crypto.c revision 1.101 1 /* $NetBSD: crypto.c,v 1.101 2017/09/22 03:04:06 knakahara Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.101 2017/09/22 03:04:06 knakahara Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81
82 /*
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
86 */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 kmutex_t mtx;
90 int num;
91 struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx (crypto_drv.mtx)
94 #define crypto_drivers_num (crypto_drv.num)
95 #define crypto_drivers (crypto_drv.list)
96
97 static void *crypto_q_si;
98 static void *crypto_ret_si;
99
100 /*
101 * There are two queues for crypto requests; one for symmetric (e.g.
102 * cipher) operations and one for asymmetric (e.g. MOD) operations.
103 * See below for how synchronization is handled.
104 */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 struct crypto_crp_q *crp_q;
109 struct crypto_crp_kq *crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112
113 static inline struct crypto_crp_qs *
114 crypto_get_crp_qs(int *s)
115 {
116
117 KASSERT(s != NULL);
118
119 *s = splsoftnet();
120 return percpu_getref(crypto_crp_qs_percpu);
121 }
122
123 static inline void
124 crypto_put_crp_qs(int *s)
125 {
126
127 KASSERT(s != NULL);
128
129 percpu_putref(crypto_crp_qs_percpu);
130 splx(*s);
131 }
132
133 static void
134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 struct crypto_crp_qs *qs_pc = p;
137 bool *isempty = arg;
138
139 if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
140 *isempty = true;
141 }
142
143 static void
144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 struct crypto_crp_qs *qs = p;
147
148 qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
149 qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
150
151 TAILQ_INIT(qs->crp_q);
152 TAILQ_INIT(qs->crp_kq);
153 }
154
155 /*
156 * There are two queues for processing completed crypto requests; one
157 * for the symmetric and one for the asymmetric ops. We only need one
158 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
159 * for how synchronization is handled.
160 */
161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
163 struct crypto_crp_ret_qs {
164 kmutex_t crp_ret_q_mtx;
165 bool crp_ret_q_exit_flag;
166
167 struct crypto_crp_ret_q crp_ret_q;
168 int crp_ret_q_len;
169 int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
170 int crp_ret_q_drops;
171
172 struct crypto_crp_ret_kq crp_ret_kq;
173 int crp_ret_kq_len;
174 int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
175 int crp_ret_kq_drops;
176 };
177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
178
179
180 static inline struct crypto_crp_ret_qs *
181 crypto_get_crp_ret_qs(struct cpu_info *ci)
182 {
183 u_int cpuid;
184 struct crypto_crp_ret_qs *qs;
185
186 KASSERT(ci != NULL);
187
188 cpuid = cpu_index(ci);
189 qs = crypto_crp_ret_qs_list[cpuid];
190 mutex_enter(&qs->crp_ret_q_mtx);
191 return qs;
192 }
193
194 static inline void
195 crypto_put_crp_ret_qs(struct cpu_info *ci)
196 {
197 u_int cpuid;
198 struct crypto_crp_ret_qs *qs;
199
200 KASSERT(ci != NULL);
201
202 cpuid = cpu_index(ci);
203 qs = crypto_crp_ret_qs_list[cpuid];
204 mutex_exit(&qs->crp_ret_q_mtx);
205 }
206
207 #ifndef CRYPTO_RET_Q_MAXLEN
208 #define CRYPTO_RET_Q_MAXLEN 0
209 #endif
210 #ifndef CRYPTO_RET_KQ_MAXLEN
211 #define CRYPTO_RET_KQ_MAXLEN 0
212 #endif
213
214 static int
215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
216 {
217 int error, len = 0;
218 struct sysctlnode node = *rnode;
219
220 for (int i = 0; i < ncpu; i++) {
221 struct crypto_crp_ret_qs *qs;
222 struct cpu_info *ci = cpu_lookup(i);
223
224 qs = crypto_get_crp_ret_qs(ci);
225 len += qs->crp_ret_q_len;
226 crypto_put_crp_ret_qs(ci);
227 }
228
229 node.sysctl_data = &len;
230 error = sysctl_lookup(SYSCTLFN_CALL(&node));
231 if (error || newp == NULL)
232 return error;
233
234 return 0;
235 }
236
237 static int
238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
239 {
240 int error, drops = 0;
241 struct sysctlnode node = *rnode;
242
243 for (int i = 0; i < ncpu; i++) {
244 struct crypto_crp_ret_qs *qs;
245 struct cpu_info *ci = cpu_lookup(i);
246
247 qs = crypto_get_crp_ret_qs(ci);
248 drops += qs->crp_ret_q_drops;
249 crypto_put_crp_ret_qs(ci);
250 }
251
252 node.sysctl_data = &drops;
253 error = sysctl_lookup(SYSCTLFN_CALL(&node));
254 if (error || newp == NULL)
255 return error;
256
257 return 0;
258 }
259
260 static int
261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
262 {
263 int error, maxlen;
264 struct crypto_crp_ret_qs *qs;
265 struct sysctlnode node = *rnode;
266
267 /* each crp_ret_kq_maxlen is the same. */
268 qs = crypto_get_crp_ret_qs(curcpu());
269 maxlen = qs->crp_ret_q_maxlen;
270 crypto_put_crp_ret_qs(curcpu());
271
272 node.sysctl_data = &maxlen;
273 error = sysctl_lookup(SYSCTLFN_CALL(&node));
274 if (error || newp == NULL)
275 return error;
276
277 for (int i = 0; i < ncpu; i++) {
278 struct cpu_info *ci = cpu_lookup(i);
279
280 qs = crypto_get_crp_ret_qs(ci);
281 qs->crp_ret_q_maxlen = maxlen;
282 crypto_put_crp_ret_qs(ci);
283 }
284
285 return 0;
286 }
287
288 static int
289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
290 {
291 int error, len = 0;
292 struct sysctlnode node = *rnode;
293
294 for (int i = 0; i < ncpu; i++) {
295 struct crypto_crp_ret_qs *qs;
296 struct cpu_info *ci = cpu_lookup(i);
297
298 qs = crypto_get_crp_ret_qs(ci);
299 len += qs->crp_ret_kq_len;
300 crypto_put_crp_ret_qs(ci);
301 }
302
303 node.sysctl_data = &len;
304 error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 if (error || newp == NULL)
306 return error;
307
308 return 0;
309 }
310
311 static int
312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
313 {
314 int error, drops = 0;
315 struct sysctlnode node = *rnode;
316
317 for (int i = 0; i < ncpu; i++) {
318 struct crypto_crp_ret_qs *qs;
319 struct cpu_info *ci = cpu_lookup(i);
320
321 qs = crypto_get_crp_ret_qs(ci);
322 drops += qs->crp_ret_kq_drops;
323 crypto_put_crp_ret_qs(ci);
324 }
325
326 node.sysctl_data = &drops;
327 error = sysctl_lookup(SYSCTLFN_CALL(&node));
328 if (error || newp == NULL)
329 return error;
330
331 return 0;
332 }
333
334 static int
335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
336 {
337 int error, maxlen;
338 struct crypto_crp_ret_qs *qs;
339 struct sysctlnode node = *rnode;
340
341 /* each crp_ret_kq_maxlen is the same. */
342 qs = crypto_get_crp_ret_qs(curcpu());
343 maxlen = qs->crp_ret_kq_maxlen;
344 crypto_put_crp_ret_qs(curcpu());
345
346 node.sysctl_data = &maxlen;
347 error = sysctl_lookup(SYSCTLFN_CALL(&node));
348 if (error || newp == NULL)
349 return error;
350
351 for (int i = 0; i < ncpu; i++) {
352 struct cpu_info *ci = cpu_lookup(i);
353
354 qs = crypto_get_crp_ret_qs(ci);
355 qs->crp_ret_kq_maxlen = maxlen;
356 crypto_put_crp_ret_qs(ci);
357 }
358
359 return 0;
360 }
361
362 /*
363 * Crypto op and desciptor data structures are allocated
364 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
365 */
366 static pool_cache_t cryptop_cache;
367 static pool_cache_t cryptodesc_cache;
368 static pool_cache_t cryptkop_cache;
369
370 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
371 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
372 /*
373 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
374 * access to hardware versus software transforms as below:
375 *
376 * crypto_devallowsoft < 0: Force userlevel requests to use software
377 * transforms, always
378 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
379 * requests for non-accelerated transforms
380 * (handling the latter in software)
381 * crypto_devallowsoft > 0: Allow user requests only for transforms which
382 * are hardware-accelerated.
383 */
384 int crypto_devallowsoft = 1; /* only use hardware crypto */
385
386 static void
387 sysctl_opencrypto_setup(struct sysctllog **clog)
388 {
389 const struct sysctlnode *ocnode;
390 const struct sysctlnode *retqnode, *retkqnode;
391
392 sysctl_createv(clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 CTLTYPE_INT, "usercrypto",
395 SYSCTL_DESCR("Enable/disable user-mode access to "
396 "crypto support"),
397 NULL, 0, &crypto_usercrypto, 0,
398 CTL_KERN, CTL_CREATE, CTL_EOL);
399 sysctl_createv(clog, 0, NULL, NULL,
400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 CTLTYPE_INT, "userasymcrypto",
402 SYSCTL_DESCR("Enable/disable user-mode access to "
403 "asymmetric crypto support"),
404 NULL, 0, &crypto_userasymcrypto, 0,
405 CTL_KERN, CTL_CREATE, CTL_EOL);
406 sysctl_createv(clog, 0, NULL, NULL,
407 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
408 CTLTYPE_INT, "cryptodevallowsoft",
409 SYSCTL_DESCR("Enable/disable use of software "
410 "asymmetric crypto support"),
411 NULL, 0, &crypto_devallowsoft, 0,
412 CTL_KERN, CTL_CREATE, CTL_EOL);
413
414 sysctl_createv(clog, 0, NULL, &ocnode,
415 CTLFLAG_PERMANENT,
416 CTLTYPE_NODE, "opencrypto",
417 SYSCTL_DESCR("opencrypto related entries"),
418 NULL, 0, NULL, 0,
419 CTL_CREATE, CTL_EOL);
420
421 sysctl_createv(clog, 0, &ocnode, &retqnode,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_NODE, "crypto_ret_q",
424 SYSCTL_DESCR("crypto_ret_q related entries"),
425 NULL, 0, NULL, 0,
426 CTL_CREATE, CTL_EOL);
427 sysctl_createv(clog, 0, &retqnode, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
429 CTLTYPE_INT, "len",
430 SYSCTL_DESCR("Current queue length"),
431 sysctl_opencrypto_q_len, 0,
432 NULL, 0,
433 CTL_CREATE, CTL_EOL);
434 sysctl_createv(clog, 0, &retqnode, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
436 CTLTYPE_INT, "drops",
437 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
438 sysctl_opencrypto_q_drops, 0,
439 NULL, 0,
440 CTL_CREATE, CTL_EOL);
441 sysctl_createv(clog, 0, &retqnode, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 CTLTYPE_INT, "maxlen",
444 SYSCTL_DESCR("Maximum allowed queue length"),
445 sysctl_opencrypto_q_maxlen, 0,
446 NULL, 0,
447 CTL_CREATE, CTL_EOL);
448
449
450 sysctl_createv(clog, 0, &ocnode, &retkqnode,
451 CTLFLAG_PERMANENT,
452 CTLTYPE_NODE, "crypto_ret_kq",
453 SYSCTL_DESCR("crypto_ret_kq related entries"),
454 NULL, 0, NULL, 0,
455 CTL_CREATE, CTL_EOL);
456 sysctl_createv(clog, 0, &retkqnode, NULL,
457 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
458 CTLTYPE_INT, "len",
459 SYSCTL_DESCR("Current queue length"),
460 sysctl_opencrypto_kq_len, 0,
461 NULL, 0,
462 CTL_CREATE, CTL_EOL);
463 sysctl_createv(clog, 0, &retkqnode, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
465 CTLTYPE_INT, "drops",
466 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
467 sysctl_opencrypto_kq_drops, 0,
468 NULL, 0,
469 CTL_CREATE, CTL_EOL);
470 sysctl_createv(clog, 0, &retkqnode, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 CTLTYPE_INT, "maxlen",
473 SYSCTL_DESCR("Maximum allowed queue length"),
474 sysctl_opencrypto_kq_maxlen, 0,
475 NULL, 0,
476 CTL_CREATE, CTL_EOL);
477 }
478
479 /*
480 * Synchronization: read carefully, this is non-trivial.
481 *
482 * Crypto requests are submitted via crypto_dispatch. Typically
483 * these come in from network protocols at spl0 (output path) or
484 * spl[,soft]net (input path).
485 *
486 * Requests are typically passed on the driver directly, but they
487 * may also be queued for processing by a software interrupt thread,
488 * cryptointr, that runs at splsoftcrypto. This thread dispatches
489 * the requests to crypto drivers (h/w or s/w) who call crypto_done
490 * when a request is complete. Hardware crypto drivers are assumed
491 * to register their IRQ's as network devices so their interrupt handlers
492 * and subsequent "done callbacks" happen at spl[imp,net].
493 *
494 * Completed crypto ops are queued for a separate kernel thread that
495 * handles the callbacks at spl0. This decoupling insures the crypto
496 * driver interrupt service routine is not delayed while the callback
497 * takes place and that callbacks are delivered after a context switch
498 * (as opposed to a software interrupt that clients must block).
499 *
500 * This scheme is not intended for SMP machines.
501 */
502 static void cryptointr(void *); /* swi thread to dispatch ops */
503 static void cryptoret_softint(void *); /* kernel thread for callbacks*/
504 static int crypto_destroy(bool);
505 static int crypto_invoke(struct cryptop *crp, int hint);
506 static int crypto_kinvoke(struct cryptkop *krp, int hint);
507
508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
510 static struct cryptocap *crypto_checkdriver(u_int32_t);
511 static void crypto_driver_lock(struct cryptocap *);
512 static void crypto_driver_unlock(struct cryptocap *);
513 static void crypto_driver_clear(struct cryptocap *);
514
515 static int crypto_init_finalize(device_t);
516
517 static struct cryptostats cryptostats;
518 #ifdef CRYPTO_TIMING
519 static int crypto_timing = 0;
520 #endif
521
522 static struct sysctllog *sysctl_opencrypto_clog;
523
524 static int
525 crypto_crp_ret_qs_init(void)
526 {
527 int i, j;
528
529 crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
530 KM_NOSLEEP);
531 if (crypto_crp_ret_qs_list == NULL) {
532 printf("crypto_init: crypto_crp_qs_list\n");
533 return ENOMEM;
534 }
535
536 for (i = 0; i < ncpu; i++) {
537 struct crypto_crp_ret_qs *qs;
538 qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_NOSLEEP);
539 if (qs == NULL)
540 break;
541
542 mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
543 qs->crp_ret_q_exit_flag = false;
544
545 TAILQ_INIT(&qs->crp_ret_q);
546 qs->crp_ret_q_len = 0;
547 qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
548 qs->crp_ret_q_drops = 0;
549
550 TAILQ_INIT(&qs->crp_ret_kq);
551 qs->crp_ret_kq_len = 0;
552 qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
553 qs->crp_ret_kq_drops = 0;
554
555 crypto_crp_ret_qs_list[i] = qs;
556 }
557 if (i == ncpu)
558 return 0;
559
560 for (j = 0; j < i; j++) {
561 struct crypto_crp_ret_qs *qs = crypto_crp_ret_qs_list[j];
562
563 mutex_destroy(&qs->crp_ret_q_mtx);
564 kmem_free(qs, sizeof(struct crypto_crp_ret_qs));
565 }
566 kmem_free(crypto_crp_ret_qs_list, sizeof(struct crypto_crp_ret_qs *) * ncpu);
567
568 return ENOMEM;
569 }
570
571 static int
572 crypto_init0(void)
573 {
574 int error;
575
576 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
577 cryptop_cache = pool_cache_init(sizeof(struct cryptop),
578 coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
579 cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
580 coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
581 cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
582 coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
583
584 crypto_crp_qs_percpu = percpu_alloc(sizeof(struct crypto_crp_qs));
585 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_qs_init_pc, NULL);
586
587 error = crypto_crp_ret_qs_init();
588 if (error) {
589 printf("crypto_init: cannot malloc ret_q list\n");
590 return ENOMEM;
591 }
592
593 crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
594 sizeof(struct cryptocap), KM_NOSLEEP);
595 if (crypto_drivers == NULL) {
596 printf("crypto_init: cannot malloc driver table\n");
597 return ENOMEM;
598 }
599 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
600
601 crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
602 if (crypto_q_si == NULL) {
603 printf("crypto_init: cannot establish request queue handler\n");
604 return crypto_destroy(false);
605 }
606
607 /*
608 * Some encryption devices (such as mvcesa) are attached before
609 * ipi_sysinit(). That causes an assertion in ipi_register() as
610 * crypto_ret_si softint uses SOFTINT_RCPU.
611 */
612 if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
613 printf("crypto_init: cannot register crypto_init_finalize\n");
614 return crypto_destroy(false);
615 }
616
617 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
618
619 return 0;
620 }
621
622 static int
623 crypto_init_finalize(device_t self __unused)
624 {
625
626 crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
627 &cryptoret_softint, NULL);
628 KASSERT(crypto_ret_si != NULL);
629
630 return 0;
631 }
632
633 int
634 crypto_init(void)
635 {
636 static ONCE_DECL(crypto_init_once);
637
638 return RUN_ONCE(&crypto_init_once, crypto_init0);
639 }
640
641 static int
642 crypto_destroy(bool exit_kthread)
643 {
644 int i;
645
646 if (exit_kthread) {
647 struct cryptocap *cap = NULL;
648 uint64_t where;
649 bool is_busy = false;
650
651 /* if we have any in-progress requests, don't unload */
652 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
653 &is_busy);
654 if (is_busy)
655 return EBUSY;
656 /* FIXME:
657 * prohibit enqueue to crp_q and crp_kq after here.
658 */
659
660 mutex_enter(&crypto_drv_mtx);
661 for (i = 0; i < crypto_drivers_num; i++) {
662 cap = crypto_checkdriver(i);
663 if (cap == NULL)
664 continue;
665 if (cap->cc_sessions != 0) {
666 mutex_exit(&crypto_drv_mtx);
667 return EBUSY;
668 }
669 }
670 mutex_exit(&crypto_drv_mtx);
671 /* FIXME:
672 * prohibit touch crypto_drivers[] and each element after here.
673 */
674
675 /*
676 * Ensure cryptoret_softint() is never scheduled and then wait
677 * for last softint_execute().
678 */
679 for (i = 0; i < ncpu; i++) {
680 struct crypto_crp_ret_qs *qs;
681 struct cpu_info *ci = cpu_lookup(i);
682
683 qs = crypto_get_crp_ret_qs(ci);
684 qs->crp_ret_q_exit_flag = true;
685 crypto_put_crp_ret_qs(ci);
686 }
687 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
688 xc_wait(where);
689 }
690
691 if (sysctl_opencrypto_clog != NULL)
692 sysctl_teardown(&sysctl_opencrypto_clog);
693
694 if (crypto_ret_si != NULL)
695 softint_disestablish(crypto_ret_si);
696
697 if (crypto_q_si != NULL)
698 softint_disestablish(crypto_q_si);
699
700 mutex_enter(&crypto_drv_mtx);
701 if (crypto_drivers != NULL)
702 kmem_free(crypto_drivers,
703 crypto_drivers_num * sizeof(struct cryptocap));
704 mutex_exit(&crypto_drv_mtx);
705
706 percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
707
708 pool_cache_destroy(cryptop_cache);
709 pool_cache_destroy(cryptodesc_cache);
710 pool_cache_destroy(cryptkop_cache);
711
712 mutex_destroy(&crypto_drv_mtx);
713
714 return 0;
715 }
716
717 static bool
718 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
719 {
720 struct cryptoini *cr;
721
722 for (cr = cri; cr; cr = cr->cri_next)
723 if (cap->cc_alg[cr->cri_alg] == 0) {
724 DPRINTF("alg %d not supported\n", cr->cri_alg);
725 return false;
726 }
727
728 return true;
729 }
730
731 #define CRYPTO_ACCEPT_HARDWARE 0x1
732 #define CRYPTO_ACCEPT_SOFTWARE 0x2
733 /*
734 * The algorithm we use here is pretty stupid; just use the
735 * first driver that supports all the algorithms we need.
736 * If there are multiple drivers we choose the driver with
737 * the fewest active sessions. We prefer hardware-backed
738 * drivers to software ones.
739 *
740 * XXX We need more smarts here (in real life too, but that's
741 * XXX another story altogether).
742 */
743 static struct cryptocap *
744 crypto_select_driver_lock(struct cryptoini *cri, int hard)
745 {
746 u_int32_t hid;
747 int accept;
748 struct cryptocap *cap, *best;
749
750 best = NULL;
751 /*
752 * hard == 0 can use both hardware and software drivers.
753 * We use hardware drivers prior to software drivers, so search
754 * hardware drivers at first time.
755 */
756 if (hard >= 0)
757 accept = CRYPTO_ACCEPT_HARDWARE;
758 else
759 accept = CRYPTO_ACCEPT_SOFTWARE;
760 again:
761 for (hid = 0; hid < crypto_drivers_num; hid++) {
762 cap = crypto_checkdriver(hid);
763 if (cap == NULL)
764 continue;
765
766 crypto_driver_lock(cap);
767
768 /*
769 * If it's not initialized or has remaining sessions
770 * referencing it, skip.
771 */
772 if (cap->cc_newsession == NULL ||
773 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
774 crypto_driver_unlock(cap);
775 continue;
776 }
777
778 /* Hardware required -- ignore software drivers. */
779 if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
780 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
781 crypto_driver_unlock(cap);
782 continue;
783 }
784 /* Software required -- ignore hardware drivers. */
785 if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
786 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
787 crypto_driver_unlock(cap);
788 continue;
789 }
790
791 /* See if all the algorithms are supported. */
792 if (crypto_driver_suitable(cap, cri)) {
793 if (best == NULL) {
794 /* keep holding crypto_driver_lock(cap) */
795 best = cap;
796 continue;
797 } else if (cap->cc_sessions < best->cc_sessions) {
798 crypto_driver_unlock(best);
799 /* keep holding crypto_driver_lock(cap) */
800 best = cap;
801 continue;
802 }
803 }
804
805 crypto_driver_unlock(cap);
806 }
807 if (best == NULL && hard == 0
808 && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
809 accept = CRYPTO_ACCEPT_SOFTWARE;
810 goto again;
811 }
812
813 return best;
814 }
815
816 /*
817 * Create a new session.
818 */
819 int
820 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
821 {
822 struct cryptocap *cap;
823 int err = EINVAL;
824
825 mutex_enter(&crypto_drv_mtx);
826
827 cap = crypto_select_driver_lock(cri, hard);
828 if (cap != NULL) {
829 u_int32_t hid, lid;
830
831 hid = cap - crypto_drivers;
832 /*
833 * Can't do everything in one session.
834 *
835 * XXX Fix this. We need to inject a "virtual" session layer right
836 * XXX about here.
837 */
838
839 /* Call the driver initialization routine. */
840 lid = hid; /* Pass the driver ID. */
841 crypto_driver_unlock(cap);
842 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
843 crypto_driver_lock(cap);
844 if (err == 0) {
845 (*sid) = hid;
846 (*sid) <<= 32;
847 (*sid) |= (lid & 0xffffffff);
848 (cap->cc_sessions)++;
849 } else {
850 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
851 hid, err);
852 }
853 crypto_driver_unlock(cap);
854 }
855
856 mutex_exit(&crypto_drv_mtx);
857
858 return err;
859 }
860
861 /*
862 * Delete an existing session (or a reserved session on an unregistered
863 * driver).
864 */
865 int
866 crypto_freesession(u_int64_t sid)
867 {
868 struct cryptocap *cap;
869 int err = 0;
870
871 /* Determine two IDs. */
872 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
873 if (cap == NULL)
874 return ENOENT;
875
876 if (cap->cc_sessions)
877 (cap->cc_sessions)--;
878
879 /* Call the driver cleanup routine, if available. */
880 if (cap->cc_freesession)
881 err = cap->cc_freesession(cap->cc_arg, sid);
882 else
883 err = 0;
884
885 /*
886 * If this was the last session of a driver marked as invalid,
887 * make the entry available for reuse.
888 */
889 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
890 crypto_driver_clear(cap);
891
892 crypto_driver_unlock(cap);
893 return err;
894 }
895
896 static bool
897 crypto_checkdriver_initialized(const struct cryptocap *cap)
898 {
899
900 return cap->cc_process != NULL ||
901 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
902 cap->cc_sessions != 0;
903 }
904
905 /*
906 * Return an unused driver id. Used by drivers prior to registering
907 * support for the algorithms they handle.
908 */
909 int32_t
910 crypto_get_driverid(u_int32_t flags)
911 {
912 struct cryptocap *newdrv;
913 struct cryptocap *cap = NULL;
914 int i;
915
916 (void)crypto_init(); /* XXX oh, this is foul! */
917
918 mutex_enter(&crypto_drv_mtx);
919 for (i = 0; i < crypto_drivers_num; i++) {
920 cap = crypto_checkdriver_uninit(i);
921 if (cap == NULL || crypto_checkdriver_initialized(cap))
922 continue;
923 break;
924 }
925
926 /* Out of entries, allocate some more. */
927 if (cap == NULL) {
928 /* Be careful about wrap-around. */
929 if (2 * crypto_drivers_num <= crypto_drivers_num) {
930 mutex_exit(&crypto_drv_mtx);
931 printf("crypto: driver count wraparound!\n");
932 return -1;
933 }
934
935 newdrv = kmem_zalloc(2 * crypto_drivers_num *
936 sizeof(struct cryptocap), KM_NOSLEEP);
937 if (newdrv == NULL) {
938 mutex_exit(&crypto_drv_mtx);
939 printf("crypto: no space to expand driver table!\n");
940 return -1;
941 }
942
943 memcpy(newdrv, crypto_drivers,
944 crypto_drivers_num * sizeof(struct cryptocap));
945 kmem_free(crypto_drivers,
946 crypto_drivers_num * sizeof(struct cryptocap));
947
948 crypto_drivers_num *= 2;
949 crypto_drivers = newdrv;
950
951 cap = crypto_checkdriver_uninit(i);
952 KASSERT(cap != NULL);
953 }
954
955 /* NB: state is zero'd on free */
956 cap->cc_sessions = 1; /* Mark */
957 cap->cc_flags = flags;
958 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
959
960 if (bootverbose)
961 printf("crypto: assign driver %u, flags %u\n", i, flags);
962
963 mutex_exit(&crypto_drv_mtx);
964
965 return i;
966 }
967
968 static struct cryptocap *
969 crypto_checkdriver_lock(u_int32_t hid)
970 {
971 struct cryptocap *cap;
972
973 KASSERT(crypto_drivers != NULL);
974
975 if (hid >= crypto_drivers_num)
976 return NULL;
977
978 cap = &crypto_drivers[hid];
979 mutex_enter(&cap->cc_lock);
980 return cap;
981 }
982
983 /*
984 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
985 * situations
986 * - crypto_drivers[] may not be allocated
987 * - crypto_drivers[hid] may not be initialized
988 */
989 static struct cryptocap *
990 crypto_checkdriver_uninit(u_int32_t hid)
991 {
992
993 KASSERT(mutex_owned(&crypto_drv_mtx));
994
995 if (crypto_drivers == NULL)
996 return NULL;
997
998 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
999 }
1000
1001 /*
1002 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
1003 * situations
1004 * - crypto_drivers[] may not be allocated
1005 * - crypto_drivers[hid] may not be initialized
1006 */
1007 static struct cryptocap *
1008 crypto_checkdriver(u_int32_t hid)
1009 {
1010
1011 KASSERT(mutex_owned(&crypto_drv_mtx));
1012
1013 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
1014 return NULL;
1015
1016 struct cryptocap *cap = &crypto_drivers[hid];
1017 return crypto_checkdriver_initialized(cap) ? cap : NULL;
1018 }
1019
1020 static inline void
1021 crypto_driver_lock(struct cryptocap *cap)
1022 {
1023
1024 KASSERT(cap != NULL);
1025
1026 mutex_enter(&cap->cc_lock);
1027 }
1028
1029 static inline void
1030 crypto_driver_unlock(struct cryptocap *cap)
1031 {
1032
1033 KASSERT(cap != NULL);
1034
1035 mutex_exit(&cap->cc_lock);
1036 }
1037
1038 static void
1039 crypto_driver_clear(struct cryptocap *cap)
1040 {
1041
1042 if (cap == NULL)
1043 return;
1044
1045 KASSERT(mutex_owned(&cap->cc_lock));
1046
1047 cap->cc_sessions = 0;
1048 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1049 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1050 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1051 cap->cc_flags = 0;
1052 cap->cc_qblocked = 0;
1053 cap->cc_kqblocked = 0;
1054
1055 cap->cc_arg = NULL;
1056 cap->cc_newsession = NULL;
1057 cap->cc_process = NULL;
1058 cap->cc_freesession = NULL;
1059 cap->cc_kprocess = NULL;
1060 }
1061
1062 /*
1063 * Register support for a key-related algorithm. This routine
1064 * is called once for each algorithm supported a driver.
1065 */
1066 int
1067 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1068 int (*kprocess)(void *, struct cryptkop *, int),
1069 void *karg)
1070 {
1071 struct cryptocap *cap;
1072 int err;
1073
1074 mutex_enter(&crypto_drv_mtx);
1075
1076 cap = crypto_checkdriver_lock(driverid);
1077 if (cap != NULL &&
1078 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1079 /*
1080 * XXX Do some performance testing to determine placing.
1081 * XXX We probably need an auxiliary data structure that
1082 * XXX describes relative performances.
1083 */
1084
1085 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1086 if (bootverbose) {
1087 printf("crypto: driver %u registers key alg %u "
1088 " flags %u\n",
1089 driverid,
1090 kalg,
1091 flags
1092 );
1093 }
1094
1095 if (cap->cc_kprocess == NULL) {
1096 cap->cc_karg = karg;
1097 cap->cc_kprocess = kprocess;
1098 }
1099 err = 0;
1100 } else
1101 err = EINVAL;
1102
1103 mutex_exit(&crypto_drv_mtx);
1104 return err;
1105 }
1106
1107 /*
1108 * Register support for a non-key-related algorithm. This routine
1109 * is called once for each such algorithm supported by a driver.
1110 */
1111 int
1112 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1113 u_int32_t flags,
1114 int (*newses)(void *, u_int32_t*, struct cryptoini*),
1115 int (*freeses)(void *, u_int64_t),
1116 int (*process)(void *, struct cryptop *, int),
1117 void *arg)
1118 {
1119 struct cryptocap *cap;
1120 int err;
1121
1122 cap = crypto_checkdriver_lock(driverid);
1123 if (cap == NULL)
1124 return EINVAL;
1125
1126 /* NB: algorithms are in the range [1..max] */
1127 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1128 /*
1129 * XXX Do some performance testing to determine placing.
1130 * XXX We probably need an auxiliary data structure that
1131 * XXX describes relative performances.
1132 */
1133
1134 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1135 cap->cc_max_op_len[alg] = maxoplen;
1136 if (bootverbose) {
1137 printf("crypto: driver %u registers alg %u "
1138 "flags %u maxoplen %u\n",
1139 driverid,
1140 alg,
1141 flags,
1142 maxoplen
1143 );
1144 }
1145
1146 if (cap->cc_process == NULL) {
1147 cap->cc_arg = arg;
1148 cap->cc_newsession = newses;
1149 cap->cc_process = process;
1150 cap->cc_freesession = freeses;
1151 cap->cc_sessions = 0; /* Unmark */
1152 }
1153 err = 0;
1154 } else
1155 err = EINVAL;
1156
1157 crypto_driver_unlock(cap);
1158
1159 return err;
1160 }
1161
1162 static int
1163 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1164 {
1165 int i;
1166 u_int32_t ses;
1167 bool lastalg = true;
1168
1169 KASSERT(cap != NULL);
1170 KASSERT(mutex_owned(&cap->cc_lock));
1171
1172 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1173 return EINVAL;
1174
1175 if (!all && cap->cc_alg[alg] == 0)
1176 return EINVAL;
1177
1178 cap->cc_alg[alg] = 0;
1179 cap->cc_max_op_len[alg] = 0;
1180
1181 if (all) {
1182 if (alg != CRYPTO_ALGORITHM_MAX)
1183 lastalg = false;
1184 } else {
1185 /* Was this the last algorithm ? */
1186 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1187 if (cap->cc_alg[i] != 0) {
1188 lastalg = false;
1189 break;
1190 }
1191 }
1192 if (lastalg) {
1193 ses = cap->cc_sessions;
1194 crypto_driver_clear(cap);
1195 if (ses != 0) {
1196 /*
1197 * If there are pending sessions, just mark as invalid.
1198 */
1199 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1200 cap->cc_sessions = ses;
1201 }
1202 }
1203
1204 return 0;
1205 }
1206
1207 /*
1208 * Unregister a crypto driver. If there are pending sessions using it,
1209 * leave enough information around so that subsequent calls using those
1210 * sessions will correctly detect the driver has been unregistered and
1211 * reroute requests.
1212 */
1213 int
1214 crypto_unregister(u_int32_t driverid, int alg)
1215 {
1216 int err;
1217 struct cryptocap *cap;
1218
1219 cap = crypto_checkdriver_lock(driverid);
1220 err = crypto_unregister_locked(cap, alg, false);
1221 crypto_driver_unlock(cap);
1222
1223 return err;
1224 }
1225
1226 /*
1227 * Unregister all algorithms associated with a crypto driver.
1228 * If there are pending sessions using it, leave enough information
1229 * around so that subsequent calls using those sessions will
1230 * correctly detect the driver has been unregistered and reroute
1231 * requests.
1232 */
1233 int
1234 crypto_unregister_all(u_int32_t driverid)
1235 {
1236 int err, i;
1237 struct cryptocap *cap;
1238
1239 cap = crypto_checkdriver_lock(driverid);
1240 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1241 err = crypto_unregister_locked(cap, i, true);
1242 if (err)
1243 break;
1244 }
1245 crypto_driver_unlock(cap);
1246
1247 return err;
1248 }
1249
1250 /*
1251 * Clear blockage on a driver. The what parameter indicates whether
1252 * the driver is now ready for cryptop's and/or cryptokop's.
1253 */
1254 int
1255 crypto_unblock(u_int32_t driverid, int what)
1256 {
1257 struct cryptocap *cap;
1258 int needwakeup = 0;
1259
1260 cap = crypto_checkdriver_lock(driverid);
1261 if (cap == NULL)
1262 return EINVAL;
1263
1264 if (what & CRYPTO_SYMQ) {
1265 needwakeup |= cap->cc_qblocked;
1266 cap->cc_qblocked = 0;
1267 }
1268 if (what & CRYPTO_ASYMQ) {
1269 needwakeup |= cap->cc_kqblocked;
1270 cap->cc_kqblocked = 0;
1271 }
1272 crypto_driver_unlock(cap);
1273 if (needwakeup) {
1274 kpreempt_disable();
1275 softint_schedule(crypto_q_si);
1276 kpreempt_enable();
1277 }
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * Dispatch a crypto request to a driver or queue
1284 * it, to be processed by the kernel thread.
1285 */
1286 int
1287 crypto_dispatch(struct cryptop *crp)
1288 {
1289 int result, s;
1290 struct cryptocap *cap;
1291 struct crypto_crp_qs *crp_qs;
1292 struct crypto_crp_q *crp_q;
1293
1294 KASSERT(crp != NULL);
1295
1296 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1297
1298 cryptostats.cs_ops++;
1299
1300 #ifdef CRYPTO_TIMING
1301 if (crypto_timing)
1302 nanouptime(&crp->crp_tstamp);
1303 #endif
1304
1305 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1306 int wasempty;
1307 /*
1308 * Caller marked the request as ``ok to delay'';
1309 * queue it for the swi thread. This is desirable
1310 * when the operation is low priority and/or suitable
1311 * for batching.
1312 *
1313 * don't care list order in batch job.
1314 */
1315 crp_qs = crypto_get_crp_qs(&s);
1316 crp_q = crp_qs->crp_q;
1317 wasempty = TAILQ_EMPTY(crp_q);
1318 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1319 crypto_put_crp_qs(&s);
1320 crp_q = NULL;
1321 if (wasempty) {
1322 kpreempt_disable();
1323 softint_schedule(crypto_q_si);
1324 kpreempt_enable();
1325 }
1326
1327 return 0;
1328 }
1329
1330 crp_qs = crypto_get_crp_qs(&s);
1331 crp_q = crp_qs->crp_q;
1332 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1333 /*
1334 * TODO:
1335 * If we can ensure the driver has been valid until the driver is
1336 * done crypto_unregister(), this migrate operation is not required.
1337 */
1338 if (cap == NULL) {
1339 /*
1340 * The driver must be detached, so this request will migrate
1341 * to other drivers in cryptointr() later.
1342 */
1343 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1344 result = 0;
1345 goto out;
1346 }
1347
1348 if (cap->cc_qblocked != 0) {
1349 crypto_driver_unlock(cap);
1350 /*
1351 * The driver is blocked, just queue the op until
1352 * it unblocks and the swi thread gets kicked.
1353 */
1354 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1355 result = 0;
1356 goto out;
1357 }
1358
1359 /*
1360 * Caller marked the request to be processed
1361 * immediately; dispatch it directly to the
1362 * driver unless the driver is currently blocked.
1363 */
1364 crypto_driver_unlock(cap);
1365 result = crypto_invoke(crp, 0);
1366 if (result == ERESTART) {
1367 /*
1368 * The driver ran out of resources, mark the
1369 * driver ``blocked'' for cryptop's and put
1370 * the op on the queue.
1371 */
1372 crypto_driver_lock(cap);
1373 cap->cc_qblocked = 1;
1374 crypto_driver_unlock(cap);
1375 TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1376 cryptostats.cs_blocks++;
1377
1378 /*
1379 * The crp is enqueued to crp_q, that is,
1380 * no error occurs. So, this function should
1381 * not return error.
1382 */
1383 result = 0;
1384 }
1385
1386 out:
1387 crypto_put_crp_qs(&s);
1388 return result;
1389 }
1390
1391 /*
1392 * Add an asymetric crypto request to a queue,
1393 * to be processed by the kernel thread.
1394 */
1395 int
1396 crypto_kdispatch(struct cryptkop *krp)
1397 {
1398 int result, s;
1399 struct cryptocap *cap;
1400 struct crypto_crp_qs *crp_qs;
1401 struct crypto_crp_kq *crp_kq;
1402
1403 KASSERT(krp != NULL);
1404
1405 cryptostats.cs_kops++;
1406
1407 crp_qs = crypto_get_crp_qs(&s);
1408 crp_kq = crp_qs->crp_kq;
1409 cap = crypto_checkdriver_lock(krp->krp_hid);
1410 /*
1411 * TODO:
1412 * If we can ensure the driver has been valid until the driver is
1413 * done crypto_unregister(), this migrate operation is not required.
1414 */
1415 if (cap == NULL) {
1416 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1417 result = 0;
1418 goto out;
1419 }
1420
1421 if (cap->cc_kqblocked != 0) {
1422 crypto_driver_unlock(cap);
1423 /*
1424 * The driver is blocked, just queue the op until
1425 * it unblocks and the swi thread gets kicked.
1426 */
1427 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1428 result = 0;
1429 goto out;
1430 }
1431
1432 crypto_driver_unlock(cap);
1433 result = crypto_kinvoke(krp, 0);
1434 if (result == ERESTART) {
1435 /*
1436 * The driver ran out of resources, mark the
1437 * driver ``blocked'' for cryptop's and put
1438 * the op on the queue.
1439 */
1440 crypto_driver_lock(cap);
1441 cap->cc_kqblocked = 1;
1442 crypto_driver_unlock(cap);
1443 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1444 cryptostats.cs_kblocks++;
1445
1446 /*
1447 * The krp is enqueued to crp_kq, that is,
1448 * no error occurs. So, this function should
1449 * not return error.
1450 */
1451 result = 0;
1452 }
1453
1454 out:
1455 crypto_put_crp_qs(&s);
1456 return result;
1457 }
1458
1459 /*
1460 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1461 */
1462 static int
1463 crypto_kinvoke(struct cryptkop *krp, int hint)
1464 {
1465 struct cryptocap *cap = NULL;
1466 u_int32_t hid;
1467 int error;
1468
1469 KASSERT(krp != NULL);
1470
1471 /* Sanity checks. */
1472 if (krp->krp_callback == NULL) {
1473 cv_destroy(&krp->krp_cv);
1474 crypto_kfreereq(krp);
1475 return EINVAL;
1476 }
1477
1478 mutex_enter(&crypto_drv_mtx);
1479 for (hid = 0; hid < crypto_drivers_num; hid++) {
1480 cap = crypto_checkdriver(hid);
1481 if (cap == NULL)
1482 continue;
1483 crypto_driver_lock(cap);
1484 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1485 crypto_devallowsoft == 0) {
1486 crypto_driver_unlock(cap);
1487 continue;
1488 }
1489 if (cap->cc_kprocess == NULL) {
1490 crypto_driver_unlock(cap);
1491 continue;
1492 }
1493 if ((cap->cc_kalg[krp->krp_op] &
1494 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1495 crypto_driver_unlock(cap);
1496 continue;
1497 }
1498 break;
1499 }
1500 mutex_exit(&crypto_drv_mtx);
1501 if (cap != NULL) {
1502 int (*process)(void *, struct cryptkop *, int);
1503 void *arg;
1504
1505 process = cap->cc_kprocess;
1506 arg = cap->cc_karg;
1507 krp->krp_hid = hid;
1508 krp->reqcpu = curcpu();
1509 crypto_driver_unlock(cap);
1510 error = (*process)(arg, krp, hint);
1511 } else {
1512 error = ENODEV;
1513 }
1514
1515 if (error) {
1516 krp->krp_status = error;
1517 crypto_kdone(krp);
1518 }
1519 return 0;
1520 }
1521
1522 #ifdef CRYPTO_TIMING
1523 static void
1524 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1525 {
1526 struct timespec now, t;
1527
1528 nanouptime(&now);
1529 t.tv_sec = now.tv_sec - tv->tv_sec;
1530 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1531 if (t.tv_nsec < 0) {
1532 t.tv_sec--;
1533 t.tv_nsec += 1000000000;
1534 }
1535 timespecadd(&ts->acc, &t, &t);
1536 if (timespeccmp(&t, &ts->min, <))
1537 ts->min = t;
1538 if (timespeccmp(&t, &ts->max, >))
1539 ts->max = t;
1540 ts->count++;
1541
1542 *tv = now;
1543 }
1544 #endif
1545
1546 /*
1547 * Dispatch a crypto request to the appropriate crypto devices.
1548 */
1549 static int
1550 crypto_invoke(struct cryptop *crp, int hint)
1551 {
1552 struct cryptocap *cap;
1553
1554 KASSERT(crp != NULL);
1555
1556 #ifdef CRYPTO_TIMING
1557 if (crypto_timing)
1558 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1559 #endif
1560 /* Sanity checks. */
1561 if (crp->crp_callback == NULL) {
1562 return EINVAL;
1563 }
1564 if (crp->crp_desc == NULL) {
1565 crp->crp_etype = EINVAL;
1566 crypto_done(crp);
1567 return 0;
1568 }
1569
1570 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1571 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1572 int (*process)(void *, struct cryptop *, int);
1573 void *arg;
1574
1575 process = cap->cc_process;
1576 arg = cap->cc_arg;
1577 crp->reqcpu = curcpu();
1578
1579 /*
1580 * Invoke the driver to process the request.
1581 */
1582 DPRINTF("calling process for %p\n", crp);
1583 crypto_driver_unlock(cap);
1584 return (*process)(arg, crp, hint);
1585 } else {
1586 struct cryptodesc *crd;
1587 u_int64_t nid = 0;
1588
1589 if (cap != NULL)
1590 crypto_driver_unlock(cap);
1591
1592 /*
1593 * Driver has unregistered; migrate the session and return
1594 * an error to the caller so they'll resubmit the op.
1595 */
1596 crypto_freesession(crp->crp_sid);
1597
1598 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1599 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1600
1601 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1602 crp->crp_sid = nid;
1603
1604 crp->crp_etype = EAGAIN;
1605
1606 crypto_done(crp);
1607 return 0;
1608 }
1609 }
1610
1611 /*
1612 * Release a set of crypto descriptors.
1613 */
1614 void
1615 crypto_freereq(struct cryptop *crp)
1616 {
1617 struct cryptodesc *crd;
1618
1619 if (crp == NULL)
1620 return;
1621 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1622
1623 /* sanity check */
1624 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1625 panic("crypto_freereq() freeing crp on RETQ\n");
1626 }
1627
1628 while ((crd = crp->crp_desc) != NULL) {
1629 crp->crp_desc = crd->crd_next;
1630 pool_cache_put(cryptodesc_cache, crd);
1631 }
1632 pool_cache_put(cryptop_cache, crp);
1633 }
1634
1635 /*
1636 * Acquire a set of crypto descriptors.
1637 */
1638 struct cryptop *
1639 crypto_getreq(int num)
1640 {
1641 struct cryptodesc *crd;
1642 struct cryptop *crp;
1643 struct crypto_crp_ret_qs *qs;
1644
1645 /*
1646 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1647 * by error callback.
1648 */
1649 qs = crypto_get_crp_ret_qs(curcpu());
1650 if (qs->crp_ret_q_maxlen > 0
1651 && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1652 qs->crp_ret_q_drops++;
1653 crypto_put_crp_ret_qs(curcpu());
1654 return NULL;
1655 }
1656 crypto_put_crp_ret_qs(curcpu());
1657
1658 crp = pool_cache_get(cryptop_cache, 0);
1659 if (crp == NULL) {
1660 return NULL;
1661 }
1662 memset(crp, 0, sizeof(struct cryptop));
1663
1664 while (num--) {
1665 crd = pool_cache_get(cryptodesc_cache, 0);
1666 if (crd == NULL) {
1667 crypto_freereq(crp);
1668 return NULL;
1669 }
1670
1671 memset(crd, 0, sizeof(struct cryptodesc));
1672 crd->crd_next = crp->crp_desc;
1673 crp->crp_desc = crd;
1674 }
1675
1676 return crp;
1677 }
1678
1679 /*
1680 * Release a set of asymmetric crypto descriptors.
1681 * Currently, support one descriptor only.
1682 */
1683 void
1684 crypto_kfreereq(struct cryptkop *krp)
1685 {
1686
1687 if (krp == NULL)
1688 return;
1689
1690 DPRINTF("krp %p\n", krp);
1691
1692 /* sanity check */
1693 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1694 panic("crypto_kfreereq() freeing krp on RETQ\n");
1695 }
1696
1697 pool_cache_put(cryptkop_cache, krp);
1698 }
1699
1700 /*
1701 * Acquire a set of asymmetric crypto descriptors.
1702 * Currently, support one descriptor only.
1703 */
1704 struct cryptkop *
1705 crypto_kgetreq(int num __unused, int prflags)
1706 {
1707 struct cryptkop *krp;
1708 struct crypto_crp_ret_qs *qs;
1709
1710 /*
1711 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1712 * overflow by error callback.
1713 */
1714 qs = crypto_get_crp_ret_qs(curcpu());
1715 if (qs->crp_ret_kq_maxlen > 0
1716 && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1717 qs->crp_ret_kq_drops++;
1718 crypto_put_crp_ret_qs(curcpu());
1719 return NULL;
1720 }
1721 crypto_put_crp_ret_qs(curcpu());
1722
1723 krp = pool_cache_get(cryptkop_cache, prflags);
1724 if (krp == NULL) {
1725 return NULL;
1726 }
1727 memset(krp, 0, sizeof(struct cryptkop));
1728
1729 return krp;
1730 }
1731
1732 /*
1733 * Invoke the callback on behalf of the driver.
1734 */
1735 void
1736 crypto_done(struct cryptop *crp)
1737 {
1738
1739 KASSERT(crp != NULL);
1740
1741 if (crp->crp_etype != 0)
1742 cryptostats.cs_errs++;
1743 #ifdef CRYPTO_TIMING
1744 if (crypto_timing)
1745 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1746 #endif
1747 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1748
1749 /*
1750 * Normal case; queue the callback for the thread.
1751 *
1752 * The return queue is manipulated by the swi thread
1753 * and, potentially, by crypto device drivers calling
1754 * back to mark operations completed. Thus we need
1755 * to mask both while manipulating the return queue.
1756 */
1757 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1758 /*
1759 * Do the callback directly. This is ok when the
1760 * callback routine does very little (e.g. the
1761 * /dev/crypto callback method just does a wakeup).
1762 */
1763 crp->crp_flags |= CRYPTO_F_DONE;
1764
1765 #ifdef CRYPTO_TIMING
1766 if (crypto_timing) {
1767 /*
1768 * NB: We must copy the timestamp before
1769 * doing the callback as the cryptop is
1770 * likely to be reclaimed.
1771 */
1772 struct timespec t = crp->crp_tstamp;
1773 crypto_tstat(&cryptostats.cs_cb, &t);
1774 crp->crp_callback(crp);
1775 crypto_tstat(&cryptostats.cs_finis, &t);
1776 } else
1777 #endif
1778 crp->crp_callback(crp);
1779 } else {
1780 crp->crp_flags |= CRYPTO_F_DONE;
1781 #if 0
1782 if (crp->crp_flags & CRYPTO_F_USER) {
1783 /*
1784 * TODO:
1785 * If crp->crp_flags & CRYPTO_F_USER and the used
1786 * encryption driver does all the processing in
1787 * the same context, we can skip enqueueing crp_ret_q
1788 * and softint_schedule(crypto_ret_si).
1789 */
1790 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1791 CRYPTO_SESID2LID(crp->crp_sid), crp);
1792 } else
1793 #endif
1794 {
1795 int wasempty;
1796 struct crypto_crp_ret_qs *qs;
1797 struct crypto_crp_ret_q *crp_ret_q;;
1798
1799 qs = crypto_get_crp_ret_qs(crp->reqcpu);
1800 crp_ret_q = &qs->crp_ret_q;
1801 wasempty = TAILQ_EMPTY(crp_ret_q);
1802 DPRINTF("lid[%u]: queueing %p\n",
1803 CRYPTO_SESID2LID(crp->crp_sid), crp);
1804 crp->crp_flags |= CRYPTO_F_ONRETQ;
1805 TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1806 qs->crp_ret_q_len++;
1807 if (wasempty && !qs->crp_ret_q_exit_flag) {
1808 DPRINTF("lid[%u]: waking cryptoret,"
1809 "crp %p hit empty queue\n.",
1810 CRYPTO_SESID2LID(crp->crp_sid), crp);
1811 softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1812 }
1813 crypto_put_crp_ret_qs(crp->reqcpu);
1814 }
1815 }
1816 }
1817
1818 /*
1819 * Invoke the callback on behalf of the driver.
1820 */
1821 void
1822 crypto_kdone(struct cryptkop *krp)
1823 {
1824
1825 KASSERT(krp != NULL);
1826
1827 if (krp->krp_status != 0)
1828 cryptostats.cs_kerrs++;
1829
1830 krp->krp_flags |= CRYPTO_F_DONE;
1831
1832 /*
1833 * The return queue is manipulated by the swi thread
1834 * and, potentially, by crypto device drivers calling
1835 * back to mark operations completed. Thus we need
1836 * to mask both while manipulating the return queue.
1837 */
1838 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1839 krp->krp_callback(krp);
1840 } else {
1841 int wasempty;
1842 struct crypto_crp_ret_qs *qs;
1843 struct crypto_crp_ret_kq *crp_ret_kq;;
1844
1845 qs = crypto_get_crp_ret_qs(krp->reqcpu);
1846 crp_ret_kq = &qs->crp_ret_kq;
1847
1848 wasempty = TAILQ_EMPTY(crp_ret_kq);
1849 krp->krp_flags |= CRYPTO_F_ONRETQ;
1850 TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1851 qs->crp_ret_kq_len++;
1852 if (wasempty && !qs->crp_ret_q_exit_flag)
1853 softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1854 crypto_put_crp_ret_qs(krp->reqcpu);
1855 }
1856 }
1857
1858 int
1859 crypto_getfeat(int *featp)
1860 {
1861
1862 if (crypto_userasymcrypto == 0) {
1863 *featp = 0;
1864 return 0;
1865 }
1866
1867 mutex_enter(&crypto_drv_mtx);
1868
1869 int feat = 0;
1870 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1871 struct cryptocap *cap;
1872 cap = crypto_checkdriver(hid);
1873 if (cap == NULL)
1874 continue;
1875
1876 crypto_driver_lock(cap);
1877
1878 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1879 crypto_devallowsoft == 0)
1880 goto unlock;
1881
1882 if (cap->cc_kprocess == NULL)
1883 goto unlock;
1884
1885 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1886 if ((cap->cc_kalg[kalg] &
1887 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1888 feat |= 1 << kalg;
1889
1890 unlock: crypto_driver_unlock(cap);
1891 }
1892
1893 mutex_exit(&crypto_drv_mtx);
1894 *featp = feat;
1895 return (0);
1896 }
1897
1898 /*
1899 * Software interrupt thread to dispatch crypto requests.
1900 */
1901 static void
1902 cryptointr(void *arg __unused)
1903 {
1904 struct cryptop *crp, *submit, *cnext;
1905 struct cryptkop *krp, *knext;
1906 struct cryptocap *cap;
1907 struct crypto_crp_qs *crp_qs;
1908 struct crypto_crp_q *crp_q;
1909 struct crypto_crp_kq *crp_kq;
1910 int result, hint, s;
1911
1912 cryptostats.cs_intrs++;
1913 crp_qs = crypto_get_crp_qs(&s);
1914 crp_q = crp_qs->crp_q;
1915 crp_kq = crp_qs->crp_kq;
1916 do {
1917 /*
1918 * Find the first element in the queue that can be
1919 * processed and look-ahead to see if multiple ops
1920 * are ready for the same driver.
1921 */
1922 submit = NULL;
1923 hint = 0;
1924 TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1925 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1926 cap = crypto_checkdriver_lock(hid);
1927 if (cap == NULL || cap->cc_process == NULL) {
1928 if (cap != NULL)
1929 crypto_driver_unlock(cap);
1930 /* Op needs to be migrated, process it. */
1931 submit = crp;
1932 break;
1933 }
1934
1935 /*
1936 * skip blocked crp regardless of CRYPTO_F_BATCH
1937 */
1938 if (cap->cc_qblocked != 0) {
1939 crypto_driver_unlock(cap);
1940 continue;
1941 }
1942 crypto_driver_unlock(cap);
1943
1944 /*
1945 * skip batch crp until the end of crp_q
1946 */
1947 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1948 if (submit == NULL) {
1949 submit = crp;
1950 } else {
1951 if (CRYPTO_SESID2HID(submit->crp_sid)
1952 == hid)
1953 hint = CRYPTO_HINT_MORE;
1954 }
1955
1956 continue;
1957 }
1958
1959 /*
1960 * found first crp which is neither blocked nor batch.
1961 */
1962 submit = crp;
1963 /*
1964 * batch crp can be processed much later, so clear hint.
1965 */
1966 hint = 0;
1967 break;
1968 }
1969 if (submit != NULL) {
1970 TAILQ_REMOVE(crp_q, submit, crp_next);
1971 result = crypto_invoke(submit, hint);
1972 /* we must take here as the TAILQ op or kinvoke
1973 may need this mutex below. sigh. */
1974 if (result == ERESTART) {
1975 /*
1976 * The driver ran out of resources, mark the
1977 * driver ``blocked'' for cryptop's and put
1978 * the request back in the queue. It would
1979 * best to put the request back where we got
1980 * it but that's hard so for now we put it
1981 * at the front. This should be ok; putting
1982 * it at the end does not work.
1983 */
1984 /* validate sid again */
1985 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1986 if (cap == NULL) {
1987 /* migrate again, sigh... */
1988 TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
1989 } else {
1990 cap->cc_qblocked = 1;
1991 crypto_driver_unlock(cap);
1992 TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
1993 cryptostats.cs_blocks++;
1994 }
1995 }
1996 }
1997
1998 /* As above, but for key ops */
1999 TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
2000 cap = crypto_checkdriver_lock(krp->krp_hid);
2001 if (cap == NULL || cap->cc_kprocess == NULL) {
2002 if (cap != NULL)
2003 crypto_driver_unlock(cap);
2004 /* Op needs to be migrated, process it. */
2005 break;
2006 }
2007 if (!cap->cc_kqblocked) {
2008 crypto_driver_unlock(cap);
2009 break;
2010 }
2011 crypto_driver_unlock(cap);
2012 }
2013 if (krp != NULL) {
2014 TAILQ_REMOVE(crp_kq, krp, krp_next);
2015 result = crypto_kinvoke(krp, 0);
2016 /* the next iteration will want the mutex. :-/ */
2017 if (result == ERESTART) {
2018 /*
2019 * The driver ran out of resources, mark the
2020 * driver ``blocked'' for cryptkop's and put
2021 * the request back in the queue. It would
2022 * best to put the request back where we got
2023 * it but that's hard so for now we put it
2024 * at the front. This should be ok; putting
2025 * it at the end does not work.
2026 */
2027 /* validate sid again */
2028 cap = crypto_checkdriver_lock(krp->krp_hid);
2029 if (cap == NULL) {
2030 /* migrate again, sigh... */
2031 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
2032 } else {
2033 cap->cc_kqblocked = 1;
2034 crypto_driver_unlock(cap);
2035 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
2036 cryptostats.cs_kblocks++;
2037 }
2038 }
2039 }
2040 } while (submit != NULL || krp != NULL);
2041 crypto_put_crp_qs(&s);
2042 }
2043
2044 /*
2045 * softint handler to do callbacks.
2046 */
2047 static void
2048 cryptoret_softint(void *arg __unused)
2049 {
2050 struct crypto_crp_ret_qs *qs;
2051 struct crypto_crp_ret_q *crp_ret_q;;
2052 struct crypto_crp_ret_kq *crp_ret_kq;;
2053
2054 qs = crypto_get_crp_ret_qs(curcpu());
2055 crp_ret_q = &qs->crp_ret_q;
2056 crp_ret_kq = &qs->crp_ret_kq;
2057 for (;;) {
2058 struct cryptop *crp;
2059 struct cryptkop *krp;
2060
2061 crp = TAILQ_FIRST(crp_ret_q);
2062 if (crp != NULL) {
2063 TAILQ_REMOVE(crp_ret_q, crp, crp_next);
2064 qs->crp_ret_q_len--;
2065 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
2066 }
2067 krp = TAILQ_FIRST(crp_ret_kq);
2068 if (krp != NULL) {
2069 TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
2070 qs->crp_ret_q_len--;
2071 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
2072 }
2073
2074 /* drop before calling any callbacks. */
2075 if (crp == NULL && krp == NULL)
2076 break;
2077
2078 mutex_spin_exit(&qs->crp_ret_q_mtx);
2079 if (crp != NULL) {
2080 #ifdef CRYPTO_TIMING
2081 if (crypto_timing) {
2082 /*
2083 * NB: We must copy the timestamp before
2084 * doing the callback as the cryptop is
2085 * likely to be reclaimed.
2086 */
2087 struct timespec t = crp->crp_tstamp;
2088 crypto_tstat(&cryptostats.cs_cb, &t);
2089 crp->crp_callback(crp);
2090 crypto_tstat(&cryptostats.cs_finis, &t);
2091 } else
2092 #endif
2093 {
2094 crp->crp_callback(crp);
2095 }
2096 }
2097 if (krp != NULL)
2098 krp->krp_callback(krp);
2099
2100 mutex_spin_enter(&qs->crp_ret_q_mtx);
2101 }
2102 crypto_put_crp_ret_qs(curcpu());
2103 }
2104
2105 /* NetBSD module interface */
2106
2107 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2108
2109 static int
2110 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2111 {
2112 int error = 0;
2113
2114 switch (cmd) {
2115 case MODULE_CMD_INIT:
2116 #ifdef _MODULE
2117 error = crypto_init();
2118 #endif
2119 break;
2120 case MODULE_CMD_FINI:
2121 #ifdef _MODULE
2122 error = crypto_destroy(true);
2123 #endif
2124 break;
2125 default:
2126 error = ENOTTY;
2127 }
2128 return error;
2129 }
2130