crypto.c revision 1.35 1 1.35 jakllsch /* $NetBSD: crypto.c,v 1.35 2010/08/02 19:59:35 jakllsch Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.27 tls /*-
6 1.27 tls * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 1.27 tls * All rights reserved.
8 1.27 tls *
9 1.27 tls * This code is derived from software contributed to The NetBSD Foundation
10 1.27 tls * by Coyote Point Systems, Inc.
11 1.27 tls *
12 1.27 tls * Redistribution and use in source and binary forms, with or without
13 1.27 tls * modification, are permitted provided that the following conditions
14 1.27 tls * are met:
15 1.27 tls * 1. Redistributions of source code must retain the above copyright
16 1.27 tls * notice, this list of conditions and the following disclaimer.
17 1.27 tls * 2. Redistributions in binary form must reproduce the above copyright
18 1.27 tls * notice, this list of conditions and the following disclaimer in the
19 1.27 tls * documentation and/or other materials provided with the distribution.
20 1.27 tls *
21 1.27 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.27 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.27 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.27 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.27 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.27 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.27 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.27 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.27 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.27 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.27 tls * POSSIBILITY OF SUCH DAMAGE.
32 1.27 tls */
33 1.27 tls
34 1.1 jonathan /*
35 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 1.1 jonathan *
37 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 1.1 jonathan * supported the development of this code.
40 1.1 jonathan *
41 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 1.1 jonathan *
43 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
44 1.1 jonathan * is hereby granted, provided that this entire notice is included in
45 1.1 jonathan * all source code copies of any software which is or includes a copy or
46 1.1 jonathan * modification of this software.
47 1.1 jonathan *
48 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 1.1 jonathan * PURPOSE.
53 1.1 jonathan */
54 1.1 jonathan
55 1.1 jonathan #include <sys/cdefs.h>
56 1.35 jakllsch __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.35 2010/08/02 19:59:35 jakllsch Exp $");
57 1.1 jonathan
58 1.1 jonathan #include <sys/param.h>
59 1.1 jonathan #include <sys/reboot.h>
60 1.1 jonathan #include <sys/systm.h>
61 1.1 jonathan #include <sys/malloc.h>
62 1.1 jonathan #include <sys/proc.h>
63 1.1 jonathan #include <sys/pool.h>
64 1.1 jonathan #include <sys/kthread.h>
65 1.11 thorpej #include <sys/once.h>
66 1.13 christos #include <sys/sysctl.h>
67 1.21 ad #include <sys/intr.h>
68 1.1 jonathan
69 1.23 tls #include "opt_ocf.h"
70 1.21 ad #include <opencrypto/cryptodev.h>
71 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
72 1.1 jonathan
73 1.23 tls kcondvar_t cryptoret_cv;
74 1.23 tls kmutex_t crypto_mtx;
75 1.23 tls
76 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77 1.1 jonathan #define SWI_CRYPTO 17
78 1.1 jonathan #define register_swi(lvl, fn) \
79 1.21 ad softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
81 1.21 ad #define setsoftcrypto(x) softint_schedule(x)
82 1.1 jonathan
83 1.30 darran int crypto_ret_q_check(struct cryptop *);
84 1.30 darran
85 1.1 jonathan /*
86 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
87 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
88 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
89 1.1 jonathan */
90 1.11 thorpej static struct cryptocap *crypto_drivers;
91 1.11 thorpej static int crypto_drivers_num;
92 1.1 jonathan static void* softintr_cookie;
93 1.1 jonathan
94 1.1 jonathan /*
95 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
96 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
97 1.1 jonathan * See below for how synchronization is handled.
98 1.1 jonathan */
99 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
100 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
101 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
102 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
103 1.1 jonathan
104 1.1 jonathan /*
105 1.1 jonathan * There are two queues for processing completed crypto requests; one
106 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
107 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
108 1.1 jonathan * for how synchronization is handled.
109 1.1 jonathan */
110 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
111 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
112 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
113 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
114 1.1 jonathan
115 1.1 jonathan /*
116 1.23 tls * XXX these functions are ghastly hacks for when the submission
117 1.23 tls * XXX routines discover a request that was not CBIMM is already
118 1.23 tls * XXX done, and must be yanked from the retq (where _done) put it
119 1.23 tls * XXX as cryptoret won't get the chance. The queue is walked backwards
120 1.23 tls * XXX as the request is generally the last one queued.
121 1.23 tls *
122 1.23 tls * call with the lock held, or else.
123 1.23 tls */
124 1.23 tls int
125 1.23 tls crypto_ret_q_remove(struct cryptop *crp)
126 1.23 tls {
127 1.30 darran struct cryptop * acrp, *next;
128 1.23 tls
129 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
130 1.23 tls if (acrp == crp) {
131 1.23 tls TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
132 1.23 tls crp->crp_flags &= (~CRYPTO_F_ONRETQ);
133 1.23 tls return 1;
134 1.23 tls }
135 1.23 tls }
136 1.23 tls return 0;
137 1.23 tls }
138 1.23 tls
139 1.23 tls int
140 1.23 tls crypto_ret_kq_remove(struct cryptkop *krp)
141 1.23 tls {
142 1.30 darran struct cryptkop * akrp, *next;
143 1.23 tls
144 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
145 1.23 tls if (akrp == krp) {
146 1.23 tls TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
147 1.23 tls krp->krp_flags &= (~CRYPTO_F_ONRETQ);
148 1.23 tls return 1;
149 1.23 tls }
150 1.23 tls }
151 1.23 tls return 0;
152 1.23 tls }
153 1.23 tls
154 1.23 tls /*
155 1.1 jonathan * Crypto op and desciptor data structures are allocated
156 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
157 1.1 jonathan */
158 1.1 jonathan struct pool cryptop_pool;
159 1.1 jonathan struct pool cryptodesc_pool;
160 1.23 tls struct pool cryptkop_pool;
161 1.1 jonathan
162 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
163 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
164 1.10 perry /*
165 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
166 1.6 jonathan * access to hardware versus software transforms as below:
167 1.6 jonathan *
168 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
169 1.6 jonathan * transforms, always
170 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
171 1.6 jonathan * requests for non-accelerated transforms
172 1.6 jonathan * (handling the latter in software)
173 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
174 1.6 jonathan * are hardware-accelerated.
175 1.6 jonathan */
176 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
177 1.6 jonathan
178 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
179 1.13 christos {
180 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
181 1.13 christos CTLFLAG_PERMANENT,
182 1.13 christos CTLTYPE_NODE, "kern", NULL,
183 1.13 christos NULL, 0, NULL, 0,
184 1.13 christos CTL_KERN, CTL_EOL);
185 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
186 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 1.13 christos CTLTYPE_INT, "usercrypto",
188 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
189 1.13 christos "crypto support"),
190 1.13 christos NULL, 0, &crypto_usercrypto, 0,
191 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
192 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
193 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 1.13 christos CTLTYPE_INT, "userasymcrypto",
195 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
196 1.13 christos "asymmetric crypto support"),
197 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
198 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
199 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
200 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
202 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
203 1.13 christos "asymmetric crypto support"),
204 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
205 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
206 1.13 christos }
207 1.1 jonathan
208 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
209 1.1 jonathan
210 1.1 jonathan /*
211 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
212 1.1 jonathan *
213 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
214 1.1 jonathan * these come in from network protocols at spl0 (output path) or
215 1.1 jonathan * spl[,soft]net (input path).
216 1.1 jonathan *
217 1.1 jonathan * Requests are typically passed on the driver directly, but they
218 1.1 jonathan * may also be queued for processing by a software interrupt thread,
219 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
220 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
221 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
222 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
223 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
224 1.1 jonathan *
225 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
226 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
227 1.1 jonathan * driver interrupt service routine is not delayed while the callback
228 1.1 jonathan * takes place and that callbacks are delivered after a context switch
229 1.1 jonathan * (as opposed to a software interrupt that clients must block).
230 1.1 jonathan *
231 1.1 jonathan * This scheme is not intended for SMP machines.
232 1.10 perry */
233 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
234 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
235 1.20 ad static struct lwp *cryptothread;
236 1.1 jonathan static void crypto_destroy(void);
237 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
238 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
239 1.1 jonathan
240 1.1 jonathan static struct cryptostats cryptostats;
241 1.23 tls #ifdef CRYPTO_TIMING
242 1.1 jonathan static int crypto_timing = 0;
243 1.23 tls #endif
244 1.1 jonathan
245 1.12 yamt static int
246 1.11 thorpej crypto_init0(void)
247 1.1 jonathan {
248 1.1 jonathan int error;
249 1.1 jonathan
250 1.23 tls mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
251 1.23 tls cv_init(&cryptoret_cv, "crypto_wait");
252 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
253 1.23 tls 0, "cryptop", NULL, IPL_NET);
254 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
255 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
256 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
257 1.23 tls 0, "cryptkop", NULL, IPL_NET);
258 1.1 jonathan
259 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
260 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
261 1.1 jonathan if (crypto_drivers == NULL) {
262 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
263 1.12 yamt return 0;
264 1.1 jonathan }
265 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
266 1.1 jonathan
267 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
268 1.25 tls error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
269 1.24 tls (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
270 1.1 jonathan if (error) {
271 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
272 1.1 jonathan error);
273 1.1 jonathan crypto_destroy();
274 1.1 jonathan }
275 1.20 ad
276 1.12 yamt return 0;
277 1.11 thorpej }
278 1.11 thorpej
279 1.11 thorpej void
280 1.11 thorpej crypto_init(void)
281 1.11 thorpej {
282 1.18 daniel static ONCE_DECL(crypto_init_once);
283 1.11 thorpej
284 1.11 thorpej RUN_ONCE(&crypto_init_once, crypto_init0);
285 1.1 jonathan }
286 1.1 jonathan
287 1.1 jonathan static void
288 1.1 jonathan crypto_destroy(void)
289 1.1 jonathan {
290 1.1 jonathan /* XXX no wait to reclaim zones */
291 1.1 jonathan if (crypto_drivers != NULL)
292 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
293 1.1 jonathan unregister_swi(SWI_CRYPTO, cryptointr);
294 1.1 jonathan }
295 1.1 jonathan
296 1.1 jonathan /*
297 1.23 tls * Create a new session. Must be called with crypto_mtx held.
298 1.1 jonathan */
299 1.1 jonathan int
300 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
301 1.1 jonathan {
302 1.1 jonathan struct cryptoini *cr;
303 1.1 jonathan u_int32_t hid, lid;
304 1.1 jonathan int err = EINVAL;
305 1.1 jonathan
306 1.23 tls KASSERT(mutex_owned(&crypto_mtx));
307 1.1 jonathan
308 1.1 jonathan if (crypto_drivers == NULL)
309 1.1 jonathan goto done;
310 1.1 jonathan
311 1.1 jonathan /*
312 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
313 1.1 jonathan * first driver that supports all the algorithms we need.
314 1.1 jonathan *
315 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
316 1.1 jonathan * XXX another story altogether).
317 1.1 jonathan */
318 1.1 jonathan
319 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
320 1.1 jonathan /*
321 1.1 jonathan * If it's not initialized or has remaining sessions
322 1.1 jonathan * referencing it, skip.
323 1.1 jonathan */
324 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
325 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
326 1.1 jonathan continue;
327 1.1 jonathan
328 1.1 jonathan /* Hardware required -- ignore software drivers. */
329 1.1 jonathan if (hard > 0 &&
330 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
331 1.1 jonathan continue;
332 1.1 jonathan /* Software required -- ignore hardware drivers. */
333 1.1 jonathan if (hard < 0 &&
334 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
335 1.1 jonathan continue;
336 1.1 jonathan
337 1.1 jonathan /* See if all the algorithms are supported. */
338 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
339 1.33 darran if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
340 1.33 darran DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
341 1.1 jonathan break;
342 1.33 darran }
343 1.1 jonathan
344 1.1 jonathan if (cr == NULL) {
345 1.1 jonathan /* Ok, all algorithms are supported. */
346 1.1 jonathan
347 1.1 jonathan /*
348 1.1 jonathan * Can't do everything in one session.
349 1.1 jonathan *
350 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
351 1.1 jonathan * XXX about here.
352 1.1 jonathan */
353 1.1 jonathan
354 1.1 jonathan /* Call the driver initialization routine. */
355 1.1 jonathan lid = hid; /* Pass the driver ID. */
356 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
357 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
358 1.1 jonathan if (err == 0) {
359 1.1 jonathan (*sid) = hid;
360 1.1 jonathan (*sid) <<= 32;
361 1.1 jonathan (*sid) |= (lid & 0xffffffff);
362 1.1 jonathan crypto_drivers[hid].cc_sessions++;
363 1.1 jonathan }
364 1.1 jonathan goto done;
365 1.1 jonathan /*break;*/
366 1.1 jonathan }
367 1.1 jonathan }
368 1.1 jonathan done:
369 1.1 jonathan return err;
370 1.1 jonathan }
371 1.1 jonathan
372 1.1 jonathan /*
373 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
374 1.23 tls * driver). Must be called with crypto_mtx mutex held.
375 1.1 jonathan */
376 1.1 jonathan int
377 1.1 jonathan crypto_freesession(u_int64_t sid)
378 1.1 jonathan {
379 1.1 jonathan u_int32_t hid;
380 1.1 jonathan int err = 0;
381 1.1 jonathan
382 1.23 tls KASSERT(mutex_owned(&crypto_mtx));
383 1.1 jonathan
384 1.1 jonathan if (crypto_drivers == NULL) {
385 1.1 jonathan err = EINVAL;
386 1.1 jonathan goto done;
387 1.1 jonathan }
388 1.1 jonathan
389 1.1 jonathan /* Determine two IDs. */
390 1.35 jakllsch hid = CRYPTO_SESID2HID(sid);
391 1.1 jonathan
392 1.1 jonathan if (hid >= crypto_drivers_num) {
393 1.1 jonathan err = ENOENT;
394 1.1 jonathan goto done;
395 1.1 jonathan }
396 1.1 jonathan
397 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
398 1.1 jonathan crypto_drivers[hid].cc_sessions--;
399 1.1 jonathan
400 1.1 jonathan /* Call the driver cleanup routine, if available. */
401 1.23 tls if (crypto_drivers[hid].cc_freesession) {
402 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
403 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
404 1.23 tls }
405 1.1 jonathan else
406 1.1 jonathan err = 0;
407 1.1 jonathan
408 1.1 jonathan /*
409 1.1 jonathan * If this was the last session of a driver marked as invalid,
410 1.1 jonathan * make the entry available for reuse.
411 1.1 jonathan */
412 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
413 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
414 1.31 cegger memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
415 1.1 jonathan
416 1.1 jonathan done:
417 1.1 jonathan return err;
418 1.1 jonathan }
419 1.1 jonathan
420 1.1 jonathan /*
421 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
422 1.1 jonathan * support for the algorithms they handle.
423 1.1 jonathan */
424 1.1 jonathan int32_t
425 1.1 jonathan crypto_get_driverid(u_int32_t flags)
426 1.1 jonathan {
427 1.1 jonathan struct cryptocap *newdrv;
428 1.23 tls int i;
429 1.1 jonathan
430 1.23 tls crypto_init(); /* XXX oh, this is foul! */
431 1.11 thorpej
432 1.23 tls mutex_spin_enter(&crypto_mtx);
433 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
434 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
435 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
436 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
437 1.1 jonathan break;
438 1.1 jonathan
439 1.1 jonathan /* Out of entries, allocate some more. */
440 1.1 jonathan if (i == crypto_drivers_num) {
441 1.1 jonathan /* Be careful about wrap-around. */
442 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
443 1.23 tls mutex_spin_exit(&crypto_mtx);
444 1.1 jonathan printf("crypto: driver count wraparound!\n");
445 1.1 jonathan return -1;
446 1.1 jonathan }
447 1.1 jonathan
448 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
449 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
450 1.1 jonathan if (newdrv == NULL) {
451 1.23 tls mutex_spin_exit(&crypto_mtx);
452 1.1 jonathan printf("crypto: no space to expand driver table!\n");
453 1.1 jonathan return -1;
454 1.1 jonathan }
455 1.1 jonathan
456 1.34 tsutsui memcpy(newdrv, crypto_drivers,
457 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
458 1.1 jonathan
459 1.1 jonathan crypto_drivers_num *= 2;
460 1.1 jonathan
461 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
462 1.1 jonathan crypto_drivers = newdrv;
463 1.1 jonathan }
464 1.1 jonathan
465 1.1 jonathan /* NB: state is zero'd on free */
466 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
467 1.1 jonathan crypto_drivers[i].cc_flags = flags;
468 1.1 jonathan
469 1.1 jonathan if (bootverbose)
470 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
471 1.1 jonathan
472 1.23 tls mutex_spin_exit(&crypto_mtx);
473 1.1 jonathan
474 1.1 jonathan return i;
475 1.1 jonathan }
476 1.1 jonathan
477 1.1 jonathan static struct cryptocap *
478 1.1 jonathan crypto_checkdriver(u_int32_t hid)
479 1.1 jonathan {
480 1.1 jonathan if (crypto_drivers == NULL)
481 1.1 jonathan return NULL;
482 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
483 1.1 jonathan }
484 1.1 jonathan
485 1.1 jonathan /*
486 1.1 jonathan * Register support for a key-related algorithm. This routine
487 1.1 jonathan * is called once for each algorithm supported a driver.
488 1.1 jonathan */
489 1.1 jonathan int
490 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
491 1.1 jonathan int (*kprocess)(void*, struct cryptkop *, int),
492 1.1 jonathan void *karg)
493 1.1 jonathan {
494 1.1 jonathan struct cryptocap *cap;
495 1.1 jonathan int err;
496 1.1 jonathan
497 1.23 tls mutex_spin_enter(&crypto_mtx);
498 1.1 jonathan
499 1.1 jonathan cap = crypto_checkdriver(driverid);
500 1.1 jonathan if (cap != NULL &&
501 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
502 1.1 jonathan /*
503 1.1 jonathan * XXX Do some performance testing to determine placing.
504 1.1 jonathan * XXX We probably need an auxiliary data structure that
505 1.1 jonathan * XXX describes relative performances.
506 1.1 jonathan */
507 1.1 jonathan
508 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
509 1.23 tls if (bootverbose) {
510 1.23 tls printf("crypto: driver %u registers key alg %u "
511 1.23 tls " flags %u\n",
512 1.23 tls driverid,
513 1.23 tls kalg,
514 1.23 tls flags
515 1.1 jonathan );
516 1.23 tls }
517 1.1 jonathan
518 1.1 jonathan if (cap->cc_kprocess == NULL) {
519 1.1 jonathan cap->cc_karg = karg;
520 1.1 jonathan cap->cc_kprocess = kprocess;
521 1.1 jonathan }
522 1.1 jonathan err = 0;
523 1.1 jonathan } else
524 1.1 jonathan err = EINVAL;
525 1.1 jonathan
526 1.23 tls mutex_spin_exit(&crypto_mtx);
527 1.1 jonathan return err;
528 1.1 jonathan }
529 1.1 jonathan
530 1.1 jonathan /*
531 1.1 jonathan * Register support for a non-key-related algorithm. This routine
532 1.1 jonathan * is called once for each such algorithm supported by a driver.
533 1.1 jonathan */
534 1.1 jonathan int
535 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
536 1.1 jonathan u_int32_t flags,
537 1.1 jonathan int (*newses)(void*, u_int32_t*, struct cryptoini*),
538 1.1 jonathan int (*freeses)(void*, u_int64_t),
539 1.1 jonathan int (*process)(void*, struct cryptop *, int),
540 1.1 jonathan void *arg)
541 1.1 jonathan {
542 1.1 jonathan struct cryptocap *cap;
543 1.23 tls int err;
544 1.1 jonathan
545 1.23 tls mutex_spin_enter(&crypto_mtx);
546 1.1 jonathan
547 1.1 jonathan cap = crypto_checkdriver(driverid);
548 1.1 jonathan /* NB: algorithms are in the range [1..max] */
549 1.1 jonathan if (cap != NULL &&
550 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
551 1.1 jonathan /*
552 1.1 jonathan * XXX Do some performance testing to determine placing.
553 1.1 jonathan * XXX We probably need an auxiliary data structure that
554 1.1 jonathan * XXX describes relative performances.
555 1.1 jonathan */
556 1.1 jonathan
557 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
558 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
559 1.23 tls if (bootverbose) {
560 1.23 tls printf("crypto: driver %u registers alg %u "
561 1.23 tls "flags %u maxoplen %u\n",
562 1.23 tls driverid,
563 1.23 tls alg,
564 1.23 tls flags,
565 1.23 tls maxoplen
566 1.1 jonathan );
567 1.23 tls }
568 1.1 jonathan
569 1.1 jonathan if (cap->cc_process == NULL) {
570 1.1 jonathan cap->cc_arg = arg;
571 1.1 jonathan cap->cc_newsession = newses;
572 1.1 jonathan cap->cc_process = process;
573 1.1 jonathan cap->cc_freesession = freeses;
574 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
575 1.1 jonathan }
576 1.1 jonathan err = 0;
577 1.1 jonathan } else
578 1.1 jonathan err = EINVAL;
579 1.1 jonathan
580 1.23 tls mutex_spin_exit(&crypto_mtx);
581 1.1 jonathan return err;
582 1.1 jonathan }
583 1.1 jonathan
584 1.1 jonathan /*
585 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
586 1.1 jonathan * leave enough information around so that subsequent calls using those
587 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
588 1.1 jonathan * reroute requests.
589 1.1 jonathan */
590 1.1 jonathan int
591 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
592 1.1 jonathan {
593 1.23 tls int i, err;
594 1.1 jonathan u_int32_t ses;
595 1.1 jonathan struct cryptocap *cap;
596 1.1 jonathan
597 1.23 tls mutex_spin_enter(&crypto_mtx);
598 1.1 jonathan
599 1.1 jonathan cap = crypto_checkdriver(driverid);
600 1.1 jonathan if (cap != NULL &&
601 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
602 1.1 jonathan cap->cc_alg[alg] != 0) {
603 1.1 jonathan cap->cc_alg[alg] = 0;
604 1.1 jonathan cap->cc_max_op_len[alg] = 0;
605 1.1 jonathan
606 1.1 jonathan /* Was this the last algorithm ? */
607 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
608 1.1 jonathan if (cap->cc_alg[i] != 0)
609 1.1 jonathan break;
610 1.1 jonathan
611 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
612 1.1 jonathan ses = cap->cc_sessions;
613 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
614 1.1 jonathan if (ses != 0) {
615 1.1 jonathan /*
616 1.1 jonathan * If there are pending sessions, just mark as invalid.
617 1.1 jonathan */
618 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
619 1.1 jonathan cap->cc_sessions = ses;
620 1.1 jonathan }
621 1.1 jonathan }
622 1.1 jonathan err = 0;
623 1.1 jonathan } else
624 1.1 jonathan err = EINVAL;
625 1.1 jonathan
626 1.23 tls mutex_spin_exit(&crypto_mtx);
627 1.1 jonathan return err;
628 1.1 jonathan }
629 1.1 jonathan
630 1.1 jonathan /*
631 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
632 1.1 jonathan * If there are pending sessions using it, leave enough information
633 1.1 jonathan * around so that subsequent calls using those sessions will
634 1.1 jonathan * correctly detect the driver has been unregistered and reroute
635 1.1 jonathan * requests.
636 1.23 tls *
637 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
638 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
639 1.23 tls * XXX you can't take it recursively.
640 1.1 jonathan */
641 1.1 jonathan int
642 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
643 1.1 jonathan {
644 1.23 tls int i, err;
645 1.1 jonathan u_int32_t ses;
646 1.1 jonathan struct cryptocap *cap;
647 1.1 jonathan
648 1.23 tls mutex_spin_enter(&crypto_mtx);
649 1.1 jonathan cap = crypto_checkdriver(driverid);
650 1.1 jonathan if (cap != NULL) {
651 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
652 1.1 jonathan cap->cc_alg[i] = 0;
653 1.1 jonathan cap->cc_max_op_len[i] = 0;
654 1.1 jonathan }
655 1.1 jonathan ses = cap->cc_sessions;
656 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
657 1.1 jonathan if (ses != 0) {
658 1.1 jonathan /*
659 1.1 jonathan * If there are pending sessions, just mark as invalid.
660 1.1 jonathan */
661 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
662 1.1 jonathan cap->cc_sessions = ses;
663 1.1 jonathan }
664 1.1 jonathan err = 0;
665 1.1 jonathan } else
666 1.1 jonathan err = EINVAL;
667 1.1 jonathan
668 1.23 tls mutex_spin_exit(&crypto_mtx);
669 1.1 jonathan return err;
670 1.1 jonathan }
671 1.1 jonathan
672 1.1 jonathan /*
673 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
674 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
675 1.1 jonathan */
676 1.1 jonathan int
677 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
678 1.1 jonathan {
679 1.1 jonathan struct cryptocap *cap;
680 1.23 tls int needwakeup, err;
681 1.1 jonathan
682 1.23 tls mutex_spin_enter(&crypto_mtx);
683 1.1 jonathan cap = crypto_checkdriver(driverid);
684 1.1 jonathan if (cap != NULL) {
685 1.1 jonathan needwakeup = 0;
686 1.1 jonathan if (what & CRYPTO_SYMQ) {
687 1.1 jonathan needwakeup |= cap->cc_qblocked;
688 1.1 jonathan cap->cc_qblocked = 0;
689 1.1 jonathan }
690 1.1 jonathan if (what & CRYPTO_ASYMQ) {
691 1.1 jonathan needwakeup |= cap->cc_kqblocked;
692 1.1 jonathan cap->cc_kqblocked = 0;
693 1.1 jonathan }
694 1.24 tls err = 0;
695 1.24 tls mutex_spin_exit(&crypto_mtx);
696 1.24 tls if (needwakeup)
697 1.1 jonathan setsoftcrypto(softintr_cookie);
698 1.24 tls } else {
699 1.1 jonathan err = EINVAL;
700 1.24 tls mutex_spin_exit(&crypto_mtx);
701 1.24 tls }
702 1.1 jonathan
703 1.1 jonathan return err;
704 1.1 jonathan }
705 1.1 jonathan
706 1.1 jonathan /*
707 1.1 jonathan * Dispatch a crypto request to a driver or queue
708 1.1 jonathan * it, to be processed by the kernel thread.
709 1.1 jonathan */
710 1.1 jonathan int
711 1.1 jonathan crypto_dispatch(struct cryptop *crp)
712 1.1 jonathan {
713 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
714 1.23 tls int result;
715 1.1 jonathan
716 1.23 tls mutex_spin_enter(&crypto_mtx);
717 1.35 jakllsch DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n",
718 1.35 jakllsch crp, crp->crp_reqid, crp->crp_desc->crd_alg));
719 1.1 jonathan
720 1.1 jonathan cryptostats.cs_ops++;
721 1.1 jonathan
722 1.1 jonathan #ifdef CRYPTO_TIMING
723 1.1 jonathan if (crypto_timing)
724 1.1 jonathan nanouptime(&crp->crp_tstamp);
725 1.1 jonathan #endif
726 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
727 1.1 jonathan struct cryptocap *cap;
728 1.1 jonathan /*
729 1.1 jonathan * Caller marked the request to be processed
730 1.1 jonathan * immediately; dispatch it directly to the
731 1.1 jonathan * driver unless the driver is currently blocked.
732 1.1 jonathan */
733 1.1 jonathan cap = crypto_checkdriver(hid);
734 1.1 jonathan if (cap && !cap->cc_qblocked) {
735 1.23 tls mutex_spin_exit(&crypto_mtx);
736 1.1 jonathan result = crypto_invoke(crp, 0);
737 1.1 jonathan if (result == ERESTART) {
738 1.1 jonathan /*
739 1.1 jonathan * The driver ran out of resources, mark the
740 1.1 jonathan * driver ``blocked'' for cryptop's and put
741 1.1 jonathan * the op on the queue.
742 1.1 jonathan */
743 1.23 tls mutex_spin_enter(&crypto_mtx);
744 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
745 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
746 1.1 jonathan cryptostats.cs_blocks++;
747 1.24 tls mutex_spin_exit(&crypto_mtx);
748 1.1 jonathan }
749 1.23 tls goto out_released;
750 1.1 jonathan } else {
751 1.1 jonathan /*
752 1.1 jonathan * The driver is blocked, just queue the op until
753 1.1 jonathan * it unblocks and the swi thread gets kicked.
754 1.1 jonathan */
755 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
756 1.1 jonathan result = 0;
757 1.1 jonathan }
758 1.1 jonathan } else {
759 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
760 1.1 jonathan /*
761 1.1 jonathan * Caller marked the request as ``ok to delay'';
762 1.1 jonathan * queue it for the swi thread. This is desirable
763 1.1 jonathan * when the operation is low priority and/or suitable
764 1.1 jonathan * for batching.
765 1.1 jonathan */
766 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
767 1.1 jonathan if (wasempty) {
768 1.23 tls mutex_spin_exit(&crypto_mtx);
769 1.1 jonathan setsoftcrypto(softintr_cookie);
770 1.23 tls result = 0;
771 1.23 tls goto out_released;
772 1.1 jonathan }
773 1.1 jonathan
774 1.1 jonathan result = 0;
775 1.1 jonathan }
776 1.1 jonathan
777 1.23 tls mutex_spin_exit(&crypto_mtx);
778 1.23 tls out_released:
779 1.1 jonathan return result;
780 1.1 jonathan }
781 1.1 jonathan
782 1.1 jonathan /*
783 1.1 jonathan * Add an asymetric crypto request to a queue,
784 1.1 jonathan * to be processed by the kernel thread.
785 1.1 jonathan */
786 1.1 jonathan int
787 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
788 1.1 jonathan {
789 1.1 jonathan struct cryptocap *cap;
790 1.23 tls int result;
791 1.1 jonathan
792 1.23 tls mutex_spin_enter(&crypto_mtx);
793 1.1 jonathan cryptostats.cs_kops++;
794 1.1 jonathan
795 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
796 1.1 jonathan if (cap && !cap->cc_kqblocked) {
797 1.23 tls mutex_spin_exit(&crypto_mtx);
798 1.1 jonathan result = crypto_kinvoke(krp, 0);
799 1.1 jonathan if (result == ERESTART) {
800 1.1 jonathan /*
801 1.1 jonathan * The driver ran out of resources, mark the
802 1.1 jonathan * driver ``blocked'' for cryptop's and put
803 1.1 jonathan * the op on the queue.
804 1.1 jonathan */
805 1.23 tls mutex_spin_enter(&crypto_mtx);
806 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
807 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
808 1.1 jonathan cryptostats.cs_kblocks++;
809 1.24 tls mutex_spin_exit(&crypto_mtx);
810 1.1 jonathan }
811 1.1 jonathan } else {
812 1.1 jonathan /*
813 1.1 jonathan * The driver is blocked, just queue the op until
814 1.1 jonathan * it unblocks and the swi thread gets kicked.
815 1.1 jonathan */
816 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
817 1.1 jonathan result = 0;
818 1.24 tls mutex_spin_exit(&crypto_mtx);
819 1.1 jonathan }
820 1.1 jonathan
821 1.1 jonathan return result;
822 1.1 jonathan }
823 1.1 jonathan
824 1.1 jonathan /*
825 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
826 1.1 jonathan */
827 1.1 jonathan static int
828 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
829 1.1 jonathan {
830 1.1 jonathan u_int32_t hid;
831 1.1 jonathan int error;
832 1.1 jonathan
833 1.1 jonathan /* Sanity checks. */
834 1.1 jonathan if (krp == NULL)
835 1.1 jonathan return EINVAL;
836 1.1 jonathan if (krp->krp_callback == NULL) {
837 1.30 darran cv_destroy(&krp->krp_cv);
838 1.23 tls pool_put(&cryptkop_pool, krp);
839 1.1 jonathan return EINVAL;
840 1.1 jonathan }
841 1.1 jonathan
842 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
843 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
844 1.1 jonathan crypto_devallowsoft == 0)
845 1.1 jonathan continue;
846 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
847 1.1 jonathan continue;
848 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
849 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
850 1.1 jonathan continue;
851 1.1 jonathan break;
852 1.1 jonathan }
853 1.1 jonathan if (hid < crypto_drivers_num) {
854 1.1 jonathan krp->krp_hid = hid;
855 1.1 jonathan error = crypto_drivers[hid].cc_kprocess(
856 1.1 jonathan crypto_drivers[hid].cc_karg, krp, hint);
857 1.1 jonathan } else {
858 1.1 jonathan error = ENODEV;
859 1.1 jonathan }
860 1.1 jonathan
861 1.1 jonathan if (error) {
862 1.1 jonathan krp->krp_status = error;
863 1.1 jonathan crypto_kdone(krp);
864 1.1 jonathan }
865 1.1 jonathan return 0;
866 1.1 jonathan }
867 1.1 jonathan
868 1.1 jonathan #ifdef CRYPTO_TIMING
869 1.1 jonathan static void
870 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
871 1.1 jonathan {
872 1.1 jonathan struct timespec now, t;
873 1.1 jonathan
874 1.1 jonathan nanouptime(&now);
875 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
876 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
877 1.1 jonathan if (t.tv_nsec < 0) {
878 1.1 jonathan t.tv_sec--;
879 1.1 jonathan t.tv_nsec += 1000000000;
880 1.1 jonathan }
881 1.1 jonathan timespecadd(&ts->acc, &t, &t);
882 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
883 1.1 jonathan ts->min = t;
884 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
885 1.1 jonathan ts->max = t;
886 1.1 jonathan ts->count++;
887 1.1 jonathan
888 1.1 jonathan *tv = now;
889 1.1 jonathan }
890 1.1 jonathan #endif
891 1.1 jonathan
892 1.1 jonathan /*
893 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
894 1.1 jonathan */
895 1.1 jonathan static int
896 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
897 1.1 jonathan {
898 1.1 jonathan u_int32_t hid;
899 1.1 jonathan int (*process)(void*, struct cryptop *, int);
900 1.1 jonathan
901 1.1 jonathan #ifdef CRYPTO_TIMING
902 1.1 jonathan if (crypto_timing)
903 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
904 1.1 jonathan #endif
905 1.1 jonathan /* Sanity checks. */
906 1.1 jonathan if (crp == NULL)
907 1.1 jonathan return EINVAL;
908 1.1 jonathan if (crp->crp_callback == NULL) {
909 1.1 jonathan return EINVAL;
910 1.1 jonathan }
911 1.1 jonathan if (crp->crp_desc == NULL) {
912 1.1 jonathan crp->crp_etype = EINVAL;
913 1.1 jonathan crypto_done(crp);
914 1.1 jonathan return 0;
915 1.1 jonathan }
916 1.1 jonathan
917 1.35 jakllsch hid = CRYPTO_SESID2HID(crp->crp_sid);
918 1.1 jonathan if (hid < crypto_drivers_num) {
919 1.30 darran mutex_spin_enter(&crypto_mtx);
920 1.1 jonathan if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
921 1.1 jonathan crypto_freesession(crp->crp_sid);
922 1.1 jonathan process = crypto_drivers[hid].cc_process;
923 1.30 darran mutex_spin_exit(&crypto_mtx);
924 1.1 jonathan } else {
925 1.1 jonathan process = NULL;
926 1.1 jonathan }
927 1.1 jonathan
928 1.1 jonathan if (process == NULL) {
929 1.1 jonathan struct cryptodesc *crd;
930 1.16 mrg u_int64_t nid = 0;
931 1.1 jonathan
932 1.1 jonathan /*
933 1.1 jonathan * Driver has unregistered; migrate the session and return
934 1.1 jonathan * an error to the caller so they'll resubmit the op.
935 1.1 jonathan */
936 1.30 darran mutex_spin_enter(&crypto_mtx);
937 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
938 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
939 1.1 jonathan
940 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
941 1.1 jonathan crp->crp_sid = nid;
942 1.1 jonathan
943 1.1 jonathan crp->crp_etype = EAGAIN;
944 1.30 darran mutex_spin_exit(&crypto_mtx);
945 1.23 tls
946 1.1 jonathan crypto_done(crp);
947 1.1 jonathan return 0;
948 1.1 jonathan } else {
949 1.1 jonathan /*
950 1.1 jonathan * Invoke the driver to process the request.
951 1.1 jonathan */
952 1.35 jakllsch DPRINTF(("calling process for %p\n", crp));
953 1.1 jonathan return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
954 1.1 jonathan }
955 1.1 jonathan }
956 1.1 jonathan
957 1.1 jonathan /*
958 1.1 jonathan * Release a set of crypto descriptors.
959 1.1 jonathan */
960 1.1 jonathan void
961 1.1 jonathan crypto_freereq(struct cryptop *crp)
962 1.1 jonathan {
963 1.1 jonathan struct cryptodesc *crd;
964 1.1 jonathan
965 1.1 jonathan if (crp == NULL)
966 1.1 jonathan return;
967 1.35 jakllsch DPRINTF(("crypto_freereq[%u]: crp %p\n",
968 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
969 1.1 jonathan
970 1.30 darran /* sanity check */
971 1.30 darran if (crp->crp_flags & CRYPTO_F_ONRETQ) {
972 1.30 darran panic("crypto_freereq() freeing crp on RETQ\n");
973 1.30 darran }
974 1.30 darran
975 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
976 1.1 jonathan crp->crp_desc = crd->crd_next;
977 1.1 jonathan pool_put(&cryptodesc_pool, crd);
978 1.1 jonathan }
979 1.29 degroote cv_destroy(&crp->crp_cv);
980 1.1 jonathan pool_put(&cryptop_pool, crp);
981 1.1 jonathan }
982 1.1 jonathan
983 1.1 jonathan /*
984 1.1 jonathan * Acquire a set of crypto descriptors.
985 1.1 jonathan */
986 1.1 jonathan struct cryptop *
987 1.1 jonathan crypto_getreq(int num)
988 1.1 jonathan {
989 1.1 jonathan struct cryptodesc *crd;
990 1.1 jonathan struct cryptop *crp;
991 1.1 jonathan
992 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
993 1.1 jonathan if (crp == NULL) {
994 1.1 jonathan return NULL;
995 1.1 jonathan }
996 1.31 cegger memset(crp, 0, sizeof(struct cryptop));
997 1.23 tls cv_init(&crp->crp_cv, "crydev");
998 1.1 jonathan
999 1.1 jonathan while (num--) {
1000 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
1001 1.1 jonathan if (crd == NULL) {
1002 1.1 jonathan crypto_freereq(crp);
1003 1.1 jonathan return NULL;
1004 1.1 jonathan }
1005 1.1 jonathan
1006 1.31 cegger memset(crd, 0, sizeof(struct cryptodesc));
1007 1.1 jonathan crd->crd_next = crp->crp_desc;
1008 1.1 jonathan crp->crp_desc = crd;
1009 1.1 jonathan }
1010 1.1 jonathan
1011 1.1 jonathan return crp;
1012 1.1 jonathan }
1013 1.1 jonathan
1014 1.1 jonathan /*
1015 1.1 jonathan * Invoke the callback on behalf of the driver.
1016 1.1 jonathan */
1017 1.1 jonathan void
1018 1.1 jonathan crypto_done(struct cryptop *crp)
1019 1.1 jonathan {
1020 1.23 tls int wasempty;
1021 1.23 tls
1022 1.1 jonathan if (crp->crp_etype != 0)
1023 1.1 jonathan cryptostats.cs_errs++;
1024 1.1 jonathan #ifdef CRYPTO_TIMING
1025 1.1 jonathan if (crypto_timing)
1026 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1027 1.1 jonathan #endif
1028 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p\n",
1029 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1030 1.27 tls
1031 1.1 jonathan /*
1032 1.23 tls * Normal case; queue the callback for the thread.
1033 1.23 tls *
1034 1.23 tls * The return queue is manipulated by the swi thread
1035 1.23 tls * and, potentially, by crypto device drivers calling
1036 1.23 tls * back to mark operations completed. Thus we need
1037 1.23 tls * to mask both while manipulating the return queue.
1038 1.1 jonathan */
1039 1.27 tls if (crp->crp_flags & CRYPTO_F_CBIMM) {
1040 1.27 tls /*
1041 1.27 tls * Do the callback directly. This is ok when the
1042 1.27 tls * callback routine does very little (e.g. the
1043 1.27 tls * /dev/crypto callback method just does a wakeup).
1044 1.27 tls */
1045 1.30 darran mutex_spin_enter(&crypto_mtx);
1046 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1047 1.30 darran mutex_spin_exit(&crypto_mtx);
1048 1.30 darran
1049 1.27 tls #ifdef CRYPTO_TIMING
1050 1.27 tls if (crypto_timing) {
1051 1.27 tls /*
1052 1.27 tls * NB: We must copy the timestamp before
1053 1.27 tls * doing the callback as the cryptop is
1054 1.27 tls * likely to be reclaimed.
1055 1.27 tls */
1056 1.27 tls struct timespec t = crp->crp_tstamp;
1057 1.27 tls crypto_tstat(&cryptostats.cs_cb, &t);
1058 1.27 tls crp->crp_callback(crp);
1059 1.27 tls crypto_tstat(&cryptostats.cs_finis, &t);
1060 1.27 tls } else
1061 1.27 tls #endif
1062 1.27 tls crp->crp_callback(crp);
1063 1.27 tls } else {
1064 1.27 tls mutex_spin_enter(&crypto_mtx);
1065 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1066 1.30 darran
1067 1.30 darran if (crp->crp_flags & CRYPTO_F_USER) {
1068 1.30 darran /* the request has completed while
1069 1.30 darran * running in the user context
1070 1.30 darran * so don't queue it - the user
1071 1.30 darran * thread won't sleep when it sees
1072 1.30 darran * the CRYPTO_F_DONE flag.
1073 1.30 darran * This is an optimization to avoid
1074 1.30 darran * unecessary context switches.
1075 1.30 darran */
1076 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1077 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1078 1.30 darran } else {
1079 1.30 darran wasempty = TAILQ_EMPTY(&crp_ret_q);
1080 1.35 jakllsch DPRINTF(("crypto_done[%u]: queueing %p\n",
1081 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1082 1.30 darran crp->crp_flags |= CRYPTO_F_ONRETQ;
1083 1.30 darran TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1084 1.30 darran if (wasempty) {
1085 1.35 jakllsch DPRINTF(("crypto_done[%u]: waking cryptoret, "
1086 1.35 jakllsch "crp %p hit empty queue\n.",
1087 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1088 1.30 darran cv_signal(&cryptoret_cv);
1089 1.30 darran }
1090 1.27 tls }
1091 1.27 tls mutex_spin_exit(&crypto_mtx);
1092 1.1 jonathan }
1093 1.1 jonathan }
1094 1.1 jonathan
1095 1.1 jonathan /*
1096 1.1 jonathan * Invoke the callback on behalf of the driver.
1097 1.1 jonathan */
1098 1.1 jonathan void
1099 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1100 1.1 jonathan {
1101 1.23 tls int wasempty;
1102 1.1 jonathan
1103 1.1 jonathan if (krp->krp_status != 0)
1104 1.1 jonathan cryptostats.cs_kerrs++;
1105 1.27 tls
1106 1.27 tls krp->krp_flags |= CRYPTO_F_DONE;
1107 1.27 tls
1108 1.1 jonathan /*
1109 1.1 jonathan * The return queue is manipulated by the swi thread
1110 1.1 jonathan * and, potentially, by crypto device drivers calling
1111 1.1 jonathan * back to mark operations completed. Thus we need
1112 1.1 jonathan * to mask both while manipulating the return queue.
1113 1.1 jonathan */
1114 1.27 tls if (krp->krp_flags & CRYPTO_F_CBIMM) {
1115 1.27 tls krp->krp_callback(krp);
1116 1.27 tls } else {
1117 1.27 tls mutex_spin_enter(&crypto_mtx);
1118 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_kq);
1119 1.27 tls krp->krp_flags |= CRYPTO_F_ONRETQ;
1120 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1121 1.27 tls if (wasempty)
1122 1.27 tls cv_signal(&cryptoret_cv);
1123 1.27 tls mutex_spin_exit(&crypto_mtx);
1124 1.27 tls }
1125 1.1 jonathan }
1126 1.1 jonathan
1127 1.1 jonathan int
1128 1.1 jonathan crypto_getfeat(int *featp)
1129 1.1 jonathan {
1130 1.1 jonathan int hid, kalg, feat = 0;
1131 1.1 jonathan
1132 1.23 tls mutex_spin_enter(&crypto_mtx);
1133 1.1 jonathan
1134 1.1 jonathan if (crypto_userasymcrypto == 0)
1135 1.10 perry goto out;
1136 1.1 jonathan
1137 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1138 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1139 1.7 jonathan crypto_devallowsoft == 0) {
1140 1.1 jonathan continue;
1141 1.1 jonathan }
1142 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1143 1.1 jonathan continue;
1144 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1145 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1146 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1147 1.1 jonathan feat |= 1 << kalg;
1148 1.1 jonathan }
1149 1.1 jonathan out:
1150 1.23 tls mutex_spin_exit(&crypto_mtx);
1151 1.1 jonathan *featp = feat;
1152 1.1 jonathan return (0);
1153 1.1 jonathan }
1154 1.1 jonathan
1155 1.1 jonathan /*
1156 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1157 1.1 jonathan */
1158 1.1 jonathan static void
1159 1.1 jonathan cryptointr(void)
1160 1.1 jonathan {
1161 1.30 darran struct cryptop *crp, *submit, *cnext;
1162 1.30 darran struct cryptkop *krp, *knext;
1163 1.1 jonathan struct cryptocap *cap;
1164 1.23 tls int result, hint;
1165 1.1 jonathan
1166 1.1 jonathan cryptostats.cs_intrs++;
1167 1.23 tls mutex_spin_enter(&crypto_mtx);
1168 1.1 jonathan do {
1169 1.1 jonathan /*
1170 1.1 jonathan * Find the first element in the queue that can be
1171 1.1 jonathan * processed and look-ahead to see if multiple ops
1172 1.1 jonathan * are ready for the same driver.
1173 1.1 jonathan */
1174 1.1 jonathan submit = NULL;
1175 1.1 jonathan hint = 0;
1176 1.30 darran TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1177 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1178 1.1 jonathan cap = crypto_checkdriver(hid);
1179 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1180 1.1 jonathan /* Op needs to be migrated, process it. */
1181 1.1 jonathan if (submit == NULL)
1182 1.1 jonathan submit = crp;
1183 1.1 jonathan break;
1184 1.1 jonathan }
1185 1.1 jonathan if (!cap->cc_qblocked) {
1186 1.1 jonathan if (submit != NULL) {
1187 1.1 jonathan /*
1188 1.1 jonathan * We stop on finding another op,
1189 1.1 jonathan * regardless whether its for the same
1190 1.1 jonathan * driver or not. We could keep
1191 1.1 jonathan * searching the queue but it might be
1192 1.1 jonathan * better to just use a per-driver
1193 1.1 jonathan * queue instead.
1194 1.1 jonathan */
1195 1.35 jakllsch if (CRYPTO_SESID2HID(submit->crp_sid)
1196 1.35 jakllsch == hid)
1197 1.1 jonathan hint = CRYPTO_HINT_MORE;
1198 1.1 jonathan break;
1199 1.1 jonathan } else {
1200 1.1 jonathan submit = crp;
1201 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1202 1.1 jonathan break;
1203 1.1 jonathan /* keep scanning for more are q'd */
1204 1.1 jonathan }
1205 1.1 jonathan }
1206 1.1 jonathan }
1207 1.1 jonathan if (submit != NULL) {
1208 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1209 1.23 tls mutex_spin_exit(&crypto_mtx);
1210 1.1 jonathan result = crypto_invoke(submit, hint);
1211 1.23 tls /* we must take here as the TAILQ op or kinvoke
1212 1.23 tls may need this mutex below. sigh. */
1213 1.23 tls mutex_spin_enter(&crypto_mtx);
1214 1.1 jonathan if (result == ERESTART) {
1215 1.1 jonathan /*
1216 1.1 jonathan * The driver ran out of resources, mark the
1217 1.1 jonathan * driver ``blocked'' for cryptop's and put
1218 1.1 jonathan * the request back in the queue. It would
1219 1.1 jonathan * best to put the request back where we got
1220 1.1 jonathan * it but that's hard so for now we put it
1221 1.1 jonathan * at the front. This should be ok; putting
1222 1.1 jonathan * it at the end does not work.
1223 1.1 jonathan */
1224 1.1 jonathan /* XXX validate sid again? */
1225 1.35 jakllsch crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1226 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1227 1.1 jonathan cryptostats.cs_blocks++;
1228 1.1 jonathan }
1229 1.1 jonathan }
1230 1.1 jonathan
1231 1.1 jonathan /* As above, but for key ops */
1232 1.30 darran TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1233 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1234 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1235 1.1 jonathan /* Op needs to be migrated, process it. */
1236 1.1 jonathan break;
1237 1.1 jonathan }
1238 1.1 jonathan if (!cap->cc_kqblocked)
1239 1.1 jonathan break;
1240 1.1 jonathan }
1241 1.1 jonathan if (krp != NULL) {
1242 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1243 1.23 tls mutex_spin_exit(&crypto_mtx);
1244 1.1 jonathan result = crypto_kinvoke(krp, 0);
1245 1.23 tls /* the next iteration will want the mutex. :-/ */
1246 1.23 tls mutex_spin_enter(&crypto_mtx);
1247 1.1 jonathan if (result == ERESTART) {
1248 1.1 jonathan /*
1249 1.1 jonathan * The driver ran out of resources, mark the
1250 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1251 1.1 jonathan * the request back in the queue. It would
1252 1.1 jonathan * best to put the request back where we got
1253 1.1 jonathan * it but that's hard so for now we put it
1254 1.1 jonathan * at the front. This should be ok; putting
1255 1.1 jonathan * it at the end does not work.
1256 1.1 jonathan */
1257 1.1 jonathan /* XXX validate sid again? */
1258 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1259 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1260 1.1 jonathan cryptostats.cs_kblocks++;
1261 1.1 jonathan }
1262 1.1 jonathan }
1263 1.1 jonathan } while (submit != NULL || krp != NULL);
1264 1.23 tls mutex_spin_exit(&crypto_mtx);
1265 1.1 jonathan }
1266 1.1 jonathan
1267 1.1 jonathan /*
1268 1.1 jonathan * Kernel thread to do callbacks.
1269 1.1 jonathan */
1270 1.1 jonathan static void
1271 1.1 jonathan cryptoret(void)
1272 1.1 jonathan {
1273 1.1 jonathan struct cryptop *crp;
1274 1.1 jonathan struct cryptkop *krp;
1275 1.1 jonathan
1276 1.26 ad mutex_spin_enter(&crypto_mtx);
1277 1.1 jonathan for (;;) {
1278 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1279 1.23 tls if (crp != NULL) {
1280 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1281 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1282 1.23 tls }
1283 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1284 1.23 tls if (krp != NULL) {
1285 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1286 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1287 1.23 tls }
1288 1.1 jonathan
1289 1.23 tls /* drop before calling any callbacks. */
1290 1.26 ad if (crp == NULL && krp == NULL) {
1291 1.26 ad cryptostats.cs_rets++;
1292 1.26 ad cv_wait(&cryptoret_cv, &crypto_mtx);
1293 1.26 ad continue;
1294 1.26 ad }
1295 1.26 ad
1296 1.23 tls mutex_spin_exit(&crypto_mtx);
1297 1.26 ad
1298 1.26 ad if (crp != NULL) {
1299 1.1 jonathan #ifdef CRYPTO_TIMING
1300 1.26 ad if (crypto_timing) {
1301 1.26 ad /*
1302 1.26 ad * NB: We must copy the timestamp before
1303 1.26 ad * doing the callback as the cryptop is
1304 1.26 ad * likely to be reclaimed.
1305 1.26 ad */
1306 1.26 ad struct timespec t = crp->crp_tstamp;
1307 1.26 ad crypto_tstat(&cryptostats.cs_cb, &t);
1308 1.26 ad crp->crp_callback(crp);
1309 1.26 ad crypto_tstat(&cryptostats.cs_finis, &t);
1310 1.26 ad } else
1311 1.1 jonathan #endif
1312 1.26 ad {
1313 1.26 ad crp->crp_callback(crp);
1314 1.1 jonathan }
1315 1.1 jonathan }
1316 1.26 ad if (krp != NULL)
1317 1.26 ad krp->krp_callback(krp);
1318 1.26 ad
1319 1.26 ad mutex_spin_enter(&crypto_mtx);
1320 1.1 jonathan }
1321 1.1 jonathan }
1322