crypto.c revision 1.56 1 1.56 knakahar /* $NetBSD: crypto.c,v 1.56 2017/04/24 02:04:55 knakahara Exp $ */
2 1.1 jonathan /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 1.1 jonathan /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4 1.1 jonathan
5 1.27 tls /*-
6 1.27 tls * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 1.27 tls * All rights reserved.
8 1.27 tls *
9 1.27 tls * This code is derived from software contributed to The NetBSD Foundation
10 1.27 tls * by Coyote Point Systems, Inc.
11 1.27 tls *
12 1.27 tls * Redistribution and use in source and binary forms, with or without
13 1.27 tls * modification, are permitted provided that the following conditions
14 1.27 tls * are met:
15 1.27 tls * 1. Redistributions of source code must retain the above copyright
16 1.27 tls * notice, this list of conditions and the following disclaimer.
17 1.27 tls * 2. Redistributions in binary form must reproduce the above copyright
18 1.27 tls * notice, this list of conditions and the following disclaimer in the
19 1.27 tls * documentation and/or other materials provided with the distribution.
20 1.27 tls *
21 1.27 tls * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.27 tls * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.27 tls * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.27 tls * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.27 tls * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.27 tls * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.27 tls * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.27 tls * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.27 tls * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.27 tls * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.27 tls * POSSIBILITY OF SUCH DAMAGE.
32 1.27 tls */
33 1.27 tls
34 1.1 jonathan /*
35 1.1 jonathan * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 1.1 jonathan *
37 1.1 jonathan * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 1.1 jonathan * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 1.1 jonathan * supported the development of this code.
40 1.1 jonathan *
41 1.1 jonathan * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 1.1 jonathan *
43 1.1 jonathan * Permission to use, copy, and modify this software with or without fee
44 1.1 jonathan * is hereby granted, provided that this entire notice is included in
45 1.1 jonathan * all source code copies of any software which is or includes a copy or
46 1.1 jonathan * modification of this software.
47 1.1 jonathan *
48 1.1 jonathan * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 1.1 jonathan * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 1.1 jonathan * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 1.1 jonathan * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 1.1 jonathan * PURPOSE.
53 1.1 jonathan */
54 1.1 jonathan
55 1.1 jonathan #include <sys/cdefs.h>
56 1.56 knakahar __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.56 2017/04/24 02:04:55 knakahara Exp $");
57 1.1 jonathan
58 1.1 jonathan #include <sys/param.h>
59 1.1 jonathan #include <sys/reboot.h>
60 1.1 jonathan #include <sys/systm.h>
61 1.1 jonathan #include <sys/malloc.h>
62 1.1 jonathan #include <sys/proc.h>
63 1.1 jonathan #include <sys/pool.h>
64 1.1 jonathan #include <sys/kthread.h>
65 1.11 thorpej #include <sys/once.h>
66 1.13 christos #include <sys/sysctl.h>
67 1.21 ad #include <sys/intr.h>
68 1.42 pgoyette #include <sys/errno.h>
69 1.42 pgoyette #include <sys/module.h>
70 1.1 jonathan
71 1.42 pgoyette #if defined(_KERNEL_OPT)
72 1.23 tls #include "opt_ocf.h"
73 1.42 pgoyette #endif
74 1.42 pgoyette
75 1.21 ad #include <opencrypto/cryptodev.h>
76 1.1 jonathan #include <opencrypto/xform.h> /* XXX for M_XDATA */
77 1.1 jonathan
78 1.49 knakahar static kmutex_t crypto_q_mtx;
79 1.49 knakahar static kmutex_t crypto_ret_q_mtx;
80 1.49 knakahar static kcondvar_t cryptoret_cv;
81 1.23 tls kmutex_t crypto_mtx;
82 1.23 tls
83 1.23 tls /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 1.1 jonathan #define SWI_CRYPTO 17
85 1.1 jonathan #define register_swi(lvl, fn) \
86 1.38 drochner softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 1.21 ad #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 1.56 knakahar #define setsoftcrypto(x) \
89 1.56 knakahar do{ \
90 1.56 knakahar kpreempt_disable(); \
91 1.56 knakahar softint_schedule(x); \
92 1.56 knakahar kpreempt_enable(); \
93 1.56 knakahar }while(0)
94 1.1 jonathan
95 1.30 darran int crypto_ret_q_check(struct cryptop *);
96 1.30 darran
97 1.1 jonathan /*
98 1.1 jonathan * Crypto drivers register themselves by allocating a slot in the
99 1.1 jonathan * crypto_drivers table with crypto_get_driverid() and then registering
100 1.1 jonathan * each algorithm they support with crypto_register() and crypto_kregister().
101 1.1 jonathan */
102 1.11 thorpej static struct cryptocap *crypto_drivers;
103 1.11 thorpej static int crypto_drivers_num;
104 1.37 christos static void *softintr_cookie;
105 1.46 pgoyette static int crypto_exit_flag;
106 1.1 jonathan
107 1.1 jonathan /*
108 1.1 jonathan * There are two queues for crypto requests; one for symmetric (e.g.
109 1.1 jonathan * cipher) operations and one for asymmetric (e.g. MOD) operations.
110 1.1 jonathan * See below for how synchronization is handled.
111 1.1 jonathan */
112 1.11 thorpej static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
113 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_q);
114 1.11 thorpej static TAILQ_HEAD(,cryptkop) crp_kq =
115 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_kq);
116 1.1 jonathan
117 1.1 jonathan /*
118 1.1 jonathan * There are two queues for processing completed crypto requests; one
119 1.1 jonathan * for the symmetric and one for the asymmetric ops. We only need one
120 1.1 jonathan * but have two to avoid type futzing (cryptop vs. cryptkop). See below
121 1.1 jonathan * for how synchronization is handled.
122 1.1 jonathan */
123 1.23 tls static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
124 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_q);
125 1.23 tls static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
126 1.11 thorpej TAILQ_HEAD_INITIALIZER(crp_ret_kq);
127 1.1 jonathan
128 1.1 jonathan /*
129 1.1 jonathan * Crypto op and desciptor data structures are allocated
130 1.1 jonathan * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
131 1.1 jonathan */
132 1.1 jonathan struct pool cryptop_pool;
133 1.1 jonathan struct pool cryptodesc_pool;
134 1.23 tls struct pool cryptkop_pool;
135 1.1 jonathan
136 1.1 jonathan int crypto_usercrypto = 1; /* userland may open /dev/crypto */
137 1.1 jonathan int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
138 1.10 perry /*
139 1.6 jonathan * cryptodevallowsoft is (intended to be) sysctl'able, controlling
140 1.6 jonathan * access to hardware versus software transforms as below:
141 1.6 jonathan *
142 1.6 jonathan * crypto_devallowsoft < 0: Force userlevel requests to use software
143 1.6 jonathan * transforms, always
144 1.6 jonathan * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
145 1.6 jonathan * requests for non-accelerated transforms
146 1.6 jonathan * (handling the latter in software)
147 1.6 jonathan * crypto_devallowsoft > 0: Allow user requests only for transforms which
148 1.6 jonathan * are hardware-accelerated.
149 1.6 jonathan */
150 1.9 jonathan int crypto_devallowsoft = 1; /* only use hardware crypto */
151 1.6 jonathan
152 1.13 christos SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
153 1.13 christos {
154 1.45 pooka
155 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
156 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
157 1.13 christos CTLTYPE_INT, "usercrypto",
158 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
159 1.13 christos "crypto support"),
160 1.13 christos NULL, 0, &crypto_usercrypto, 0,
161 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
162 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
163 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
164 1.13 christos CTLTYPE_INT, "userasymcrypto",
165 1.13 christos SYSCTL_DESCR("Enable/disable user-mode access to "
166 1.13 christos "asymmetric crypto support"),
167 1.13 christos NULL, 0, &crypto_userasymcrypto, 0,
168 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
169 1.13 christos sysctl_createv(clog, 0, NULL, NULL,
170 1.13 christos CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
171 1.13 christos CTLTYPE_INT, "cryptodevallowsoft",
172 1.13 christos SYSCTL_DESCR("Enable/disable use of software "
173 1.13 christos "asymmetric crypto support"),
174 1.13 christos NULL, 0, &crypto_devallowsoft, 0,
175 1.13 christos CTL_KERN, CTL_CREATE, CTL_EOL);
176 1.13 christos }
177 1.1 jonathan
178 1.1 jonathan MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
179 1.1 jonathan
180 1.1 jonathan /*
181 1.1 jonathan * Synchronization: read carefully, this is non-trivial.
182 1.1 jonathan *
183 1.1 jonathan * Crypto requests are submitted via crypto_dispatch. Typically
184 1.1 jonathan * these come in from network protocols at spl0 (output path) or
185 1.1 jonathan * spl[,soft]net (input path).
186 1.1 jonathan *
187 1.1 jonathan * Requests are typically passed on the driver directly, but they
188 1.1 jonathan * may also be queued for processing by a software interrupt thread,
189 1.10 perry * cryptointr, that runs at splsoftcrypto. This thread dispatches
190 1.1 jonathan * the requests to crypto drivers (h/w or s/w) who call crypto_done
191 1.1 jonathan * when a request is complete. Hardware crypto drivers are assumed
192 1.1 jonathan * to register their IRQ's as network devices so their interrupt handlers
193 1.1 jonathan * and subsequent "done callbacks" happen at spl[imp,net].
194 1.1 jonathan *
195 1.1 jonathan * Completed crypto ops are queued for a separate kernel thread that
196 1.1 jonathan * handles the callbacks at spl0. This decoupling insures the crypto
197 1.1 jonathan * driver interrupt service routine is not delayed while the callback
198 1.1 jonathan * takes place and that callbacks are delivered after a context switch
199 1.1 jonathan * (as opposed to a software interrupt that clients must block).
200 1.1 jonathan *
201 1.1 jonathan * This scheme is not intended for SMP machines.
202 1.10 perry */
203 1.1 jonathan static void cryptointr(void); /* swi thread to dispatch ops */
204 1.1 jonathan static void cryptoret(void); /* kernel thread for callbacks*/
205 1.20 ad static struct lwp *cryptothread;
206 1.46 pgoyette static int crypto_destroy(bool);
207 1.1 jonathan static int crypto_invoke(struct cryptop *crp, int hint);
208 1.1 jonathan static int crypto_kinvoke(struct cryptkop *krp, int hint);
209 1.1 jonathan
210 1.1 jonathan static struct cryptostats cryptostats;
211 1.23 tls #ifdef CRYPTO_TIMING
212 1.1 jonathan static int crypto_timing = 0;
213 1.23 tls #endif
214 1.1 jonathan
215 1.44 pgoyette #ifdef _MODULE
216 1.47 christos static struct sysctllog *sysctl_opencrypto_clog;
217 1.44 pgoyette #endif
218 1.44 pgoyette
219 1.12 yamt static int
220 1.11 thorpej crypto_init0(void)
221 1.1 jonathan {
222 1.1 jonathan int error;
223 1.1 jonathan
224 1.40 drochner mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
225 1.40 drochner mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
226 1.40 drochner mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
227 1.36 pgoyette cv_init(&cryptoret_cv, "crypto_w");
228 1.23 tls pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
229 1.48 msaitoh 0, "cryptop", NULL, IPL_NET);
230 1.23 tls pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
231 1.23 tls 0, "cryptodesc", NULL, IPL_NET);
232 1.23 tls pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
233 1.23 tls 0, "cryptkop", NULL, IPL_NET);
234 1.1 jonathan
235 1.11 thorpej crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
236 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
237 1.1 jonathan if (crypto_drivers == NULL) {
238 1.1 jonathan printf("crypto_init: cannot malloc driver table\n");
239 1.46 pgoyette return ENOMEM;
240 1.1 jonathan }
241 1.11 thorpej crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
242 1.1 jonathan
243 1.1 jonathan softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
244 1.25 tls error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
245 1.37 christos (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
246 1.1 jonathan if (error) {
247 1.1 jonathan printf("crypto_init: cannot start cryptoret thread; error %d",
248 1.1 jonathan error);
249 1.46 pgoyette return crypto_destroy(false);
250 1.1 jonathan }
251 1.20 ad
252 1.44 pgoyette #ifdef _MODULE
253 1.44 pgoyette sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
254 1.44 pgoyette #endif
255 1.12 yamt return 0;
256 1.11 thorpej }
257 1.11 thorpej
258 1.46 pgoyette int
259 1.11 thorpej crypto_init(void)
260 1.11 thorpej {
261 1.18 daniel static ONCE_DECL(crypto_init_once);
262 1.11 thorpej
263 1.46 pgoyette return RUN_ONCE(&crypto_init_once, crypto_init0);
264 1.1 jonathan }
265 1.1 jonathan
266 1.46 pgoyette static int
267 1.46 pgoyette crypto_destroy(bool exit_kthread)
268 1.1 jonathan {
269 1.46 pgoyette int i;
270 1.46 pgoyette
271 1.46 pgoyette if (exit_kthread) {
272 1.46 pgoyette mutex_spin_enter(&crypto_ret_q_mtx);
273 1.46 pgoyette
274 1.46 pgoyette /* if we have any in-progress requests, don't unload */
275 1.51 knakahar if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
276 1.51 knakahar mutex_spin_exit(&crypto_ret_q_mtx);
277 1.46 pgoyette return EBUSY;
278 1.51 knakahar }
279 1.46 pgoyette
280 1.46 pgoyette for (i = 0; i < crypto_drivers_num; i++)
281 1.46 pgoyette if (crypto_drivers[i].cc_sessions != 0)
282 1.46 pgoyette break;
283 1.51 knakahar if (i < crypto_drivers_num) {
284 1.51 knakahar mutex_spin_exit(&crypto_ret_q_mtx);
285 1.46 pgoyette return EBUSY;
286 1.51 knakahar }
287 1.46 pgoyette
288 1.46 pgoyette /* kick the cryptoret thread and wait for it to exit */
289 1.46 pgoyette crypto_exit_flag = 1;
290 1.46 pgoyette cv_signal(&cryptoret_cv);
291 1.46 pgoyette
292 1.46 pgoyette while (crypto_exit_flag != 0)
293 1.46 pgoyette cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
294 1.46 pgoyette mutex_spin_exit(&crypto_ret_q_mtx);
295 1.46 pgoyette }
296 1.46 pgoyette
297 1.47 christos #ifdef _MODULE
298 1.46 pgoyette if (sysctl_opencrypto_clog != NULL)
299 1.46 pgoyette sysctl_teardown(&sysctl_opencrypto_clog);
300 1.47 christos #endif
301 1.46 pgoyette
302 1.46 pgoyette unregister_swi(SWI_CRYPTO, cryptointr);
303 1.46 pgoyette
304 1.1 jonathan if (crypto_drivers != NULL)
305 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
306 1.46 pgoyette
307 1.46 pgoyette pool_destroy(&cryptop_pool);
308 1.46 pgoyette pool_destroy(&cryptodesc_pool);
309 1.46 pgoyette pool_destroy(&cryptkop_pool);
310 1.46 pgoyette
311 1.46 pgoyette cv_destroy(&cryptoret_cv);
312 1.46 pgoyette
313 1.46 pgoyette mutex_destroy(&crypto_ret_q_mtx);
314 1.46 pgoyette mutex_destroy(&crypto_q_mtx);
315 1.46 pgoyette mutex_destroy(&crypto_mtx);
316 1.46 pgoyette
317 1.46 pgoyette return 0;
318 1.1 jonathan }
319 1.1 jonathan
320 1.1 jonathan /*
321 1.23 tls * Create a new session. Must be called with crypto_mtx held.
322 1.1 jonathan */
323 1.1 jonathan int
324 1.1 jonathan crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
325 1.1 jonathan {
326 1.1 jonathan struct cryptoini *cr;
327 1.1 jonathan u_int32_t hid, lid;
328 1.1 jonathan int err = EINVAL;
329 1.1 jonathan
330 1.40 drochner mutex_enter(&crypto_mtx);
331 1.1 jonathan
332 1.1 jonathan if (crypto_drivers == NULL)
333 1.1 jonathan goto done;
334 1.1 jonathan
335 1.1 jonathan /*
336 1.1 jonathan * The algorithm we use here is pretty stupid; just use the
337 1.1 jonathan * first driver that supports all the algorithms we need.
338 1.1 jonathan *
339 1.1 jonathan * XXX We need more smarts here (in real life too, but that's
340 1.1 jonathan * XXX another story altogether).
341 1.1 jonathan */
342 1.1 jonathan
343 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
344 1.1 jonathan /*
345 1.1 jonathan * If it's not initialized or has remaining sessions
346 1.1 jonathan * referencing it, skip.
347 1.1 jonathan */
348 1.1 jonathan if (crypto_drivers[hid].cc_newsession == NULL ||
349 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
350 1.1 jonathan continue;
351 1.1 jonathan
352 1.1 jonathan /* Hardware required -- ignore software drivers. */
353 1.1 jonathan if (hard > 0 &&
354 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
355 1.1 jonathan continue;
356 1.1 jonathan /* Software required -- ignore hardware drivers. */
357 1.1 jonathan if (hard < 0 &&
358 1.1 jonathan (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
359 1.1 jonathan continue;
360 1.1 jonathan
361 1.1 jonathan /* See if all the algorithms are supported. */
362 1.1 jonathan for (cr = cri; cr; cr = cr->cri_next)
363 1.33 darran if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
364 1.33 darran DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
365 1.1 jonathan break;
366 1.33 darran }
367 1.1 jonathan
368 1.1 jonathan if (cr == NULL) {
369 1.1 jonathan /* Ok, all algorithms are supported. */
370 1.1 jonathan
371 1.1 jonathan /*
372 1.1 jonathan * Can't do everything in one session.
373 1.1 jonathan *
374 1.1 jonathan * XXX Fix this. We need to inject a "virtual" session layer right
375 1.1 jonathan * XXX about here.
376 1.1 jonathan */
377 1.1 jonathan
378 1.1 jonathan /* Call the driver initialization routine. */
379 1.1 jonathan lid = hid; /* Pass the driver ID. */
380 1.1 jonathan err = crypto_drivers[hid].cc_newsession(
381 1.1 jonathan crypto_drivers[hid].cc_arg, &lid, cri);
382 1.1 jonathan if (err == 0) {
383 1.1 jonathan (*sid) = hid;
384 1.1 jonathan (*sid) <<= 32;
385 1.1 jonathan (*sid) |= (lid & 0xffffffff);
386 1.1 jonathan crypto_drivers[hid].cc_sessions++;
387 1.52 knakahar } else {
388 1.52 knakahar DPRINTF(("%s: crypto_drivers[%d].cc_newsession() failed. error=%d\n",
389 1.53 knakahar __func__, hid, err));
390 1.1 jonathan }
391 1.1 jonathan goto done;
392 1.1 jonathan /*break;*/
393 1.1 jonathan }
394 1.1 jonathan }
395 1.1 jonathan done:
396 1.40 drochner mutex_exit(&crypto_mtx);
397 1.1 jonathan return err;
398 1.1 jonathan }
399 1.1 jonathan
400 1.1 jonathan /*
401 1.1 jonathan * Delete an existing session (or a reserved session on an unregistered
402 1.23 tls * driver). Must be called with crypto_mtx mutex held.
403 1.1 jonathan */
404 1.1 jonathan int
405 1.1 jonathan crypto_freesession(u_int64_t sid)
406 1.1 jonathan {
407 1.1 jonathan u_int32_t hid;
408 1.1 jonathan int err = 0;
409 1.1 jonathan
410 1.40 drochner mutex_enter(&crypto_mtx);
411 1.1 jonathan
412 1.1 jonathan if (crypto_drivers == NULL) {
413 1.1 jonathan err = EINVAL;
414 1.1 jonathan goto done;
415 1.1 jonathan }
416 1.1 jonathan
417 1.1 jonathan /* Determine two IDs. */
418 1.35 jakllsch hid = CRYPTO_SESID2HID(sid);
419 1.1 jonathan
420 1.1 jonathan if (hid >= crypto_drivers_num) {
421 1.1 jonathan err = ENOENT;
422 1.1 jonathan goto done;
423 1.1 jonathan }
424 1.1 jonathan
425 1.1 jonathan if (crypto_drivers[hid].cc_sessions)
426 1.1 jonathan crypto_drivers[hid].cc_sessions--;
427 1.1 jonathan
428 1.1 jonathan /* Call the driver cleanup routine, if available. */
429 1.23 tls if (crypto_drivers[hid].cc_freesession) {
430 1.1 jonathan err = crypto_drivers[hid].cc_freesession(
431 1.1 jonathan crypto_drivers[hid].cc_arg, sid);
432 1.23 tls }
433 1.1 jonathan else
434 1.1 jonathan err = 0;
435 1.1 jonathan
436 1.1 jonathan /*
437 1.1 jonathan * If this was the last session of a driver marked as invalid,
438 1.1 jonathan * make the entry available for reuse.
439 1.1 jonathan */
440 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
441 1.1 jonathan crypto_drivers[hid].cc_sessions == 0)
442 1.31 cegger memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
443 1.1 jonathan
444 1.1 jonathan done:
445 1.40 drochner mutex_exit(&crypto_mtx);
446 1.1 jonathan return err;
447 1.1 jonathan }
448 1.1 jonathan
449 1.1 jonathan /*
450 1.1 jonathan * Return an unused driver id. Used by drivers prior to registering
451 1.1 jonathan * support for the algorithms they handle.
452 1.1 jonathan */
453 1.1 jonathan int32_t
454 1.1 jonathan crypto_get_driverid(u_int32_t flags)
455 1.1 jonathan {
456 1.1 jonathan struct cryptocap *newdrv;
457 1.23 tls int i;
458 1.1 jonathan
459 1.46 pgoyette (void)crypto_init(); /* XXX oh, this is foul! */
460 1.11 thorpej
461 1.40 drochner mutex_enter(&crypto_mtx);
462 1.1 jonathan for (i = 0; i < crypto_drivers_num; i++)
463 1.1 jonathan if (crypto_drivers[i].cc_process == NULL &&
464 1.1 jonathan (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
465 1.1 jonathan crypto_drivers[i].cc_sessions == 0)
466 1.1 jonathan break;
467 1.1 jonathan
468 1.1 jonathan /* Out of entries, allocate some more. */
469 1.1 jonathan if (i == crypto_drivers_num) {
470 1.1 jonathan /* Be careful about wrap-around. */
471 1.1 jonathan if (2 * crypto_drivers_num <= crypto_drivers_num) {
472 1.40 drochner mutex_exit(&crypto_mtx);
473 1.1 jonathan printf("crypto: driver count wraparound!\n");
474 1.1 jonathan return -1;
475 1.1 jonathan }
476 1.1 jonathan
477 1.1 jonathan newdrv = malloc(2 * crypto_drivers_num *
478 1.1 jonathan sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
479 1.1 jonathan if (newdrv == NULL) {
480 1.40 drochner mutex_exit(&crypto_mtx);
481 1.1 jonathan printf("crypto: no space to expand driver table!\n");
482 1.1 jonathan return -1;
483 1.1 jonathan }
484 1.1 jonathan
485 1.34 tsutsui memcpy(newdrv, crypto_drivers,
486 1.1 jonathan crypto_drivers_num * sizeof(struct cryptocap));
487 1.1 jonathan
488 1.1 jonathan crypto_drivers_num *= 2;
489 1.1 jonathan
490 1.1 jonathan free(crypto_drivers, M_CRYPTO_DATA);
491 1.1 jonathan crypto_drivers = newdrv;
492 1.1 jonathan }
493 1.1 jonathan
494 1.1 jonathan /* NB: state is zero'd on free */
495 1.1 jonathan crypto_drivers[i].cc_sessions = 1; /* Mark */
496 1.1 jonathan crypto_drivers[i].cc_flags = flags;
497 1.1 jonathan
498 1.1 jonathan if (bootverbose)
499 1.1 jonathan printf("crypto: assign driver %u, flags %u\n", i, flags);
500 1.1 jonathan
501 1.40 drochner mutex_exit(&crypto_mtx);
502 1.1 jonathan
503 1.1 jonathan return i;
504 1.1 jonathan }
505 1.1 jonathan
506 1.1 jonathan static struct cryptocap *
507 1.1 jonathan crypto_checkdriver(u_int32_t hid)
508 1.1 jonathan {
509 1.1 jonathan if (crypto_drivers == NULL)
510 1.1 jonathan return NULL;
511 1.1 jonathan return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
512 1.1 jonathan }
513 1.1 jonathan
514 1.1 jonathan /*
515 1.1 jonathan * Register support for a key-related algorithm. This routine
516 1.1 jonathan * is called once for each algorithm supported a driver.
517 1.1 jonathan */
518 1.1 jonathan int
519 1.1 jonathan crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
520 1.37 christos int (*kprocess)(void *, struct cryptkop *, int),
521 1.1 jonathan void *karg)
522 1.1 jonathan {
523 1.1 jonathan struct cryptocap *cap;
524 1.1 jonathan int err;
525 1.1 jonathan
526 1.40 drochner mutex_enter(&crypto_mtx);
527 1.1 jonathan
528 1.1 jonathan cap = crypto_checkdriver(driverid);
529 1.1 jonathan if (cap != NULL &&
530 1.1 jonathan (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
531 1.1 jonathan /*
532 1.1 jonathan * XXX Do some performance testing to determine placing.
533 1.1 jonathan * XXX We probably need an auxiliary data structure that
534 1.1 jonathan * XXX describes relative performances.
535 1.1 jonathan */
536 1.1 jonathan
537 1.1 jonathan cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
538 1.23 tls if (bootverbose) {
539 1.23 tls printf("crypto: driver %u registers key alg %u "
540 1.23 tls " flags %u\n",
541 1.23 tls driverid,
542 1.23 tls kalg,
543 1.23 tls flags
544 1.1 jonathan );
545 1.23 tls }
546 1.1 jonathan
547 1.1 jonathan if (cap->cc_kprocess == NULL) {
548 1.1 jonathan cap->cc_karg = karg;
549 1.1 jonathan cap->cc_kprocess = kprocess;
550 1.1 jonathan }
551 1.1 jonathan err = 0;
552 1.1 jonathan } else
553 1.1 jonathan err = EINVAL;
554 1.1 jonathan
555 1.40 drochner mutex_exit(&crypto_mtx);
556 1.1 jonathan return err;
557 1.1 jonathan }
558 1.1 jonathan
559 1.1 jonathan /*
560 1.1 jonathan * Register support for a non-key-related algorithm. This routine
561 1.1 jonathan * is called once for each such algorithm supported by a driver.
562 1.1 jonathan */
563 1.1 jonathan int
564 1.1 jonathan crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
565 1.1 jonathan u_int32_t flags,
566 1.37 christos int (*newses)(void *, u_int32_t*, struct cryptoini*),
567 1.37 christos int (*freeses)(void *, u_int64_t),
568 1.37 christos int (*process)(void *, struct cryptop *, int),
569 1.1 jonathan void *arg)
570 1.1 jonathan {
571 1.1 jonathan struct cryptocap *cap;
572 1.23 tls int err;
573 1.1 jonathan
574 1.40 drochner mutex_enter(&crypto_mtx);
575 1.1 jonathan
576 1.1 jonathan cap = crypto_checkdriver(driverid);
577 1.1 jonathan /* NB: algorithms are in the range [1..max] */
578 1.1 jonathan if (cap != NULL &&
579 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
580 1.1 jonathan /*
581 1.1 jonathan * XXX Do some performance testing to determine placing.
582 1.1 jonathan * XXX We probably need an auxiliary data structure that
583 1.1 jonathan * XXX describes relative performances.
584 1.1 jonathan */
585 1.1 jonathan
586 1.1 jonathan cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
587 1.1 jonathan cap->cc_max_op_len[alg] = maxoplen;
588 1.23 tls if (bootverbose) {
589 1.23 tls printf("crypto: driver %u registers alg %u "
590 1.23 tls "flags %u maxoplen %u\n",
591 1.23 tls driverid,
592 1.23 tls alg,
593 1.23 tls flags,
594 1.23 tls maxoplen
595 1.1 jonathan );
596 1.23 tls }
597 1.1 jonathan
598 1.1 jonathan if (cap->cc_process == NULL) {
599 1.1 jonathan cap->cc_arg = arg;
600 1.1 jonathan cap->cc_newsession = newses;
601 1.1 jonathan cap->cc_process = process;
602 1.1 jonathan cap->cc_freesession = freeses;
603 1.1 jonathan cap->cc_sessions = 0; /* Unmark */
604 1.1 jonathan }
605 1.1 jonathan err = 0;
606 1.1 jonathan } else
607 1.1 jonathan err = EINVAL;
608 1.1 jonathan
609 1.40 drochner mutex_exit(&crypto_mtx);
610 1.1 jonathan return err;
611 1.1 jonathan }
612 1.1 jonathan
613 1.1 jonathan /*
614 1.1 jonathan * Unregister a crypto driver. If there are pending sessions using it,
615 1.1 jonathan * leave enough information around so that subsequent calls using those
616 1.1 jonathan * sessions will correctly detect the driver has been unregistered and
617 1.1 jonathan * reroute requests.
618 1.1 jonathan */
619 1.1 jonathan int
620 1.1 jonathan crypto_unregister(u_int32_t driverid, int alg)
621 1.1 jonathan {
622 1.23 tls int i, err;
623 1.1 jonathan u_int32_t ses;
624 1.1 jonathan struct cryptocap *cap;
625 1.1 jonathan
626 1.40 drochner mutex_enter(&crypto_mtx);
627 1.1 jonathan
628 1.1 jonathan cap = crypto_checkdriver(driverid);
629 1.1 jonathan if (cap != NULL &&
630 1.1 jonathan (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
631 1.1 jonathan cap->cc_alg[alg] != 0) {
632 1.1 jonathan cap->cc_alg[alg] = 0;
633 1.1 jonathan cap->cc_max_op_len[alg] = 0;
634 1.1 jonathan
635 1.1 jonathan /* Was this the last algorithm ? */
636 1.1 jonathan for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
637 1.1 jonathan if (cap->cc_alg[i] != 0)
638 1.1 jonathan break;
639 1.1 jonathan
640 1.1 jonathan if (i == CRYPTO_ALGORITHM_MAX + 1) {
641 1.1 jonathan ses = cap->cc_sessions;
642 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
643 1.1 jonathan if (ses != 0) {
644 1.1 jonathan /*
645 1.1 jonathan * If there are pending sessions, just mark as invalid.
646 1.1 jonathan */
647 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
648 1.1 jonathan cap->cc_sessions = ses;
649 1.1 jonathan }
650 1.1 jonathan }
651 1.1 jonathan err = 0;
652 1.1 jonathan } else
653 1.1 jonathan err = EINVAL;
654 1.1 jonathan
655 1.40 drochner mutex_exit(&crypto_mtx);
656 1.1 jonathan return err;
657 1.1 jonathan }
658 1.1 jonathan
659 1.1 jonathan /*
660 1.1 jonathan * Unregister all algorithms associated with a crypto driver.
661 1.1 jonathan * If there are pending sessions using it, leave enough information
662 1.1 jonathan * around so that subsequent calls using those sessions will
663 1.1 jonathan * correctly detect the driver has been unregistered and reroute
664 1.1 jonathan * requests.
665 1.23 tls *
666 1.23 tls * XXX careful. Don't change this to call crypto_unregister() for each
667 1.23 tls * XXX registered algorithm unless you drop the mutex across the calls;
668 1.23 tls * XXX you can't take it recursively.
669 1.1 jonathan */
670 1.1 jonathan int
671 1.1 jonathan crypto_unregister_all(u_int32_t driverid)
672 1.1 jonathan {
673 1.23 tls int i, err;
674 1.1 jonathan u_int32_t ses;
675 1.1 jonathan struct cryptocap *cap;
676 1.1 jonathan
677 1.40 drochner mutex_enter(&crypto_mtx);
678 1.1 jonathan cap = crypto_checkdriver(driverid);
679 1.1 jonathan if (cap != NULL) {
680 1.1 jonathan for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
681 1.1 jonathan cap->cc_alg[i] = 0;
682 1.1 jonathan cap->cc_max_op_len[i] = 0;
683 1.1 jonathan }
684 1.1 jonathan ses = cap->cc_sessions;
685 1.31 cegger memset(cap, 0, sizeof(struct cryptocap));
686 1.1 jonathan if (ses != 0) {
687 1.1 jonathan /*
688 1.1 jonathan * If there are pending sessions, just mark as invalid.
689 1.1 jonathan */
690 1.1 jonathan cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
691 1.1 jonathan cap->cc_sessions = ses;
692 1.1 jonathan }
693 1.1 jonathan err = 0;
694 1.1 jonathan } else
695 1.1 jonathan err = EINVAL;
696 1.1 jonathan
697 1.40 drochner mutex_exit(&crypto_mtx);
698 1.1 jonathan return err;
699 1.1 jonathan }
700 1.1 jonathan
701 1.1 jonathan /*
702 1.1 jonathan * Clear blockage on a driver. The what parameter indicates whether
703 1.1 jonathan * the driver is now ready for cryptop's and/or cryptokop's.
704 1.1 jonathan */
705 1.1 jonathan int
706 1.1 jonathan crypto_unblock(u_int32_t driverid, int what)
707 1.1 jonathan {
708 1.1 jonathan struct cryptocap *cap;
709 1.55 knakahar int needwakeup = 0;
710 1.1 jonathan
711 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
712 1.1 jonathan cap = crypto_checkdriver(driverid);
713 1.55 knakahar if (cap == NULL) {
714 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
715 1.55 knakahar return EINVAL;
716 1.55 knakahar }
717 1.55 knakahar
718 1.55 knakahar if (what & CRYPTO_SYMQ) {
719 1.55 knakahar needwakeup |= cap->cc_qblocked;
720 1.55 knakahar cap->cc_qblocked = 0;
721 1.55 knakahar }
722 1.55 knakahar if (what & CRYPTO_ASYMQ) {
723 1.55 knakahar needwakeup |= cap->cc_kqblocked;
724 1.55 knakahar cap->cc_kqblocked = 0;
725 1.24 tls }
726 1.56 knakahar mutex_spin_exit(&crypto_q_mtx);
727 1.55 knakahar if (needwakeup)
728 1.55 knakahar setsoftcrypto(softintr_cookie);
729 1.1 jonathan
730 1.55 knakahar return 0;
731 1.1 jonathan }
732 1.1 jonathan
733 1.1 jonathan /*
734 1.1 jonathan * Dispatch a crypto request to a driver or queue
735 1.1 jonathan * it, to be processed by the kernel thread.
736 1.1 jonathan */
737 1.1 jonathan int
738 1.1 jonathan crypto_dispatch(struct cryptop *crp)
739 1.1 jonathan {
740 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
741 1.23 tls int result;
742 1.1 jonathan
743 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
744 1.41 drochner DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
745 1.41 drochner crp, crp->crp_desc->crd_alg));
746 1.1 jonathan
747 1.1 jonathan cryptostats.cs_ops++;
748 1.1 jonathan
749 1.1 jonathan #ifdef CRYPTO_TIMING
750 1.1 jonathan if (crypto_timing)
751 1.1 jonathan nanouptime(&crp->crp_tstamp);
752 1.1 jonathan #endif
753 1.1 jonathan if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
754 1.1 jonathan struct cryptocap *cap;
755 1.1 jonathan /*
756 1.1 jonathan * Caller marked the request to be processed
757 1.1 jonathan * immediately; dispatch it directly to the
758 1.1 jonathan * driver unless the driver is currently blocked.
759 1.1 jonathan */
760 1.1 jonathan cap = crypto_checkdriver(hid);
761 1.1 jonathan if (cap && !cap->cc_qblocked) {
762 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
763 1.1 jonathan result = crypto_invoke(crp, 0);
764 1.1 jonathan if (result == ERESTART) {
765 1.1 jonathan /*
766 1.1 jonathan * The driver ran out of resources, mark the
767 1.1 jonathan * driver ``blocked'' for cryptop's and put
768 1.1 jonathan * the op on the queue.
769 1.1 jonathan */
770 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
771 1.1 jonathan crypto_drivers[hid].cc_qblocked = 1;
772 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
773 1.1 jonathan cryptostats.cs_blocks++;
774 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
775 1.1 jonathan }
776 1.23 tls goto out_released;
777 1.1 jonathan } else {
778 1.1 jonathan /*
779 1.1 jonathan * The driver is blocked, just queue the op until
780 1.1 jonathan * it unblocks and the swi thread gets kicked.
781 1.1 jonathan */
782 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
783 1.1 jonathan result = 0;
784 1.1 jonathan }
785 1.1 jonathan } else {
786 1.1 jonathan int wasempty = TAILQ_EMPTY(&crp_q);
787 1.1 jonathan /*
788 1.1 jonathan * Caller marked the request as ``ok to delay'';
789 1.1 jonathan * queue it for the swi thread. This is desirable
790 1.1 jonathan * when the operation is low priority and/or suitable
791 1.1 jonathan * for batching.
792 1.1 jonathan */
793 1.1 jonathan TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
794 1.56 knakahar mutex_spin_exit(&crypto_q_mtx);
795 1.1 jonathan if (wasempty) {
796 1.1 jonathan setsoftcrypto(softintr_cookie);
797 1.23 tls result = 0;
798 1.23 tls goto out_released;
799 1.1 jonathan }
800 1.1 jonathan
801 1.1 jonathan result = 0;
802 1.1 jonathan }
803 1.1 jonathan
804 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
805 1.23 tls out_released:
806 1.1 jonathan return result;
807 1.1 jonathan }
808 1.1 jonathan
809 1.1 jonathan /*
810 1.1 jonathan * Add an asymetric crypto request to a queue,
811 1.1 jonathan * to be processed by the kernel thread.
812 1.1 jonathan */
813 1.1 jonathan int
814 1.1 jonathan crypto_kdispatch(struct cryptkop *krp)
815 1.1 jonathan {
816 1.1 jonathan struct cryptocap *cap;
817 1.23 tls int result;
818 1.1 jonathan
819 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
820 1.1 jonathan cryptostats.cs_kops++;
821 1.1 jonathan
822 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
823 1.1 jonathan if (cap && !cap->cc_kqblocked) {
824 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
825 1.1 jonathan result = crypto_kinvoke(krp, 0);
826 1.1 jonathan if (result == ERESTART) {
827 1.1 jonathan /*
828 1.1 jonathan * The driver ran out of resources, mark the
829 1.1 jonathan * driver ``blocked'' for cryptop's and put
830 1.1 jonathan * the op on the queue.
831 1.1 jonathan */
832 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
833 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
834 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
835 1.1 jonathan cryptostats.cs_kblocks++;
836 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
837 1.1 jonathan }
838 1.1 jonathan } else {
839 1.1 jonathan /*
840 1.1 jonathan * The driver is blocked, just queue the op until
841 1.1 jonathan * it unblocks and the swi thread gets kicked.
842 1.1 jonathan */
843 1.1 jonathan TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
844 1.1 jonathan result = 0;
845 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
846 1.1 jonathan }
847 1.1 jonathan
848 1.1 jonathan return result;
849 1.1 jonathan }
850 1.1 jonathan
851 1.1 jonathan /*
852 1.1 jonathan * Dispatch an assymetric crypto request to the appropriate crypto devices.
853 1.1 jonathan */
854 1.1 jonathan static int
855 1.1 jonathan crypto_kinvoke(struct cryptkop *krp, int hint)
856 1.1 jonathan {
857 1.1 jonathan u_int32_t hid;
858 1.1 jonathan int error;
859 1.1 jonathan
860 1.1 jonathan /* Sanity checks. */
861 1.1 jonathan if (krp == NULL)
862 1.1 jonathan return EINVAL;
863 1.1 jonathan if (krp->krp_callback == NULL) {
864 1.30 darran cv_destroy(&krp->krp_cv);
865 1.23 tls pool_put(&cryptkop_pool, krp);
866 1.1 jonathan return EINVAL;
867 1.1 jonathan }
868 1.1 jonathan
869 1.40 drochner mutex_enter(&crypto_mtx);
870 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
871 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
872 1.1 jonathan crypto_devallowsoft == 0)
873 1.1 jonathan continue;
874 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
875 1.1 jonathan continue;
876 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
877 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) == 0)
878 1.1 jonathan continue;
879 1.1 jonathan break;
880 1.1 jonathan }
881 1.1 jonathan if (hid < crypto_drivers_num) {
882 1.37 christos int (*process)(void *, struct cryptkop *, int);
883 1.37 christos void *arg;
884 1.37 christos
885 1.37 christos process = crypto_drivers[hid].cc_kprocess;
886 1.37 christos arg = crypto_drivers[hid].cc_karg;
887 1.40 drochner mutex_exit(&crypto_mtx);
888 1.1 jonathan krp->krp_hid = hid;
889 1.37 christos error = (*process)(arg, krp, hint);
890 1.1 jonathan } else {
891 1.40 drochner mutex_exit(&crypto_mtx);
892 1.1 jonathan error = ENODEV;
893 1.1 jonathan }
894 1.1 jonathan
895 1.1 jonathan if (error) {
896 1.1 jonathan krp->krp_status = error;
897 1.1 jonathan crypto_kdone(krp);
898 1.1 jonathan }
899 1.1 jonathan return 0;
900 1.1 jonathan }
901 1.1 jonathan
902 1.1 jonathan #ifdef CRYPTO_TIMING
903 1.1 jonathan static void
904 1.1 jonathan crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
905 1.1 jonathan {
906 1.1 jonathan struct timespec now, t;
907 1.1 jonathan
908 1.1 jonathan nanouptime(&now);
909 1.1 jonathan t.tv_sec = now.tv_sec - tv->tv_sec;
910 1.1 jonathan t.tv_nsec = now.tv_nsec - tv->tv_nsec;
911 1.1 jonathan if (t.tv_nsec < 0) {
912 1.1 jonathan t.tv_sec--;
913 1.1 jonathan t.tv_nsec += 1000000000;
914 1.1 jonathan }
915 1.1 jonathan timespecadd(&ts->acc, &t, &t);
916 1.1 jonathan if (timespeccmp(&t, &ts->min, <))
917 1.1 jonathan ts->min = t;
918 1.1 jonathan if (timespeccmp(&t, &ts->max, >))
919 1.1 jonathan ts->max = t;
920 1.1 jonathan ts->count++;
921 1.1 jonathan
922 1.1 jonathan *tv = now;
923 1.1 jonathan }
924 1.1 jonathan #endif
925 1.1 jonathan
926 1.1 jonathan /*
927 1.1 jonathan * Dispatch a crypto request to the appropriate crypto devices.
928 1.1 jonathan */
929 1.1 jonathan static int
930 1.1 jonathan crypto_invoke(struct cryptop *crp, int hint)
931 1.1 jonathan {
932 1.1 jonathan u_int32_t hid;
933 1.1 jonathan
934 1.1 jonathan #ifdef CRYPTO_TIMING
935 1.1 jonathan if (crypto_timing)
936 1.1 jonathan crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
937 1.1 jonathan #endif
938 1.1 jonathan /* Sanity checks. */
939 1.1 jonathan if (crp == NULL)
940 1.1 jonathan return EINVAL;
941 1.1 jonathan if (crp->crp_callback == NULL) {
942 1.1 jonathan return EINVAL;
943 1.1 jonathan }
944 1.1 jonathan if (crp->crp_desc == NULL) {
945 1.1 jonathan crp->crp_etype = EINVAL;
946 1.1 jonathan crypto_done(crp);
947 1.1 jonathan return 0;
948 1.1 jonathan }
949 1.1 jonathan
950 1.35 jakllsch hid = CRYPTO_SESID2HID(crp->crp_sid);
951 1.37 christos
952 1.1 jonathan if (hid < crypto_drivers_num) {
953 1.37 christos int (*process)(void *, struct cryptop *, int);
954 1.37 christos void *arg;
955 1.37 christos
956 1.50 knakahar if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
957 1.1 jonathan crypto_freesession(crp->crp_sid);
958 1.1 jonathan process = crypto_drivers[hid].cc_process;
959 1.37 christos arg = crypto_drivers[hid].cc_arg;
960 1.37 christos
961 1.37 christos /*
962 1.37 christos * Invoke the driver to process the request.
963 1.37 christos */
964 1.37 christos DPRINTF(("calling process for %p\n", crp));
965 1.37 christos return (*process)(arg, crp, hint);
966 1.1 jonathan } else {
967 1.1 jonathan struct cryptodesc *crd;
968 1.16 mrg u_int64_t nid = 0;
969 1.1 jonathan
970 1.1 jonathan /*
971 1.1 jonathan * Driver has unregistered; migrate the session and return
972 1.1 jonathan * an error to the caller so they'll resubmit the op.
973 1.1 jonathan */
974 1.1 jonathan for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
975 1.1 jonathan crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
976 1.1 jonathan
977 1.1 jonathan if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
978 1.1 jonathan crp->crp_sid = nid;
979 1.1 jonathan
980 1.1 jonathan crp->crp_etype = EAGAIN;
981 1.23 tls
982 1.1 jonathan crypto_done(crp);
983 1.1 jonathan return 0;
984 1.1 jonathan }
985 1.1 jonathan }
986 1.1 jonathan
987 1.1 jonathan /*
988 1.1 jonathan * Release a set of crypto descriptors.
989 1.1 jonathan */
990 1.1 jonathan void
991 1.1 jonathan crypto_freereq(struct cryptop *crp)
992 1.1 jonathan {
993 1.1 jonathan struct cryptodesc *crd;
994 1.1 jonathan
995 1.1 jonathan if (crp == NULL)
996 1.1 jonathan return;
997 1.35 jakllsch DPRINTF(("crypto_freereq[%u]: crp %p\n",
998 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
999 1.1 jonathan
1000 1.30 darran /* sanity check */
1001 1.30 darran if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1002 1.30 darran panic("crypto_freereq() freeing crp on RETQ\n");
1003 1.30 darran }
1004 1.30 darran
1005 1.1 jonathan while ((crd = crp->crp_desc) != NULL) {
1006 1.1 jonathan crp->crp_desc = crd->crd_next;
1007 1.1 jonathan pool_put(&cryptodesc_pool, crd);
1008 1.1 jonathan }
1009 1.1 jonathan pool_put(&cryptop_pool, crp);
1010 1.1 jonathan }
1011 1.1 jonathan
1012 1.1 jonathan /*
1013 1.1 jonathan * Acquire a set of crypto descriptors.
1014 1.1 jonathan */
1015 1.1 jonathan struct cryptop *
1016 1.1 jonathan crypto_getreq(int num)
1017 1.1 jonathan {
1018 1.1 jonathan struct cryptodesc *crd;
1019 1.1 jonathan struct cryptop *crp;
1020 1.1 jonathan
1021 1.1 jonathan crp = pool_get(&cryptop_pool, 0);
1022 1.1 jonathan if (crp == NULL) {
1023 1.1 jonathan return NULL;
1024 1.1 jonathan }
1025 1.31 cegger memset(crp, 0, sizeof(struct cryptop));
1026 1.1 jonathan
1027 1.1 jonathan while (num--) {
1028 1.1 jonathan crd = pool_get(&cryptodesc_pool, 0);
1029 1.1 jonathan if (crd == NULL) {
1030 1.1 jonathan crypto_freereq(crp);
1031 1.1 jonathan return NULL;
1032 1.1 jonathan }
1033 1.1 jonathan
1034 1.31 cegger memset(crd, 0, sizeof(struct cryptodesc));
1035 1.1 jonathan crd->crd_next = crp->crp_desc;
1036 1.1 jonathan crp->crp_desc = crd;
1037 1.1 jonathan }
1038 1.1 jonathan
1039 1.1 jonathan return crp;
1040 1.1 jonathan }
1041 1.1 jonathan
1042 1.1 jonathan /*
1043 1.1 jonathan * Invoke the callback on behalf of the driver.
1044 1.1 jonathan */
1045 1.1 jonathan void
1046 1.1 jonathan crypto_done(struct cryptop *crp)
1047 1.1 jonathan {
1048 1.23 tls int wasempty;
1049 1.23 tls
1050 1.1 jonathan if (crp->crp_etype != 0)
1051 1.1 jonathan cryptostats.cs_errs++;
1052 1.1 jonathan #ifdef CRYPTO_TIMING
1053 1.1 jonathan if (crypto_timing)
1054 1.1 jonathan crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1055 1.1 jonathan #endif
1056 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p\n",
1057 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1058 1.27 tls
1059 1.1 jonathan /*
1060 1.23 tls * Normal case; queue the callback for the thread.
1061 1.23 tls *
1062 1.23 tls * The return queue is manipulated by the swi thread
1063 1.23 tls * and, potentially, by crypto device drivers calling
1064 1.23 tls * back to mark operations completed. Thus we need
1065 1.23 tls * to mask both while manipulating the return queue.
1066 1.1 jonathan */
1067 1.27 tls if (crp->crp_flags & CRYPTO_F_CBIMM) {
1068 1.27 tls /*
1069 1.27 tls * Do the callback directly. This is ok when the
1070 1.27 tls * callback routine does very little (e.g. the
1071 1.27 tls * /dev/crypto callback method just does a wakeup).
1072 1.27 tls */
1073 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1074 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1075 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1076 1.30 darran
1077 1.27 tls #ifdef CRYPTO_TIMING
1078 1.27 tls if (crypto_timing) {
1079 1.27 tls /*
1080 1.27 tls * NB: We must copy the timestamp before
1081 1.27 tls * doing the callback as the cryptop is
1082 1.27 tls * likely to be reclaimed.
1083 1.27 tls */
1084 1.27 tls struct timespec t = crp->crp_tstamp;
1085 1.27 tls crypto_tstat(&cryptostats.cs_cb, &t);
1086 1.27 tls crp->crp_callback(crp);
1087 1.27 tls crypto_tstat(&cryptostats.cs_finis, &t);
1088 1.27 tls } else
1089 1.27 tls #endif
1090 1.27 tls crp->crp_callback(crp);
1091 1.27 tls } else {
1092 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1093 1.30 darran crp->crp_flags |= CRYPTO_F_DONE;
1094 1.52 knakahar #if 0
1095 1.30 darran if (crp->crp_flags & CRYPTO_F_USER) {
1096 1.52 knakahar /*
1097 1.52 knakahar * TODO:
1098 1.52 knakahar * If crp->crp_flags & CRYPTO_F_USER and the used
1099 1.52 knakahar * encryption driver does all the processing in
1100 1.52 knakahar * the same context, we can skip enqueueing crp_ret_q
1101 1.52 knakahar * and cv_signal(&cryptoret_cv).
1102 1.30 darran */
1103 1.35 jakllsch DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1104 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1105 1.52 knakahar } else
1106 1.52 knakahar #endif
1107 1.52 knakahar {
1108 1.30 darran wasempty = TAILQ_EMPTY(&crp_ret_q);
1109 1.35 jakllsch DPRINTF(("crypto_done[%u]: queueing %p\n",
1110 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1111 1.30 darran crp->crp_flags |= CRYPTO_F_ONRETQ;
1112 1.30 darran TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1113 1.30 darran if (wasempty) {
1114 1.35 jakllsch DPRINTF(("crypto_done[%u]: waking cryptoret, "
1115 1.35 jakllsch "crp %p hit empty queue\n.",
1116 1.35 jakllsch CRYPTO_SESID2LID(crp->crp_sid), crp));
1117 1.30 darran cv_signal(&cryptoret_cv);
1118 1.30 darran }
1119 1.27 tls }
1120 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1121 1.1 jonathan }
1122 1.1 jonathan }
1123 1.1 jonathan
1124 1.1 jonathan /*
1125 1.1 jonathan * Invoke the callback on behalf of the driver.
1126 1.1 jonathan */
1127 1.1 jonathan void
1128 1.1 jonathan crypto_kdone(struct cryptkop *krp)
1129 1.1 jonathan {
1130 1.23 tls int wasempty;
1131 1.1 jonathan
1132 1.1 jonathan if (krp->krp_status != 0)
1133 1.1 jonathan cryptostats.cs_kerrs++;
1134 1.27 tls
1135 1.27 tls krp->krp_flags |= CRYPTO_F_DONE;
1136 1.27 tls
1137 1.1 jonathan /*
1138 1.1 jonathan * The return queue is manipulated by the swi thread
1139 1.1 jonathan * and, potentially, by crypto device drivers calling
1140 1.1 jonathan * back to mark operations completed. Thus we need
1141 1.1 jonathan * to mask both while manipulating the return queue.
1142 1.1 jonathan */
1143 1.27 tls if (krp->krp_flags & CRYPTO_F_CBIMM) {
1144 1.27 tls krp->krp_callback(krp);
1145 1.27 tls } else {
1146 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1147 1.27 tls wasempty = TAILQ_EMPTY(&crp_ret_kq);
1148 1.27 tls krp->krp_flags |= CRYPTO_F_ONRETQ;
1149 1.27 tls TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1150 1.27 tls if (wasempty)
1151 1.27 tls cv_signal(&cryptoret_cv);
1152 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1153 1.27 tls }
1154 1.1 jonathan }
1155 1.1 jonathan
1156 1.1 jonathan int
1157 1.1 jonathan crypto_getfeat(int *featp)
1158 1.1 jonathan {
1159 1.1 jonathan int hid, kalg, feat = 0;
1160 1.1 jonathan
1161 1.40 drochner mutex_enter(&crypto_mtx);
1162 1.1 jonathan
1163 1.1 jonathan if (crypto_userasymcrypto == 0)
1164 1.10 perry goto out;
1165 1.1 jonathan
1166 1.1 jonathan for (hid = 0; hid < crypto_drivers_num; hid++) {
1167 1.1 jonathan if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1168 1.7 jonathan crypto_devallowsoft == 0) {
1169 1.1 jonathan continue;
1170 1.1 jonathan }
1171 1.1 jonathan if (crypto_drivers[hid].cc_kprocess == NULL)
1172 1.1 jonathan continue;
1173 1.1 jonathan for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1174 1.1 jonathan if ((crypto_drivers[hid].cc_kalg[kalg] &
1175 1.1 jonathan CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1176 1.1 jonathan feat |= 1 << kalg;
1177 1.1 jonathan }
1178 1.1 jonathan out:
1179 1.40 drochner mutex_exit(&crypto_mtx);
1180 1.1 jonathan *featp = feat;
1181 1.1 jonathan return (0);
1182 1.1 jonathan }
1183 1.1 jonathan
1184 1.1 jonathan /*
1185 1.1 jonathan * Software interrupt thread to dispatch crypto requests.
1186 1.1 jonathan */
1187 1.1 jonathan static void
1188 1.1 jonathan cryptointr(void)
1189 1.1 jonathan {
1190 1.30 darran struct cryptop *crp, *submit, *cnext;
1191 1.30 darran struct cryptkop *krp, *knext;
1192 1.1 jonathan struct cryptocap *cap;
1193 1.23 tls int result, hint;
1194 1.1 jonathan
1195 1.1 jonathan cryptostats.cs_intrs++;
1196 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1197 1.1 jonathan do {
1198 1.1 jonathan /*
1199 1.1 jonathan * Find the first element in the queue that can be
1200 1.1 jonathan * processed and look-ahead to see if multiple ops
1201 1.1 jonathan * are ready for the same driver.
1202 1.1 jonathan */
1203 1.1 jonathan submit = NULL;
1204 1.1 jonathan hint = 0;
1205 1.30 darran TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1206 1.35 jakllsch u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1207 1.1 jonathan cap = crypto_checkdriver(hid);
1208 1.1 jonathan if (cap == NULL || cap->cc_process == NULL) {
1209 1.1 jonathan /* Op needs to be migrated, process it. */
1210 1.1 jonathan if (submit == NULL)
1211 1.1 jonathan submit = crp;
1212 1.1 jonathan break;
1213 1.1 jonathan }
1214 1.1 jonathan if (!cap->cc_qblocked) {
1215 1.1 jonathan if (submit != NULL) {
1216 1.1 jonathan /*
1217 1.1 jonathan * We stop on finding another op,
1218 1.1 jonathan * regardless whether its for the same
1219 1.1 jonathan * driver or not. We could keep
1220 1.1 jonathan * searching the queue but it might be
1221 1.1 jonathan * better to just use a per-driver
1222 1.1 jonathan * queue instead.
1223 1.1 jonathan */
1224 1.35 jakllsch if (CRYPTO_SESID2HID(submit->crp_sid)
1225 1.35 jakllsch == hid)
1226 1.1 jonathan hint = CRYPTO_HINT_MORE;
1227 1.1 jonathan break;
1228 1.1 jonathan } else {
1229 1.1 jonathan submit = crp;
1230 1.1 jonathan if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1231 1.1 jonathan break;
1232 1.1 jonathan /* keep scanning for more are q'd */
1233 1.1 jonathan }
1234 1.1 jonathan }
1235 1.1 jonathan }
1236 1.1 jonathan if (submit != NULL) {
1237 1.1 jonathan TAILQ_REMOVE(&crp_q, submit, crp_next);
1238 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1239 1.1 jonathan result = crypto_invoke(submit, hint);
1240 1.23 tls /* we must take here as the TAILQ op or kinvoke
1241 1.23 tls may need this mutex below. sigh. */
1242 1.48 msaitoh mutex_spin_enter(&crypto_q_mtx);
1243 1.1 jonathan if (result == ERESTART) {
1244 1.1 jonathan /*
1245 1.1 jonathan * The driver ran out of resources, mark the
1246 1.1 jonathan * driver ``blocked'' for cryptop's and put
1247 1.1 jonathan * the request back in the queue. It would
1248 1.1 jonathan * best to put the request back where we got
1249 1.1 jonathan * it but that's hard so for now we put it
1250 1.1 jonathan * at the front. This should be ok; putting
1251 1.1 jonathan * it at the end does not work.
1252 1.1 jonathan */
1253 1.1 jonathan /* XXX validate sid again? */
1254 1.35 jakllsch crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1255 1.1 jonathan TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1256 1.1 jonathan cryptostats.cs_blocks++;
1257 1.1 jonathan }
1258 1.1 jonathan }
1259 1.1 jonathan
1260 1.1 jonathan /* As above, but for key ops */
1261 1.30 darran TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1262 1.1 jonathan cap = crypto_checkdriver(krp->krp_hid);
1263 1.1 jonathan if (cap == NULL || cap->cc_kprocess == NULL) {
1264 1.1 jonathan /* Op needs to be migrated, process it. */
1265 1.1 jonathan break;
1266 1.1 jonathan }
1267 1.1 jonathan if (!cap->cc_kqblocked)
1268 1.1 jonathan break;
1269 1.1 jonathan }
1270 1.1 jonathan if (krp != NULL) {
1271 1.1 jonathan TAILQ_REMOVE(&crp_kq, krp, krp_next);
1272 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1273 1.1 jonathan result = crypto_kinvoke(krp, 0);
1274 1.23 tls /* the next iteration will want the mutex. :-/ */
1275 1.40 drochner mutex_spin_enter(&crypto_q_mtx);
1276 1.1 jonathan if (result == ERESTART) {
1277 1.1 jonathan /*
1278 1.1 jonathan * The driver ran out of resources, mark the
1279 1.1 jonathan * driver ``blocked'' for cryptkop's and put
1280 1.1 jonathan * the request back in the queue. It would
1281 1.1 jonathan * best to put the request back where we got
1282 1.1 jonathan * it but that's hard so for now we put it
1283 1.1 jonathan * at the front. This should be ok; putting
1284 1.1 jonathan * it at the end does not work.
1285 1.1 jonathan */
1286 1.1 jonathan /* XXX validate sid again? */
1287 1.1 jonathan crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1288 1.1 jonathan TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1289 1.1 jonathan cryptostats.cs_kblocks++;
1290 1.1 jonathan }
1291 1.1 jonathan }
1292 1.1 jonathan } while (submit != NULL || krp != NULL);
1293 1.40 drochner mutex_spin_exit(&crypto_q_mtx);
1294 1.1 jonathan }
1295 1.1 jonathan
1296 1.1 jonathan /*
1297 1.1 jonathan * Kernel thread to do callbacks.
1298 1.1 jonathan */
1299 1.1 jonathan static void
1300 1.1 jonathan cryptoret(void)
1301 1.1 jonathan {
1302 1.1 jonathan struct cryptop *crp;
1303 1.1 jonathan struct cryptkop *krp;
1304 1.1 jonathan
1305 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1306 1.1 jonathan for (;;) {
1307 1.1 jonathan crp = TAILQ_FIRST(&crp_ret_q);
1308 1.23 tls if (crp != NULL) {
1309 1.1 jonathan TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1310 1.23 tls crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1311 1.23 tls }
1312 1.1 jonathan krp = TAILQ_FIRST(&crp_ret_kq);
1313 1.23 tls if (krp != NULL) {
1314 1.1 jonathan TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1315 1.23 tls krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1316 1.23 tls }
1317 1.1 jonathan
1318 1.23 tls /* drop before calling any callbacks. */
1319 1.26 ad if (crp == NULL && krp == NULL) {
1320 1.46 pgoyette
1321 1.46 pgoyette /* Check for the exit condition. */
1322 1.46 pgoyette if (crypto_exit_flag != 0) {
1323 1.46 pgoyette
1324 1.46 pgoyette /* Time to die. */
1325 1.46 pgoyette crypto_exit_flag = 0;
1326 1.46 pgoyette cv_broadcast(&cryptoret_cv);
1327 1.46 pgoyette mutex_spin_exit(&crypto_ret_q_mtx);
1328 1.46 pgoyette kthread_exit(0);
1329 1.46 pgoyette }
1330 1.46 pgoyette
1331 1.26 ad cryptostats.cs_rets++;
1332 1.40 drochner cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1333 1.26 ad continue;
1334 1.26 ad }
1335 1.26 ad
1336 1.40 drochner mutex_spin_exit(&crypto_ret_q_mtx);
1337 1.26 ad
1338 1.26 ad if (crp != NULL) {
1339 1.1 jonathan #ifdef CRYPTO_TIMING
1340 1.26 ad if (crypto_timing) {
1341 1.26 ad /*
1342 1.26 ad * NB: We must copy the timestamp before
1343 1.26 ad * doing the callback as the cryptop is
1344 1.26 ad * likely to be reclaimed.
1345 1.26 ad */
1346 1.26 ad struct timespec t = crp->crp_tstamp;
1347 1.26 ad crypto_tstat(&cryptostats.cs_cb, &t);
1348 1.26 ad crp->crp_callback(crp);
1349 1.26 ad crypto_tstat(&cryptostats.cs_finis, &t);
1350 1.26 ad } else
1351 1.1 jonathan #endif
1352 1.26 ad {
1353 1.26 ad crp->crp_callback(crp);
1354 1.1 jonathan }
1355 1.1 jonathan }
1356 1.26 ad if (krp != NULL)
1357 1.26 ad krp->krp_callback(krp);
1358 1.26 ad
1359 1.40 drochner mutex_spin_enter(&crypto_ret_q_mtx);
1360 1.1 jonathan }
1361 1.1 jonathan }
1362 1.42 pgoyette
1363 1.42 pgoyette /* NetBSD module interface */
1364 1.42 pgoyette
1365 1.42 pgoyette MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1366 1.42 pgoyette
1367 1.42 pgoyette static int
1368 1.42 pgoyette opencrypto_modcmd(modcmd_t cmd, void *opaque)
1369 1.42 pgoyette {
1370 1.46 pgoyette int error = 0;
1371 1.42 pgoyette
1372 1.42 pgoyette switch (cmd) {
1373 1.42 pgoyette case MODULE_CMD_INIT:
1374 1.43 pgoyette #ifdef _MODULE
1375 1.46 pgoyette error = crypto_init();
1376 1.43 pgoyette #endif
1377 1.46 pgoyette break;
1378 1.42 pgoyette case MODULE_CMD_FINI:
1379 1.43 pgoyette #ifdef _MODULE
1380 1.46 pgoyette error = crypto_destroy(true);
1381 1.43 pgoyette #endif
1382 1.46 pgoyette break;
1383 1.42 pgoyette default:
1384 1.46 pgoyette error = ENOTTY;
1385 1.42 pgoyette }
1386 1.46 pgoyette return error;
1387 1.42 pgoyette }
1388