Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.41
      1  1.41  drochner /*	$NetBSD: crypto.c,v 1.41 2011/06/09 14:41:24 drochner Exp $ */
      2   1.1  jonathan /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3   1.1  jonathan /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4   1.1  jonathan 
      5  1.27       tls /*-
      6  1.27       tls  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  1.27       tls  * All rights reserved.
      8  1.27       tls  *
      9  1.27       tls  * This code is derived from software contributed to The NetBSD Foundation
     10  1.27       tls  * by Coyote Point Systems, Inc.
     11  1.27       tls  *
     12  1.27       tls  * Redistribution and use in source and binary forms, with or without
     13  1.27       tls  * modification, are permitted provided that the following conditions
     14  1.27       tls  * are met:
     15  1.27       tls  * 1. Redistributions of source code must retain the above copyright
     16  1.27       tls  *    notice, this list of conditions and the following disclaimer.
     17  1.27       tls  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.27       tls  *    notice, this list of conditions and the following disclaimer in the
     19  1.27       tls  *    documentation and/or other materials provided with the distribution.
     20  1.27       tls  *
     21  1.27       tls  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  1.27       tls  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  1.27       tls  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  1.27       tls  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  1.27       tls  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  1.27       tls  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  1.27       tls  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  1.27       tls  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  1.27       tls  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  1.27       tls  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  1.27       tls  * POSSIBILITY OF SUCH DAMAGE.
     32  1.27       tls  */
     33  1.27       tls 
     34   1.1  jonathan /*
     35   1.1  jonathan  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36   1.1  jonathan  *
     37   1.1  jonathan  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38   1.1  jonathan  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39   1.1  jonathan  * supported the development of this code.
     40   1.1  jonathan  *
     41   1.1  jonathan  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42   1.1  jonathan  *
     43   1.1  jonathan  * Permission to use, copy, and modify this software with or without fee
     44   1.1  jonathan  * is hereby granted, provided that this entire notice is included in
     45   1.1  jonathan  * all source code copies of any software which is or includes a copy or
     46   1.1  jonathan  * modification of this software.
     47   1.1  jonathan  *
     48   1.1  jonathan  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49   1.1  jonathan  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50   1.1  jonathan  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51   1.1  jonathan  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52   1.1  jonathan  * PURPOSE.
     53   1.1  jonathan  */
     54   1.1  jonathan 
     55   1.1  jonathan #include <sys/cdefs.h>
     56  1.41  drochner __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.41 2011/06/09 14:41:24 drochner Exp $");
     57   1.1  jonathan 
     58   1.1  jonathan #include <sys/param.h>
     59   1.1  jonathan #include <sys/reboot.h>
     60   1.1  jonathan #include <sys/systm.h>
     61   1.1  jonathan #include <sys/malloc.h>
     62   1.1  jonathan #include <sys/proc.h>
     63   1.1  jonathan #include <sys/pool.h>
     64   1.1  jonathan #include <sys/kthread.h>
     65  1.11   thorpej #include <sys/once.h>
     66  1.13  christos #include <sys/sysctl.h>
     67  1.21        ad #include <sys/intr.h>
     68   1.1  jonathan 
     69  1.23       tls #include "opt_ocf.h"
     70  1.21        ad #include <opencrypto/cryptodev.h>
     71   1.1  jonathan #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     72   1.1  jonathan 
     73  1.40  drochner kmutex_t crypto_q_mtx;
     74  1.40  drochner kmutex_t crypto_ret_q_mtx;
     75  1.23       tls kcondvar_t cryptoret_cv;
     76  1.23       tls kmutex_t crypto_mtx;
     77  1.23       tls 
     78  1.23       tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     79   1.1  jonathan   #define SWI_CRYPTO 17
     80   1.1  jonathan   #define register_swi(lvl, fn)  \
     81  1.38  drochner   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     82  1.21        ad   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     83  1.21        ad   #define setsoftcrypto(x) softint_schedule(x)
     84   1.1  jonathan 
     85  1.30    darran int crypto_ret_q_check(struct cryptop *);
     86  1.30    darran 
     87   1.1  jonathan /*
     88   1.1  jonathan  * Crypto drivers register themselves by allocating a slot in the
     89   1.1  jonathan  * crypto_drivers table with crypto_get_driverid() and then registering
     90   1.1  jonathan  * each algorithm they support with crypto_register() and crypto_kregister().
     91   1.1  jonathan  */
     92  1.11   thorpej static	struct cryptocap *crypto_drivers;
     93  1.11   thorpej static	int crypto_drivers_num;
     94  1.37  christos static	void *softintr_cookie;
     95   1.1  jonathan 
     96   1.1  jonathan /*
     97   1.1  jonathan  * There are two queues for crypto requests; one for symmetric (e.g.
     98   1.1  jonathan  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     99   1.1  jonathan  * See below for how synchronization is handled.
    100   1.1  jonathan  */
    101  1.11   thorpej static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    102  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_q);
    103  1.11   thorpej static	TAILQ_HEAD(,cryptkop) crp_kq =
    104  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_kq);
    105   1.1  jonathan 
    106   1.1  jonathan /*
    107   1.1  jonathan  * There are two queues for processing completed crypto requests; one
    108   1.1  jonathan  * for the symmetric and one for the asymmetric ops.  We only need one
    109   1.1  jonathan  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    110   1.1  jonathan  * for how synchronization is handled.
    111   1.1  jonathan  */
    112  1.23       tls static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    113  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    114  1.23       tls static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    115  1.11   thorpej 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    116   1.1  jonathan 
    117   1.1  jonathan /*
    118  1.23       tls  * XXX these functions are ghastly hacks for when the submission
    119  1.23       tls  * XXX routines discover a request that was not CBIMM is already
    120  1.23       tls  * XXX done, and must be yanked from the retq (where _done) put it
    121  1.23       tls  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    122  1.23       tls  * XXX as the request is generally the last one queued.
    123  1.23       tls  *
    124  1.23       tls  *	 call with the lock held, or else.
    125  1.23       tls  */
    126  1.23       tls int
    127  1.23       tls crypto_ret_q_remove(struct cryptop *crp)
    128  1.23       tls {
    129  1.30    darran 	struct cryptop * acrp, *next;
    130  1.23       tls 
    131  1.30    darran 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    132  1.23       tls 		if (acrp == crp) {
    133  1.23       tls 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    134  1.23       tls 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    135  1.23       tls 			return 1;
    136  1.23       tls 		}
    137  1.23       tls 	}
    138  1.23       tls 	return 0;
    139  1.23       tls }
    140  1.23       tls 
    141  1.23       tls int
    142  1.23       tls crypto_ret_kq_remove(struct cryptkop *krp)
    143  1.23       tls {
    144  1.30    darran 	struct cryptkop * akrp, *next;
    145  1.23       tls 
    146  1.30    darran 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    147  1.23       tls 		if (akrp == krp) {
    148  1.23       tls 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    149  1.23       tls 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    150  1.23       tls 			return 1;
    151  1.23       tls 		}
    152  1.23       tls 	}
    153  1.23       tls 	return 0;
    154  1.23       tls }
    155  1.23       tls 
    156  1.23       tls /*
    157   1.1  jonathan  * Crypto op and desciptor data structures are allocated
    158   1.1  jonathan  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    159   1.1  jonathan  */
    160   1.1  jonathan struct pool cryptop_pool;
    161   1.1  jonathan struct pool cryptodesc_pool;
    162  1.23       tls struct pool cryptkop_pool;
    163   1.1  jonathan 
    164   1.1  jonathan int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    165   1.1  jonathan int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    166  1.10     perry /*
    167   1.6  jonathan  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    168   1.6  jonathan  * access to hardware versus software transforms as below:
    169   1.6  jonathan  *
    170   1.6  jonathan  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    171   1.6  jonathan  *                              transforms, always
    172   1.6  jonathan  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    173   1.6  jonathan  *                              requests for non-accelerated transforms
    174   1.6  jonathan  *                              (handling the latter in software)
    175   1.6  jonathan  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    176   1.6  jonathan  *                               are hardware-accelerated.
    177   1.6  jonathan  */
    178   1.9  jonathan int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    179   1.6  jonathan 
    180  1.13  christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    181  1.13  christos {
    182  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    183  1.13  christos 		       CTLFLAG_PERMANENT,
    184  1.13  christos 		       CTLTYPE_NODE, "kern", NULL,
    185  1.13  christos 		       NULL, 0, NULL, 0,
    186  1.13  christos 		       CTL_KERN, CTL_EOL);
    187  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    188  1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    189  1.13  christos 		       CTLTYPE_INT, "usercrypto",
    190  1.13  christos 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    191  1.13  christos 			   "crypto support"),
    192  1.13  christos 		       NULL, 0, &crypto_usercrypto, 0,
    193  1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    194  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    195  1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    196  1.13  christos 		       CTLTYPE_INT, "userasymcrypto",
    197  1.13  christos 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    198  1.13  christos 			   "asymmetric crypto support"),
    199  1.13  christos 		       NULL, 0, &crypto_userasymcrypto, 0,
    200  1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    201  1.13  christos 	sysctl_createv(clog, 0, NULL, NULL,
    202  1.13  christos 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    203  1.13  christos 		       CTLTYPE_INT, "cryptodevallowsoft",
    204  1.13  christos 		       SYSCTL_DESCR("Enable/disable use of software "
    205  1.13  christos 			   "asymmetric crypto support"),
    206  1.13  christos 		       NULL, 0, &crypto_devallowsoft, 0,
    207  1.13  christos 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    208  1.13  christos }
    209   1.1  jonathan 
    210   1.1  jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    211   1.1  jonathan 
    212   1.1  jonathan /*
    213   1.1  jonathan  * Synchronization: read carefully, this is non-trivial.
    214   1.1  jonathan  *
    215   1.1  jonathan  * Crypto requests are submitted via crypto_dispatch.  Typically
    216   1.1  jonathan  * these come in from network protocols at spl0 (output path) or
    217   1.1  jonathan  * spl[,soft]net (input path).
    218   1.1  jonathan  *
    219   1.1  jonathan  * Requests are typically passed on the driver directly, but they
    220   1.1  jonathan  * may also be queued for processing by a software interrupt thread,
    221  1.10     perry  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    222   1.1  jonathan  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    223   1.1  jonathan  * when a request is complete.  Hardware crypto drivers are assumed
    224   1.1  jonathan  * to register their IRQ's as network devices so their interrupt handlers
    225   1.1  jonathan  * and subsequent "done callbacks" happen at spl[imp,net].
    226   1.1  jonathan  *
    227   1.1  jonathan  * Completed crypto ops are queued for a separate kernel thread that
    228   1.1  jonathan  * handles the callbacks at spl0.  This decoupling insures the crypto
    229   1.1  jonathan  * driver interrupt service routine is not delayed while the callback
    230   1.1  jonathan  * takes place and that callbacks are delivered after a context switch
    231   1.1  jonathan  * (as opposed to a software interrupt that clients must block).
    232   1.1  jonathan  *
    233   1.1  jonathan  * This scheme is not intended for SMP machines.
    234  1.10     perry  */
    235   1.1  jonathan static	void cryptointr(void);		/* swi thread to dispatch ops */
    236   1.1  jonathan static	void cryptoret(void);		/* kernel thread for callbacks*/
    237  1.20        ad static	struct lwp *cryptothread;
    238   1.1  jonathan static	void crypto_destroy(void);
    239   1.1  jonathan static	int crypto_invoke(struct cryptop *crp, int hint);
    240   1.1  jonathan static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    241   1.1  jonathan 
    242   1.1  jonathan static struct cryptostats cryptostats;
    243  1.23       tls #ifdef CRYPTO_TIMING
    244   1.1  jonathan static	int crypto_timing = 0;
    245  1.23       tls #endif
    246   1.1  jonathan 
    247  1.12      yamt static int
    248  1.11   thorpej crypto_init0(void)
    249   1.1  jonathan {
    250   1.1  jonathan 	int error;
    251   1.1  jonathan 
    252  1.40  drochner 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
    253  1.40  drochner 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
    254  1.40  drochner 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    255  1.36  pgoyette 	cv_init(&cryptoret_cv, "crypto_w");
    256  1.23       tls 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    257  1.23       tls 		  0, "cryptop", NULL, IPL_NET);
    258  1.23       tls 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    259  1.23       tls 		  0, "cryptodesc", NULL, IPL_NET);
    260  1.23       tls 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    261  1.23       tls 		  0, "cryptkop", NULL, IPL_NET);
    262   1.1  jonathan 
    263  1.11   thorpej 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    264   1.1  jonathan 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    265   1.1  jonathan 	if (crypto_drivers == NULL) {
    266   1.1  jonathan 		printf("crypto_init: cannot malloc driver table\n");
    267  1.12      yamt 		return 0;
    268   1.1  jonathan 	}
    269  1.11   thorpej 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    270   1.1  jonathan 
    271   1.1  jonathan 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    272  1.25       tls 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    273  1.37  christos 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    274   1.1  jonathan 	if (error) {
    275   1.1  jonathan 		printf("crypto_init: cannot start cryptoret thread; error %d",
    276   1.1  jonathan 			error);
    277   1.1  jonathan 		crypto_destroy();
    278   1.1  jonathan 	}
    279  1.20        ad 
    280  1.12      yamt 	return 0;
    281  1.11   thorpej }
    282  1.11   thorpej 
    283  1.11   thorpej void
    284  1.11   thorpej crypto_init(void)
    285  1.11   thorpej {
    286  1.18    daniel 	static ONCE_DECL(crypto_init_once);
    287  1.11   thorpej 
    288  1.11   thorpej 	RUN_ONCE(&crypto_init_once, crypto_init0);
    289   1.1  jonathan }
    290   1.1  jonathan 
    291   1.1  jonathan static void
    292   1.1  jonathan crypto_destroy(void)
    293   1.1  jonathan {
    294   1.1  jonathan 	/* XXX no wait to reclaim zones */
    295   1.1  jonathan 	if (crypto_drivers != NULL)
    296   1.1  jonathan 		free(crypto_drivers, M_CRYPTO_DATA);
    297   1.1  jonathan 	unregister_swi(SWI_CRYPTO, cryptointr);
    298   1.1  jonathan }
    299   1.1  jonathan 
    300   1.1  jonathan /*
    301  1.23       tls  * Create a new session.  Must be called with crypto_mtx held.
    302   1.1  jonathan  */
    303   1.1  jonathan int
    304   1.1  jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    305   1.1  jonathan {
    306   1.1  jonathan 	struct cryptoini *cr;
    307   1.1  jonathan 	u_int32_t hid, lid;
    308   1.1  jonathan 	int err = EINVAL;
    309   1.1  jonathan 
    310  1.40  drochner 	mutex_enter(&crypto_mtx);
    311   1.1  jonathan 
    312   1.1  jonathan 	if (crypto_drivers == NULL)
    313   1.1  jonathan 		goto done;
    314   1.1  jonathan 
    315   1.1  jonathan 	/*
    316   1.1  jonathan 	 * The algorithm we use here is pretty stupid; just use the
    317   1.1  jonathan 	 * first driver that supports all the algorithms we need.
    318   1.1  jonathan 	 *
    319   1.1  jonathan 	 * XXX We need more smarts here (in real life too, but that's
    320   1.1  jonathan 	 * XXX another story altogether).
    321   1.1  jonathan 	 */
    322   1.1  jonathan 
    323   1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    324   1.1  jonathan 		/*
    325   1.1  jonathan 		 * If it's not initialized or has remaining sessions
    326   1.1  jonathan 		 * referencing it, skip.
    327   1.1  jonathan 		 */
    328   1.1  jonathan 		if (crypto_drivers[hid].cc_newsession == NULL ||
    329   1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    330   1.1  jonathan 			continue;
    331   1.1  jonathan 
    332   1.1  jonathan 		/* Hardware required -- ignore software drivers. */
    333   1.1  jonathan 		if (hard > 0 &&
    334   1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    335   1.1  jonathan 			continue;
    336   1.1  jonathan 		/* Software required -- ignore hardware drivers. */
    337   1.1  jonathan 		if (hard < 0 &&
    338   1.1  jonathan 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    339   1.1  jonathan 			continue;
    340   1.1  jonathan 
    341   1.1  jonathan 		/* See if all the algorithms are supported. */
    342   1.1  jonathan 		for (cr = cri; cr; cr = cr->cri_next)
    343  1.33    darran 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    344  1.33    darran 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    345   1.1  jonathan 				break;
    346  1.33    darran 			}
    347   1.1  jonathan 
    348   1.1  jonathan 		if (cr == NULL) {
    349   1.1  jonathan 			/* Ok, all algorithms are supported. */
    350   1.1  jonathan 
    351   1.1  jonathan 			/*
    352   1.1  jonathan 			 * Can't do everything in one session.
    353   1.1  jonathan 			 *
    354   1.1  jonathan 			 * XXX Fix this. We need to inject a "virtual" session layer right
    355   1.1  jonathan 			 * XXX about here.
    356   1.1  jonathan 			 */
    357   1.1  jonathan 
    358   1.1  jonathan 			/* Call the driver initialization routine. */
    359   1.1  jonathan 			lid = hid;		/* Pass the driver ID. */
    360   1.1  jonathan 			err = crypto_drivers[hid].cc_newsession(
    361   1.1  jonathan 					crypto_drivers[hid].cc_arg, &lid, cri);
    362   1.1  jonathan 			if (err == 0) {
    363   1.1  jonathan 				(*sid) = hid;
    364   1.1  jonathan 				(*sid) <<= 32;
    365   1.1  jonathan 				(*sid) |= (lid & 0xffffffff);
    366   1.1  jonathan 				crypto_drivers[hid].cc_sessions++;
    367   1.1  jonathan 			}
    368   1.1  jonathan 			goto done;
    369   1.1  jonathan 			/*break;*/
    370   1.1  jonathan 		}
    371   1.1  jonathan 	}
    372   1.1  jonathan done:
    373  1.40  drochner 	mutex_exit(&crypto_mtx);
    374   1.1  jonathan 	return err;
    375   1.1  jonathan }
    376   1.1  jonathan 
    377   1.1  jonathan /*
    378   1.1  jonathan  * Delete an existing session (or a reserved session on an unregistered
    379  1.23       tls  * driver).  Must be called with crypto_mtx mutex held.
    380   1.1  jonathan  */
    381   1.1  jonathan int
    382   1.1  jonathan crypto_freesession(u_int64_t sid)
    383   1.1  jonathan {
    384   1.1  jonathan 	u_int32_t hid;
    385   1.1  jonathan 	int err = 0;
    386   1.1  jonathan 
    387  1.40  drochner 	mutex_enter(&crypto_mtx);
    388   1.1  jonathan 
    389   1.1  jonathan 	if (crypto_drivers == NULL) {
    390   1.1  jonathan 		err = EINVAL;
    391   1.1  jonathan 		goto done;
    392   1.1  jonathan 	}
    393   1.1  jonathan 
    394   1.1  jonathan 	/* Determine two IDs. */
    395  1.35  jakllsch 	hid = CRYPTO_SESID2HID(sid);
    396   1.1  jonathan 
    397   1.1  jonathan 	if (hid >= crypto_drivers_num) {
    398   1.1  jonathan 		err = ENOENT;
    399   1.1  jonathan 		goto done;
    400   1.1  jonathan 	}
    401   1.1  jonathan 
    402   1.1  jonathan 	if (crypto_drivers[hid].cc_sessions)
    403   1.1  jonathan 		crypto_drivers[hid].cc_sessions--;
    404   1.1  jonathan 
    405   1.1  jonathan 	/* Call the driver cleanup routine, if available. */
    406  1.23       tls 	if (crypto_drivers[hid].cc_freesession) {
    407   1.1  jonathan 		err = crypto_drivers[hid].cc_freesession(
    408   1.1  jonathan 				crypto_drivers[hid].cc_arg, sid);
    409  1.23       tls 	}
    410   1.1  jonathan 	else
    411   1.1  jonathan 		err = 0;
    412   1.1  jonathan 
    413   1.1  jonathan 	/*
    414   1.1  jonathan 	 * If this was the last session of a driver marked as invalid,
    415   1.1  jonathan 	 * make the entry available for reuse.
    416   1.1  jonathan 	 */
    417   1.1  jonathan 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    418   1.1  jonathan 	    crypto_drivers[hid].cc_sessions == 0)
    419  1.31    cegger 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    420   1.1  jonathan 
    421   1.1  jonathan done:
    422  1.40  drochner 	mutex_exit(&crypto_mtx);
    423   1.1  jonathan 	return err;
    424   1.1  jonathan }
    425   1.1  jonathan 
    426   1.1  jonathan /*
    427   1.1  jonathan  * Return an unused driver id.  Used by drivers prior to registering
    428   1.1  jonathan  * support for the algorithms they handle.
    429   1.1  jonathan  */
    430   1.1  jonathan int32_t
    431   1.1  jonathan crypto_get_driverid(u_int32_t flags)
    432   1.1  jonathan {
    433   1.1  jonathan 	struct cryptocap *newdrv;
    434  1.23       tls 	int i;
    435   1.1  jonathan 
    436  1.23       tls 	crypto_init();		/* XXX oh, this is foul! */
    437  1.11   thorpej 
    438  1.40  drochner 	mutex_enter(&crypto_mtx);
    439   1.1  jonathan 	for (i = 0; i < crypto_drivers_num; i++)
    440   1.1  jonathan 		if (crypto_drivers[i].cc_process == NULL &&
    441   1.1  jonathan 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    442   1.1  jonathan 		    crypto_drivers[i].cc_sessions == 0)
    443   1.1  jonathan 			break;
    444   1.1  jonathan 
    445   1.1  jonathan 	/* Out of entries, allocate some more. */
    446   1.1  jonathan 	if (i == crypto_drivers_num) {
    447   1.1  jonathan 		/* Be careful about wrap-around. */
    448   1.1  jonathan 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    449  1.40  drochner 			mutex_exit(&crypto_mtx);
    450   1.1  jonathan 			printf("crypto: driver count wraparound!\n");
    451   1.1  jonathan 			return -1;
    452   1.1  jonathan 		}
    453   1.1  jonathan 
    454   1.1  jonathan 		newdrv = malloc(2 * crypto_drivers_num *
    455   1.1  jonathan 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    456   1.1  jonathan 		if (newdrv == NULL) {
    457  1.40  drochner 			mutex_exit(&crypto_mtx);
    458   1.1  jonathan 			printf("crypto: no space to expand driver table!\n");
    459   1.1  jonathan 			return -1;
    460   1.1  jonathan 		}
    461   1.1  jonathan 
    462  1.34   tsutsui 		memcpy(newdrv, crypto_drivers,
    463   1.1  jonathan 		    crypto_drivers_num * sizeof(struct cryptocap));
    464   1.1  jonathan 
    465   1.1  jonathan 		crypto_drivers_num *= 2;
    466   1.1  jonathan 
    467   1.1  jonathan 		free(crypto_drivers, M_CRYPTO_DATA);
    468   1.1  jonathan 		crypto_drivers = newdrv;
    469   1.1  jonathan 	}
    470   1.1  jonathan 
    471   1.1  jonathan 	/* NB: state is zero'd on free */
    472   1.1  jonathan 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    473   1.1  jonathan 	crypto_drivers[i].cc_flags = flags;
    474   1.1  jonathan 
    475   1.1  jonathan 	if (bootverbose)
    476   1.1  jonathan 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    477   1.1  jonathan 
    478  1.40  drochner 	mutex_exit(&crypto_mtx);
    479   1.1  jonathan 
    480   1.1  jonathan 	return i;
    481   1.1  jonathan }
    482   1.1  jonathan 
    483   1.1  jonathan static struct cryptocap *
    484   1.1  jonathan crypto_checkdriver(u_int32_t hid)
    485   1.1  jonathan {
    486   1.1  jonathan 	if (crypto_drivers == NULL)
    487   1.1  jonathan 		return NULL;
    488   1.1  jonathan 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    489   1.1  jonathan }
    490   1.1  jonathan 
    491   1.1  jonathan /*
    492   1.1  jonathan  * Register support for a key-related algorithm.  This routine
    493   1.1  jonathan  * is called once for each algorithm supported a driver.
    494   1.1  jonathan  */
    495   1.1  jonathan int
    496   1.1  jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    497  1.37  christos     int (*kprocess)(void *, struct cryptkop *, int),
    498   1.1  jonathan     void *karg)
    499   1.1  jonathan {
    500   1.1  jonathan 	struct cryptocap *cap;
    501   1.1  jonathan 	int err;
    502   1.1  jonathan 
    503  1.40  drochner 	mutex_enter(&crypto_mtx);
    504   1.1  jonathan 
    505   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    506   1.1  jonathan 	if (cap != NULL &&
    507   1.1  jonathan 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    508   1.1  jonathan 		/*
    509   1.1  jonathan 		 * XXX Do some performance testing to determine placing.
    510   1.1  jonathan 		 * XXX We probably need an auxiliary data structure that
    511   1.1  jonathan 		 * XXX describes relative performances.
    512   1.1  jonathan 		 */
    513   1.1  jonathan 
    514   1.1  jonathan 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    515  1.23       tls 		if (bootverbose) {
    516  1.23       tls 			printf("crypto: driver %u registers key alg %u "
    517  1.23       tls 			       " flags %u\n",
    518  1.23       tls 				driverid,
    519  1.23       tls 				kalg,
    520  1.23       tls 				flags
    521   1.1  jonathan 			);
    522  1.23       tls 		}
    523   1.1  jonathan 
    524   1.1  jonathan 		if (cap->cc_kprocess == NULL) {
    525   1.1  jonathan 			cap->cc_karg = karg;
    526   1.1  jonathan 			cap->cc_kprocess = kprocess;
    527   1.1  jonathan 		}
    528   1.1  jonathan 		err = 0;
    529   1.1  jonathan 	} else
    530   1.1  jonathan 		err = EINVAL;
    531   1.1  jonathan 
    532  1.40  drochner 	mutex_exit(&crypto_mtx);
    533   1.1  jonathan 	return err;
    534   1.1  jonathan }
    535   1.1  jonathan 
    536   1.1  jonathan /*
    537   1.1  jonathan  * Register support for a non-key-related algorithm.  This routine
    538   1.1  jonathan  * is called once for each such algorithm supported by a driver.
    539   1.1  jonathan  */
    540   1.1  jonathan int
    541   1.1  jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    542   1.1  jonathan     u_int32_t flags,
    543  1.37  christos     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    544  1.37  christos     int (*freeses)(void *, u_int64_t),
    545  1.37  christos     int (*process)(void *, struct cryptop *, int),
    546   1.1  jonathan     void *arg)
    547   1.1  jonathan {
    548   1.1  jonathan 	struct cryptocap *cap;
    549  1.23       tls 	int err;
    550   1.1  jonathan 
    551  1.40  drochner 	mutex_enter(&crypto_mtx);
    552   1.1  jonathan 
    553   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    554   1.1  jonathan 	/* NB: algorithms are in the range [1..max] */
    555   1.1  jonathan 	if (cap != NULL &&
    556   1.1  jonathan 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    557   1.1  jonathan 		/*
    558   1.1  jonathan 		 * XXX Do some performance testing to determine placing.
    559   1.1  jonathan 		 * XXX We probably need an auxiliary data structure that
    560   1.1  jonathan 		 * XXX describes relative performances.
    561   1.1  jonathan 		 */
    562   1.1  jonathan 
    563   1.1  jonathan 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    564   1.1  jonathan 		cap->cc_max_op_len[alg] = maxoplen;
    565  1.23       tls 		if (bootverbose) {
    566  1.23       tls 			printf("crypto: driver %u registers alg %u "
    567  1.23       tls 				"flags %u maxoplen %u\n",
    568  1.23       tls 				driverid,
    569  1.23       tls 				alg,
    570  1.23       tls 				flags,
    571  1.23       tls 				maxoplen
    572   1.1  jonathan 			);
    573  1.23       tls 		}
    574   1.1  jonathan 
    575   1.1  jonathan 		if (cap->cc_process == NULL) {
    576   1.1  jonathan 			cap->cc_arg = arg;
    577   1.1  jonathan 			cap->cc_newsession = newses;
    578   1.1  jonathan 			cap->cc_process = process;
    579   1.1  jonathan 			cap->cc_freesession = freeses;
    580   1.1  jonathan 			cap->cc_sessions = 0;		/* Unmark */
    581   1.1  jonathan 		}
    582   1.1  jonathan 		err = 0;
    583   1.1  jonathan 	} else
    584   1.1  jonathan 		err = EINVAL;
    585   1.1  jonathan 
    586  1.40  drochner 	mutex_exit(&crypto_mtx);
    587   1.1  jonathan 	return err;
    588   1.1  jonathan }
    589   1.1  jonathan 
    590   1.1  jonathan /*
    591   1.1  jonathan  * Unregister a crypto driver. If there are pending sessions using it,
    592   1.1  jonathan  * leave enough information around so that subsequent calls using those
    593   1.1  jonathan  * sessions will correctly detect the driver has been unregistered and
    594   1.1  jonathan  * reroute requests.
    595   1.1  jonathan  */
    596   1.1  jonathan int
    597   1.1  jonathan crypto_unregister(u_int32_t driverid, int alg)
    598   1.1  jonathan {
    599  1.23       tls 	int i, err;
    600   1.1  jonathan 	u_int32_t ses;
    601   1.1  jonathan 	struct cryptocap *cap;
    602   1.1  jonathan 
    603  1.40  drochner 	mutex_enter(&crypto_mtx);
    604   1.1  jonathan 
    605   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    606   1.1  jonathan 	if (cap != NULL &&
    607   1.1  jonathan 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    608   1.1  jonathan 	    cap->cc_alg[alg] != 0) {
    609   1.1  jonathan 		cap->cc_alg[alg] = 0;
    610   1.1  jonathan 		cap->cc_max_op_len[alg] = 0;
    611   1.1  jonathan 
    612   1.1  jonathan 		/* Was this the last algorithm ? */
    613   1.1  jonathan 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    614   1.1  jonathan 			if (cap->cc_alg[i] != 0)
    615   1.1  jonathan 				break;
    616   1.1  jonathan 
    617   1.1  jonathan 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    618   1.1  jonathan 			ses = cap->cc_sessions;
    619  1.31    cegger 			memset(cap, 0, sizeof(struct cryptocap));
    620   1.1  jonathan 			if (ses != 0) {
    621   1.1  jonathan 				/*
    622   1.1  jonathan 				 * If there are pending sessions, just mark as invalid.
    623   1.1  jonathan 				 */
    624   1.1  jonathan 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    625   1.1  jonathan 				cap->cc_sessions = ses;
    626   1.1  jonathan 			}
    627   1.1  jonathan 		}
    628   1.1  jonathan 		err = 0;
    629   1.1  jonathan 	} else
    630   1.1  jonathan 		err = EINVAL;
    631   1.1  jonathan 
    632  1.40  drochner 	mutex_exit(&crypto_mtx);
    633   1.1  jonathan 	return err;
    634   1.1  jonathan }
    635   1.1  jonathan 
    636   1.1  jonathan /*
    637   1.1  jonathan  * Unregister all algorithms associated with a crypto driver.
    638   1.1  jonathan  * If there are pending sessions using it, leave enough information
    639   1.1  jonathan  * around so that subsequent calls using those sessions will
    640   1.1  jonathan  * correctly detect the driver has been unregistered and reroute
    641   1.1  jonathan  * requests.
    642  1.23       tls  *
    643  1.23       tls  * XXX careful.  Don't change this to call crypto_unregister() for each
    644  1.23       tls  * XXX registered algorithm unless you drop the mutex across the calls;
    645  1.23       tls  * XXX you can't take it recursively.
    646   1.1  jonathan  */
    647   1.1  jonathan int
    648   1.1  jonathan crypto_unregister_all(u_int32_t driverid)
    649   1.1  jonathan {
    650  1.23       tls 	int i, err;
    651   1.1  jonathan 	u_int32_t ses;
    652   1.1  jonathan 	struct cryptocap *cap;
    653   1.1  jonathan 
    654  1.40  drochner 	mutex_enter(&crypto_mtx);
    655   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    656   1.1  jonathan 	if (cap != NULL) {
    657   1.1  jonathan 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    658   1.1  jonathan 			cap->cc_alg[i] = 0;
    659   1.1  jonathan 			cap->cc_max_op_len[i] = 0;
    660   1.1  jonathan 		}
    661   1.1  jonathan 		ses = cap->cc_sessions;
    662  1.31    cegger 		memset(cap, 0, sizeof(struct cryptocap));
    663   1.1  jonathan 		if (ses != 0) {
    664   1.1  jonathan 			/*
    665   1.1  jonathan 			 * If there are pending sessions, just mark as invalid.
    666   1.1  jonathan 			 */
    667   1.1  jonathan 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    668   1.1  jonathan 			cap->cc_sessions = ses;
    669   1.1  jonathan 		}
    670   1.1  jonathan 		err = 0;
    671   1.1  jonathan 	} else
    672   1.1  jonathan 		err = EINVAL;
    673   1.1  jonathan 
    674  1.40  drochner 	mutex_exit(&crypto_mtx);
    675   1.1  jonathan 	return err;
    676   1.1  jonathan }
    677   1.1  jonathan 
    678   1.1  jonathan /*
    679   1.1  jonathan  * Clear blockage on a driver.  The what parameter indicates whether
    680   1.1  jonathan  * the driver is now ready for cryptop's and/or cryptokop's.
    681   1.1  jonathan  */
    682   1.1  jonathan int
    683   1.1  jonathan crypto_unblock(u_int32_t driverid, int what)
    684   1.1  jonathan {
    685   1.1  jonathan 	struct cryptocap *cap;
    686  1.23       tls 	int needwakeup, err;
    687   1.1  jonathan 
    688  1.40  drochner 	mutex_spin_enter(&crypto_q_mtx);
    689   1.1  jonathan 	cap = crypto_checkdriver(driverid);
    690   1.1  jonathan 	if (cap != NULL) {
    691   1.1  jonathan 		needwakeup = 0;
    692   1.1  jonathan 		if (what & CRYPTO_SYMQ) {
    693   1.1  jonathan 			needwakeup |= cap->cc_qblocked;
    694   1.1  jonathan 			cap->cc_qblocked = 0;
    695   1.1  jonathan 		}
    696   1.1  jonathan 		if (what & CRYPTO_ASYMQ) {
    697   1.1  jonathan 			needwakeup |= cap->cc_kqblocked;
    698   1.1  jonathan 			cap->cc_kqblocked = 0;
    699   1.1  jonathan 		}
    700  1.24       tls 		err = 0;
    701  1.24       tls 		if (needwakeup)
    702   1.1  jonathan 			setsoftcrypto(softintr_cookie);
    703  1.40  drochner 		mutex_spin_exit(&crypto_q_mtx);
    704  1.24       tls 	} else {
    705   1.1  jonathan 		err = EINVAL;
    706  1.40  drochner 		mutex_spin_exit(&crypto_q_mtx);
    707  1.24       tls 	}
    708   1.1  jonathan 
    709   1.1  jonathan 	return err;
    710   1.1  jonathan }
    711   1.1  jonathan 
    712   1.1  jonathan /*
    713   1.1  jonathan  * Dispatch a crypto request to a driver or queue
    714   1.1  jonathan  * it, to be processed by the kernel thread.
    715   1.1  jonathan  */
    716   1.1  jonathan int
    717   1.1  jonathan crypto_dispatch(struct cryptop *crp)
    718   1.1  jonathan {
    719  1.35  jakllsch 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
    720  1.23       tls 	int result;
    721   1.1  jonathan 
    722  1.40  drochner 	mutex_spin_enter(&crypto_q_mtx);
    723  1.41  drochner 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
    724  1.41  drochner 		crp, crp->crp_desc->crd_alg));
    725   1.1  jonathan 
    726   1.1  jonathan 	cryptostats.cs_ops++;
    727   1.1  jonathan 
    728   1.1  jonathan #ifdef CRYPTO_TIMING
    729   1.1  jonathan 	if (crypto_timing)
    730   1.1  jonathan 		nanouptime(&crp->crp_tstamp);
    731   1.1  jonathan #endif
    732   1.1  jonathan 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    733   1.1  jonathan 		struct cryptocap *cap;
    734   1.1  jonathan 		/*
    735   1.1  jonathan 		 * Caller marked the request to be processed
    736   1.1  jonathan 		 * immediately; dispatch it directly to the
    737   1.1  jonathan 		 * driver unless the driver is currently blocked.
    738   1.1  jonathan 		 */
    739   1.1  jonathan 		cap = crypto_checkdriver(hid);
    740   1.1  jonathan 		if (cap && !cap->cc_qblocked) {
    741  1.40  drochner 			mutex_spin_exit(&crypto_q_mtx);
    742   1.1  jonathan 			result = crypto_invoke(crp, 0);
    743   1.1  jonathan 			if (result == ERESTART) {
    744   1.1  jonathan 				/*
    745   1.1  jonathan 				 * The driver ran out of resources, mark the
    746   1.1  jonathan 				 * driver ``blocked'' for cryptop's and put
    747   1.1  jonathan 				 * the op on the queue.
    748   1.1  jonathan 				 */
    749  1.40  drochner 				mutex_spin_enter(&crypto_q_mtx);
    750   1.1  jonathan 				crypto_drivers[hid].cc_qblocked = 1;
    751   1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    752   1.1  jonathan 				cryptostats.cs_blocks++;
    753  1.40  drochner 				mutex_spin_exit(&crypto_q_mtx);
    754   1.1  jonathan 			}
    755  1.23       tls 			goto out_released;
    756   1.1  jonathan 		} else {
    757   1.1  jonathan 			/*
    758   1.1  jonathan 			 * The driver is blocked, just queue the op until
    759   1.1  jonathan 			 * it unblocks and the swi thread gets kicked.
    760   1.1  jonathan 			 */
    761   1.1  jonathan 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    762   1.1  jonathan 			result = 0;
    763   1.1  jonathan 		}
    764   1.1  jonathan 	} else {
    765   1.1  jonathan 		int wasempty = TAILQ_EMPTY(&crp_q);
    766   1.1  jonathan 		/*
    767   1.1  jonathan 		 * Caller marked the request as ``ok to delay'';
    768   1.1  jonathan 		 * queue it for the swi thread.  This is desirable
    769   1.1  jonathan 		 * when the operation is low priority and/or suitable
    770   1.1  jonathan 		 * for batching.
    771   1.1  jonathan 		 */
    772   1.1  jonathan 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    773   1.1  jonathan 		if (wasempty) {
    774   1.1  jonathan 			setsoftcrypto(softintr_cookie);
    775  1.40  drochner 			mutex_spin_exit(&crypto_q_mtx);
    776  1.23       tls 			result = 0;
    777  1.23       tls 			goto out_released;
    778   1.1  jonathan 		}
    779   1.1  jonathan 
    780   1.1  jonathan 		result = 0;
    781   1.1  jonathan 	}
    782   1.1  jonathan 
    783  1.40  drochner 	mutex_spin_exit(&crypto_q_mtx);
    784  1.23       tls out_released:
    785   1.1  jonathan 	return result;
    786   1.1  jonathan }
    787   1.1  jonathan 
    788   1.1  jonathan /*
    789   1.1  jonathan  * Add an asymetric crypto request to a queue,
    790   1.1  jonathan  * to be processed by the kernel thread.
    791   1.1  jonathan  */
    792   1.1  jonathan int
    793   1.1  jonathan crypto_kdispatch(struct cryptkop *krp)
    794   1.1  jonathan {
    795   1.1  jonathan 	struct cryptocap *cap;
    796  1.23       tls 	int result;
    797   1.1  jonathan 
    798  1.40  drochner 	mutex_spin_enter(&crypto_q_mtx);
    799   1.1  jonathan 	cryptostats.cs_kops++;
    800   1.1  jonathan 
    801   1.1  jonathan 	cap = crypto_checkdriver(krp->krp_hid);
    802   1.1  jonathan 	if (cap && !cap->cc_kqblocked) {
    803  1.40  drochner 		mutex_spin_exit(&crypto_q_mtx);
    804   1.1  jonathan 		result = crypto_kinvoke(krp, 0);
    805   1.1  jonathan 		if (result == ERESTART) {
    806   1.1  jonathan 			/*
    807   1.1  jonathan 			 * The driver ran out of resources, mark the
    808   1.1  jonathan 			 * driver ``blocked'' for cryptop's and put
    809   1.1  jonathan 			 * the op on the queue.
    810   1.1  jonathan 			 */
    811  1.40  drochner 			mutex_spin_enter(&crypto_q_mtx);
    812   1.1  jonathan 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    813   1.1  jonathan 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    814   1.1  jonathan 			cryptostats.cs_kblocks++;
    815  1.40  drochner 			mutex_spin_exit(&crypto_q_mtx);
    816   1.1  jonathan 		}
    817   1.1  jonathan 	} else {
    818   1.1  jonathan 		/*
    819   1.1  jonathan 		 * The driver is blocked, just queue the op until
    820   1.1  jonathan 		 * it unblocks and the swi thread gets kicked.
    821   1.1  jonathan 		 */
    822   1.1  jonathan 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    823   1.1  jonathan 		result = 0;
    824  1.40  drochner 		mutex_spin_exit(&crypto_q_mtx);
    825   1.1  jonathan 	}
    826   1.1  jonathan 
    827   1.1  jonathan 	return result;
    828   1.1  jonathan }
    829   1.1  jonathan 
    830   1.1  jonathan /*
    831   1.1  jonathan  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    832   1.1  jonathan  */
    833   1.1  jonathan static int
    834   1.1  jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
    835   1.1  jonathan {
    836   1.1  jonathan 	u_int32_t hid;
    837   1.1  jonathan 	int error;
    838   1.1  jonathan 
    839   1.1  jonathan 	/* Sanity checks. */
    840   1.1  jonathan 	if (krp == NULL)
    841   1.1  jonathan 		return EINVAL;
    842   1.1  jonathan 	if (krp->krp_callback == NULL) {
    843  1.30    darran 		cv_destroy(&krp->krp_cv);
    844  1.23       tls 		pool_put(&cryptkop_pool, krp);
    845   1.1  jonathan 		return EINVAL;
    846   1.1  jonathan 	}
    847   1.1  jonathan 
    848  1.40  drochner 	mutex_enter(&crypto_mtx);
    849   1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    850   1.1  jonathan 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    851   1.1  jonathan 		    crypto_devallowsoft == 0)
    852   1.1  jonathan 			continue;
    853   1.1  jonathan 		if (crypto_drivers[hid].cc_kprocess == NULL)
    854   1.1  jonathan 			continue;
    855   1.1  jonathan 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    856   1.1  jonathan 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    857   1.1  jonathan 			continue;
    858   1.1  jonathan 		break;
    859   1.1  jonathan 	}
    860   1.1  jonathan 	if (hid < crypto_drivers_num) {
    861  1.37  christos 		int (*process)(void *, struct cryptkop *, int);
    862  1.37  christos 		void *arg;
    863  1.37  christos 
    864  1.37  christos 		process = crypto_drivers[hid].cc_kprocess;
    865  1.37  christos 		arg = crypto_drivers[hid].cc_karg;
    866  1.40  drochner 		mutex_exit(&crypto_mtx);
    867   1.1  jonathan 		krp->krp_hid = hid;
    868  1.37  christos 		error = (*process)(arg, krp, hint);
    869   1.1  jonathan 	} else {
    870  1.40  drochner 		mutex_exit(&crypto_mtx);
    871   1.1  jonathan 		error = ENODEV;
    872   1.1  jonathan 	}
    873   1.1  jonathan 
    874   1.1  jonathan 	if (error) {
    875   1.1  jonathan 		krp->krp_status = error;
    876   1.1  jonathan 		crypto_kdone(krp);
    877   1.1  jonathan 	}
    878   1.1  jonathan 	return 0;
    879   1.1  jonathan }
    880   1.1  jonathan 
    881   1.1  jonathan #ifdef CRYPTO_TIMING
    882   1.1  jonathan static void
    883   1.1  jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    884   1.1  jonathan {
    885   1.1  jonathan 	struct timespec now, t;
    886   1.1  jonathan 
    887   1.1  jonathan 	nanouptime(&now);
    888   1.1  jonathan 	t.tv_sec = now.tv_sec - tv->tv_sec;
    889   1.1  jonathan 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    890   1.1  jonathan 	if (t.tv_nsec < 0) {
    891   1.1  jonathan 		t.tv_sec--;
    892   1.1  jonathan 		t.tv_nsec += 1000000000;
    893   1.1  jonathan 	}
    894   1.1  jonathan 	timespecadd(&ts->acc, &t, &t);
    895   1.1  jonathan 	if (timespeccmp(&t, &ts->min, <))
    896   1.1  jonathan 		ts->min = t;
    897   1.1  jonathan 	if (timespeccmp(&t, &ts->max, >))
    898   1.1  jonathan 		ts->max = t;
    899   1.1  jonathan 	ts->count++;
    900   1.1  jonathan 
    901   1.1  jonathan 	*tv = now;
    902   1.1  jonathan }
    903   1.1  jonathan #endif
    904   1.1  jonathan 
    905   1.1  jonathan /*
    906   1.1  jonathan  * Dispatch a crypto request to the appropriate crypto devices.
    907   1.1  jonathan  */
    908   1.1  jonathan static int
    909   1.1  jonathan crypto_invoke(struct cryptop *crp, int hint)
    910   1.1  jonathan {
    911   1.1  jonathan 	u_int32_t hid;
    912   1.1  jonathan 
    913   1.1  jonathan #ifdef CRYPTO_TIMING
    914   1.1  jonathan 	if (crypto_timing)
    915   1.1  jonathan 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    916   1.1  jonathan #endif
    917   1.1  jonathan 	/* Sanity checks. */
    918   1.1  jonathan 	if (crp == NULL)
    919   1.1  jonathan 		return EINVAL;
    920   1.1  jonathan 	if (crp->crp_callback == NULL) {
    921   1.1  jonathan 		return EINVAL;
    922   1.1  jonathan 	}
    923   1.1  jonathan 	if (crp->crp_desc == NULL) {
    924   1.1  jonathan 		crp->crp_etype = EINVAL;
    925   1.1  jonathan 		crypto_done(crp);
    926   1.1  jonathan 		return 0;
    927   1.1  jonathan 	}
    928   1.1  jonathan 
    929  1.35  jakllsch 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    930  1.37  christos 
    931   1.1  jonathan 	if (hid < crypto_drivers_num) {
    932  1.37  christos 		int (*process)(void *, struct cryptop *, int);
    933  1.37  christos 		void *arg;
    934  1.37  christos 
    935  1.40  drochner 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
    936  1.40  drochner 			mutex_exit(&crypto_mtx);
    937   1.1  jonathan 			crypto_freesession(crp->crp_sid);
    938  1.40  drochner 			mutex_enter(&crypto_mtx);
    939  1.40  drochner 		}
    940   1.1  jonathan 		process = crypto_drivers[hid].cc_process;
    941  1.37  christos 		arg = crypto_drivers[hid].cc_arg;
    942  1.37  christos 
    943  1.37  christos 		/*
    944  1.37  christos 		 * Invoke the driver to process the request.
    945  1.37  christos 		 */
    946  1.37  christos 		DPRINTF(("calling process for %p\n", crp));
    947  1.37  christos 		return (*process)(arg, crp, hint);
    948   1.1  jonathan 	} else {
    949   1.1  jonathan 		struct cryptodesc *crd;
    950  1.16       mrg 		u_int64_t nid = 0;
    951   1.1  jonathan 
    952   1.1  jonathan 		/*
    953   1.1  jonathan 		 * Driver has unregistered; migrate the session and return
    954   1.1  jonathan 		 * an error to the caller so they'll resubmit the op.
    955   1.1  jonathan 		 */
    956   1.1  jonathan 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    957   1.1  jonathan 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    958   1.1  jonathan 
    959   1.1  jonathan 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    960   1.1  jonathan 			crp->crp_sid = nid;
    961   1.1  jonathan 
    962   1.1  jonathan 		crp->crp_etype = EAGAIN;
    963  1.23       tls 
    964   1.1  jonathan 		crypto_done(crp);
    965   1.1  jonathan 		return 0;
    966   1.1  jonathan 	}
    967   1.1  jonathan }
    968   1.1  jonathan 
    969   1.1  jonathan /*
    970   1.1  jonathan  * Release a set of crypto descriptors.
    971   1.1  jonathan  */
    972   1.1  jonathan void
    973   1.1  jonathan crypto_freereq(struct cryptop *crp)
    974   1.1  jonathan {
    975   1.1  jonathan 	struct cryptodesc *crd;
    976   1.1  jonathan 
    977   1.1  jonathan 	if (crp == NULL)
    978   1.1  jonathan 		return;
    979  1.35  jakllsch 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
    980  1.35  jakllsch 		CRYPTO_SESID2LID(crp->crp_sid), crp));
    981   1.1  jonathan 
    982  1.30    darran 	/* sanity check */
    983  1.30    darran 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
    984  1.30    darran 		panic("crypto_freereq() freeing crp on RETQ\n");
    985  1.30    darran 	}
    986  1.30    darran 
    987   1.1  jonathan 	while ((crd = crp->crp_desc) != NULL) {
    988   1.1  jonathan 		crp->crp_desc = crd->crd_next;
    989   1.1  jonathan 		pool_put(&cryptodesc_pool, crd);
    990   1.1  jonathan 	}
    991   1.1  jonathan 	pool_put(&cryptop_pool, crp);
    992   1.1  jonathan }
    993   1.1  jonathan 
    994   1.1  jonathan /*
    995   1.1  jonathan  * Acquire a set of crypto descriptors.
    996   1.1  jonathan  */
    997   1.1  jonathan struct cryptop *
    998   1.1  jonathan crypto_getreq(int num)
    999   1.1  jonathan {
   1000   1.1  jonathan 	struct cryptodesc *crd;
   1001   1.1  jonathan 	struct cryptop *crp;
   1002   1.1  jonathan 
   1003   1.1  jonathan 	crp = pool_get(&cryptop_pool, 0);
   1004   1.1  jonathan 	if (crp == NULL) {
   1005   1.1  jonathan 		return NULL;
   1006   1.1  jonathan 	}
   1007  1.31    cegger 	memset(crp, 0, sizeof(struct cryptop));
   1008   1.1  jonathan 
   1009   1.1  jonathan 	while (num--) {
   1010   1.1  jonathan 		crd = pool_get(&cryptodesc_pool, 0);
   1011   1.1  jonathan 		if (crd == NULL) {
   1012   1.1  jonathan 			crypto_freereq(crp);
   1013   1.1  jonathan 			return NULL;
   1014   1.1  jonathan 		}
   1015   1.1  jonathan 
   1016  1.31    cegger 		memset(crd, 0, sizeof(struct cryptodesc));
   1017   1.1  jonathan 		crd->crd_next = crp->crp_desc;
   1018   1.1  jonathan 		crp->crp_desc = crd;
   1019   1.1  jonathan 	}
   1020   1.1  jonathan 
   1021   1.1  jonathan 	return crp;
   1022   1.1  jonathan }
   1023   1.1  jonathan 
   1024   1.1  jonathan /*
   1025   1.1  jonathan  * Invoke the callback on behalf of the driver.
   1026   1.1  jonathan  */
   1027   1.1  jonathan void
   1028   1.1  jonathan crypto_done(struct cryptop *crp)
   1029   1.1  jonathan {
   1030  1.23       tls 	int wasempty;
   1031  1.23       tls 
   1032   1.1  jonathan 	if (crp->crp_etype != 0)
   1033   1.1  jonathan 		cryptostats.cs_errs++;
   1034   1.1  jonathan #ifdef CRYPTO_TIMING
   1035   1.1  jonathan 	if (crypto_timing)
   1036   1.1  jonathan 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1037   1.1  jonathan #endif
   1038  1.35  jakllsch 	DPRINTF(("crypto_done[%u]: crp %p\n",
   1039  1.35  jakllsch 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1040  1.27       tls 
   1041   1.1  jonathan 	/*
   1042  1.23       tls 	 * Normal case; queue the callback for the thread.
   1043  1.23       tls 	 *
   1044  1.23       tls 	 * The return queue is manipulated by the swi thread
   1045  1.23       tls 	 * and, potentially, by crypto device drivers calling
   1046  1.23       tls 	 * back to mark operations completed.  Thus we need
   1047  1.23       tls 	 * to mask both while manipulating the return queue.
   1048   1.1  jonathan 	 */
   1049  1.27       tls   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1050  1.27       tls 		/*
   1051  1.27       tls 	 	* Do the callback directly.  This is ok when the
   1052  1.27       tls   	 	* callback routine does very little (e.g. the
   1053  1.27       tls 	 	* /dev/crypto callback method just does a wakeup).
   1054  1.27       tls 	 	*/
   1055  1.40  drochner 		mutex_spin_enter(&crypto_ret_q_mtx);
   1056  1.30    darran 		crp->crp_flags |= CRYPTO_F_DONE;
   1057  1.40  drochner 		mutex_spin_exit(&crypto_ret_q_mtx);
   1058  1.30    darran 
   1059  1.27       tls #ifdef CRYPTO_TIMING
   1060  1.27       tls 		if (crypto_timing) {
   1061  1.27       tls 			/*
   1062  1.27       tls 		 	* NB: We must copy the timestamp before
   1063  1.27       tls 		 	* doing the callback as the cryptop is
   1064  1.27       tls 		 	* likely to be reclaimed.
   1065  1.27       tls 		 	*/
   1066  1.27       tls 			struct timespec t = crp->crp_tstamp;
   1067  1.27       tls 			crypto_tstat(&cryptostats.cs_cb, &t);
   1068  1.27       tls 			crp->crp_callback(crp);
   1069  1.27       tls 			crypto_tstat(&cryptostats.cs_finis, &t);
   1070  1.27       tls 		} else
   1071  1.27       tls #endif
   1072  1.27       tls 		crp->crp_callback(crp);
   1073  1.27       tls 	} else {
   1074  1.40  drochner 		mutex_spin_enter(&crypto_ret_q_mtx);
   1075  1.30    darran 		crp->crp_flags |= CRYPTO_F_DONE;
   1076  1.30    darran 
   1077  1.30    darran 		if (crp->crp_flags & CRYPTO_F_USER) {
   1078  1.30    darran 			/* the request has completed while
   1079  1.30    darran 			 * running in the user context
   1080  1.30    darran 			 * so don't queue it - the user
   1081  1.30    darran 			 * thread won't sleep when it sees
   1082  1.30    darran 			 * the CRYPTO_F_DONE flag.
   1083  1.30    darran 			 * This is an optimization to avoid
   1084  1.30    darran 			 * unecessary context switches.
   1085  1.30    darran 			 */
   1086  1.35  jakllsch 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
   1087  1.35  jakllsch 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1088  1.30    darran 		} else {
   1089  1.30    darran 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1090  1.35  jakllsch 			DPRINTF(("crypto_done[%u]: queueing %p\n",
   1091  1.35  jakllsch 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1092  1.30    darran 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1093  1.30    darran 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1094  1.30    darran 			if (wasempty) {
   1095  1.35  jakllsch 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
   1096  1.35  jakllsch 					"crp %p hit empty queue\n.",
   1097  1.35  jakllsch 					CRYPTO_SESID2LID(crp->crp_sid), crp));
   1098  1.30    darran 				cv_signal(&cryptoret_cv);
   1099  1.30    darran 			}
   1100  1.27       tls 		}
   1101  1.40  drochner 		mutex_spin_exit(&crypto_ret_q_mtx);
   1102   1.1  jonathan 	}
   1103   1.1  jonathan }
   1104   1.1  jonathan 
   1105   1.1  jonathan /*
   1106   1.1  jonathan  * Invoke the callback on behalf of the driver.
   1107   1.1  jonathan  */
   1108   1.1  jonathan void
   1109   1.1  jonathan crypto_kdone(struct cryptkop *krp)
   1110   1.1  jonathan {
   1111  1.23       tls 	int wasempty;
   1112   1.1  jonathan 
   1113   1.1  jonathan 	if (krp->krp_status != 0)
   1114   1.1  jonathan 		cryptostats.cs_kerrs++;
   1115  1.27       tls 
   1116  1.27       tls 	krp->krp_flags |= CRYPTO_F_DONE;
   1117  1.27       tls 
   1118   1.1  jonathan 	/*
   1119   1.1  jonathan 	 * The return queue is manipulated by the swi thread
   1120   1.1  jonathan 	 * and, potentially, by crypto device drivers calling
   1121   1.1  jonathan 	 * back to mark operations completed.  Thus we need
   1122   1.1  jonathan 	 * to mask both while manipulating the return queue.
   1123   1.1  jonathan 	 */
   1124  1.27       tls 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1125  1.27       tls 		krp->krp_callback(krp);
   1126  1.27       tls 	} else {
   1127  1.40  drochner 		mutex_spin_enter(&crypto_ret_q_mtx);
   1128  1.27       tls 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1129  1.27       tls 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1130  1.27       tls 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1131  1.27       tls 		if (wasempty)
   1132  1.27       tls 			cv_signal(&cryptoret_cv);
   1133  1.40  drochner 		mutex_spin_exit(&crypto_ret_q_mtx);
   1134  1.27       tls 	}
   1135   1.1  jonathan }
   1136   1.1  jonathan 
   1137   1.1  jonathan int
   1138   1.1  jonathan crypto_getfeat(int *featp)
   1139   1.1  jonathan {
   1140   1.1  jonathan 	int hid, kalg, feat = 0;
   1141   1.1  jonathan 
   1142  1.40  drochner 	mutex_enter(&crypto_mtx);
   1143   1.1  jonathan 
   1144   1.1  jonathan 	if (crypto_userasymcrypto == 0)
   1145  1.10     perry 		goto out;
   1146   1.1  jonathan 
   1147   1.1  jonathan 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1148   1.1  jonathan 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1149   1.7  jonathan 		    crypto_devallowsoft == 0) {
   1150   1.1  jonathan 			continue;
   1151   1.1  jonathan 		}
   1152   1.1  jonathan 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1153   1.1  jonathan 			continue;
   1154   1.1  jonathan 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1155   1.1  jonathan 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1156   1.1  jonathan 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1157   1.1  jonathan 				feat |=  1 << kalg;
   1158   1.1  jonathan 	}
   1159   1.1  jonathan out:
   1160  1.40  drochner 	mutex_exit(&crypto_mtx);
   1161   1.1  jonathan 	*featp = feat;
   1162   1.1  jonathan 	return (0);
   1163   1.1  jonathan }
   1164   1.1  jonathan 
   1165   1.1  jonathan /*
   1166   1.1  jonathan  * Software interrupt thread to dispatch crypto requests.
   1167   1.1  jonathan  */
   1168   1.1  jonathan static void
   1169   1.1  jonathan cryptointr(void)
   1170   1.1  jonathan {
   1171  1.30    darran 	struct cryptop *crp, *submit, *cnext;
   1172  1.30    darran 	struct cryptkop *krp, *knext;
   1173   1.1  jonathan 	struct cryptocap *cap;
   1174  1.23       tls 	int result, hint;
   1175   1.1  jonathan 
   1176   1.1  jonathan 	cryptostats.cs_intrs++;
   1177  1.40  drochner 	mutex_spin_enter(&crypto_q_mtx);
   1178   1.1  jonathan 	do {
   1179   1.1  jonathan 		/*
   1180   1.1  jonathan 		 * Find the first element in the queue that can be
   1181   1.1  jonathan 		 * processed and look-ahead to see if multiple ops
   1182   1.1  jonathan 		 * are ready for the same driver.
   1183   1.1  jonathan 		 */
   1184   1.1  jonathan 		submit = NULL;
   1185   1.1  jonathan 		hint = 0;
   1186  1.30    darran 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1187  1.35  jakllsch 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1188   1.1  jonathan 			cap = crypto_checkdriver(hid);
   1189   1.1  jonathan 			if (cap == NULL || cap->cc_process == NULL) {
   1190   1.1  jonathan 				/* Op needs to be migrated, process it. */
   1191   1.1  jonathan 				if (submit == NULL)
   1192   1.1  jonathan 					submit = crp;
   1193   1.1  jonathan 				break;
   1194   1.1  jonathan 			}
   1195   1.1  jonathan 			if (!cap->cc_qblocked) {
   1196   1.1  jonathan 				if (submit != NULL) {
   1197   1.1  jonathan 					/*
   1198   1.1  jonathan 					 * We stop on finding another op,
   1199   1.1  jonathan 					 * regardless whether its for the same
   1200   1.1  jonathan 					 * driver or not.  We could keep
   1201   1.1  jonathan 					 * searching the queue but it might be
   1202   1.1  jonathan 					 * better to just use a per-driver
   1203   1.1  jonathan 					 * queue instead.
   1204   1.1  jonathan 					 */
   1205  1.35  jakllsch 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1206  1.35  jakllsch 					    == hid)
   1207   1.1  jonathan 						hint = CRYPTO_HINT_MORE;
   1208   1.1  jonathan 					break;
   1209   1.1  jonathan 				} else {
   1210   1.1  jonathan 					submit = crp;
   1211   1.1  jonathan 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1212   1.1  jonathan 						break;
   1213   1.1  jonathan 					/* keep scanning for more are q'd */
   1214   1.1  jonathan 				}
   1215   1.1  jonathan 			}
   1216   1.1  jonathan 		}
   1217   1.1  jonathan 		if (submit != NULL) {
   1218   1.1  jonathan 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1219  1.40  drochner 			mutex_spin_exit(&crypto_q_mtx);
   1220   1.1  jonathan 			result = crypto_invoke(submit, hint);
   1221  1.23       tls 			/* we must take here as the TAILQ op or kinvoke
   1222  1.23       tls 			   may need this mutex below.  sigh. */
   1223  1.40  drochner 			mutex_spin_enter(&crypto_q_mtx);
   1224   1.1  jonathan 			if (result == ERESTART) {
   1225   1.1  jonathan 				/*
   1226   1.1  jonathan 				 * The driver ran out of resources, mark the
   1227   1.1  jonathan 				 * driver ``blocked'' for cryptop's and put
   1228   1.1  jonathan 				 * the request back in the queue.  It would
   1229   1.1  jonathan 				 * best to put the request back where we got
   1230   1.1  jonathan 				 * it but that's hard so for now we put it
   1231   1.1  jonathan 				 * at the front.  This should be ok; putting
   1232   1.1  jonathan 				 * it at the end does not work.
   1233   1.1  jonathan 				 */
   1234   1.1  jonathan 				/* XXX validate sid again? */
   1235  1.35  jakllsch 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1236   1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1237   1.1  jonathan 				cryptostats.cs_blocks++;
   1238   1.1  jonathan 			}
   1239   1.1  jonathan 		}
   1240   1.1  jonathan 
   1241   1.1  jonathan 		/* As above, but for key ops */
   1242  1.30    darran 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1243   1.1  jonathan 			cap = crypto_checkdriver(krp->krp_hid);
   1244   1.1  jonathan 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1245   1.1  jonathan 				/* Op needs to be migrated, process it. */
   1246   1.1  jonathan 				break;
   1247   1.1  jonathan 			}
   1248   1.1  jonathan 			if (!cap->cc_kqblocked)
   1249   1.1  jonathan 				break;
   1250   1.1  jonathan 		}
   1251   1.1  jonathan 		if (krp != NULL) {
   1252   1.1  jonathan 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1253  1.40  drochner 			mutex_spin_exit(&crypto_q_mtx);
   1254   1.1  jonathan 			result = crypto_kinvoke(krp, 0);
   1255  1.23       tls 			/* the next iteration will want the mutex. :-/ */
   1256  1.40  drochner 			mutex_spin_enter(&crypto_q_mtx);
   1257   1.1  jonathan 			if (result == ERESTART) {
   1258   1.1  jonathan 				/*
   1259   1.1  jonathan 				 * The driver ran out of resources, mark the
   1260   1.1  jonathan 				 * driver ``blocked'' for cryptkop's and put
   1261   1.1  jonathan 				 * the request back in the queue.  It would
   1262   1.1  jonathan 				 * best to put the request back where we got
   1263   1.1  jonathan 				 * it but that's hard so for now we put it
   1264   1.1  jonathan 				 * at the front.  This should be ok; putting
   1265   1.1  jonathan 				 * it at the end does not work.
   1266   1.1  jonathan 				 */
   1267   1.1  jonathan 				/* XXX validate sid again? */
   1268   1.1  jonathan 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1269   1.1  jonathan 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1270   1.1  jonathan 				cryptostats.cs_kblocks++;
   1271   1.1  jonathan 			}
   1272   1.1  jonathan 		}
   1273   1.1  jonathan 	} while (submit != NULL || krp != NULL);
   1274  1.40  drochner 	mutex_spin_exit(&crypto_q_mtx);
   1275   1.1  jonathan }
   1276   1.1  jonathan 
   1277   1.1  jonathan /*
   1278   1.1  jonathan  * Kernel thread to do callbacks.
   1279   1.1  jonathan  */
   1280   1.1  jonathan static void
   1281   1.1  jonathan cryptoret(void)
   1282   1.1  jonathan {
   1283   1.1  jonathan 	struct cryptop *crp;
   1284   1.1  jonathan 	struct cryptkop *krp;
   1285   1.1  jonathan 
   1286  1.40  drochner 	mutex_spin_enter(&crypto_ret_q_mtx);
   1287   1.1  jonathan 	for (;;) {
   1288   1.1  jonathan 		crp = TAILQ_FIRST(&crp_ret_q);
   1289  1.23       tls 		if (crp != NULL) {
   1290   1.1  jonathan 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1291  1.23       tls 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1292  1.23       tls 		}
   1293   1.1  jonathan 		krp = TAILQ_FIRST(&crp_ret_kq);
   1294  1.23       tls 		if (krp != NULL) {
   1295   1.1  jonathan 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1296  1.23       tls 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1297  1.23       tls 		}
   1298   1.1  jonathan 
   1299  1.23       tls 		/* drop before calling any callbacks. */
   1300  1.26        ad 		if (crp == NULL && krp == NULL) {
   1301  1.26        ad 			cryptostats.cs_rets++;
   1302  1.40  drochner 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1303  1.26        ad 			continue;
   1304  1.26        ad 		}
   1305  1.26        ad 
   1306  1.40  drochner 		mutex_spin_exit(&crypto_ret_q_mtx);
   1307  1.26        ad 
   1308  1.26        ad 		if (crp != NULL) {
   1309   1.1  jonathan #ifdef CRYPTO_TIMING
   1310  1.26        ad 			if (crypto_timing) {
   1311  1.26        ad 				/*
   1312  1.26        ad 				 * NB: We must copy the timestamp before
   1313  1.26        ad 				 * doing the callback as the cryptop is
   1314  1.26        ad 				 * likely to be reclaimed.
   1315  1.26        ad 				 */
   1316  1.26        ad 				struct timespec t = crp->crp_tstamp;
   1317  1.26        ad 				crypto_tstat(&cryptostats.cs_cb, &t);
   1318  1.26        ad 				crp->crp_callback(crp);
   1319  1.26        ad 				crypto_tstat(&cryptostats.cs_finis, &t);
   1320  1.26        ad 			} else
   1321   1.1  jonathan #endif
   1322  1.26        ad 			{
   1323  1.26        ad 				crp->crp_callback(crp);
   1324   1.1  jonathan 			}
   1325   1.1  jonathan 		}
   1326  1.26        ad 		if (krp != NULL)
   1327  1.26        ad 			krp->krp_callback(krp);
   1328  1.26        ad 
   1329  1.40  drochner 		mutex_spin_enter(&crypto_ret_q_mtx);
   1330   1.1  jonathan 	}
   1331   1.1  jonathan }
   1332