crypto.c revision 1.41 1 1.41 drochner /* $NetBSD: crypto.c,v 1.41 2011/06/09 14:41:24 drochner Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.27 tls /*-
6 1.27 tls * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 1.27 tls * All rights reserved.
8 1.27 tls *
9 1.27 tls * This code is derived from software contributed to The NetBSD Foundation
10 1.27 tls * by Coyote Point Systems, Inc.
11 1.27 tls *
12 1.27 tls * Redistribution and use in source and binary forms, with or without
13 1.27 tls * modification, are permitted provided that the following conditions
14 1.27 tls * are met:
15 1.27 tls * 1. Redistributions of source code must retain the above copyright
16 1.27 tls * notice, this list of conditions and the following disclaimer.
17 1.27 tls * 2. Redistributions in binary form must reproduce the above copyright
18 1.27 tls * notice, this list of conditions and the following disclaimer in the
19 1.27 tls * documentation and/or other materials provided with the distribution.
20 1.27 tls *
21 1.27 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.27 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.27 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.27 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.27 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.27 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.27 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.27 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.27 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.27 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.27 tls * POSSIBILITY OF SUCH DAMAGE.
32 1.27 tls */
33 1.27 tls
34 1.1 jonathan /*
35 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 1.1 jonathan *
37 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 1.1 jonathan * supported the development of this code.
40 1.1 jonathan *
41 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 1.1 jonathan *
43 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
44 1.1 jonathan * is hereby granted, provided that this entire notice is included in
45 1.1 jonathan * all source code copies of any software which is or includes a copy or
46 1.1 jonathan * modification of this software.
47 1.1 jonathan *
48 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 1.1 jonathan * PURPOSE.
53 1.1 jonathan */
54 1.1 jonathan
55 1.1 jonathan #include <sys/cdefs.h>
56 1.41 drochner __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.41 2011/06/09 14:41:24 drochner Exp $");
57 1.1 jonathan
58 1.1 jonathan #include <sys/param.h>
59 1.1 jonathan #include <sys/reboot.h>
60 1.1 jonathan #include <sys/systm.h>
61 1.1 jonathan #include <sys/malloc.h>
62 1.1 jonathan #include <sys/proc.h>
63 1.1 jonathan #include <sys/pool.h>
64 1.1 jonathan #include <sys/kthread.h>
65 1.11 thorpej #include <sys/once.h>
66 1.13 christos #include <sys/sysctl.h>
67 1.21 ad #include <sys/intr.h>
68 1.1 jonathan
69 1.23 tls #include "opt_ocf.h"
70 1.21 ad #include <opencrypto/cryptodev.h>
71 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
72 1.1 jonathan
73 1.40 drochner kmutex_t crypto_q_mtx;
74 1.40 drochner kmutex_t crypto_ret_q_mtx;
75 1.23 tls kcondvar_t cryptoret_cv;
76 1.23 tls kmutex_t crypto_mtx;
77 1.23 tls
78 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
79 1.1 jonathan #define SWI_CRYPTO 17
80 1.1 jonathan #define register_swi(lvl, fn) \
81 1.38 drochner softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
82 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
83 1.21 ad #define setsoftcrypto(x) softint_schedule(x)
84 1.1 jonathan
85 1.30 darran int crypto_ret_q_check(struct cryptop *);
86 1.30 darran
87 1.1 jonathan /*
88 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
89 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
90 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
91 1.1 jonathan */
92 1.11 thorpej static struct cryptocap *crypto_drivers;
93 1.11 thorpej static int crypto_drivers_num;
94 1.37 christos static void *softintr_cookie;
95 1.1 jonathan
96 1.1 jonathan /*
97 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
98 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
99 1.1 jonathan * See below for how synchronization is handled.
100 1.1 jonathan */
101 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
102 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
103 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
104 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
105 1.1 jonathan
106 1.1 jonathan /*
107 1.1 jonathan * There are two queues for processing completed crypto requests; one
108 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
109 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
110 1.1 jonathan * for how synchronization is handled.
111 1.1 jonathan */
112 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
113 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
114 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
115 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
116 1.1 jonathan
117 1.1 jonathan /*
118 1.23 tls * XXX these functions are ghastly hacks for when the submission
119 1.23 tls * XXX routines discover a request that was not CBIMM is already
120 1.23 tls * XXX done, and must be yanked from the retq (where _done) put it
121 1.23 tls * XXX as cryptoret won't get the chance. The queue is walked backwards
122 1.23 tls * XXX as the request is generally the last one queued.
123 1.23 tls *
124 1.23 tls * call with the lock held, or else.
125 1.23 tls */
126 1.23 tls int
127 1.23 tls crypto_ret_q_remove(struct cryptop *crp)
128 1.23 tls {
129 1.30 darran struct cryptop * acrp, *next;
130 1.23 tls
131 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
132 1.23 tls if (acrp == crp) {
133 1.23 tls TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
134 1.23 tls crp->crp_flags &= (~CRYPTO_F_ONRETQ);
135 1.23 tls return 1;
136 1.23 tls }
137 1.23 tls }
138 1.23 tls return 0;
139 1.23 tls }
140 1.23 tls
141 1.23 tls int
142 1.23 tls crypto_ret_kq_remove(struct cryptkop *krp)
143 1.23 tls {
144 1.30 darran struct cryptkop * akrp, *next;
145 1.23 tls
146 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
147 1.23 tls if (akrp == krp) {
148 1.23 tls TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
149 1.23 tls krp->krp_flags &= (~CRYPTO_F_ONRETQ);
150 1.23 tls return 1;
151 1.23 tls }
152 1.23 tls }
153 1.23 tls return 0;
154 1.23 tls }
155 1.23 tls
156 1.23 tls /*
157 1.1 jonathan * Crypto op and desciptor data structures are allocated
158 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
159 1.1 jonathan */
160 1.1 jonathan struct pool cryptop_pool;
161 1.1 jonathan struct pool cryptodesc_pool;
162 1.23 tls struct pool cryptkop_pool;
163 1.1 jonathan
164 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
165 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
166 1.10 perry /*
167 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
168 1.6 jonathan * access to hardware versus software transforms as below:
169 1.6 jonathan *
170 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
171 1.6 jonathan * transforms, always
172 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
173 1.6 jonathan * requests for non-accelerated transforms
174 1.6 jonathan * (handling the latter in software)
175 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
176 1.6 jonathan * are hardware-accelerated.
177 1.6 jonathan */
178 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
179 1.6 jonathan
180 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
181 1.13 christos {
182 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
183 1.13 christos CTLFLAG_PERMANENT,
184 1.13 christos CTLTYPE_NODE, "kern", NULL,
185 1.13 christos NULL, 0, NULL, 0,
186 1.13 christos CTL_KERN, CTL_EOL);
187 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
188 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
189 1.13 christos CTLTYPE_INT, "usercrypto",
190 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
191 1.13 christos "crypto support"),
192 1.13 christos NULL, 0, &crypto_usercrypto, 0,
193 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
194 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
195 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
196 1.13 christos CTLTYPE_INT, "userasymcrypto",
197 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
198 1.13 christos "asymmetric crypto support"),
199 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
200 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
201 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
202 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
203 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
204 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
205 1.13 christos "asymmetric crypto support"),
206 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
207 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
208 1.13 christos }
209 1.1 jonathan
210 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
211 1.1 jonathan
212 1.1 jonathan /*
213 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
214 1.1 jonathan *
215 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
216 1.1 jonathan * these come in from network protocols at spl0 (output path) or
217 1.1 jonathan * spl[,soft]net (input path).
218 1.1 jonathan *
219 1.1 jonathan * Requests are typically passed on the driver directly, but they
220 1.1 jonathan * may also be queued for processing by a software interrupt thread,
221 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
222 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
223 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
224 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
225 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
226 1.1 jonathan *
227 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
228 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
229 1.1 jonathan * driver interrupt service routine is not delayed while the callback
230 1.1 jonathan * takes place and that callbacks are delivered after a context switch
231 1.1 jonathan * (as opposed to a software interrupt that clients must block).
232 1.1 jonathan *
233 1.1 jonathan * This scheme is not intended for SMP machines.
234 1.10 perry */
235 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
236 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
237 1.20 ad static struct lwp *cryptothread;
238 1.1 jonathan static void crypto_destroy(void);
239 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
240 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
241 1.1 jonathan
242 1.1 jonathan static struct cryptostats cryptostats;
243 1.23 tls #ifdef CRYPTO_TIMING
244 1.1 jonathan static int crypto_timing = 0;
245 1.23 tls #endif
246 1.1 jonathan
247 1.12 yamt static int
248 1.11 thorpej crypto_init0(void)
249 1.1 jonathan {
250 1.1 jonathan int error;
251 1.1 jonathan
252 1.40 drochner mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
253 1.40 drochner mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
254 1.40 drochner mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
255 1.36 pgoyette cv_init(&cryptoret_cv, "crypto_w");
256 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
257 1.23 tls 0, "cryptop", NULL, IPL_NET);
258 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
259 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
260 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
261 1.23 tls 0, "cryptkop", NULL, IPL_NET);
262 1.1 jonathan
263 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
264 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
265 1.1 jonathan if (crypto_drivers == NULL) {
266 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
267 1.12 yamt return 0;
268 1.1 jonathan }
269 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
270 1.1 jonathan
271 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
272 1.25 tls error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
273 1.37 christos (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
274 1.1 jonathan if (error) {
275 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
276 1.1 jonathan error);
277 1.1 jonathan crypto_destroy();
278 1.1 jonathan }
279 1.20 ad
280 1.12 yamt return 0;
281 1.11 thorpej }
282 1.11 thorpej
283 1.11 thorpej void
284 1.11 thorpej crypto_init(void)
285 1.11 thorpej {
286 1.18 daniel static ONCE_DECL(crypto_init_once);
287 1.11 thorpej
288 1.11 thorpej RUN_ONCE(&crypto_init_once, crypto_init0);
289 1.1 jonathan }
290 1.1 jonathan
291 1.1 jonathan static void
292 1.1 jonathan crypto_destroy(void)
293 1.1 jonathan {
294 1.1 jonathan /* XXX no wait to reclaim zones */
295 1.1 jonathan if (crypto_drivers != NULL)
296 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
297 1.1 jonathan unregister_swi(SWI_CRYPTO, cryptointr);
298 1.1 jonathan }
299 1.1 jonathan
300 1.1 jonathan /*
301 1.23 tls * Create a new session. Must be called with crypto_mtx held.
302 1.1 jonathan */
303 1.1 jonathan int
304 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
305 1.1 jonathan {
306 1.1 jonathan struct cryptoini *cr;
307 1.1 jonathan u_int32_t hid, lid;
308 1.1 jonathan int err = EINVAL;
309 1.1 jonathan
310 1.40 drochner mutex_enter(&crypto_mtx);
311 1.1 jonathan
312 1.1 jonathan if (crypto_drivers == NULL)
313 1.1 jonathan goto done;
314 1.1 jonathan
315 1.1 jonathan /*
316 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
317 1.1 jonathan * first driver that supports all the algorithms we need.
318 1.1 jonathan *
319 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
320 1.1 jonathan * XXX another story altogether).
321 1.1 jonathan */
322 1.1 jonathan
323 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
324 1.1 jonathan /*
325 1.1 jonathan * If it's not initialized or has remaining sessions
326 1.1 jonathan * referencing it, skip.
327 1.1 jonathan */
328 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
329 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
330 1.1 jonathan continue;
331 1.1 jonathan
332 1.1 jonathan /* Hardware required -- ignore software drivers. */
333 1.1 jonathan if (hard > 0 &&
334 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
335 1.1 jonathan continue;
336 1.1 jonathan /* Software required -- ignore hardware drivers. */
337 1.1 jonathan if (hard < 0 &&
338 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
339 1.1 jonathan continue;
340 1.1 jonathan
341 1.1 jonathan /* See if all the algorithms are supported. */
342 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
343 1.33 darran if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
344 1.33 darran DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
345 1.1 jonathan break;
346 1.33 darran }
347 1.1 jonathan
348 1.1 jonathan if (cr == NULL) {
349 1.1 jonathan /* Ok, all algorithms are supported. */
350 1.1 jonathan
351 1.1 jonathan /*
352 1.1 jonathan * Can't do everything in one session.
353 1.1 jonathan *
354 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
355 1.1 jonathan * XXX about here.
356 1.1 jonathan */
357 1.1 jonathan
358 1.1 jonathan /* Call the driver initialization routine. */
359 1.1 jonathan lid = hid; /* Pass the driver ID. */
360 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
361 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
362 1.1 jonathan if (err == 0) {
363 1.1 jonathan (*sid) = hid;
364 1.1 jonathan (*sid) <<= 32;
365 1.1 jonathan (*sid) |= (lid & 0xffffffff);
366 1.1 jonathan crypto_drivers[hid].cc_sessions++;
367 1.1 jonathan }
368 1.1 jonathan goto done;
369 1.1 jonathan /*break;*/
370 1.1 jonathan }
371 1.1 jonathan }
372 1.1 jonathan done:
373 1.40 drochner mutex_exit(&crypto_mtx);
374 1.1 jonathan return err;
375 1.1 jonathan }
376 1.1 jonathan
377 1.1 jonathan /*
378 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
379 1.23 tls * driver). Must be called with crypto_mtx mutex held.
380 1.1 jonathan */
381 1.1 jonathan int
382 1.1 jonathan crypto_freesession(u_int64_t sid)
383 1.1 jonathan {
384 1.1 jonathan u_int32_t hid;
385 1.1 jonathan int err = 0;
386 1.1 jonathan
387 1.40 drochner mutex_enter(&crypto_mtx);
388 1.1 jonathan
389 1.1 jonathan if (crypto_drivers == NULL) {
390 1.1 jonathan err = EINVAL;
391 1.1 jonathan goto done;
392 1.1 jonathan }
393 1.1 jonathan
394 1.1 jonathan /* Determine two IDs. */
395 1.35 jakllsch hid = CRYPTO_SESID2HID(sid);
396 1.1 jonathan
397 1.1 jonathan if (hid >= crypto_drivers_num) {
398 1.1 jonathan err = ENOENT;
399 1.1 jonathan goto done;
400 1.1 jonathan }
401 1.1 jonathan
402 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
403 1.1 jonathan crypto_drivers[hid].cc_sessions--;
404 1.1 jonathan
405 1.1 jonathan /* Call the driver cleanup routine, if available. */
406 1.23 tls if (crypto_drivers[hid].cc_freesession) {
407 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
408 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
409 1.23 tls }
410 1.1 jonathan else
411 1.1 jonathan err = 0;
412 1.1 jonathan
413 1.1 jonathan /*
414 1.1 jonathan * If this was the last session of a driver marked as invalid,
415 1.1 jonathan * make the entry available for reuse.
416 1.1 jonathan */
417 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
418 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
419 1.31 cegger memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
420 1.1 jonathan
421 1.1 jonathan done:
422 1.40 drochner mutex_exit(&crypto_mtx);
423 1.1 jonathan return err;
424 1.1 jonathan }
425 1.1 jonathan
426 1.1 jonathan /*
427 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
428 1.1 jonathan * support for the algorithms they handle.
429 1.1 jonathan */
430 1.1 jonathan int32_t
431 1.1 jonathan crypto_get_driverid(u_int32_t flags)
432 1.1 jonathan {
433 1.1 jonathan struct cryptocap *newdrv;
434 1.23 tls int i;
435 1.1 jonathan
436 1.23 tls crypto_init(); /* XXX oh, this is foul! */
437 1.11 thorpej
438 1.40 drochner mutex_enter(&crypto_mtx);
439 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
440 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
441 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
442 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
443 1.1 jonathan break;
444 1.1 jonathan
445 1.1 jonathan /* Out of entries, allocate some more. */
446 1.1 jonathan if (i == crypto_drivers_num) {
447 1.1 jonathan /* Be careful about wrap-around. */
448 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
449 1.40 drochner mutex_exit(&crypto_mtx);
450 1.1 jonathan printf("crypto: driver count wraparound!\n");
451 1.1 jonathan return -1;
452 1.1 jonathan }
453 1.1 jonathan
454 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
455 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
456 1.1 jonathan if (newdrv == NULL) {
457 1.40 drochner mutex_exit(&crypto_mtx);
458 1.1 jonathan printf("crypto: no space to expand driver table!\n");
459 1.1 jonathan return -1;
460 1.1 jonathan }
461 1.1 jonathan
462 1.34 tsutsui memcpy(newdrv, crypto_drivers,
463 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
464 1.1 jonathan
465 1.1 jonathan crypto_drivers_num *= 2;
466 1.1 jonathan
467 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
468 1.1 jonathan crypto_drivers = newdrv;
469 1.1 jonathan }
470 1.1 jonathan
471 1.1 jonathan /* NB: state is zero'd on free */
472 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
473 1.1 jonathan crypto_drivers[i].cc_flags = flags;
474 1.1 jonathan
475 1.1 jonathan if (bootverbose)
476 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
477 1.1 jonathan
478 1.40 drochner mutex_exit(&crypto_mtx);
479 1.1 jonathan
480 1.1 jonathan return i;
481 1.1 jonathan }
482 1.1 jonathan
483 1.1 jonathan static struct cryptocap *
484 1.1 jonathan crypto_checkdriver(u_int32_t hid)
485 1.1 jonathan {
486 1.1 jonathan if (crypto_drivers == NULL)
487 1.1 jonathan return NULL;
488 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
489 1.1 jonathan }
490 1.1 jonathan
491 1.1 jonathan /*
492 1.1 jonathan * Register support for a key-related algorithm. This routine
493 1.1 jonathan * is called once for each algorithm supported a driver.
494 1.1 jonathan */
495 1.1 jonathan int
496 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
497 1.37 christos int (*kprocess)(void *, struct cryptkop *, int),
498 1.1 jonathan void *karg)
499 1.1 jonathan {
500 1.1 jonathan struct cryptocap *cap;
501 1.1 jonathan int err;
502 1.1 jonathan
503 1.40 drochner mutex_enter(&crypto_mtx);
504 1.1 jonathan
505 1.1 jonathan cap = crypto_checkdriver(driverid);
506 1.1 jonathan if (cap != NULL &&
507 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
508 1.1 jonathan /*
509 1.1 jonathan * XXX Do some performance testing to determine placing.
510 1.1 jonathan * XXX We probably need an auxiliary data structure that
511 1.1 jonathan * XXX describes relative performances.
512 1.1 jonathan */
513 1.1 jonathan
514 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
515 1.23 tls if (bootverbose) {
516 1.23 tls printf("crypto: driver %u registers key alg %u "
517 1.23 tls " flags %u\n",
518 1.23 tls driverid,
519 1.23 tls kalg,
520 1.23 tls flags
521 1.1 jonathan );
522 1.23 tls }
523 1.1 jonathan
524 1.1 jonathan if (cap->cc_kprocess == NULL) {
525 1.1 jonathan cap->cc_karg = karg;
526 1.1 jonathan cap->cc_kprocess = kprocess;
527 1.1 jonathan }
528 1.1 jonathan err = 0;
529 1.1 jonathan } else
530 1.1 jonathan err = EINVAL;
531 1.1 jonathan
532 1.40 drochner mutex_exit(&crypto_mtx);
533 1.1 jonathan return err;
534 1.1 jonathan }
535 1.1 jonathan
536 1.1 jonathan /*
537 1.1 jonathan * Register support for a non-key-related algorithm. This routine
538 1.1 jonathan * is called once for each such algorithm supported by a driver.
539 1.1 jonathan */
540 1.1 jonathan int
541 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
542 1.1 jonathan u_int32_t flags,
543 1.37 christos int (*newses)(void *, u_int32_t*, struct cryptoini*),
544 1.37 christos int (*freeses)(void *, u_int64_t),
545 1.37 christos int (*process)(void *, struct cryptop *, int),
546 1.1 jonathan void *arg)
547 1.1 jonathan {
548 1.1 jonathan struct cryptocap *cap;
549 1.23 tls int err;
550 1.1 jonathan
551 1.40 drochner mutex_enter(&crypto_mtx);
552 1.1 jonathan
553 1.1 jonathan cap = crypto_checkdriver(driverid);
554 1.1 jonathan /* NB: algorithms are in the range [1..max] */
555 1.1 jonathan if (cap != NULL &&
556 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
557 1.1 jonathan /*
558 1.1 jonathan * XXX Do some performance testing to determine placing.
559 1.1 jonathan * XXX We probably need an auxiliary data structure that
560 1.1 jonathan * XXX describes relative performances.
561 1.1 jonathan */
562 1.1 jonathan
563 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
564 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
565 1.23 tls if (bootverbose) {
566 1.23 tls printf("crypto: driver %u registers alg %u "
567 1.23 tls "flags %u maxoplen %u\n",
568 1.23 tls driverid,
569 1.23 tls alg,
570 1.23 tls flags,
571 1.23 tls maxoplen
572 1.1 jonathan );
573 1.23 tls }
574 1.1 jonathan
575 1.1 jonathan if (cap->cc_process == NULL) {
576 1.1 jonathan cap->cc_arg = arg;
577 1.1 jonathan cap->cc_newsession = newses;
578 1.1 jonathan cap->cc_process = process;
579 1.1 jonathan cap->cc_freesession = freeses;
580 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
581 1.1 jonathan }
582 1.1 jonathan err = 0;
583 1.1 jonathan } else
584 1.1 jonathan err = EINVAL;
585 1.1 jonathan
586 1.40 drochner mutex_exit(&crypto_mtx);
587 1.1 jonathan return err;
588 1.1 jonathan }
589 1.1 jonathan
590 1.1 jonathan /*
591 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
592 1.1 jonathan * leave enough information around so that subsequent calls using those
593 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
594 1.1 jonathan * reroute requests.
595 1.1 jonathan */
596 1.1 jonathan int
597 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
598 1.1 jonathan {
599 1.23 tls int i, err;
600 1.1 jonathan u_int32_t ses;
601 1.1 jonathan struct cryptocap *cap;
602 1.1 jonathan
603 1.40 drochner mutex_enter(&crypto_mtx);
604 1.1 jonathan
605 1.1 jonathan cap = crypto_checkdriver(driverid);
606 1.1 jonathan if (cap != NULL &&
607 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
608 1.1 jonathan cap->cc_alg[alg] != 0) {
609 1.1 jonathan cap->cc_alg[alg] = 0;
610 1.1 jonathan cap->cc_max_op_len[alg] = 0;
611 1.1 jonathan
612 1.1 jonathan /* Was this the last algorithm ? */
613 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
614 1.1 jonathan if (cap->cc_alg[i] != 0)
615 1.1 jonathan break;
616 1.1 jonathan
617 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
618 1.1 jonathan ses = cap->cc_sessions;
619 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
620 1.1 jonathan if (ses != 0) {
621 1.1 jonathan /*
622 1.1 jonathan * If there are pending sessions, just mark as invalid.
623 1.1 jonathan */
624 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
625 1.1 jonathan cap->cc_sessions = ses;
626 1.1 jonathan }
627 1.1 jonathan }
628 1.1 jonathan err = 0;
629 1.1 jonathan } else
630 1.1 jonathan err = EINVAL;
631 1.1 jonathan
632 1.40 drochner mutex_exit(&crypto_mtx);
633 1.1 jonathan return err;
634 1.1 jonathan }
635 1.1 jonathan
636 1.1 jonathan /*
637 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
638 1.1 jonathan * If there are pending sessions using it, leave enough information
639 1.1 jonathan * around so that subsequent calls using those sessions will
640 1.1 jonathan * correctly detect the driver has been unregistered and reroute
641 1.1 jonathan * requests.
642 1.23 tls *
643 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
644 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
645 1.23 tls * XXX you can't take it recursively.
646 1.1 jonathan */
647 1.1 jonathan int
648 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
649 1.1 jonathan {
650 1.23 tls int i, err;
651 1.1 jonathan u_int32_t ses;
652 1.1 jonathan struct cryptocap *cap;
653 1.1 jonathan
654 1.40 drochner mutex_enter(&crypto_mtx);
655 1.1 jonathan cap = crypto_checkdriver(driverid);
656 1.1 jonathan if (cap != NULL) {
657 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
658 1.1 jonathan cap->cc_alg[i] = 0;
659 1.1 jonathan cap->cc_max_op_len[i] = 0;
660 1.1 jonathan }
661 1.1 jonathan ses = cap->cc_sessions;
662 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
663 1.1 jonathan if (ses != 0) {
664 1.1 jonathan /*
665 1.1 jonathan * If there are pending sessions, just mark as invalid.
666 1.1 jonathan */
667 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
668 1.1 jonathan cap->cc_sessions = ses;
669 1.1 jonathan }
670 1.1 jonathan err = 0;
671 1.1 jonathan } else
672 1.1 jonathan err = EINVAL;
673 1.1 jonathan
674 1.40 drochner mutex_exit(&crypto_mtx);
675 1.1 jonathan return err;
676 1.1 jonathan }
677 1.1 jonathan
678 1.1 jonathan /*
679 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
680 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
681 1.1 jonathan */
682 1.1 jonathan int
683 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
684 1.1 jonathan {
685 1.1 jonathan struct cryptocap *cap;
686 1.23 tls int needwakeup, err;
687 1.1 jonathan
688 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
689 1.1 jonathan cap = crypto_checkdriver(driverid);
690 1.1 jonathan if (cap != NULL) {
691 1.1 jonathan needwakeup = 0;
692 1.1 jonathan if (what & CRYPTO_SYMQ) {
693 1.1 jonathan needwakeup |= cap->cc_qblocked;
694 1.1 jonathan cap->cc_qblocked = 0;
695 1.1 jonathan }
696 1.1 jonathan if (what & CRYPTO_ASYMQ) {
697 1.1 jonathan needwakeup |= cap->cc_kqblocked;
698 1.1 jonathan cap->cc_kqblocked = 0;
699 1.1 jonathan }
700 1.24 tls err = 0;
701 1.24 tls if (needwakeup)
702 1.1 jonathan setsoftcrypto(softintr_cookie);
703 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
704 1.24 tls } else {
705 1.1 jonathan err = EINVAL;
706 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
707 1.24 tls }
708 1.1 jonathan
709 1.1 jonathan return err;
710 1.1 jonathan }
711 1.1 jonathan
712 1.1 jonathan /*
713 1.1 jonathan * Dispatch a crypto request to a driver or queue
714 1.1 jonathan * it, to be processed by the kernel thread.
715 1.1 jonathan */
716 1.1 jonathan int
717 1.1 jonathan crypto_dispatch(struct cryptop *crp)
718 1.1 jonathan {
719 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
720 1.23 tls int result;
721 1.1 jonathan
722 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
723 1.41 drochner DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
724 1.41 drochner crp, crp->crp_desc->crd_alg));
725 1.1 jonathan
726 1.1 jonathan cryptostats.cs_ops++;
727 1.1 jonathan
728 1.1 jonathan #ifdef CRYPTO_TIMING
729 1.1 jonathan if (crypto_timing)
730 1.1 jonathan nanouptime(&crp->crp_tstamp);
731 1.1 jonathan #endif
732 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
733 1.1 jonathan struct cryptocap *cap;
734 1.1 jonathan /*
735 1.1 jonathan * Caller marked the request to be processed
736 1.1 jonathan * immediately; dispatch it directly to the
737 1.1 jonathan * driver unless the driver is currently blocked.
738 1.1 jonathan */
739 1.1 jonathan cap = crypto_checkdriver(hid);
740 1.1 jonathan if (cap && !cap->cc_qblocked) {
741 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
742 1.1 jonathan result = crypto_invoke(crp, 0);
743 1.1 jonathan if (result == ERESTART) {
744 1.1 jonathan /*
745 1.1 jonathan * The driver ran out of resources, mark the
746 1.1 jonathan * driver ``blocked'' for cryptop's and put
747 1.1 jonathan * the op on the queue.
748 1.1 jonathan */
749 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
750 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
751 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
752 1.1 jonathan cryptostats.cs_blocks++;
753 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
754 1.1 jonathan }
755 1.23 tls goto out_released;
756 1.1 jonathan } else {
757 1.1 jonathan /*
758 1.1 jonathan * The driver is blocked, just queue the op until
759 1.1 jonathan * it unblocks and the swi thread gets kicked.
760 1.1 jonathan */
761 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
762 1.1 jonathan result = 0;
763 1.1 jonathan }
764 1.1 jonathan } else {
765 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
766 1.1 jonathan /*
767 1.1 jonathan * Caller marked the request as ``ok to delay'';
768 1.1 jonathan * queue it for the swi thread. This is desirable
769 1.1 jonathan * when the operation is low priority and/or suitable
770 1.1 jonathan * for batching.
771 1.1 jonathan */
772 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
773 1.1 jonathan if (wasempty) {
774 1.1 jonathan setsoftcrypto(softintr_cookie);
775 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
776 1.23 tls result = 0;
777 1.23 tls goto out_released;
778 1.1 jonathan }
779 1.1 jonathan
780 1.1 jonathan result = 0;
781 1.1 jonathan }
782 1.1 jonathan
783 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
784 1.23 tls out_released:
785 1.1 jonathan return result;
786 1.1 jonathan }
787 1.1 jonathan
788 1.1 jonathan /*
789 1.1 jonathan * Add an asymetric crypto request to a queue,
790 1.1 jonathan * to be processed by the kernel thread.
791 1.1 jonathan */
792 1.1 jonathan int
793 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
794 1.1 jonathan {
795 1.1 jonathan struct cryptocap *cap;
796 1.23 tls int result;
797 1.1 jonathan
798 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
799 1.1 jonathan cryptostats.cs_kops++;
800 1.1 jonathan
801 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
802 1.1 jonathan if (cap && !cap->cc_kqblocked) {
803 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
804 1.1 jonathan result = crypto_kinvoke(krp, 0);
805 1.1 jonathan if (result == ERESTART) {
806 1.1 jonathan /*
807 1.1 jonathan * The driver ran out of resources, mark the
808 1.1 jonathan * driver ``blocked'' for cryptop's and put
809 1.1 jonathan * the op on the queue.
810 1.1 jonathan */
811 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
812 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
813 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
814 1.1 jonathan cryptostats.cs_kblocks++;
815 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
816 1.1 jonathan }
817 1.1 jonathan } else {
818 1.1 jonathan /*
819 1.1 jonathan * The driver is blocked, just queue the op until
820 1.1 jonathan * it unblocks and the swi thread gets kicked.
821 1.1 jonathan */
822 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
823 1.1 jonathan result = 0;
824 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
825 1.1 jonathan }
826 1.1 jonathan
827 1.1 jonathan return result;
828 1.1 jonathan }
829 1.1 jonathan
830 1.1 jonathan /*
831 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
832 1.1 jonathan */
833 1.1 jonathan static int
834 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
835 1.1 jonathan {
836 1.1 jonathan u_int32_t hid;
837 1.1 jonathan int error;
838 1.1 jonathan
839 1.1 jonathan /* Sanity checks. */
840 1.1 jonathan if (krp == NULL)
841 1.1 jonathan return EINVAL;
842 1.1 jonathan if (krp->krp_callback == NULL) {
843 1.30 darran cv_destroy(&krp->krp_cv);
844 1.23 tls pool_put(&cryptkop_pool, krp);
845 1.1 jonathan return EINVAL;
846 1.1 jonathan }
847 1.1 jonathan
848 1.40 drochner mutex_enter(&crypto_mtx);
849 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
850 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
851 1.1 jonathan crypto_devallowsoft == 0)
852 1.1 jonathan continue;
853 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
854 1.1 jonathan continue;
855 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
856 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
857 1.1 jonathan continue;
858 1.1 jonathan break;
859 1.1 jonathan }
860 1.1 jonathan if (hid < crypto_drivers_num) {
861 1.37 christos int (*process)(void *, struct cryptkop *, int);
862 1.37 christos void *arg;
863 1.37 christos
864 1.37 christos process = crypto_drivers[hid].cc_kprocess;
865 1.37 christos arg = crypto_drivers[hid].cc_karg;
866 1.40 drochner mutex_exit(&crypto_mtx);
867 1.1 jonathan krp->krp_hid = hid;
868 1.37 christos error = (*process)(arg, krp, hint);
869 1.1 jonathan } else {
870 1.40 drochner mutex_exit(&crypto_mtx);
871 1.1 jonathan error = ENODEV;
872 1.1 jonathan }
873 1.1 jonathan
874 1.1 jonathan if (error) {
875 1.1 jonathan krp->krp_status = error;
876 1.1 jonathan crypto_kdone(krp);
877 1.1 jonathan }
878 1.1 jonathan return 0;
879 1.1 jonathan }
880 1.1 jonathan
881 1.1 jonathan #ifdef CRYPTO_TIMING
882 1.1 jonathan static void
883 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
884 1.1 jonathan {
885 1.1 jonathan struct timespec now, t;
886 1.1 jonathan
887 1.1 jonathan nanouptime(&now);
888 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
889 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
890 1.1 jonathan if (t.tv_nsec < 0) {
891 1.1 jonathan t.tv_sec--;
892 1.1 jonathan t.tv_nsec += 1000000000;
893 1.1 jonathan }
894 1.1 jonathan timespecadd(&ts->acc, &t, &t);
895 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
896 1.1 jonathan ts->min = t;
897 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
898 1.1 jonathan ts->max = t;
899 1.1 jonathan ts->count++;
900 1.1 jonathan
901 1.1 jonathan *tv = now;
902 1.1 jonathan }
903 1.1 jonathan #endif
904 1.1 jonathan
905 1.1 jonathan /*
906 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
907 1.1 jonathan */
908 1.1 jonathan static int
909 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
910 1.1 jonathan {
911 1.1 jonathan u_int32_t hid;
912 1.1 jonathan
913 1.1 jonathan #ifdef CRYPTO_TIMING
914 1.1 jonathan if (crypto_timing)
915 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
916 1.1 jonathan #endif
917 1.1 jonathan /* Sanity checks. */
918 1.1 jonathan if (crp == NULL)
919 1.1 jonathan return EINVAL;
920 1.1 jonathan if (crp->crp_callback == NULL) {
921 1.1 jonathan return EINVAL;
922 1.1 jonathan }
923 1.1 jonathan if (crp->crp_desc == NULL) {
924 1.1 jonathan crp->crp_etype = EINVAL;
925 1.1 jonathan crypto_done(crp);
926 1.1 jonathan return 0;
927 1.1 jonathan }
928 1.1 jonathan
929 1.35 jakllsch hid = CRYPTO_SESID2HID(crp->crp_sid);
930 1.37 christos
931 1.1 jonathan if (hid < crypto_drivers_num) {
932 1.37 christos int (*process)(void *, struct cryptop *, int);
933 1.37 christos void *arg;
934 1.37 christos
935 1.40 drochner if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
936 1.40 drochner mutex_exit(&crypto_mtx);
937 1.1 jonathan crypto_freesession(crp->crp_sid);
938 1.40 drochner mutex_enter(&crypto_mtx);
939 1.40 drochner }
940 1.1 jonathan process = crypto_drivers[hid].cc_process;
941 1.37 christos arg = crypto_drivers[hid].cc_arg;
942 1.37 christos
943 1.37 christos /*
944 1.37 christos * Invoke the driver to process the request.
945 1.37 christos */
946 1.37 christos DPRINTF(("calling process for %p\n", crp));
947 1.37 christos return (*process)(arg, crp, hint);
948 1.1 jonathan } else {
949 1.1 jonathan struct cryptodesc *crd;
950 1.16 mrg u_int64_t nid = 0;
951 1.1 jonathan
952 1.1 jonathan /*
953 1.1 jonathan * Driver has unregistered; migrate the session and return
954 1.1 jonathan * an error to the caller so they'll resubmit the op.
955 1.1 jonathan */
956 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
957 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
958 1.1 jonathan
959 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
960 1.1 jonathan crp->crp_sid = nid;
961 1.1 jonathan
962 1.1 jonathan crp->crp_etype = EAGAIN;
963 1.23 tls
964 1.1 jonathan crypto_done(crp);
965 1.1 jonathan return 0;
966 1.1 jonathan }
967 1.1 jonathan }
968 1.1 jonathan
969 1.1 jonathan /*
970 1.1 jonathan * Release a set of crypto descriptors.
971 1.1 jonathan */
972 1.1 jonathan void
973 1.1 jonathan crypto_freereq(struct cryptop *crp)
974 1.1 jonathan {
975 1.1 jonathan struct cryptodesc *crd;
976 1.1 jonathan
977 1.1 jonathan if (crp == NULL)
978 1.1 jonathan return;
979 1.35 jakllsch DPRINTF(("crypto_freereq[%u]: crp %p\n",
980 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
981 1.1 jonathan
982 1.30 darran /* sanity check */
983 1.30 darran if (crp->crp_flags & CRYPTO_F_ONRETQ) {
984 1.30 darran panic("crypto_freereq() freeing crp on RETQ\n");
985 1.30 darran }
986 1.30 darran
987 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
988 1.1 jonathan crp->crp_desc = crd->crd_next;
989 1.1 jonathan pool_put(&cryptodesc_pool, crd);
990 1.1 jonathan }
991 1.1 jonathan pool_put(&cryptop_pool, crp);
992 1.1 jonathan }
993 1.1 jonathan
994 1.1 jonathan /*
995 1.1 jonathan * Acquire a set of crypto descriptors.
996 1.1 jonathan */
997 1.1 jonathan struct cryptop *
998 1.1 jonathan crypto_getreq(int num)
999 1.1 jonathan {
1000 1.1 jonathan struct cryptodesc *crd;
1001 1.1 jonathan struct cryptop *crp;
1002 1.1 jonathan
1003 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
1004 1.1 jonathan if (crp == NULL) {
1005 1.1 jonathan return NULL;
1006 1.1 jonathan }
1007 1.31 cegger memset(crp, 0, sizeof(struct cryptop));
1008 1.1 jonathan
1009 1.1 jonathan while (num--) {
1010 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
1011 1.1 jonathan if (crd == NULL) {
1012 1.1 jonathan crypto_freereq(crp);
1013 1.1 jonathan return NULL;
1014 1.1 jonathan }
1015 1.1 jonathan
1016 1.31 cegger memset(crd, 0, sizeof(struct cryptodesc));
1017 1.1 jonathan crd->crd_next = crp->crp_desc;
1018 1.1 jonathan crp->crp_desc = crd;
1019 1.1 jonathan }
1020 1.1 jonathan
1021 1.1 jonathan return crp;
1022 1.1 jonathan }
1023 1.1 jonathan
1024 1.1 jonathan /*
1025 1.1 jonathan * Invoke the callback on behalf of the driver.
1026 1.1 jonathan */
1027 1.1 jonathan void
1028 1.1 jonathan crypto_done(struct cryptop *crp)
1029 1.1 jonathan {
1030 1.23 tls int wasempty;
1031 1.23 tls
1032 1.1 jonathan if (crp->crp_etype != 0)
1033 1.1 jonathan cryptostats.cs_errs++;
1034 1.1 jonathan #ifdef CRYPTO_TIMING
1035 1.1 jonathan if (crypto_timing)
1036 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1037 1.1 jonathan #endif
1038 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p\n",
1039 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1040 1.27 tls
1041 1.1 jonathan /*
1042 1.23 tls * Normal case; queue the callback for the thread.
1043 1.23 tls *
1044 1.23 tls * The return queue is manipulated by the swi thread
1045 1.23 tls * and, potentially, by crypto device drivers calling
1046 1.23 tls * back to mark operations completed. Thus we need
1047 1.23 tls * to mask both while manipulating the return queue.
1048 1.1 jonathan */
1049 1.27 tls if (crp->crp_flags & CRYPTO_F_CBIMM) {
1050 1.27 tls /*
1051 1.27 tls * Do the callback directly. This is ok when the
1052 1.27 tls * callback routine does very little (e.g. the
1053 1.27 tls * /dev/crypto callback method just does a wakeup).
1054 1.27 tls */
1055 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1056 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1057 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1058 1.30 darran
1059 1.27 tls #ifdef CRYPTO_TIMING
1060 1.27 tls if (crypto_timing) {
1061 1.27 tls /*
1062 1.27 tls * NB: We must copy the timestamp before
1063 1.27 tls * doing the callback as the cryptop is
1064 1.27 tls * likely to be reclaimed.
1065 1.27 tls */
1066 1.27 tls struct timespec t = crp->crp_tstamp;
1067 1.27 tls crypto_tstat(&cryptostats.cs_cb, &t);
1068 1.27 tls crp->crp_callback(crp);
1069 1.27 tls crypto_tstat(&cryptostats.cs_finis, &t);
1070 1.27 tls } else
1071 1.27 tls #endif
1072 1.27 tls crp->crp_callback(crp);
1073 1.27 tls } else {
1074 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1075 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1076 1.30 darran
1077 1.30 darran if (crp->crp_flags & CRYPTO_F_USER) {
1078 1.30 darran /* the request has completed while
1079 1.30 darran * running in the user context
1080 1.30 darran * so don't queue it - the user
1081 1.30 darran * thread won't sleep when it sees
1082 1.30 darran * the CRYPTO_F_DONE flag.
1083 1.30 darran * This is an optimization to avoid
1084 1.30 darran * unecessary context switches.
1085 1.30 darran */
1086 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1087 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1088 1.30 darran } else {
1089 1.30 darran wasempty = TAILQ_EMPTY(&crp_ret_q);
1090 1.35 jakllsch DPRINTF(("crypto_done[%u]: queueing %p\n",
1091 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1092 1.30 darran crp->crp_flags |= CRYPTO_F_ONRETQ;
1093 1.30 darran TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1094 1.30 darran if (wasempty) {
1095 1.35 jakllsch DPRINTF(("crypto_done[%u]: waking cryptoret, "
1096 1.35 jakllsch "crp %p hit empty queue\n.",
1097 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1098 1.30 darran cv_signal(&cryptoret_cv);
1099 1.30 darran }
1100 1.27 tls }
1101 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1102 1.1 jonathan }
1103 1.1 jonathan }
1104 1.1 jonathan
1105 1.1 jonathan /*
1106 1.1 jonathan * Invoke the callback on behalf of the driver.
1107 1.1 jonathan */
1108 1.1 jonathan void
1109 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1110 1.1 jonathan {
1111 1.23 tls int wasempty;
1112 1.1 jonathan
1113 1.1 jonathan if (krp->krp_status != 0)
1114 1.1 jonathan cryptostats.cs_kerrs++;
1115 1.27 tls
1116 1.27 tls krp->krp_flags |= CRYPTO_F_DONE;
1117 1.27 tls
1118 1.1 jonathan /*
1119 1.1 jonathan * The return queue is manipulated by the swi thread
1120 1.1 jonathan * and, potentially, by crypto device drivers calling
1121 1.1 jonathan * back to mark operations completed. Thus we need
1122 1.1 jonathan * to mask both while manipulating the return queue.
1123 1.1 jonathan */
1124 1.27 tls if (krp->krp_flags & CRYPTO_F_CBIMM) {
1125 1.27 tls krp->krp_callback(krp);
1126 1.27 tls } else {
1127 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1128 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_kq);
1129 1.27 tls krp->krp_flags |= CRYPTO_F_ONRETQ;
1130 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1131 1.27 tls if (wasempty)
1132 1.27 tls cv_signal(&cryptoret_cv);
1133 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1134 1.27 tls }
1135 1.1 jonathan }
1136 1.1 jonathan
1137 1.1 jonathan int
1138 1.1 jonathan crypto_getfeat(int *featp)
1139 1.1 jonathan {
1140 1.1 jonathan int hid, kalg, feat = 0;
1141 1.1 jonathan
1142 1.40 drochner mutex_enter(&crypto_mtx);
1143 1.1 jonathan
1144 1.1 jonathan if (crypto_userasymcrypto == 0)
1145 1.10 perry goto out;
1146 1.1 jonathan
1147 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1148 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1149 1.7 jonathan crypto_devallowsoft == 0) {
1150 1.1 jonathan continue;
1151 1.1 jonathan }
1152 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1153 1.1 jonathan continue;
1154 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1155 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1156 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1157 1.1 jonathan feat |= 1 << kalg;
1158 1.1 jonathan }
1159 1.1 jonathan out:
1160 1.40 drochner mutex_exit(&crypto_mtx);
1161 1.1 jonathan *featp = feat;
1162 1.1 jonathan return (0);
1163 1.1 jonathan }
1164 1.1 jonathan
1165 1.1 jonathan /*
1166 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1167 1.1 jonathan */
1168 1.1 jonathan static void
1169 1.1 jonathan cryptointr(void)
1170 1.1 jonathan {
1171 1.30 darran struct cryptop *crp, *submit, *cnext;
1172 1.30 darran struct cryptkop *krp, *knext;
1173 1.1 jonathan struct cryptocap *cap;
1174 1.23 tls int result, hint;
1175 1.1 jonathan
1176 1.1 jonathan cryptostats.cs_intrs++;
1177 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1178 1.1 jonathan do {
1179 1.1 jonathan /*
1180 1.1 jonathan * Find the first element in the queue that can be
1181 1.1 jonathan * processed and look-ahead to see if multiple ops
1182 1.1 jonathan * are ready for the same driver.
1183 1.1 jonathan */
1184 1.1 jonathan submit = NULL;
1185 1.1 jonathan hint = 0;
1186 1.30 darran TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1187 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1188 1.1 jonathan cap = crypto_checkdriver(hid);
1189 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1190 1.1 jonathan /* Op needs to be migrated, process it. */
1191 1.1 jonathan if (submit == NULL)
1192 1.1 jonathan submit = crp;
1193 1.1 jonathan break;
1194 1.1 jonathan }
1195 1.1 jonathan if (!cap->cc_qblocked) {
1196 1.1 jonathan if (submit != NULL) {
1197 1.1 jonathan /*
1198 1.1 jonathan * We stop on finding another op,
1199 1.1 jonathan * regardless whether its for the same
1200 1.1 jonathan * driver or not. We could keep
1201 1.1 jonathan * searching the queue but it might be
1202 1.1 jonathan * better to just use a per-driver
1203 1.1 jonathan * queue instead.
1204 1.1 jonathan */
1205 1.35 jakllsch if (CRYPTO_SESID2HID(submit->crp_sid)
1206 1.35 jakllsch == hid)
1207 1.1 jonathan hint = CRYPTO_HINT_MORE;
1208 1.1 jonathan break;
1209 1.1 jonathan } else {
1210 1.1 jonathan submit = crp;
1211 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1212 1.1 jonathan break;
1213 1.1 jonathan /* keep scanning for more are q'd */
1214 1.1 jonathan }
1215 1.1 jonathan }
1216 1.1 jonathan }
1217 1.1 jonathan if (submit != NULL) {
1218 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1219 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1220 1.1 jonathan result = crypto_invoke(submit, hint);
1221 1.23 tls /* we must take here as the TAILQ op or kinvoke
1222 1.23 tls may need this mutex below. sigh. */
1223 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1224 1.1 jonathan if (result == ERESTART) {
1225 1.1 jonathan /*
1226 1.1 jonathan * The driver ran out of resources, mark the
1227 1.1 jonathan * driver ``blocked'' for cryptop's and put
1228 1.1 jonathan * the request back in the queue. It would
1229 1.1 jonathan * best to put the request back where we got
1230 1.1 jonathan * it but that's hard so for now we put it
1231 1.1 jonathan * at the front. This should be ok; putting
1232 1.1 jonathan * it at the end does not work.
1233 1.1 jonathan */
1234 1.1 jonathan /* XXX validate sid again? */
1235 1.35 jakllsch crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1236 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1237 1.1 jonathan cryptostats.cs_blocks++;
1238 1.1 jonathan }
1239 1.1 jonathan }
1240 1.1 jonathan
1241 1.1 jonathan /* As above, but for key ops */
1242 1.30 darran TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1243 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1244 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1245 1.1 jonathan /* Op needs to be migrated, process it. */
1246 1.1 jonathan break;
1247 1.1 jonathan }
1248 1.1 jonathan if (!cap->cc_kqblocked)
1249 1.1 jonathan break;
1250 1.1 jonathan }
1251 1.1 jonathan if (krp != NULL) {
1252 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1253 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1254 1.1 jonathan result = crypto_kinvoke(krp, 0);
1255 1.23 tls /* the next iteration will want the mutex. :-/ */
1256 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1257 1.1 jonathan if (result == ERESTART) {
1258 1.1 jonathan /*
1259 1.1 jonathan * The driver ran out of resources, mark the
1260 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1261 1.1 jonathan * the request back in the queue. It would
1262 1.1 jonathan * best to put the request back where we got
1263 1.1 jonathan * it but that's hard so for now we put it
1264 1.1 jonathan * at the front. This should be ok; putting
1265 1.1 jonathan * it at the end does not work.
1266 1.1 jonathan */
1267 1.1 jonathan /* XXX validate sid again? */
1268 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1269 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1270 1.1 jonathan cryptostats.cs_kblocks++;
1271 1.1 jonathan }
1272 1.1 jonathan }
1273 1.1 jonathan } while (submit != NULL || krp != NULL);
1274 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1275 1.1 jonathan }
1276 1.1 jonathan
1277 1.1 jonathan /*
1278 1.1 jonathan * Kernel thread to do callbacks.
1279 1.1 jonathan */
1280 1.1 jonathan static void
1281 1.1 jonathan cryptoret(void)
1282 1.1 jonathan {
1283 1.1 jonathan struct cryptop *crp;
1284 1.1 jonathan struct cryptkop *krp;
1285 1.1 jonathan
1286 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1287 1.1 jonathan for (;;) {
1288 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1289 1.23 tls if (crp != NULL) {
1290 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1291 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1292 1.23 tls }
1293 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1294 1.23 tls if (krp != NULL) {
1295 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1296 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1297 1.23 tls }
1298 1.1 jonathan
1299 1.23 tls /* drop before calling any callbacks. */
1300 1.26 ad if (crp == NULL && krp == NULL) {
1301 1.26 ad cryptostats.cs_rets++;
1302 1.40 drochner cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1303 1.26 ad continue;
1304 1.26 ad }
1305 1.26 ad
1306 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1307 1.26 ad
1308 1.26 ad if (crp != NULL) {
1309 1.1 jonathan #ifdef CRYPTO_TIMING
1310 1.26 ad if (crypto_timing) {
1311 1.26 ad /*
1312 1.26 ad * NB: We must copy the timestamp before
1313 1.26 ad * doing the callback as the cryptop is
1314 1.26 ad * likely to be reclaimed.
1315 1.26 ad */
1316 1.26 ad struct timespec t = crp->crp_tstamp;
1317 1.26 ad crypto_tstat(&cryptostats.cs_cb, &t);
1318 1.26 ad crp->crp_callback(crp);
1319 1.26 ad crypto_tstat(&cryptostats.cs_finis, &t);
1320 1.26 ad } else
1321 1.1 jonathan #endif
1322 1.26 ad {
1323 1.26 ad crp->crp_callback(crp);
1324 1.1 jonathan }
1325 1.1 jonathan }
1326 1.26 ad if (krp != NULL)
1327 1.26 ad krp->krp_callback(krp);
1328 1.26 ad
1329 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1330 1.1 jonathan }
1331 1.1 jonathan }
1332