   1.1  jonathan 	}
   1295   1.1  jonathan }
   1296