crypto.c revision 1.43 1 1.43 pgoyette /* $NetBSD: crypto.c,v 1.43 2014/01/13 21:15:36 pgoyette Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.27 tls /*-
6 1.27 tls * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 1.27 tls * All rights reserved.
8 1.27 tls *
9 1.27 tls * This code is derived from software contributed to The NetBSD Foundation
10 1.27 tls * by Coyote Point Systems, Inc.
11 1.27 tls *
12 1.27 tls * Redistribution and use in source and binary forms, with or without
13 1.27 tls * modification, are permitted provided that the following conditions
14 1.27 tls * are met:
15 1.27 tls * 1. Redistributions of source code must retain the above copyright
16 1.27 tls * notice, this list of conditions and the following disclaimer.
17 1.27 tls * 2. Redistributions in binary form must reproduce the above copyright
18 1.27 tls * notice, this list of conditions and the following disclaimer in the
19 1.27 tls * documentation and/or other materials provided with the distribution.
20 1.27 tls *
21 1.27 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.27 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.27 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.27 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.27 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.27 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.27 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.27 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.27 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.27 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.27 tls * POSSIBILITY OF SUCH DAMAGE.
32 1.27 tls */
33 1.27 tls
34 1.1 jonathan /*
35 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 1.1 jonathan *
37 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 1.1 jonathan * supported the development of this code.
40 1.1 jonathan *
41 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 1.1 jonathan *
43 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
44 1.1 jonathan * is hereby granted, provided that this entire notice is included in
45 1.1 jonathan * all source code copies of any software which is or includes a copy or
46 1.1 jonathan * modification of this software.
47 1.1 jonathan *
48 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 1.1 jonathan * PURPOSE.
53 1.1 jonathan */
54 1.1 jonathan
55 1.1 jonathan #include <sys/cdefs.h>
56 1.43 pgoyette __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.43 2014/01/13 21:15:36 pgoyette Exp $");
57 1.1 jonathan
58 1.1 jonathan #include <sys/param.h>
59 1.1 jonathan #include <sys/reboot.h>
60 1.1 jonathan #include <sys/systm.h>
61 1.1 jonathan #include <sys/malloc.h>
62 1.1 jonathan #include <sys/proc.h>
63 1.1 jonathan #include <sys/pool.h>
64 1.1 jonathan #include <sys/kthread.h>
65 1.11 thorpej #include <sys/once.h>
66 1.13 christos #include <sys/sysctl.h>
67 1.21 ad #include <sys/intr.h>
68 1.42 pgoyette #include <sys/errno.h>
69 1.42 pgoyette #include <sys/module.h>
70 1.1 jonathan
71 1.42 pgoyette #if defined(_KERNEL_OPT)
72 1.23 tls #include "opt_ocf.h"
73 1.42 pgoyette #endif
74 1.42 pgoyette
75 1.21 ad #include <opencrypto/cryptodev.h>
76 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
77 1.1 jonathan
78 1.40 drochner kmutex_t crypto_q_mtx;
79 1.40 drochner kmutex_t crypto_ret_q_mtx;
80 1.23 tls kcondvar_t cryptoret_cv;
81 1.23 tls kmutex_t crypto_mtx;
82 1.23 tls
83 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 1.1 jonathan #define SWI_CRYPTO 17
85 1.1 jonathan #define register_swi(lvl, fn) \
86 1.38 drochner softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 1.21 ad #define setsoftcrypto(x) softint_schedule(x)
89 1.1 jonathan
90 1.30 darran int crypto_ret_q_check(struct cryptop *);
91 1.30 darran
92 1.1 jonathan /*
93 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
94 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
95 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
96 1.1 jonathan */
97 1.11 thorpej static struct cryptocap *crypto_drivers;
98 1.11 thorpej static int crypto_drivers_num;
99 1.37 christos static void *softintr_cookie;
100 1.1 jonathan
101 1.1 jonathan /*
102 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
103 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
104 1.1 jonathan * See below for how synchronization is handled.
105 1.1 jonathan */
106 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
107 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
108 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
109 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
110 1.1 jonathan
111 1.1 jonathan /*
112 1.1 jonathan * There are two queues for processing completed crypto requests; one
113 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
114 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
115 1.1 jonathan * for how synchronization is handled.
116 1.1 jonathan */
117 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
118 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121 1.1 jonathan
122 1.1 jonathan /*
123 1.23 tls * XXX these functions are ghastly hacks for when the submission
124 1.23 tls * XXX routines discover a request that was not CBIMM is already
125 1.23 tls * XXX done, and must be yanked from the retq (where _done) put it
126 1.23 tls * XXX as cryptoret won't get the chance. The queue is walked backwards
127 1.23 tls * XXX as the request is generally the last one queued.
128 1.23 tls *
129 1.23 tls * call with the lock held, or else.
130 1.23 tls */
131 1.23 tls int
132 1.23 tls crypto_ret_q_remove(struct cryptop *crp)
133 1.23 tls {
134 1.30 darran struct cryptop * acrp, *next;
135 1.23 tls
136 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
137 1.23 tls if (acrp == crp) {
138 1.23 tls TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 1.23 tls crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 1.23 tls return 1;
141 1.23 tls }
142 1.23 tls }
143 1.23 tls return 0;
144 1.23 tls }
145 1.23 tls
146 1.23 tls int
147 1.23 tls crypto_ret_kq_remove(struct cryptkop *krp)
148 1.23 tls {
149 1.30 darran struct cryptkop * akrp, *next;
150 1.23 tls
151 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
152 1.23 tls if (akrp == krp) {
153 1.23 tls TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 1.23 tls krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 1.23 tls return 1;
156 1.23 tls }
157 1.23 tls }
158 1.23 tls return 0;
159 1.23 tls }
160 1.23 tls
161 1.23 tls /*
162 1.1 jonathan * Crypto op and desciptor data structures are allocated
163 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164 1.1 jonathan */
165 1.1 jonathan struct pool cryptop_pool;
166 1.1 jonathan struct pool cryptodesc_pool;
167 1.23 tls struct pool cryptkop_pool;
168 1.1 jonathan
169 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
170 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
171 1.10 perry /*
172 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173 1.6 jonathan * access to hardware versus software transforms as below:
174 1.6 jonathan *
175 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
176 1.6 jonathan * transforms, always
177 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
178 1.6 jonathan * requests for non-accelerated transforms
179 1.6 jonathan * (handling the latter in software)
180 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
181 1.6 jonathan * are hardware-accelerated.
182 1.6 jonathan */
183 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
184 1.6 jonathan
185 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 1.13 christos {
187 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
188 1.13 christos CTLFLAG_PERMANENT,
189 1.13 christos CTLTYPE_NODE, "kern", NULL,
190 1.13 christos NULL, 0, NULL, 0,
191 1.13 christos CTL_KERN, CTL_EOL);
192 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
193 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 1.13 christos CTLTYPE_INT, "usercrypto",
195 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
196 1.13 christos "crypto support"),
197 1.13 christos NULL, 0, &crypto_usercrypto, 0,
198 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
199 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
200 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 1.13 christos CTLTYPE_INT, "userasymcrypto",
202 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
203 1.13 christos "asymmetric crypto support"),
204 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
205 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
206 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
207 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
209 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
210 1.13 christos "asymmetric crypto support"),
211 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
212 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
213 1.13 christos }
214 1.1 jonathan
215 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216 1.1 jonathan
217 1.1 jonathan /*
218 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
219 1.1 jonathan *
220 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
221 1.1 jonathan * these come in from network protocols at spl0 (output path) or
222 1.1 jonathan * spl[,soft]net (input path).
223 1.1 jonathan *
224 1.1 jonathan * Requests are typically passed on the driver directly, but they
225 1.1 jonathan * may also be queued for processing by a software interrupt thread,
226 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
227 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
228 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
229 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
230 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
231 1.1 jonathan *
232 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
233 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
234 1.1 jonathan * driver interrupt service routine is not delayed while the callback
235 1.1 jonathan * takes place and that callbacks are delivered after a context switch
236 1.1 jonathan * (as opposed to a software interrupt that clients must block).
237 1.1 jonathan *
238 1.1 jonathan * This scheme is not intended for SMP machines.
239 1.10 perry */
240 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
241 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
242 1.20 ad static struct lwp *cryptothread;
243 1.1 jonathan static void crypto_destroy(void);
244 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
245 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
246 1.1 jonathan
247 1.1 jonathan static struct cryptostats cryptostats;
248 1.23 tls #ifdef CRYPTO_TIMING
249 1.1 jonathan static int crypto_timing = 0;
250 1.23 tls #endif
251 1.1 jonathan
252 1.12 yamt static int
253 1.11 thorpej crypto_init0(void)
254 1.1 jonathan {
255 1.1 jonathan int error;
256 1.1 jonathan
257 1.40 drochner mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
258 1.40 drochner mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
259 1.40 drochner mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 1.36 pgoyette cv_init(&cryptoret_cv, "crypto_w");
261 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
262 1.23 tls 0, "cryptop", NULL, IPL_NET);
263 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
264 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
265 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
266 1.23 tls 0, "cryptkop", NULL, IPL_NET);
267 1.1 jonathan
268 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
269 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
270 1.1 jonathan if (crypto_drivers == NULL) {
271 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
272 1.12 yamt return 0;
273 1.1 jonathan }
274 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
275 1.1 jonathan
276 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
277 1.25 tls error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
278 1.37 christos (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
279 1.1 jonathan if (error) {
280 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
281 1.1 jonathan error);
282 1.1 jonathan crypto_destroy();
283 1.1 jonathan }
284 1.20 ad
285 1.12 yamt return 0;
286 1.11 thorpej }
287 1.11 thorpej
288 1.11 thorpej void
289 1.11 thorpej crypto_init(void)
290 1.11 thorpej {
291 1.18 daniel static ONCE_DECL(crypto_init_once);
292 1.11 thorpej
293 1.11 thorpej RUN_ONCE(&crypto_init_once, crypto_init0);
294 1.1 jonathan }
295 1.1 jonathan
296 1.1 jonathan static void
297 1.1 jonathan crypto_destroy(void)
298 1.1 jonathan {
299 1.1 jonathan /* XXX no wait to reclaim zones */
300 1.1 jonathan if (crypto_drivers != NULL)
301 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
302 1.1 jonathan unregister_swi(SWI_CRYPTO, cryptointr);
303 1.1 jonathan }
304 1.1 jonathan
305 1.1 jonathan /*
306 1.23 tls * Create a new session. Must be called with crypto_mtx held.
307 1.1 jonathan */
308 1.1 jonathan int
309 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
310 1.1 jonathan {
311 1.1 jonathan struct cryptoini *cr;
312 1.1 jonathan u_int32_t hid, lid;
313 1.1 jonathan int err = EINVAL;
314 1.1 jonathan
315 1.40 drochner mutex_enter(&crypto_mtx);
316 1.1 jonathan
317 1.1 jonathan if (crypto_drivers == NULL)
318 1.1 jonathan goto done;
319 1.1 jonathan
320 1.1 jonathan /*
321 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
322 1.1 jonathan * first driver that supports all the algorithms we need.
323 1.1 jonathan *
324 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
325 1.1 jonathan * XXX another story altogether).
326 1.1 jonathan */
327 1.1 jonathan
328 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
329 1.1 jonathan /*
330 1.1 jonathan * If it's not initialized or has remaining sessions
331 1.1 jonathan * referencing it, skip.
332 1.1 jonathan */
333 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
334 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
335 1.1 jonathan continue;
336 1.1 jonathan
337 1.1 jonathan /* Hardware required -- ignore software drivers. */
338 1.1 jonathan if (hard > 0 &&
339 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
340 1.1 jonathan continue;
341 1.1 jonathan /* Software required -- ignore hardware drivers. */
342 1.1 jonathan if (hard < 0 &&
343 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
344 1.1 jonathan continue;
345 1.1 jonathan
346 1.1 jonathan /* See if all the algorithms are supported. */
347 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
348 1.33 darran if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
349 1.33 darran DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
350 1.1 jonathan break;
351 1.33 darran }
352 1.1 jonathan
353 1.1 jonathan if (cr == NULL) {
354 1.1 jonathan /* Ok, all algorithms are supported. */
355 1.1 jonathan
356 1.1 jonathan /*
357 1.1 jonathan * Can't do everything in one session.
358 1.1 jonathan *
359 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
360 1.1 jonathan * XXX about here.
361 1.1 jonathan */
362 1.1 jonathan
363 1.1 jonathan /* Call the driver initialization routine. */
364 1.1 jonathan lid = hid; /* Pass the driver ID. */
365 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
366 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
367 1.1 jonathan if (err == 0) {
368 1.1 jonathan (*sid) = hid;
369 1.1 jonathan (*sid) <<= 32;
370 1.1 jonathan (*sid) |= (lid & 0xffffffff);
371 1.1 jonathan crypto_drivers[hid].cc_sessions++;
372 1.1 jonathan }
373 1.1 jonathan goto done;
374 1.1 jonathan /*break;*/
375 1.1 jonathan }
376 1.1 jonathan }
377 1.1 jonathan done:
378 1.40 drochner mutex_exit(&crypto_mtx);
379 1.1 jonathan return err;
380 1.1 jonathan }
381 1.1 jonathan
382 1.1 jonathan /*
383 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
384 1.23 tls * driver). Must be called with crypto_mtx mutex held.
385 1.1 jonathan */
386 1.1 jonathan int
387 1.1 jonathan crypto_freesession(u_int64_t sid)
388 1.1 jonathan {
389 1.1 jonathan u_int32_t hid;
390 1.1 jonathan int err = 0;
391 1.1 jonathan
392 1.40 drochner mutex_enter(&crypto_mtx);
393 1.1 jonathan
394 1.1 jonathan if (crypto_drivers == NULL) {
395 1.1 jonathan err = EINVAL;
396 1.1 jonathan goto done;
397 1.1 jonathan }
398 1.1 jonathan
399 1.1 jonathan /* Determine two IDs. */
400 1.35 jakllsch hid = CRYPTO_SESID2HID(sid);
401 1.1 jonathan
402 1.1 jonathan if (hid >= crypto_drivers_num) {
403 1.1 jonathan err = ENOENT;
404 1.1 jonathan goto done;
405 1.1 jonathan }
406 1.1 jonathan
407 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
408 1.1 jonathan crypto_drivers[hid].cc_sessions--;
409 1.1 jonathan
410 1.1 jonathan /* Call the driver cleanup routine, if available. */
411 1.23 tls if (crypto_drivers[hid].cc_freesession) {
412 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
413 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
414 1.23 tls }
415 1.1 jonathan else
416 1.1 jonathan err = 0;
417 1.1 jonathan
418 1.1 jonathan /*
419 1.1 jonathan * If this was the last session of a driver marked as invalid,
420 1.1 jonathan * make the entry available for reuse.
421 1.1 jonathan */
422 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
423 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
424 1.31 cegger memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
425 1.1 jonathan
426 1.1 jonathan done:
427 1.40 drochner mutex_exit(&crypto_mtx);
428 1.1 jonathan return err;
429 1.1 jonathan }
430 1.1 jonathan
431 1.1 jonathan /*
432 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
433 1.1 jonathan * support for the algorithms they handle.
434 1.1 jonathan */
435 1.1 jonathan int32_t
436 1.1 jonathan crypto_get_driverid(u_int32_t flags)
437 1.1 jonathan {
438 1.1 jonathan struct cryptocap *newdrv;
439 1.23 tls int i;
440 1.1 jonathan
441 1.23 tls crypto_init(); /* XXX oh, this is foul! */
442 1.11 thorpej
443 1.40 drochner mutex_enter(&crypto_mtx);
444 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
445 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
446 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
447 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
448 1.1 jonathan break;
449 1.1 jonathan
450 1.1 jonathan /* Out of entries, allocate some more. */
451 1.1 jonathan if (i == crypto_drivers_num) {
452 1.1 jonathan /* Be careful about wrap-around. */
453 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
454 1.40 drochner mutex_exit(&crypto_mtx);
455 1.1 jonathan printf("crypto: driver count wraparound!\n");
456 1.1 jonathan return -1;
457 1.1 jonathan }
458 1.1 jonathan
459 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
460 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
461 1.1 jonathan if (newdrv == NULL) {
462 1.40 drochner mutex_exit(&crypto_mtx);
463 1.1 jonathan printf("crypto: no space to expand driver table!\n");
464 1.1 jonathan return -1;
465 1.1 jonathan }
466 1.1 jonathan
467 1.34 tsutsui memcpy(newdrv, crypto_drivers,
468 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
469 1.1 jonathan
470 1.1 jonathan crypto_drivers_num *= 2;
471 1.1 jonathan
472 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
473 1.1 jonathan crypto_drivers = newdrv;
474 1.1 jonathan }
475 1.1 jonathan
476 1.1 jonathan /* NB: state is zero'd on free */
477 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
478 1.1 jonathan crypto_drivers[i].cc_flags = flags;
479 1.1 jonathan
480 1.1 jonathan if (bootverbose)
481 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
482 1.1 jonathan
483 1.40 drochner mutex_exit(&crypto_mtx);
484 1.1 jonathan
485 1.1 jonathan return i;
486 1.1 jonathan }
487 1.1 jonathan
488 1.1 jonathan static struct cryptocap *
489 1.1 jonathan crypto_checkdriver(u_int32_t hid)
490 1.1 jonathan {
491 1.1 jonathan if (crypto_drivers == NULL)
492 1.1 jonathan return NULL;
493 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
494 1.1 jonathan }
495 1.1 jonathan
496 1.1 jonathan /*
497 1.1 jonathan * Register support for a key-related algorithm. This routine
498 1.1 jonathan * is called once for each algorithm supported a driver.
499 1.1 jonathan */
500 1.1 jonathan int
501 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
502 1.37 christos int (*kprocess)(void *, struct cryptkop *, int),
503 1.1 jonathan void *karg)
504 1.1 jonathan {
505 1.1 jonathan struct cryptocap *cap;
506 1.1 jonathan int err;
507 1.1 jonathan
508 1.40 drochner mutex_enter(&crypto_mtx);
509 1.1 jonathan
510 1.1 jonathan cap = crypto_checkdriver(driverid);
511 1.1 jonathan if (cap != NULL &&
512 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
513 1.1 jonathan /*
514 1.1 jonathan * XXX Do some performance testing to determine placing.
515 1.1 jonathan * XXX We probably need an auxiliary data structure that
516 1.1 jonathan * XXX describes relative performances.
517 1.1 jonathan */
518 1.1 jonathan
519 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
520 1.23 tls if (bootverbose) {
521 1.23 tls printf("crypto: driver %u registers key alg %u "
522 1.23 tls " flags %u\n",
523 1.23 tls driverid,
524 1.23 tls kalg,
525 1.23 tls flags
526 1.1 jonathan );
527 1.23 tls }
528 1.1 jonathan
529 1.1 jonathan if (cap->cc_kprocess == NULL) {
530 1.1 jonathan cap->cc_karg = karg;
531 1.1 jonathan cap->cc_kprocess = kprocess;
532 1.1 jonathan }
533 1.1 jonathan err = 0;
534 1.1 jonathan } else
535 1.1 jonathan err = EINVAL;
536 1.1 jonathan
537 1.40 drochner mutex_exit(&crypto_mtx);
538 1.1 jonathan return err;
539 1.1 jonathan }
540 1.1 jonathan
541 1.1 jonathan /*
542 1.1 jonathan * Register support for a non-key-related algorithm. This routine
543 1.1 jonathan * is called once for each such algorithm supported by a driver.
544 1.1 jonathan */
545 1.1 jonathan int
546 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
547 1.1 jonathan u_int32_t flags,
548 1.37 christos int (*newses)(void *, u_int32_t*, struct cryptoini*),
549 1.37 christos int (*freeses)(void *, u_int64_t),
550 1.37 christos int (*process)(void *, struct cryptop *, int),
551 1.1 jonathan void *arg)
552 1.1 jonathan {
553 1.1 jonathan struct cryptocap *cap;
554 1.23 tls int err;
555 1.1 jonathan
556 1.40 drochner mutex_enter(&crypto_mtx);
557 1.1 jonathan
558 1.1 jonathan cap = crypto_checkdriver(driverid);
559 1.1 jonathan /* NB: algorithms are in the range [1..max] */
560 1.1 jonathan if (cap != NULL &&
561 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
562 1.1 jonathan /*
563 1.1 jonathan * XXX Do some performance testing to determine placing.
564 1.1 jonathan * XXX We probably need an auxiliary data structure that
565 1.1 jonathan * XXX describes relative performances.
566 1.1 jonathan */
567 1.1 jonathan
568 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
569 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
570 1.23 tls if (bootverbose) {
571 1.23 tls printf("crypto: driver %u registers alg %u "
572 1.23 tls "flags %u maxoplen %u\n",
573 1.23 tls driverid,
574 1.23 tls alg,
575 1.23 tls flags,
576 1.23 tls maxoplen
577 1.1 jonathan );
578 1.23 tls }
579 1.1 jonathan
580 1.1 jonathan if (cap->cc_process == NULL) {
581 1.1 jonathan cap->cc_arg = arg;
582 1.1 jonathan cap->cc_newsession = newses;
583 1.1 jonathan cap->cc_process = process;
584 1.1 jonathan cap->cc_freesession = freeses;
585 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
586 1.1 jonathan }
587 1.1 jonathan err = 0;
588 1.1 jonathan } else
589 1.1 jonathan err = EINVAL;
590 1.1 jonathan
591 1.40 drochner mutex_exit(&crypto_mtx);
592 1.1 jonathan return err;
593 1.1 jonathan }
594 1.1 jonathan
595 1.1 jonathan /*
596 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
597 1.1 jonathan * leave enough information around so that subsequent calls using those
598 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
599 1.1 jonathan * reroute requests.
600 1.1 jonathan */
601 1.1 jonathan int
602 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
603 1.1 jonathan {
604 1.23 tls int i, err;
605 1.1 jonathan u_int32_t ses;
606 1.1 jonathan struct cryptocap *cap;
607 1.1 jonathan
608 1.40 drochner mutex_enter(&crypto_mtx);
609 1.1 jonathan
610 1.1 jonathan cap = crypto_checkdriver(driverid);
611 1.1 jonathan if (cap != NULL &&
612 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
613 1.1 jonathan cap->cc_alg[alg] != 0) {
614 1.1 jonathan cap->cc_alg[alg] = 0;
615 1.1 jonathan cap->cc_max_op_len[alg] = 0;
616 1.1 jonathan
617 1.1 jonathan /* Was this the last algorithm ? */
618 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
619 1.1 jonathan if (cap->cc_alg[i] != 0)
620 1.1 jonathan break;
621 1.1 jonathan
622 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
623 1.1 jonathan ses = cap->cc_sessions;
624 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
625 1.1 jonathan if (ses != 0) {
626 1.1 jonathan /*
627 1.1 jonathan * If there are pending sessions, just mark as invalid.
628 1.1 jonathan */
629 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
630 1.1 jonathan cap->cc_sessions = ses;
631 1.1 jonathan }
632 1.1 jonathan }
633 1.1 jonathan err = 0;
634 1.1 jonathan } else
635 1.1 jonathan err = EINVAL;
636 1.1 jonathan
637 1.40 drochner mutex_exit(&crypto_mtx);
638 1.1 jonathan return err;
639 1.1 jonathan }
640 1.1 jonathan
641 1.1 jonathan /*
642 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
643 1.1 jonathan * If there are pending sessions using it, leave enough information
644 1.1 jonathan * around so that subsequent calls using those sessions will
645 1.1 jonathan * correctly detect the driver has been unregistered and reroute
646 1.1 jonathan * requests.
647 1.23 tls *
648 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
649 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
650 1.23 tls * XXX you can't take it recursively.
651 1.1 jonathan */
652 1.1 jonathan int
653 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
654 1.1 jonathan {
655 1.23 tls int i, err;
656 1.1 jonathan u_int32_t ses;
657 1.1 jonathan struct cryptocap *cap;
658 1.1 jonathan
659 1.40 drochner mutex_enter(&crypto_mtx);
660 1.1 jonathan cap = crypto_checkdriver(driverid);
661 1.1 jonathan if (cap != NULL) {
662 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
663 1.1 jonathan cap->cc_alg[i] = 0;
664 1.1 jonathan cap->cc_max_op_len[i] = 0;
665 1.1 jonathan }
666 1.1 jonathan ses = cap->cc_sessions;
667 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
668 1.1 jonathan if (ses != 0) {
669 1.1 jonathan /*
670 1.1 jonathan * If there are pending sessions, just mark as invalid.
671 1.1 jonathan */
672 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
673 1.1 jonathan cap->cc_sessions = ses;
674 1.1 jonathan }
675 1.1 jonathan err = 0;
676 1.1 jonathan } else
677 1.1 jonathan err = EINVAL;
678 1.1 jonathan
679 1.40 drochner mutex_exit(&crypto_mtx);
680 1.1 jonathan return err;
681 1.1 jonathan }
682 1.1 jonathan
683 1.1 jonathan /*
684 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
685 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
686 1.1 jonathan */
687 1.1 jonathan int
688 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
689 1.1 jonathan {
690 1.1 jonathan struct cryptocap *cap;
691 1.23 tls int needwakeup, err;
692 1.1 jonathan
693 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
694 1.1 jonathan cap = crypto_checkdriver(driverid);
695 1.1 jonathan if (cap != NULL) {
696 1.1 jonathan needwakeup = 0;
697 1.1 jonathan if (what & CRYPTO_SYMQ) {
698 1.1 jonathan needwakeup |= cap->cc_qblocked;
699 1.1 jonathan cap->cc_qblocked = 0;
700 1.1 jonathan }
701 1.1 jonathan if (what & CRYPTO_ASYMQ) {
702 1.1 jonathan needwakeup |= cap->cc_kqblocked;
703 1.1 jonathan cap->cc_kqblocked = 0;
704 1.1 jonathan }
705 1.24 tls err = 0;
706 1.24 tls if (needwakeup)
707 1.1 jonathan setsoftcrypto(softintr_cookie);
708 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
709 1.24 tls } else {
710 1.1 jonathan err = EINVAL;
711 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
712 1.24 tls }
713 1.1 jonathan
714 1.1 jonathan return err;
715 1.1 jonathan }
716 1.1 jonathan
717 1.1 jonathan /*
718 1.1 jonathan * Dispatch a crypto request to a driver or queue
719 1.1 jonathan * it, to be processed by the kernel thread.
720 1.1 jonathan */
721 1.1 jonathan int
722 1.1 jonathan crypto_dispatch(struct cryptop *crp)
723 1.1 jonathan {
724 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
725 1.23 tls int result;
726 1.1 jonathan
727 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
728 1.41 drochner DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
729 1.41 drochner crp, crp->crp_desc->crd_alg));
730 1.1 jonathan
731 1.1 jonathan cryptostats.cs_ops++;
732 1.1 jonathan
733 1.1 jonathan #ifdef CRYPTO_TIMING
734 1.1 jonathan if (crypto_timing)
735 1.1 jonathan nanouptime(&crp->crp_tstamp);
736 1.1 jonathan #endif
737 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
738 1.1 jonathan struct cryptocap *cap;
739 1.1 jonathan /*
740 1.1 jonathan * Caller marked the request to be processed
741 1.1 jonathan * immediately; dispatch it directly to the
742 1.1 jonathan * driver unless the driver is currently blocked.
743 1.1 jonathan */
744 1.1 jonathan cap = crypto_checkdriver(hid);
745 1.1 jonathan if (cap && !cap->cc_qblocked) {
746 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
747 1.1 jonathan result = crypto_invoke(crp, 0);
748 1.1 jonathan if (result == ERESTART) {
749 1.1 jonathan /*
750 1.1 jonathan * The driver ran out of resources, mark the
751 1.1 jonathan * driver ``blocked'' for cryptop's and put
752 1.1 jonathan * the op on the queue.
753 1.1 jonathan */
754 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
755 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
756 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
757 1.1 jonathan cryptostats.cs_blocks++;
758 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
759 1.1 jonathan }
760 1.23 tls goto out_released;
761 1.1 jonathan } else {
762 1.1 jonathan /*
763 1.1 jonathan * The driver is blocked, just queue the op until
764 1.1 jonathan * it unblocks and the swi thread gets kicked.
765 1.1 jonathan */
766 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
767 1.1 jonathan result = 0;
768 1.1 jonathan }
769 1.1 jonathan } else {
770 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
771 1.1 jonathan /*
772 1.1 jonathan * Caller marked the request as ``ok to delay'';
773 1.1 jonathan * queue it for the swi thread. This is desirable
774 1.1 jonathan * when the operation is low priority and/or suitable
775 1.1 jonathan * for batching.
776 1.1 jonathan */
777 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
778 1.1 jonathan if (wasempty) {
779 1.1 jonathan setsoftcrypto(softintr_cookie);
780 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
781 1.23 tls result = 0;
782 1.23 tls goto out_released;
783 1.1 jonathan }
784 1.1 jonathan
785 1.1 jonathan result = 0;
786 1.1 jonathan }
787 1.1 jonathan
788 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
789 1.23 tls out_released:
790 1.1 jonathan return result;
791 1.1 jonathan }
792 1.1 jonathan
793 1.1 jonathan /*
794 1.1 jonathan * Add an asymetric crypto request to a queue,
795 1.1 jonathan * to be processed by the kernel thread.
796 1.1 jonathan */
797 1.1 jonathan int
798 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
799 1.1 jonathan {
800 1.1 jonathan struct cryptocap *cap;
801 1.23 tls int result;
802 1.1 jonathan
803 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
804 1.1 jonathan cryptostats.cs_kops++;
805 1.1 jonathan
806 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
807 1.1 jonathan if (cap && !cap->cc_kqblocked) {
808 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
809 1.1 jonathan result = crypto_kinvoke(krp, 0);
810 1.1 jonathan if (result == ERESTART) {
811 1.1 jonathan /*
812 1.1 jonathan * The driver ran out of resources, mark the
813 1.1 jonathan * driver ``blocked'' for cryptop's and put
814 1.1 jonathan * the op on the queue.
815 1.1 jonathan */
816 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
817 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
818 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
819 1.1 jonathan cryptostats.cs_kblocks++;
820 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
821 1.1 jonathan }
822 1.1 jonathan } else {
823 1.1 jonathan /*
824 1.1 jonathan * The driver is blocked, just queue the op until
825 1.1 jonathan * it unblocks and the swi thread gets kicked.
826 1.1 jonathan */
827 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
828 1.1 jonathan result = 0;
829 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
830 1.1 jonathan }
831 1.1 jonathan
832 1.1 jonathan return result;
833 1.1 jonathan }
834 1.1 jonathan
835 1.1 jonathan /*
836 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
837 1.1 jonathan */
838 1.1 jonathan static int
839 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
840 1.1 jonathan {
841 1.1 jonathan u_int32_t hid;
842 1.1 jonathan int error;
843 1.1 jonathan
844 1.1 jonathan /* Sanity checks. */
845 1.1 jonathan if (krp == NULL)
846 1.1 jonathan return EINVAL;
847 1.1 jonathan if (krp->krp_callback == NULL) {
848 1.30 darran cv_destroy(&krp->krp_cv);
849 1.23 tls pool_put(&cryptkop_pool, krp);
850 1.1 jonathan return EINVAL;
851 1.1 jonathan }
852 1.1 jonathan
853 1.40 drochner mutex_enter(&crypto_mtx);
854 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
855 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
856 1.1 jonathan crypto_devallowsoft == 0)
857 1.1 jonathan continue;
858 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
859 1.1 jonathan continue;
860 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
861 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
862 1.1 jonathan continue;
863 1.1 jonathan break;
864 1.1 jonathan }
865 1.1 jonathan if (hid < crypto_drivers_num) {
866 1.37 christos int (*process)(void *, struct cryptkop *, int);
867 1.37 christos void *arg;
868 1.37 christos
869 1.37 christos process = crypto_drivers[hid].cc_kprocess;
870 1.37 christos arg = crypto_drivers[hid].cc_karg;
871 1.40 drochner mutex_exit(&crypto_mtx);
872 1.1 jonathan krp->krp_hid = hid;
873 1.37 christos error = (*process)(arg, krp, hint);
874 1.1 jonathan } else {
875 1.40 drochner mutex_exit(&crypto_mtx);
876 1.1 jonathan error = ENODEV;
877 1.1 jonathan }
878 1.1 jonathan
879 1.1 jonathan if (error) {
880 1.1 jonathan krp->krp_status = error;
881 1.1 jonathan crypto_kdone(krp);
882 1.1 jonathan }
883 1.1 jonathan return 0;
884 1.1 jonathan }
885 1.1 jonathan
886 1.1 jonathan #ifdef CRYPTO_TIMING
887 1.1 jonathan static void
888 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
889 1.1 jonathan {
890 1.1 jonathan struct timespec now, t;
891 1.1 jonathan
892 1.1 jonathan nanouptime(&now);
893 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
894 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
895 1.1 jonathan if (t.tv_nsec < 0) {
896 1.1 jonathan t.tv_sec--;
897 1.1 jonathan t.tv_nsec += 1000000000;
898 1.1 jonathan }
899 1.1 jonathan timespecadd(&ts->acc, &t, &t);
900 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
901 1.1 jonathan ts->min = t;
902 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
903 1.1 jonathan ts->max = t;
904 1.1 jonathan ts->count++;
905 1.1 jonathan
906 1.1 jonathan *tv = now;
907 1.1 jonathan }
908 1.1 jonathan #endif
909 1.1 jonathan
910 1.1 jonathan /*
911 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
912 1.1 jonathan */
913 1.1 jonathan static int
914 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
915 1.1 jonathan {
916 1.1 jonathan u_int32_t hid;
917 1.1 jonathan
918 1.1 jonathan #ifdef CRYPTO_TIMING
919 1.1 jonathan if (crypto_timing)
920 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
921 1.1 jonathan #endif
922 1.1 jonathan /* Sanity checks. */
923 1.1 jonathan if (crp == NULL)
924 1.1 jonathan return EINVAL;
925 1.1 jonathan if (crp->crp_callback == NULL) {
926 1.1 jonathan return EINVAL;
927 1.1 jonathan }
928 1.1 jonathan if (crp->crp_desc == NULL) {
929 1.1 jonathan crp->crp_etype = EINVAL;
930 1.1 jonathan crypto_done(crp);
931 1.1 jonathan return 0;
932 1.1 jonathan }
933 1.1 jonathan
934 1.35 jakllsch hid = CRYPTO_SESID2HID(crp->crp_sid);
935 1.37 christos
936 1.1 jonathan if (hid < crypto_drivers_num) {
937 1.37 christos int (*process)(void *, struct cryptop *, int);
938 1.37 christos void *arg;
939 1.37 christos
940 1.40 drochner if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
941 1.40 drochner mutex_exit(&crypto_mtx);
942 1.1 jonathan crypto_freesession(crp->crp_sid);
943 1.40 drochner mutex_enter(&crypto_mtx);
944 1.40 drochner }
945 1.1 jonathan process = crypto_drivers[hid].cc_process;
946 1.37 christos arg = crypto_drivers[hid].cc_arg;
947 1.37 christos
948 1.37 christos /*
949 1.37 christos * Invoke the driver to process the request.
950 1.37 christos */
951 1.37 christos DPRINTF(("calling process for %p\n", crp));
952 1.37 christos return (*process)(arg, crp, hint);
953 1.1 jonathan } else {
954 1.1 jonathan struct cryptodesc *crd;
955 1.16 mrg u_int64_t nid = 0;
956 1.1 jonathan
957 1.1 jonathan /*
958 1.1 jonathan * Driver has unregistered; migrate the session and return
959 1.1 jonathan * an error to the caller so they'll resubmit the op.
960 1.1 jonathan */
961 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
962 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
963 1.1 jonathan
964 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
965 1.1 jonathan crp->crp_sid = nid;
966 1.1 jonathan
967 1.1 jonathan crp->crp_etype = EAGAIN;
968 1.23 tls
969 1.1 jonathan crypto_done(crp);
970 1.1 jonathan return 0;
971 1.1 jonathan }
972 1.1 jonathan }
973 1.1 jonathan
974 1.1 jonathan /*
975 1.1 jonathan * Release a set of crypto descriptors.
976 1.1 jonathan */
977 1.1 jonathan void
978 1.1 jonathan crypto_freereq(struct cryptop *crp)
979 1.1 jonathan {
980 1.1 jonathan struct cryptodesc *crd;
981 1.1 jonathan
982 1.1 jonathan if (crp == NULL)
983 1.1 jonathan return;
984 1.35 jakllsch DPRINTF(("crypto_freereq[%u]: crp %p\n",
985 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
986 1.1 jonathan
987 1.30 darran /* sanity check */
988 1.30 darran if (crp->crp_flags & CRYPTO_F_ONRETQ) {
989 1.30 darran panic("crypto_freereq() freeing crp on RETQ\n");
990 1.30 darran }
991 1.30 darran
992 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
993 1.1 jonathan crp->crp_desc = crd->crd_next;
994 1.1 jonathan pool_put(&cryptodesc_pool, crd);
995 1.1 jonathan }
996 1.1 jonathan pool_put(&cryptop_pool, crp);
997 1.1 jonathan }
998 1.1 jonathan
999 1.1 jonathan /*
1000 1.1 jonathan * Acquire a set of crypto descriptors.
1001 1.1 jonathan */
1002 1.1 jonathan struct cryptop *
1003 1.1 jonathan crypto_getreq(int num)
1004 1.1 jonathan {
1005 1.1 jonathan struct cryptodesc *crd;
1006 1.1 jonathan struct cryptop *crp;
1007 1.1 jonathan
1008 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
1009 1.1 jonathan if (crp == NULL) {
1010 1.1 jonathan return NULL;
1011 1.1 jonathan }
1012 1.31 cegger memset(crp, 0, sizeof(struct cryptop));
1013 1.1 jonathan
1014 1.1 jonathan while (num--) {
1015 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
1016 1.1 jonathan if (crd == NULL) {
1017 1.1 jonathan crypto_freereq(crp);
1018 1.1 jonathan return NULL;
1019 1.1 jonathan }
1020 1.1 jonathan
1021 1.31 cegger memset(crd, 0, sizeof(struct cryptodesc));
1022 1.1 jonathan crd->crd_next = crp->crp_desc;
1023 1.1 jonathan crp->crp_desc = crd;
1024 1.1 jonathan }
1025 1.1 jonathan
1026 1.1 jonathan return crp;
1027 1.1 jonathan }
1028 1.1 jonathan
1029 1.1 jonathan /*
1030 1.1 jonathan * Invoke the callback on behalf of the driver.
1031 1.1 jonathan */
1032 1.1 jonathan void
1033 1.1 jonathan crypto_done(struct cryptop *crp)
1034 1.1 jonathan {
1035 1.23 tls int wasempty;
1036 1.23 tls
1037 1.1 jonathan if (crp->crp_etype != 0)
1038 1.1 jonathan cryptostats.cs_errs++;
1039 1.1 jonathan #ifdef CRYPTO_TIMING
1040 1.1 jonathan if (crypto_timing)
1041 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1042 1.1 jonathan #endif
1043 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p\n",
1044 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1045 1.27 tls
1046 1.1 jonathan /*
1047 1.23 tls * Normal case; queue the callback for the thread.
1048 1.23 tls *
1049 1.23 tls * The return queue is manipulated by the swi thread
1050 1.23 tls * and, potentially, by crypto device drivers calling
1051 1.23 tls * back to mark operations completed. Thus we need
1052 1.23 tls * to mask both while manipulating the return queue.
1053 1.1 jonathan */
1054 1.27 tls if (crp->crp_flags & CRYPTO_F_CBIMM) {
1055 1.27 tls /*
1056 1.27 tls * Do the callback directly. This is ok when the
1057 1.27 tls * callback routine does very little (e.g. the
1058 1.27 tls * /dev/crypto callback method just does a wakeup).
1059 1.27 tls */
1060 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1061 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1062 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1063 1.30 darran
1064 1.27 tls #ifdef CRYPTO_TIMING
1065 1.27 tls if (crypto_timing) {
1066 1.27 tls /*
1067 1.27 tls * NB: We must copy the timestamp before
1068 1.27 tls * doing the callback as the cryptop is
1069 1.27 tls * likely to be reclaimed.
1070 1.27 tls */
1071 1.27 tls struct timespec t = crp->crp_tstamp;
1072 1.27 tls crypto_tstat(&cryptostats.cs_cb, &t);
1073 1.27 tls crp->crp_callback(crp);
1074 1.27 tls crypto_tstat(&cryptostats.cs_finis, &t);
1075 1.27 tls } else
1076 1.27 tls #endif
1077 1.27 tls crp->crp_callback(crp);
1078 1.27 tls } else {
1079 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1080 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1081 1.30 darran
1082 1.30 darran if (crp->crp_flags & CRYPTO_F_USER) {
1083 1.30 darran /* the request has completed while
1084 1.30 darran * running in the user context
1085 1.30 darran * so don't queue it - the user
1086 1.30 darran * thread won't sleep when it sees
1087 1.30 darran * the CRYPTO_F_DONE flag.
1088 1.30 darran * This is an optimization to avoid
1089 1.30 darran * unecessary context switches.
1090 1.30 darran */
1091 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1092 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1093 1.30 darran } else {
1094 1.30 darran wasempty = TAILQ_EMPTY(&crp_ret_q);
1095 1.35 jakllsch DPRINTF(("crypto_done[%u]: queueing %p\n",
1096 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1097 1.30 darran crp->crp_flags |= CRYPTO_F_ONRETQ;
1098 1.30 darran TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1099 1.30 darran if (wasempty) {
1100 1.35 jakllsch DPRINTF(("crypto_done[%u]: waking cryptoret, "
1101 1.35 jakllsch "crp %p hit empty queue\n.",
1102 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1103 1.30 darran cv_signal(&cryptoret_cv);
1104 1.30 darran }
1105 1.27 tls }
1106 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1107 1.1 jonathan }
1108 1.1 jonathan }
1109 1.1 jonathan
1110 1.1 jonathan /*
1111 1.1 jonathan * Invoke the callback on behalf of the driver.
1112 1.1 jonathan */
1113 1.1 jonathan void
1114 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1115 1.1 jonathan {
1116 1.23 tls int wasempty;
1117 1.1 jonathan
1118 1.1 jonathan if (krp->krp_status != 0)
1119 1.1 jonathan cryptostats.cs_kerrs++;
1120 1.27 tls
1121 1.27 tls krp->krp_flags |= CRYPTO_F_DONE;
1122 1.27 tls
1123 1.1 jonathan /*
1124 1.1 jonathan * The return queue is manipulated by the swi thread
1125 1.1 jonathan * and, potentially, by crypto device drivers calling
1126 1.1 jonathan * back to mark operations completed. Thus we need
1127 1.1 jonathan * to mask both while manipulating the return queue.
1128 1.1 jonathan */
1129 1.27 tls if (krp->krp_flags & CRYPTO_F_CBIMM) {
1130 1.27 tls krp->krp_callback(krp);
1131 1.27 tls } else {
1132 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1133 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_kq);
1134 1.27 tls krp->krp_flags |= CRYPTO_F_ONRETQ;
1135 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1136 1.27 tls if (wasempty)
1137 1.27 tls cv_signal(&cryptoret_cv);
1138 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1139 1.27 tls }
1140 1.1 jonathan }
1141 1.1 jonathan
1142 1.1 jonathan int
1143 1.1 jonathan crypto_getfeat(int *featp)
1144 1.1 jonathan {
1145 1.1 jonathan int hid, kalg, feat = 0;
1146 1.1 jonathan
1147 1.40 drochner mutex_enter(&crypto_mtx);
1148 1.1 jonathan
1149 1.1 jonathan if (crypto_userasymcrypto == 0)
1150 1.10 perry goto out;
1151 1.1 jonathan
1152 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1153 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1154 1.7 jonathan crypto_devallowsoft == 0) {
1155 1.1 jonathan continue;
1156 1.1 jonathan }
1157 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1158 1.1 jonathan continue;
1159 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1160 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1161 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1162 1.1 jonathan feat |= 1 << kalg;
1163 1.1 jonathan }
1164 1.1 jonathan out:
1165 1.40 drochner mutex_exit(&crypto_mtx);
1166 1.1 jonathan *featp = feat;
1167 1.1 jonathan return (0);
1168 1.1 jonathan }
1169 1.1 jonathan
1170 1.1 jonathan /*
1171 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1172 1.1 jonathan */
1173 1.1 jonathan static void
1174 1.1 jonathan cryptointr(void)
1175 1.1 jonathan {
1176 1.30 darran struct cryptop *crp, *submit, *cnext;
1177 1.30 darran struct cryptkop *krp, *knext;
1178 1.1 jonathan struct cryptocap *cap;
1179 1.23 tls int result, hint;
1180 1.1 jonathan
1181 1.1 jonathan cryptostats.cs_intrs++;
1182 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1183 1.1 jonathan do {
1184 1.1 jonathan /*
1185 1.1 jonathan * Find the first element in the queue that can be
1186 1.1 jonathan * processed and look-ahead to see if multiple ops
1187 1.1 jonathan * are ready for the same driver.
1188 1.1 jonathan */
1189 1.1 jonathan submit = NULL;
1190 1.1 jonathan hint = 0;
1191 1.30 darran TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1192 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1193 1.1 jonathan cap = crypto_checkdriver(hid);
1194 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1195 1.1 jonathan /* Op needs to be migrated, process it. */
1196 1.1 jonathan if (submit == NULL)
1197 1.1 jonathan submit = crp;
1198 1.1 jonathan break;
1199 1.1 jonathan }
1200 1.1 jonathan if (!cap->cc_qblocked) {
1201 1.1 jonathan if (submit != NULL) {
1202 1.1 jonathan /*
1203 1.1 jonathan * We stop on finding another op,
1204 1.1 jonathan * regardless whether its for the same
1205 1.1 jonathan * driver or not. We could keep
1206 1.1 jonathan * searching the queue but it might be
1207 1.1 jonathan * better to just use a per-driver
1208 1.1 jonathan * queue instead.
1209 1.1 jonathan */
1210 1.35 jakllsch if (CRYPTO_SESID2HID(submit->crp_sid)
1211 1.35 jakllsch == hid)
1212 1.1 jonathan hint = CRYPTO_HINT_MORE;
1213 1.1 jonathan break;
1214 1.1 jonathan } else {
1215 1.1 jonathan submit = crp;
1216 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1217 1.1 jonathan break;
1218 1.1 jonathan /* keep scanning for more are q'd */
1219 1.1 jonathan }
1220 1.1 jonathan }
1221 1.1 jonathan }
1222 1.1 jonathan if (submit != NULL) {
1223 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1224 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1225 1.1 jonathan result = crypto_invoke(submit, hint);
1226 1.23 tls /* we must take here as the TAILQ op or kinvoke
1227 1.23 tls may need this mutex below. sigh. */
1228 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1229 1.1 jonathan if (result == ERESTART) {
1230 1.1 jonathan /*
1231 1.1 jonathan * The driver ran out of resources, mark the
1232 1.1 jonathan * driver ``blocked'' for cryptop's and put
1233 1.1 jonathan * the request back in the queue. It would
1234 1.1 jonathan * best to put the request back where we got
1235 1.1 jonathan * it but that's hard so for now we put it
1236 1.1 jonathan * at the front. This should be ok; putting
1237 1.1 jonathan * it at the end does not work.
1238 1.1 jonathan */
1239 1.1 jonathan /* XXX validate sid again? */
1240 1.35 jakllsch crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1241 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1242 1.1 jonathan cryptostats.cs_blocks++;
1243 1.1 jonathan }
1244 1.1 jonathan }
1245 1.1 jonathan
1246 1.1 jonathan /* As above, but for key ops */
1247 1.30 darran TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1248 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1249 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1250 1.1 jonathan /* Op needs to be migrated, process it. */
1251 1.1 jonathan break;
1252 1.1 jonathan }
1253 1.1 jonathan if (!cap->cc_kqblocked)
1254 1.1 jonathan break;
1255 1.1 jonathan }
1256 1.1 jonathan if (krp != NULL) {
1257 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1258 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1259 1.1 jonathan result = crypto_kinvoke(krp, 0);
1260 1.23 tls /* the next iteration will want the mutex. :-/ */
1261 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1262 1.1 jonathan if (result == ERESTART) {
1263 1.1 jonathan /*
1264 1.1 jonathan * The driver ran out of resources, mark the
1265 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1266 1.1 jonathan * the request back in the queue. It would
1267 1.1 jonathan * best to put the request back where we got
1268 1.1 jonathan * it but that's hard so for now we put it
1269 1.1 jonathan * at the front. This should be ok; putting
1270 1.1 jonathan * it at the end does not work.
1271 1.1 jonathan */
1272 1.1 jonathan /* XXX validate sid again? */
1273 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1274 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1275 1.1 jonathan cryptostats.cs_kblocks++;
1276 1.1 jonathan }
1277 1.1 jonathan }
1278 1.1 jonathan } while (submit != NULL || krp != NULL);
1279 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1280 1.1 jonathan }
1281 1.1 jonathan
1282 1.1 jonathan /*
1283 1.1 jonathan * Kernel thread to do callbacks.
1284 1.1 jonathan */
1285 1.1 jonathan static void
1286 1.1 jonathan cryptoret(void)
1287 1.1 jonathan {
1288 1.1 jonathan struct cryptop *crp;
1289 1.1 jonathan struct cryptkop *krp;
1290 1.1 jonathan
1291 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1292 1.1 jonathan for (;;) {
1293 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1294 1.23 tls if (crp != NULL) {
1295 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1296 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1297 1.23 tls }
1298 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1299 1.23 tls if (krp != NULL) {
1300 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1301 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1302 1.23 tls }
1303 1.1 jonathan
1304 1.23 tls /* drop before calling any callbacks. */
1305 1.26 ad if (crp == NULL && krp == NULL) {
1306 1.26 ad cryptostats.cs_rets++;
1307 1.40 drochner cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1308 1.26 ad continue;
1309 1.26 ad }
1310 1.26 ad
1311 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1312 1.26 ad
1313 1.26 ad if (crp != NULL) {
1314 1.1 jonathan #ifdef CRYPTO_TIMING
1315 1.26 ad if (crypto_timing) {
1316 1.26 ad /*
1317 1.26 ad * NB: We must copy the timestamp before
1318 1.26 ad * doing the callback as the cryptop is
1319 1.26 ad * likely to be reclaimed.
1320 1.26 ad */
1321 1.26 ad struct timespec t = crp->crp_tstamp;
1322 1.26 ad crypto_tstat(&cryptostats.cs_cb, &t);
1323 1.26 ad crp->crp_callback(crp);
1324 1.26 ad crypto_tstat(&cryptostats.cs_finis, &t);
1325 1.26 ad } else
1326 1.1 jonathan #endif
1327 1.26 ad {
1328 1.26 ad crp->crp_callback(crp);
1329 1.1 jonathan }
1330 1.1 jonathan }
1331 1.26 ad if (krp != NULL)
1332 1.26 ad krp->krp_callback(krp);
1333 1.26 ad
1334 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1335 1.1 jonathan }
1336 1.1 jonathan }
1337 1.42 pgoyette
1338 1.42 pgoyette /* NetBSD module interface */
1339 1.42 pgoyette
1340 1.42 pgoyette MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1341 1.42 pgoyette
1342 1.42 pgoyette static int
1343 1.42 pgoyette opencrypto_modcmd(modcmd_t cmd, void *opaque)
1344 1.42 pgoyette {
1345 1.43 pgoyette #ifdef _MODULE
1346 1.43 pgoyette static struct sysctllog *sysctl_opencrypto_clog;
1347 1.43 pgoyette #endif
1348 1.42 pgoyette
1349 1.42 pgoyette switch (cmd) {
1350 1.42 pgoyette case MODULE_CMD_INIT:
1351 1.43 pgoyette #ifdef _MODULE
1352 1.43 pgoyette sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
1353 1.43 pgoyette #endif
1354 1.42 pgoyette return 0;
1355 1.42 pgoyette case MODULE_CMD_FINI:
1356 1.43 pgoyette #ifdef _MODULE
1357 1.43 pgoyette sysctl_teardown(&sysctl_opencrypto_clog);
1358 1.43 pgoyette #endif
1359 1.42 pgoyette return 0;
1360 1.42 pgoyette default:
1361 1.42 pgoyette return ENOTTY;
1362 1.42 pgoyette }
1363 1.42 pgoyette }
1364