crypto.c revision 1.46 1 1.46 pgoyette /* $NetBSD: crypto.c,v 1.46 2015/11/28 03:06:45 pgoyette Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.27 tls /*-
6 1.27 tls * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 1.27 tls * All rights reserved.
8 1.27 tls *
9 1.27 tls * This code is derived from software contributed to The NetBSD Foundation
10 1.27 tls * by Coyote Point Systems, Inc.
11 1.27 tls *
12 1.27 tls * Redistribution and use in source and binary forms, with or without
13 1.27 tls * modification, are permitted provided that the following conditions
14 1.27 tls * are met:
15 1.27 tls * 1. Redistributions of source code must retain the above copyright
16 1.27 tls * notice, this list of conditions and the following disclaimer.
17 1.27 tls * 2. Redistributions in binary form must reproduce the above copyright
18 1.27 tls * notice, this list of conditions and the following disclaimer in the
19 1.27 tls * documentation and/or other materials provided with the distribution.
20 1.27 tls *
21 1.27 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.27 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.27 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.27 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.27 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.27 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.27 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.27 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.27 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.27 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.27 tls * POSSIBILITY OF SUCH DAMAGE.
32 1.27 tls */
33 1.27 tls
34 1.1 jonathan /*
35 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 1.1 jonathan *
37 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 1.1 jonathan * supported the development of this code.
40 1.1 jonathan *
41 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 1.1 jonathan *
43 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
44 1.1 jonathan * is hereby granted, provided that this entire notice is included in
45 1.1 jonathan * all source code copies of any software which is or includes a copy or
46 1.1 jonathan * modification of this software.
47 1.1 jonathan *
48 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 1.1 jonathan * PURPOSE.
53 1.1 jonathan */
54 1.1 jonathan
55 1.1 jonathan #include <sys/cdefs.h>
56 1.46 pgoyette __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.46 2015/11/28 03:06:45 pgoyette Exp $");
57 1.1 jonathan
58 1.1 jonathan #include <sys/param.h>
59 1.1 jonathan #include <sys/reboot.h>
60 1.1 jonathan #include <sys/systm.h>
61 1.1 jonathan #include <sys/malloc.h>
62 1.1 jonathan #include <sys/proc.h>
63 1.1 jonathan #include <sys/pool.h>
64 1.1 jonathan #include <sys/kthread.h>
65 1.11 thorpej #include <sys/once.h>
66 1.13 christos #include <sys/sysctl.h>
67 1.21 ad #include <sys/intr.h>
68 1.42 pgoyette #include <sys/errno.h>
69 1.42 pgoyette #include <sys/module.h>
70 1.1 jonathan
71 1.42 pgoyette #if defined(_KERNEL_OPT)
72 1.23 tls #include "opt_ocf.h"
73 1.42 pgoyette #endif
74 1.42 pgoyette
75 1.21 ad #include <opencrypto/cryptodev.h>
76 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
77 1.1 jonathan
78 1.40 drochner kmutex_t crypto_q_mtx;
79 1.40 drochner kmutex_t crypto_ret_q_mtx;
80 1.23 tls kcondvar_t cryptoret_cv;
81 1.23 tls kmutex_t crypto_mtx;
82 1.23 tls
83 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 1.1 jonathan #define SWI_CRYPTO 17
85 1.1 jonathan #define register_swi(lvl, fn) \
86 1.38 drochner softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 1.21 ad #define setsoftcrypto(x) softint_schedule(x)
89 1.1 jonathan
90 1.30 darran int crypto_ret_q_check(struct cryptop *);
91 1.30 darran
92 1.1 jonathan /*
93 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
94 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
95 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
96 1.1 jonathan */
97 1.11 thorpej static struct cryptocap *crypto_drivers;
98 1.11 thorpej static int crypto_drivers_num;
99 1.37 christos static void *softintr_cookie;
100 1.46 pgoyette static int crypto_exit_flag;
101 1.1 jonathan
102 1.1 jonathan /*
103 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
104 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
105 1.1 jonathan * See below for how synchronization is handled.
106 1.1 jonathan */
107 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
108 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
109 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
110 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
111 1.1 jonathan
112 1.1 jonathan /*
113 1.1 jonathan * There are two queues for processing completed crypto requests; one
114 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
115 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
116 1.1 jonathan * for how synchronization is handled.
117 1.1 jonathan */
118 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
119 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
120 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
121 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
122 1.1 jonathan
123 1.1 jonathan /*
124 1.23 tls * XXX these functions are ghastly hacks for when the submission
125 1.23 tls * XXX routines discover a request that was not CBIMM is already
126 1.23 tls * XXX done, and must be yanked from the retq (where _done) put it
127 1.23 tls * XXX as cryptoret won't get the chance. The queue is walked backwards
128 1.23 tls * XXX as the request is generally the last one queued.
129 1.23 tls *
130 1.23 tls * call with the lock held, or else.
131 1.23 tls */
132 1.23 tls int
133 1.23 tls crypto_ret_q_remove(struct cryptop *crp)
134 1.23 tls {
135 1.30 darran struct cryptop * acrp, *next;
136 1.23 tls
137 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
138 1.23 tls if (acrp == crp) {
139 1.23 tls TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
140 1.23 tls crp->crp_flags &= (~CRYPTO_F_ONRETQ);
141 1.23 tls return 1;
142 1.23 tls }
143 1.23 tls }
144 1.23 tls return 0;
145 1.23 tls }
146 1.23 tls
147 1.23 tls int
148 1.23 tls crypto_ret_kq_remove(struct cryptkop *krp)
149 1.23 tls {
150 1.30 darran struct cryptkop * akrp, *next;
151 1.23 tls
152 1.30 darran TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
153 1.23 tls if (akrp == krp) {
154 1.23 tls TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
155 1.23 tls krp->krp_flags &= (~CRYPTO_F_ONRETQ);
156 1.23 tls return 1;
157 1.23 tls }
158 1.23 tls }
159 1.23 tls return 0;
160 1.23 tls }
161 1.23 tls
162 1.23 tls /*
163 1.1 jonathan * Crypto op and desciptor data structures are allocated
164 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
165 1.1 jonathan */
166 1.1 jonathan struct pool cryptop_pool;
167 1.1 jonathan struct pool cryptodesc_pool;
168 1.23 tls struct pool cryptkop_pool;
169 1.1 jonathan
170 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
171 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
172 1.10 perry /*
173 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
174 1.6 jonathan * access to hardware versus software transforms as below:
175 1.6 jonathan *
176 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
177 1.6 jonathan * transforms, always
178 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
179 1.6 jonathan * requests for non-accelerated transforms
180 1.6 jonathan * (handling the latter in software)
181 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
182 1.6 jonathan * are hardware-accelerated.
183 1.6 jonathan */
184 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
185 1.6 jonathan
186 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
187 1.13 christos {
188 1.45 pooka
189 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
190 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
191 1.13 christos CTLTYPE_INT, "usercrypto",
192 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
193 1.13 christos "crypto support"),
194 1.13 christos NULL, 0, &crypto_usercrypto, 0,
195 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
196 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
197 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
198 1.13 christos CTLTYPE_INT, "userasymcrypto",
199 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
200 1.13 christos "asymmetric crypto support"),
201 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
202 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
203 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
204 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
205 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
206 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
207 1.13 christos "asymmetric crypto support"),
208 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
209 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
210 1.13 christos }
211 1.1 jonathan
212 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
213 1.1 jonathan
214 1.1 jonathan /*
215 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
216 1.1 jonathan *
217 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
218 1.1 jonathan * these come in from network protocols at spl0 (output path) or
219 1.1 jonathan * spl[,soft]net (input path).
220 1.1 jonathan *
221 1.1 jonathan * Requests are typically passed on the driver directly, but they
222 1.1 jonathan * may also be queued for processing by a software interrupt thread,
223 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
224 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
225 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
226 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
227 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
228 1.1 jonathan *
229 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
230 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
231 1.1 jonathan * driver interrupt service routine is not delayed while the callback
232 1.1 jonathan * takes place and that callbacks are delivered after a context switch
233 1.1 jonathan * (as opposed to a software interrupt that clients must block).
234 1.1 jonathan *
235 1.1 jonathan * This scheme is not intended for SMP machines.
236 1.10 perry */
237 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
238 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
239 1.20 ad static struct lwp *cryptothread;
240 1.46 pgoyette static int crypto_destroy(bool);
241 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
242 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
243 1.1 jonathan
244 1.1 jonathan static struct cryptostats cryptostats;
245 1.23 tls #ifdef CRYPTO_TIMING
246 1.1 jonathan static int crypto_timing = 0;
247 1.23 tls #endif
248 1.1 jonathan
249 1.44 pgoyette #ifdef _MODULE
250 1.44 pgoyette static struct sysctllog *sysctl_opencrypto_clog;
251 1.44 pgoyette #endif
252 1.44 pgoyette
253 1.12 yamt static int
254 1.11 thorpej crypto_init0(void)
255 1.1 jonathan {
256 1.1 jonathan int error;
257 1.1 jonathan
258 1.40 drochner mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
259 1.40 drochner mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 1.40 drochner mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
261 1.36 pgoyette cv_init(&cryptoret_cv, "crypto_w");
262 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
263 1.23 tls 0, "cryptop", NULL, IPL_NET);
264 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
265 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
266 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
267 1.23 tls 0, "cryptkop", NULL, IPL_NET);
268 1.1 jonathan
269 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
270 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
271 1.1 jonathan if (crypto_drivers == NULL) {
272 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
273 1.46 pgoyette return ENOMEM;
274 1.1 jonathan }
275 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
276 1.1 jonathan
277 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
278 1.25 tls error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
279 1.37 christos (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
280 1.1 jonathan if (error) {
281 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
282 1.1 jonathan error);
283 1.46 pgoyette return crypto_destroy(false);
284 1.1 jonathan }
285 1.20 ad
286 1.44 pgoyette #ifdef _MODULE
287 1.44 pgoyette sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
288 1.44 pgoyette #endif
289 1.12 yamt return 0;
290 1.11 thorpej }
291 1.11 thorpej
292 1.46 pgoyette int
293 1.11 thorpej crypto_init(void)
294 1.11 thorpej {
295 1.18 daniel static ONCE_DECL(crypto_init_once);
296 1.11 thorpej
297 1.46 pgoyette return RUN_ONCE(&crypto_init_once, crypto_init0);
298 1.1 jonathan }
299 1.1 jonathan
300 1.46 pgoyette static int
301 1.46 pgoyette crypto_destroy(bool exit_kthread)
302 1.1 jonathan {
303 1.46 pgoyette int i;
304 1.46 pgoyette
305 1.46 pgoyette if (exit_kthread) {
306 1.46 pgoyette mutex_spin_enter(&crypto_ret_q_mtx);
307 1.46 pgoyette
308 1.46 pgoyette /* if we have any in-progress requests, don't unload */
309 1.46 pgoyette if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq))
310 1.46 pgoyette return EBUSY;
311 1.46 pgoyette
312 1.46 pgoyette for (i = 0; i < crypto_drivers_num; i++)
313 1.46 pgoyette if (crypto_drivers[i].cc_sessions != 0)
314 1.46 pgoyette break;
315 1.46 pgoyette if (i < crypto_drivers_num)
316 1.46 pgoyette return EBUSY;
317 1.46 pgoyette
318 1.46 pgoyette /* kick the cryptoret thread and wait for it to exit */
319 1.46 pgoyette crypto_exit_flag = 1;
320 1.46 pgoyette cv_signal(&cryptoret_cv);
321 1.46 pgoyette
322 1.46 pgoyette while (crypto_exit_flag != 0)
323 1.46 pgoyette cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
324 1.46 pgoyette mutex_spin_exit(&crypto_ret_q_mtx);
325 1.46 pgoyette }
326 1.46 pgoyette
327 1.46 pgoyette if (sysctl_opencrypto_clog != NULL)
328 1.46 pgoyette sysctl_teardown(&sysctl_opencrypto_clog);
329 1.46 pgoyette
330 1.46 pgoyette unregister_swi(SWI_CRYPTO, cryptointr);
331 1.46 pgoyette
332 1.1 jonathan if (crypto_drivers != NULL)
333 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
334 1.46 pgoyette
335 1.46 pgoyette pool_destroy(&cryptop_pool);
336 1.46 pgoyette pool_destroy(&cryptodesc_pool);
337 1.46 pgoyette pool_destroy(&cryptkop_pool);
338 1.46 pgoyette
339 1.46 pgoyette cv_destroy(&cryptoret_cv);
340 1.46 pgoyette
341 1.46 pgoyette mutex_destroy(&crypto_ret_q_mtx);
342 1.46 pgoyette mutex_destroy(&crypto_q_mtx);
343 1.46 pgoyette mutex_destroy(&crypto_mtx);
344 1.46 pgoyette
345 1.46 pgoyette return 0;
346 1.1 jonathan }
347 1.1 jonathan
348 1.1 jonathan /*
349 1.23 tls * Create a new session. Must be called with crypto_mtx held.
350 1.1 jonathan */
351 1.1 jonathan int
352 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
353 1.1 jonathan {
354 1.1 jonathan struct cryptoini *cr;
355 1.1 jonathan u_int32_t hid, lid;
356 1.1 jonathan int err = EINVAL;
357 1.1 jonathan
358 1.40 drochner mutex_enter(&crypto_mtx);
359 1.1 jonathan
360 1.1 jonathan if (crypto_drivers == NULL)
361 1.1 jonathan goto done;
362 1.1 jonathan
363 1.1 jonathan /*
364 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
365 1.1 jonathan * first driver that supports all the algorithms we need.
366 1.1 jonathan *
367 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
368 1.1 jonathan * XXX another story altogether).
369 1.1 jonathan */
370 1.1 jonathan
371 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
372 1.1 jonathan /*
373 1.1 jonathan * If it's not initialized or has remaining sessions
374 1.1 jonathan * referencing it, skip.
375 1.1 jonathan */
376 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
377 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
378 1.1 jonathan continue;
379 1.1 jonathan
380 1.1 jonathan /* Hardware required -- ignore software drivers. */
381 1.1 jonathan if (hard > 0 &&
382 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
383 1.1 jonathan continue;
384 1.1 jonathan /* Software required -- ignore hardware drivers. */
385 1.1 jonathan if (hard < 0 &&
386 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
387 1.1 jonathan continue;
388 1.1 jonathan
389 1.1 jonathan /* See if all the algorithms are supported. */
390 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
391 1.33 darran if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
392 1.33 darran DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
393 1.1 jonathan break;
394 1.33 darran }
395 1.1 jonathan
396 1.1 jonathan if (cr == NULL) {
397 1.1 jonathan /* Ok, all algorithms are supported. */
398 1.1 jonathan
399 1.1 jonathan /*
400 1.1 jonathan * Can't do everything in one session.
401 1.1 jonathan *
402 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
403 1.1 jonathan * XXX about here.
404 1.1 jonathan */
405 1.1 jonathan
406 1.1 jonathan /* Call the driver initialization routine. */
407 1.1 jonathan lid = hid; /* Pass the driver ID. */
408 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
409 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
410 1.1 jonathan if (err == 0) {
411 1.1 jonathan (*sid) = hid;
412 1.1 jonathan (*sid) <<= 32;
413 1.1 jonathan (*sid) |= (lid & 0xffffffff);
414 1.1 jonathan crypto_drivers[hid].cc_sessions++;
415 1.1 jonathan }
416 1.1 jonathan goto done;
417 1.1 jonathan /*break;*/
418 1.1 jonathan }
419 1.1 jonathan }
420 1.1 jonathan done:
421 1.40 drochner mutex_exit(&crypto_mtx);
422 1.1 jonathan return err;
423 1.1 jonathan }
424 1.1 jonathan
425 1.1 jonathan /*
426 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
427 1.23 tls * driver). Must be called with crypto_mtx mutex held.
428 1.1 jonathan */
429 1.1 jonathan int
430 1.1 jonathan crypto_freesession(u_int64_t sid)
431 1.1 jonathan {
432 1.1 jonathan u_int32_t hid;
433 1.1 jonathan int err = 0;
434 1.1 jonathan
435 1.40 drochner mutex_enter(&crypto_mtx);
436 1.1 jonathan
437 1.1 jonathan if (crypto_drivers == NULL) {
438 1.1 jonathan err = EINVAL;
439 1.1 jonathan goto done;
440 1.1 jonathan }
441 1.1 jonathan
442 1.1 jonathan /* Determine two IDs. */
443 1.35 jakllsch hid = CRYPTO_SESID2HID(sid);
444 1.1 jonathan
445 1.1 jonathan if (hid >= crypto_drivers_num) {
446 1.1 jonathan err = ENOENT;
447 1.1 jonathan goto done;
448 1.1 jonathan }
449 1.1 jonathan
450 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
451 1.1 jonathan crypto_drivers[hid].cc_sessions--;
452 1.1 jonathan
453 1.1 jonathan /* Call the driver cleanup routine, if available. */
454 1.23 tls if (crypto_drivers[hid].cc_freesession) {
455 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
456 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
457 1.23 tls }
458 1.1 jonathan else
459 1.1 jonathan err = 0;
460 1.1 jonathan
461 1.1 jonathan /*
462 1.1 jonathan * If this was the last session of a driver marked as invalid,
463 1.1 jonathan * make the entry available for reuse.
464 1.1 jonathan */
465 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
466 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
467 1.31 cegger memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
468 1.1 jonathan
469 1.1 jonathan done:
470 1.40 drochner mutex_exit(&crypto_mtx);
471 1.1 jonathan return err;
472 1.1 jonathan }
473 1.1 jonathan
474 1.1 jonathan /*
475 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
476 1.1 jonathan * support for the algorithms they handle.
477 1.1 jonathan */
478 1.1 jonathan int32_t
479 1.1 jonathan crypto_get_driverid(u_int32_t flags)
480 1.1 jonathan {
481 1.1 jonathan struct cryptocap *newdrv;
482 1.23 tls int i;
483 1.1 jonathan
484 1.46 pgoyette (void)crypto_init(); /* XXX oh, this is foul! */
485 1.11 thorpej
486 1.40 drochner mutex_enter(&crypto_mtx);
487 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
488 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
489 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
490 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
491 1.1 jonathan break;
492 1.1 jonathan
493 1.1 jonathan /* Out of entries, allocate some more. */
494 1.1 jonathan if (i == crypto_drivers_num) {
495 1.1 jonathan /* Be careful about wrap-around. */
496 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
497 1.40 drochner mutex_exit(&crypto_mtx);
498 1.1 jonathan printf("crypto: driver count wraparound!\n");
499 1.1 jonathan return -1;
500 1.1 jonathan }
501 1.1 jonathan
502 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
503 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
504 1.1 jonathan if (newdrv == NULL) {
505 1.40 drochner mutex_exit(&crypto_mtx);
506 1.1 jonathan printf("crypto: no space to expand driver table!\n");
507 1.1 jonathan return -1;
508 1.1 jonathan }
509 1.1 jonathan
510 1.34 tsutsui memcpy(newdrv, crypto_drivers,
511 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
512 1.1 jonathan
513 1.1 jonathan crypto_drivers_num *= 2;
514 1.1 jonathan
515 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
516 1.1 jonathan crypto_drivers = newdrv;
517 1.1 jonathan }
518 1.1 jonathan
519 1.1 jonathan /* NB: state is zero'd on free */
520 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
521 1.1 jonathan crypto_drivers[i].cc_flags = flags;
522 1.1 jonathan
523 1.1 jonathan if (bootverbose)
524 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
525 1.1 jonathan
526 1.40 drochner mutex_exit(&crypto_mtx);
527 1.1 jonathan
528 1.1 jonathan return i;
529 1.1 jonathan }
530 1.1 jonathan
531 1.1 jonathan static struct cryptocap *
532 1.1 jonathan crypto_checkdriver(u_int32_t hid)
533 1.1 jonathan {
534 1.1 jonathan if (crypto_drivers == NULL)
535 1.1 jonathan return NULL;
536 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
537 1.1 jonathan }
538 1.1 jonathan
539 1.1 jonathan /*
540 1.1 jonathan * Register support for a key-related algorithm. This routine
541 1.1 jonathan * is called once for each algorithm supported a driver.
542 1.1 jonathan */
543 1.1 jonathan int
544 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
545 1.37 christos int (*kprocess)(void *, struct cryptkop *, int),
546 1.1 jonathan void *karg)
547 1.1 jonathan {
548 1.1 jonathan struct cryptocap *cap;
549 1.1 jonathan int err;
550 1.1 jonathan
551 1.40 drochner mutex_enter(&crypto_mtx);
552 1.1 jonathan
553 1.1 jonathan cap = crypto_checkdriver(driverid);
554 1.1 jonathan if (cap != NULL &&
555 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
556 1.1 jonathan /*
557 1.1 jonathan * XXX Do some performance testing to determine placing.
558 1.1 jonathan * XXX We probably need an auxiliary data structure that
559 1.1 jonathan * XXX describes relative performances.
560 1.1 jonathan */
561 1.1 jonathan
562 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
563 1.23 tls if (bootverbose) {
564 1.23 tls printf("crypto: driver %u registers key alg %u "
565 1.23 tls " flags %u\n",
566 1.23 tls driverid,
567 1.23 tls kalg,
568 1.23 tls flags
569 1.1 jonathan );
570 1.23 tls }
571 1.1 jonathan
572 1.1 jonathan if (cap->cc_kprocess == NULL) {
573 1.1 jonathan cap->cc_karg = karg;
574 1.1 jonathan cap->cc_kprocess = kprocess;
575 1.1 jonathan }
576 1.1 jonathan err = 0;
577 1.1 jonathan } else
578 1.1 jonathan err = EINVAL;
579 1.1 jonathan
580 1.40 drochner mutex_exit(&crypto_mtx);
581 1.1 jonathan return err;
582 1.1 jonathan }
583 1.1 jonathan
584 1.1 jonathan /*
585 1.1 jonathan * Register support for a non-key-related algorithm. This routine
586 1.1 jonathan * is called once for each such algorithm supported by a driver.
587 1.1 jonathan */
588 1.1 jonathan int
589 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
590 1.1 jonathan u_int32_t flags,
591 1.37 christos int (*newses)(void *, u_int32_t*, struct cryptoini*),
592 1.37 christos int (*freeses)(void *, u_int64_t),
593 1.37 christos int (*process)(void *, struct cryptop *, int),
594 1.1 jonathan void *arg)
595 1.1 jonathan {
596 1.1 jonathan struct cryptocap *cap;
597 1.23 tls int err;
598 1.1 jonathan
599 1.40 drochner mutex_enter(&crypto_mtx);
600 1.1 jonathan
601 1.1 jonathan cap = crypto_checkdriver(driverid);
602 1.1 jonathan /* NB: algorithms are in the range [1..max] */
603 1.1 jonathan if (cap != NULL &&
604 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
605 1.1 jonathan /*
606 1.1 jonathan * XXX Do some performance testing to determine placing.
607 1.1 jonathan * XXX We probably need an auxiliary data structure that
608 1.1 jonathan * XXX describes relative performances.
609 1.1 jonathan */
610 1.1 jonathan
611 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
612 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
613 1.23 tls if (bootverbose) {
614 1.23 tls printf("crypto: driver %u registers alg %u "
615 1.23 tls "flags %u maxoplen %u\n",
616 1.23 tls driverid,
617 1.23 tls alg,
618 1.23 tls flags,
619 1.23 tls maxoplen
620 1.1 jonathan );
621 1.23 tls }
622 1.1 jonathan
623 1.1 jonathan if (cap->cc_process == NULL) {
624 1.1 jonathan cap->cc_arg = arg;
625 1.1 jonathan cap->cc_newsession = newses;
626 1.1 jonathan cap->cc_process = process;
627 1.1 jonathan cap->cc_freesession = freeses;
628 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
629 1.1 jonathan }
630 1.1 jonathan err = 0;
631 1.1 jonathan } else
632 1.1 jonathan err = EINVAL;
633 1.1 jonathan
634 1.40 drochner mutex_exit(&crypto_mtx);
635 1.1 jonathan return err;
636 1.1 jonathan }
637 1.1 jonathan
638 1.1 jonathan /*
639 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
640 1.1 jonathan * leave enough information around so that subsequent calls using those
641 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
642 1.1 jonathan * reroute requests.
643 1.1 jonathan */
644 1.1 jonathan int
645 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
646 1.1 jonathan {
647 1.23 tls int i, err;
648 1.1 jonathan u_int32_t ses;
649 1.1 jonathan struct cryptocap *cap;
650 1.1 jonathan
651 1.40 drochner mutex_enter(&crypto_mtx);
652 1.1 jonathan
653 1.1 jonathan cap = crypto_checkdriver(driverid);
654 1.1 jonathan if (cap != NULL &&
655 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
656 1.1 jonathan cap->cc_alg[alg] != 0) {
657 1.1 jonathan cap->cc_alg[alg] = 0;
658 1.1 jonathan cap->cc_max_op_len[alg] = 0;
659 1.1 jonathan
660 1.1 jonathan /* Was this the last algorithm ? */
661 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
662 1.1 jonathan if (cap->cc_alg[i] != 0)
663 1.1 jonathan break;
664 1.1 jonathan
665 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
666 1.1 jonathan ses = cap->cc_sessions;
667 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
668 1.1 jonathan if (ses != 0) {
669 1.1 jonathan /*
670 1.1 jonathan * If there are pending sessions, just mark as invalid.
671 1.1 jonathan */
672 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
673 1.1 jonathan cap->cc_sessions = ses;
674 1.1 jonathan }
675 1.1 jonathan }
676 1.1 jonathan err = 0;
677 1.1 jonathan } else
678 1.1 jonathan err = EINVAL;
679 1.1 jonathan
680 1.40 drochner mutex_exit(&crypto_mtx);
681 1.1 jonathan return err;
682 1.1 jonathan }
683 1.1 jonathan
684 1.1 jonathan /*
685 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
686 1.1 jonathan * If there are pending sessions using it, leave enough information
687 1.1 jonathan * around so that subsequent calls using those sessions will
688 1.1 jonathan * correctly detect the driver has been unregistered and reroute
689 1.1 jonathan * requests.
690 1.23 tls *
691 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
692 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
693 1.23 tls * XXX you can't take it recursively.
694 1.1 jonathan */
695 1.1 jonathan int
696 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
697 1.1 jonathan {
698 1.23 tls int i, err;
699 1.1 jonathan u_int32_t ses;
700 1.1 jonathan struct cryptocap *cap;
701 1.1 jonathan
702 1.40 drochner mutex_enter(&crypto_mtx);
703 1.1 jonathan cap = crypto_checkdriver(driverid);
704 1.1 jonathan if (cap != NULL) {
705 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
706 1.1 jonathan cap->cc_alg[i] = 0;
707 1.1 jonathan cap->cc_max_op_len[i] = 0;
708 1.1 jonathan }
709 1.1 jonathan ses = cap->cc_sessions;
710 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
711 1.1 jonathan if (ses != 0) {
712 1.1 jonathan /*
713 1.1 jonathan * If there are pending sessions, just mark as invalid.
714 1.1 jonathan */
715 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
716 1.1 jonathan cap->cc_sessions = ses;
717 1.1 jonathan }
718 1.1 jonathan err = 0;
719 1.1 jonathan } else
720 1.1 jonathan err = EINVAL;
721 1.1 jonathan
722 1.40 drochner mutex_exit(&crypto_mtx);
723 1.1 jonathan return err;
724 1.1 jonathan }
725 1.1 jonathan
726 1.1 jonathan /*
727 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
728 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
729 1.1 jonathan */
730 1.1 jonathan int
731 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
732 1.1 jonathan {
733 1.1 jonathan struct cryptocap *cap;
734 1.23 tls int needwakeup, err;
735 1.1 jonathan
736 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
737 1.1 jonathan cap = crypto_checkdriver(driverid);
738 1.1 jonathan if (cap != NULL) {
739 1.1 jonathan needwakeup = 0;
740 1.1 jonathan if (what & CRYPTO_SYMQ) {
741 1.1 jonathan needwakeup |= cap->cc_qblocked;
742 1.1 jonathan cap->cc_qblocked = 0;
743 1.1 jonathan }
744 1.1 jonathan if (what & CRYPTO_ASYMQ) {
745 1.1 jonathan needwakeup |= cap->cc_kqblocked;
746 1.1 jonathan cap->cc_kqblocked = 0;
747 1.1 jonathan }
748 1.24 tls err = 0;
749 1.24 tls if (needwakeup)
750 1.1 jonathan setsoftcrypto(softintr_cookie);
751 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
752 1.24 tls } else {
753 1.1 jonathan err = EINVAL;
754 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
755 1.24 tls }
756 1.1 jonathan
757 1.1 jonathan return err;
758 1.1 jonathan }
759 1.1 jonathan
760 1.1 jonathan /*
761 1.1 jonathan * Dispatch a crypto request to a driver or queue
762 1.1 jonathan * it, to be processed by the kernel thread.
763 1.1 jonathan */
764 1.1 jonathan int
765 1.1 jonathan crypto_dispatch(struct cryptop *crp)
766 1.1 jonathan {
767 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
768 1.23 tls int result;
769 1.1 jonathan
770 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
771 1.41 drochner DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
772 1.41 drochner crp, crp->crp_desc->crd_alg));
773 1.1 jonathan
774 1.1 jonathan cryptostats.cs_ops++;
775 1.1 jonathan
776 1.1 jonathan #ifdef CRYPTO_TIMING
777 1.1 jonathan if (crypto_timing)
778 1.1 jonathan nanouptime(&crp->crp_tstamp);
779 1.1 jonathan #endif
780 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
781 1.1 jonathan struct cryptocap *cap;
782 1.1 jonathan /*
783 1.1 jonathan * Caller marked the request to be processed
784 1.1 jonathan * immediately; dispatch it directly to the
785 1.1 jonathan * driver unless the driver is currently blocked.
786 1.1 jonathan */
787 1.1 jonathan cap = crypto_checkdriver(hid);
788 1.1 jonathan if (cap && !cap->cc_qblocked) {
789 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
790 1.1 jonathan result = crypto_invoke(crp, 0);
791 1.1 jonathan if (result == ERESTART) {
792 1.1 jonathan /*
793 1.1 jonathan * The driver ran out of resources, mark the
794 1.1 jonathan * driver ``blocked'' for cryptop's and put
795 1.1 jonathan * the op on the queue.
796 1.1 jonathan */
797 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
798 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
799 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
800 1.1 jonathan cryptostats.cs_blocks++;
801 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
802 1.1 jonathan }
803 1.23 tls goto out_released;
804 1.1 jonathan } else {
805 1.1 jonathan /*
806 1.1 jonathan * The driver is blocked, just queue the op until
807 1.1 jonathan * it unblocks and the swi thread gets kicked.
808 1.1 jonathan */
809 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
810 1.1 jonathan result = 0;
811 1.1 jonathan }
812 1.1 jonathan } else {
813 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
814 1.1 jonathan /*
815 1.1 jonathan * Caller marked the request as ``ok to delay'';
816 1.1 jonathan * queue it for the swi thread. This is desirable
817 1.1 jonathan * when the operation is low priority and/or suitable
818 1.1 jonathan * for batching.
819 1.1 jonathan */
820 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
821 1.1 jonathan if (wasempty) {
822 1.1 jonathan setsoftcrypto(softintr_cookie);
823 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
824 1.23 tls result = 0;
825 1.23 tls goto out_released;
826 1.1 jonathan }
827 1.1 jonathan
828 1.1 jonathan result = 0;
829 1.1 jonathan }
830 1.1 jonathan
831 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
832 1.23 tls out_released:
833 1.1 jonathan return result;
834 1.1 jonathan }
835 1.1 jonathan
836 1.1 jonathan /*
837 1.1 jonathan * Add an asymetric crypto request to a queue,
838 1.1 jonathan * to be processed by the kernel thread.
839 1.1 jonathan */
840 1.1 jonathan int
841 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
842 1.1 jonathan {
843 1.1 jonathan struct cryptocap *cap;
844 1.23 tls int result;
845 1.1 jonathan
846 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
847 1.1 jonathan cryptostats.cs_kops++;
848 1.1 jonathan
849 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
850 1.1 jonathan if (cap && !cap->cc_kqblocked) {
851 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
852 1.1 jonathan result = crypto_kinvoke(krp, 0);
853 1.1 jonathan if (result == ERESTART) {
854 1.1 jonathan /*
855 1.1 jonathan * The driver ran out of resources, mark the
856 1.1 jonathan * driver ``blocked'' for cryptop's and put
857 1.1 jonathan * the op on the queue.
858 1.1 jonathan */
859 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
860 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
861 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
862 1.1 jonathan cryptostats.cs_kblocks++;
863 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
864 1.1 jonathan }
865 1.1 jonathan } else {
866 1.1 jonathan /*
867 1.1 jonathan * The driver is blocked, just queue the op until
868 1.1 jonathan * it unblocks and the swi thread gets kicked.
869 1.1 jonathan */
870 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
871 1.1 jonathan result = 0;
872 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
873 1.1 jonathan }
874 1.1 jonathan
875 1.1 jonathan return result;
876 1.1 jonathan }
877 1.1 jonathan
878 1.1 jonathan /*
879 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
880 1.1 jonathan */
881 1.1 jonathan static int
882 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
883 1.1 jonathan {
884 1.1 jonathan u_int32_t hid;
885 1.1 jonathan int error;
886 1.1 jonathan
887 1.1 jonathan /* Sanity checks. */
888 1.1 jonathan if (krp == NULL)
889 1.1 jonathan return EINVAL;
890 1.1 jonathan if (krp->krp_callback == NULL) {
891 1.30 darran cv_destroy(&krp->krp_cv);
892 1.23 tls pool_put(&cryptkop_pool, krp);
893 1.1 jonathan return EINVAL;
894 1.1 jonathan }
895 1.1 jonathan
896 1.40 drochner mutex_enter(&crypto_mtx);
897 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
898 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
899 1.1 jonathan crypto_devallowsoft == 0)
900 1.1 jonathan continue;
901 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
902 1.1 jonathan continue;
903 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
904 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
905 1.1 jonathan continue;
906 1.1 jonathan break;
907 1.1 jonathan }
908 1.1 jonathan if (hid < crypto_drivers_num) {
909 1.37 christos int (*process)(void *, struct cryptkop *, int);
910 1.37 christos void *arg;
911 1.37 christos
912 1.37 christos process = crypto_drivers[hid].cc_kprocess;
913 1.37 christos arg = crypto_drivers[hid].cc_karg;
914 1.40 drochner mutex_exit(&crypto_mtx);
915 1.1 jonathan krp->krp_hid = hid;
916 1.37 christos error = (*process)(arg, krp, hint);
917 1.1 jonathan } else {
918 1.40 drochner mutex_exit(&crypto_mtx);
919 1.1 jonathan error = ENODEV;
920 1.1 jonathan }
921 1.1 jonathan
922 1.1 jonathan if (error) {
923 1.1 jonathan krp->krp_status = error;
924 1.1 jonathan crypto_kdone(krp);
925 1.1 jonathan }
926 1.1 jonathan return 0;
927 1.1 jonathan }
928 1.1 jonathan
929 1.1 jonathan #ifdef CRYPTO_TIMING
930 1.1 jonathan static void
931 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
932 1.1 jonathan {
933 1.1 jonathan struct timespec now, t;
934 1.1 jonathan
935 1.1 jonathan nanouptime(&now);
936 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
937 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
938 1.1 jonathan if (t.tv_nsec < 0) {
939 1.1 jonathan t.tv_sec--;
940 1.1 jonathan t.tv_nsec += 1000000000;
941 1.1 jonathan }
942 1.1 jonathan timespecadd(&ts->acc, &t, &t);
943 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
944 1.1 jonathan ts->min = t;
945 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
946 1.1 jonathan ts->max = t;
947 1.1 jonathan ts->count++;
948 1.1 jonathan
949 1.1 jonathan *tv = now;
950 1.1 jonathan }
951 1.1 jonathan #endif
952 1.1 jonathan
953 1.1 jonathan /*
954 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
955 1.1 jonathan */
956 1.1 jonathan static int
957 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
958 1.1 jonathan {
959 1.1 jonathan u_int32_t hid;
960 1.1 jonathan
961 1.1 jonathan #ifdef CRYPTO_TIMING
962 1.1 jonathan if (crypto_timing)
963 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
964 1.1 jonathan #endif
965 1.1 jonathan /* Sanity checks. */
966 1.1 jonathan if (crp == NULL)
967 1.1 jonathan return EINVAL;
968 1.1 jonathan if (crp->crp_callback == NULL) {
969 1.1 jonathan return EINVAL;
970 1.1 jonathan }
971 1.1 jonathan if (crp->crp_desc == NULL) {
972 1.1 jonathan crp->crp_etype = EINVAL;
973 1.1 jonathan crypto_done(crp);
974 1.1 jonathan return 0;
975 1.1 jonathan }
976 1.1 jonathan
977 1.35 jakllsch hid = CRYPTO_SESID2HID(crp->crp_sid);
978 1.37 christos
979 1.1 jonathan if (hid < crypto_drivers_num) {
980 1.37 christos int (*process)(void *, struct cryptop *, int);
981 1.37 christos void *arg;
982 1.37 christos
983 1.40 drochner if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
984 1.40 drochner mutex_exit(&crypto_mtx);
985 1.1 jonathan crypto_freesession(crp->crp_sid);
986 1.40 drochner mutex_enter(&crypto_mtx);
987 1.40 drochner }
988 1.1 jonathan process = crypto_drivers[hid].cc_process;
989 1.37 christos arg = crypto_drivers[hid].cc_arg;
990 1.37 christos
991 1.37 christos /*
992 1.37 christos * Invoke the driver to process the request.
993 1.37 christos */
994 1.37 christos DPRINTF(("calling process for %p\n", crp));
995 1.37 christos return (*process)(arg, crp, hint);
996 1.1 jonathan } else {
997 1.1 jonathan struct cryptodesc *crd;
998 1.16 mrg u_int64_t nid = 0;
999 1.1 jonathan
1000 1.1 jonathan /*
1001 1.1 jonathan * Driver has unregistered; migrate the session and return
1002 1.1 jonathan * an error to the caller so they'll resubmit the op.
1003 1.1 jonathan */
1004 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1005 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1006 1.1 jonathan
1007 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1008 1.1 jonathan crp->crp_sid = nid;
1009 1.1 jonathan
1010 1.1 jonathan crp->crp_etype = EAGAIN;
1011 1.23 tls
1012 1.1 jonathan crypto_done(crp);
1013 1.1 jonathan return 0;
1014 1.1 jonathan }
1015 1.1 jonathan }
1016 1.1 jonathan
1017 1.1 jonathan /*
1018 1.1 jonathan * Release a set of crypto descriptors.
1019 1.1 jonathan */
1020 1.1 jonathan void
1021 1.1 jonathan crypto_freereq(struct cryptop *crp)
1022 1.1 jonathan {
1023 1.1 jonathan struct cryptodesc *crd;
1024 1.1 jonathan
1025 1.1 jonathan if (crp == NULL)
1026 1.1 jonathan return;
1027 1.35 jakllsch DPRINTF(("crypto_freereq[%u]: crp %p\n",
1028 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1029 1.1 jonathan
1030 1.30 darran /* sanity check */
1031 1.30 darran if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1032 1.30 darran panic("crypto_freereq() freeing crp on RETQ\n");
1033 1.30 darran }
1034 1.30 darran
1035 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
1036 1.1 jonathan crp->crp_desc = crd->crd_next;
1037 1.1 jonathan pool_put(&cryptodesc_pool, crd);
1038 1.1 jonathan }
1039 1.1 jonathan pool_put(&cryptop_pool, crp);
1040 1.1 jonathan }
1041 1.1 jonathan
1042 1.1 jonathan /*
1043 1.1 jonathan * Acquire a set of crypto descriptors.
1044 1.1 jonathan */
1045 1.1 jonathan struct cryptop *
1046 1.1 jonathan crypto_getreq(int num)
1047 1.1 jonathan {
1048 1.1 jonathan struct cryptodesc *crd;
1049 1.1 jonathan struct cryptop *crp;
1050 1.1 jonathan
1051 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
1052 1.1 jonathan if (crp == NULL) {
1053 1.1 jonathan return NULL;
1054 1.1 jonathan }
1055 1.31 cegger memset(crp, 0, sizeof(struct cryptop));
1056 1.1 jonathan
1057 1.1 jonathan while (num--) {
1058 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
1059 1.1 jonathan if (crd == NULL) {
1060 1.1 jonathan crypto_freereq(crp);
1061 1.1 jonathan return NULL;
1062 1.1 jonathan }
1063 1.1 jonathan
1064 1.31 cegger memset(crd, 0, sizeof(struct cryptodesc));
1065 1.1 jonathan crd->crd_next = crp->crp_desc;
1066 1.1 jonathan crp->crp_desc = crd;
1067 1.1 jonathan }
1068 1.1 jonathan
1069 1.1 jonathan return crp;
1070 1.1 jonathan }
1071 1.1 jonathan
1072 1.1 jonathan /*
1073 1.1 jonathan * Invoke the callback on behalf of the driver.
1074 1.1 jonathan */
1075 1.1 jonathan void
1076 1.1 jonathan crypto_done(struct cryptop *crp)
1077 1.1 jonathan {
1078 1.23 tls int wasempty;
1079 1.23 tls
1080 1.1 jonathan if (crp->crp_etype != 0)
1081 1.1 jonathan cryptostats.cs_errs++;
1082 1.1 jonathan #ifdef CRYPTO_TIMING
1083 1.1 jonathan if (crypto_timing)
1084 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1085 1.1 jonathan #endif
1086 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p\n",
1087 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1088 1.27 tls
1089 1.1 jonathan /*
1090 1.23 tls * Normal case; queue the callback for the thread.
1091 1.23 tls *
1092 1.23 tls * The return queue is manipulated by the swi thread
1093 1.23 tls * and, potentially, by crypto device drivers calling
1094 1.23 tls * back to mark operations completed. Thus we need
1095 1.23 tls * to mask both while manipulating the return queue.
1096 1.1 jonathan */
1097 1.27 tls if (crp->crp_flags & CRYPTO_F_CBIMM) {
1098 1.27 tls /*
1099 1.27 tls * Do the callback directly. This is ok when the
1100 1.27 tls * callback routine does very little (e.g. the
1101 1.27 tls * /dev/crypto callback method just does a wakeup).
1102 1.27 tls */
1103 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1104 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1105 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1106 1.30 darran
1107 1.27 tls #ifdef CRYPTO_TIMING
1108 1.27 tls if (crypto_timing) {
1109 1.27 tls /*
1110 1.27 tls * NB: We must copy the timestamp before
1111 1.27 tls * doing the callback as the cryptop is
1112 1.27 tls * likely to be reclaimed.
1113 1.27 tls */
1114 1.27 tls struct timespec t = crp->crp_tstamp;
1115 1.27 tls crypto_tstat(&cryptostats.cs_cb, &t);
1116 1.27 tls crp->crp_callback(crp);
1117 1.27 tls crypto_tstat(&cryptostats.cs_finis, &t);
1118 1.27 tls } else
1119 1.27 tls #endif
1120 1.27 tls crp->crp_callback(crp);
1121 1.27 tls } else {
1122 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1123 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1124 1.30 darran
1125 1.30 darran if (crp->crp_flags & CRYPTO_F_USER) {
1126 1.30 darran /* the request has completed while
1127 1.30 darran * running in the user context
1128 1.30 darran * so don't queue it - the user
1129 1.30 darran * thread won't sleep when it sees
1130 1.30 darran * the CRYPTO_F_DONE flag.
1131 1.30 darran * This is an optimization to avoid
1132 1.30 darran * unecessary context switches.
1133 1.30 darran */
1134 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1135 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1136 1.30 darran } else {
1137 1.30 darran wasempty = TAILQ_EMPTY(&crp_ret_q);
1138 1.35 jakllsch DPRINTF(("crypto_done[%u]: queueing %p\n",
1139 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1140 1.30 darran crp->crp_flags |= CRYPTO_F_ONRETQ;
1141 1.30 darran TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1142 1.30 darran if (wasempty) {
1143 1.35 jakllsch DPRINTF(("crypto_done[%u]: waking cryptoret, "
1144 1.35 jakllsch "crp %p hit empty queue\n.",
1145 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1146 1.30 darran cv_signal(&cryptoret_cv);
1147 1.30 darran }
1148 1.27 tls }
1149 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1150 1.1 jonathan }
1151 1.1 jonathan }
1152 1.1 jonathan
1153 1.1 jonathan /*
1154 1.1 jonathan * Invoke the callback on behalf of the driver.
1155 1.1 jonathan */
1156 1.1 jonathan void
1157 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1158 1.1 jonathan {
1159 1.23 tls int wasempty;
1160 1.1 jonathan
1161 1.1 jonathan if (krp->krp_status != 0)
1162 1.1 jonathan cryptostats.cs_kerrs++;
1163 1.27 tls
1164 1.27 tls krp->krp_flags |= CRYPTO_F_DONE;
1165 1.27 tls
1166 1.1 jonathan /*
1167 1.1 jonathan * The return queue is manipulated by the swi thread
1168 1.1 jonathan * and, potentially, by crypto device drivers calling
1169 1.1 jonathan * back to mark operations completed. Thus we need
1170 1.1 jonathan * to mask both while manipulating the return queue.
1171 1.1 jonathan */
1172 1.27 tls if (krp->krp_flags & CRYPTO_F_CBIMM) {
1173 1.27 tls krp->krp_callback(krp);
1174 1.27 tls } else {
1175 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1176 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_kq);
1177 1.27 tls krp->krp_flags |= CRYPTO_F_ONRETQ;
1178 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1179 1.27 tls if (wasempty)
1180 1.27 tls cv_signal(&cryptoret_cv);
1181 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1182 1.27 tls }
1183 1.1 jonathan }
1184 1.1 jonathan
1185 1.1 jonathan int
1186 1.1 jonathan crypto_getfeat(int *featp)
1187 1.1 jonathan {
1188 1.1 jonathan int hid, kalg, feat = 0;
1189 1.1 jonathan
1190 1.40 drochner mutex_enter(&crypto_mtx);
1191 1.1 jonathan
1192 1.1 jonathan if (crypto_userasymcrypto == 0)
1193 1.10 perry goto out;
1194 1.1 jonathan
1195 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1196 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1197 1.7 jonathan crypto_devallowsoft == 0) {
1198 1.1 jonathan continue;
1199 1.1 jonathan }
1200 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1201 1.1 jonathan continue;
1202 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1203 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1204 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1205 1.1 jonathan feat |= 1 << kalg;
1206 1.1 jonathan }
1207 1.1 jonathan out:
1208 1.40 drochner mutex_exit(&crypto_mtx);
1209 1.1 jonathan *featp = feat;
1210 1.1 jonathan return (0);
1211 1.1 jonathan }
1212 1.1 jonathan
1213 1.1 jonathan /*
1214 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1215 1.1 jonathan */
1216 1.1 jonathan static void
1217 1.1 jonathan cryptointr(void)
1218 1.1 jonathan {
1219 1.30 darran struct cryptop *crp, *submit, *cnext;
1220 1.30 darran struct cryptkop *krp, *knext;
1221 1.1 jonathan struct cryptocap *cap;
1222 1.23 tls int result, hint;
1223 1.1 jonathan
1224 1.1 jonathan cryptostats.cs_intrs++;
1225 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1226 1.1 jonathan do {
1227 1.1 jonathan /*
1228 1.1 jonathan * Find the first element in the queue that can be
1229 1.1 jonathan * processed and look-ahead to see if multiple ops
1230 1.1 jonathan * are ready for the same driver.
1231 1.1 jonathan */
1232 1.1 jonathan submit = NULL;
1233 1.1 jonathan hint = 0;
1234 1.30 darran TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1235 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1236 1.1 jonathan cap = crypto_checkdriver(hid);
1237 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1238 1.1 jonathan /* Op needs to be migrated, process it. */
1239 1.1 jonathan if (submit == NULL)
1240 1.1 jonathan submit = crp;
1241 1.1 jonathan break;
1242 1.1 jonathan }
1243 1.1 jonathan if (!cap->cc_qblocked) {
1244 1.1 jonathan if (submit != NULL) {
1245 1.1 jonathan /*
1246 1.1 jonathan * We stop on finding another op,
1247 1.1 jonathan * regardless whether its for the same
1248 1.1 jonathan * driver or not. We could keep
1249 1.1 jonathan * searching the queue but it might be
1250 1.1 jonathan * better to just use a per-driver
1251 1.1 jonathan * queue instead.
1252 1.1 jonathan */
1253 1.35 jakllsch if (CRYPTO_SESID2HID(submit->crp_sid)
1254 1.35 jakllsch == hid)
1255 1.1 jonathan hint = CRYPTO_HINT_MORE;
1256 1.1 jonathan break;
1257 1.1 jonathan } else {
1258 1.1 jonathan submit = crp;
1259 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1260 1.1 jonathan break;
1261 1.1 jonathan /* keep scanning for more are q'd */
1262 1.1 jonathan }
1263 1.1 jonathan }
1264 1.1 jonathan }
1265 1.1 jonathan if (submit != NULL) {
1266 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1267 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1268 1.1 jonathan result = crypto_invoke(submit, hint);
1269 1.23 tls /* we must take here as the TAILQ op or kinvoke
1270 1.23 tls may need this mutex below. sigh. */
1271 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1272 1.1 jonathan if (result == ERESTART) {
1273 1.1 jonathan /*
1274 1.1 jonathan * The driver ran out of resources, mark the
1275 1.1 jonathan * driver ``blocked'' for cryptop's and put
1276 1.1 jonathan * the request back in the queue. It would
1277 1.1 jonathan * best to put the request back where we got
1278 1.1 jonathan * it but that's hard so for now we put it
1279 1.1 jonathan * at the front. This should be ok; putting
1280 1.1 jonathan * it at the end does not work.
1281 1.1 jonathan */
1282 1.1 jonathan /* XXX validate sid again? */
1283 1.35 jakllsch crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1284 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1285 1.1 jonathan cryptostats.cs_blocks++;
1286 1.1 jonathan }
1287 1.1 jonathan }
1288 1.1 jonathan
1289 1.1 jonathan /* As above, but for key ops */
1290 1.30 darran TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1291 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1292 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1293 1.1 jonathan /* Op needs to be migrated, process it. */
1294 1.1 jonathan break;
1295 1.1 jonathan }
1296 1.1 jonathan if (!cap->cc_kqblocked)
1297 1.1 jonathan break;
1298 1.1 jonathan }
1299 1.1 jonathan if (krp != NULL) {
1300 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1301 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1302 1.1 jonathan result = crypto_kinvoke(krp, 0);
1303 1.23 tls /* the next iteration will want the mutex. :-/ */
1304 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1305 1.1 jonathan if (result == ERESTART) {
1306 1.1 jonathan /*
1307 1.1 jonathan * The driver ran out of resources, mark the
1308 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1309 1.1 jonathan * the request back in the queue. It would
1310 1.1 jonathan * best to put the request back where we got
1311 1.1 jonathan * it but that's hard so for now we put it
1312 1.1 jonathan * at the front. This should be ok; putting
1313 1.1 jonathan * it at the end does not work.
1314 1.1 jonathan */
1315 1.1 jonathan /* XXX validate sid again? */
1316 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1317 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1318 1.1 jonathan cryptostats.cs_kblocks++;
1319 1.1 jonathan }
1320 1.1 jonathan }
1321 1.1 jonathan } while (submit != NULL || krp != NULL);
1322 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1323 1.1 jonathan }
1324 1.1 jonathan
1325 1.1 jonathan /*
1326 1.1 jonathan * Kernel thread to do callbacks.
1327 1.1 jonathan */
1328 1.1 jonathan static void
1329 1.1 jonathan cryptoret(void)
1330 1.1 jonathan {
1331 1.1 jonathan struct cryptop *crp;
1332 1.1 jonathan struct cryptkop *krp;
1333 1.1 jonathan
1334 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1335 1.1 jonathan for (;;) {
1336 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1337 1.23 tls if (crp != NULL) {
1338 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1339 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1340 1.23 tls }
1341 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1342 1.23 tls if (krp != NULL) {
1343 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1344 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1345 1.23 tls }
1346 1.1 jonathan
1347 1.23 tls /* drop before calling any callbacks. */
1348 1.26 ad if (crp == NULL && krp == NULL) {
1349 1.46 pgoyette
1350 1.46 pgoyette /* Check for the exit condition. */
1351 1.46 pgoyette if (crypto_exit_flag != 0) {
1352 1.46 pgoyette
1353 1.46 pgoyette /* Time to die. */
1354 1.46 pgoyette crypto_exit_flag = 0;
1355 1.46 pgoyette cv_broadcast(&cryptoret_cv);
1356 1.46 pgoyette mutex_spin_exit(&crypto_ret_q_mtx);
1357 1.46 pgoyette kthread_exit(0);
1358 1.46 pgoyette }
1359 1.46 pgoyette
1360 1.26 ad cryptostats.cs_rets++;
1361 1.40 drochner cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1362 1.26 ad continue;
1363 1.26 ad }
1364 1.26 ad
1365 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1366 1.26 ad
1367 1.26 ad if (crp != NULL) {
1368 1.1 jonathan #ifdef CRYPTO_TIMING
1369 1.26 ad if (crypto_timing) {
1370 1.26 ad /*
1371 1.26 ad * NB: We must copy the timestamp before
1372 1.26 ad * doing the callback as the cryptop is
1373 1.26 ad * likely to be reclaimed.
1374 1.26 ad */
1375 1.26 ad struct timespec t = crp->crp_tstamp;
1376 1.26 ad crypto_tstat(&cryptostats.cs_cb, &t);
1377 1.26 ad crp->crp_callback(crp);
1378 1.26 ad crypto_tstat(&cryptostats.cs_finis, &t);
1379 1.26 ad } else
1380 1.1 jonathan #endif
1381 1.26 ad {
1382 1.26 ad crp->crp_callback(crp);
1383 1.1 jonathan }
1384 1.1 jonathan }
1385 1.26 ad if (krp != NULL)
1386 1.26 ad krp->krp_callback(krp);
1387 1.26 ad
1388 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1389 1.1 jonathan }
1390 1.1 jonathan }
1391 1.42 pgoyette
1392 1.42 pgoyette /* NetBSD module interface */
1393 1.42 pgoyette
1394 1.42 pgoyette MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1395 1.42 pgoyette
1396 1.42 pgoyette static int
1397 1.42 pgoyette opencrypto_modcmd(modcmd_t cmd, void *opaque)
1398 1.42 pgoyette {
1399 1.46 pgoyette int error = 0;
1400 1.42 pgoyette
1401 1.42 pgoyette switch (cmd) {
1402 1.42 pgoyette case MODULE_CMD_INIT:
1403 1.43 pgoyette #ifdef _MODULE
1404 1.46 pgoyette error = crypto_init();
1405 1.43 pgoyette #endif
1406 1.46 pgoyette break;
1407 1.42 pgoyette case MODULE_CMD_FINI:
1408 1.43 pgoyette #ifdef _MODULE
1409 1.46 pgoyette error = crypto_destroy(true);
1410 1.43 pgoyette #endif
1411 1.46 pgoyette break;
1412 1.42 pgoyette default:
1413 1.46 pgoyette error = ENOTTY;
1414 1.42 pgoyette }
1415 1.46 pgoyette return error;
1416 1.42 pgoyette }
1417