crypto.c revision 1.106.2.1 1 /* $NetBSD: crypto.c,v 1.106.2.1 2020/04/13 08:05:17 martin Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.106.2.1 2020/04/13 08:05:17 martin Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81
82 /*
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
86 */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 kmutex_t mtx;
90 int num;
91 struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx (crypto_drv.mtx)
94 #define crypto_drivers_num (crypto_drv.num)
95 #define crypto_drivers (crypto_drv.list)
96
97 static void *crypto_q_si;
98 static void *crypto_ret_si;
99
100 /*
101 * There are two queues for crypto requests; one for symmetric (e.g.
102 * cipher) operations and one for asymmetric (e.g. MOD) operations.
103 * See below for how synchronization is handled.
104 */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 struct crypto_crp_q *crp_q;
109 struct crypto_crp_kq *crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112
113 static inline struct crypto_crp_qs *
114 crypto_get_crp_qs(int *s)
115 {
116
117 KASSERT(s != NULL);
118
119 *s = splsoftnet();
120 return percpu_getref(crypto_crp_qs_percpu);
121 }
122
123 static inline void
124 crypto_put_crp_qs(int *s)
125 {
126
127 KASSERT(s != NULL);
128
129 percpu_putref(crypto_crp_qs_percpu);
130 splx(*s);
131 }
132
133 static void
134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 struct crypto_crp_qs *qs_pc = p;
137 bool *isempty = arg;
138
139 if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
140 *isempty = true;
141 }
142
143 static void
144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 struct crypto_crp_qs *qs = p;
147
148 qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
149 qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
150
151 TAILQ_INIT(qs->crp_q);
152 TAILQ_INIT(qs->crp_kq);
153 }
154
155 /*
156 * There are two queues for processing completed crypto requests; one
157 * for the symmetric and one for the asymmetric ops. We only need one
158 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
159 * for how synchronization is handled.
160 */
161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
163 struct crypto_crp_ret_qs {
164 kmutex_t crp_ret_q_mtx;
165 bool crp_ret_q_exit_flag;
166
167 struct crypto_crp_ret_q crp_ret_q;
168 int crp_ret_q_len;
169 int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
170 int crp_ret_q_drops;
171
172 struct crypto_crp_ret_kq crp_ret_kq;
173 int crp_ret_kq_len;
174 int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
175 int crp_ret_kq_drops;
176 };
177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
178
179
180 static inline struct crypto_crp_ret_qs *
181 crypto_get_crp_ret_qs(struct cpu_info *ci)
182 {
183 u_int cpuid;
184 struct crypto_crp_ret_qs *qs;
185
186 KASSERT(ci != NULL);
187
188 cpuid = cpu_index(ci);
189 qs = crypto_crp_ret_qs_list[cpuid];
190 mutex_enter(&qs->crp_ret_q_mtx);
191 return qs;
192 }
193
194 static inline void
195 crypto_put_crp_ret_qs(struct cpu_info *ci)
196 {
197 u_int cpuid;
198 struct crypto_crp_ret_qs *qs;
199
200 KASSERT(ci != NULL);
201
202 cpuid = cpu_index(ci);
203 qs = crypto_crp_ret_qs_list[cpuid];
204 mutex_exit(&qs->crp_ret_q_mtx);
205 }
206
207 #ifndef CRYPTO_RET_Q_MAXLEN
208 #define CRYPTO_RET_Q_MAXLEN 0
209 #endif
210 #ifndef CRYPTO_RET_KQ_MAXLEN
211 #define CRYPTO_RET_KQ_MAXLEN 0
212 #endif
213
214 static int
215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
216 {
217 int error, len = 0;
218 struct sysctlnode node = *rnode;
219
220 for (int i = 0; i < ncpu; i++) {
221 struct crypto_crp_ret_qs *qs;
222 struct cpu_info *ci = cpu_lookup(i);
223
224 qs = crypto_get_crp_ret_qs(ci);
225 len += qs->crp_ret_q_len;
226 crypto_put_crp_ret_qs(ci);
227 }
228
229 node.sysctl_data = &len;
230 error = sysctl_lookup(SYSCTLFN_CALL(&node));
231 if (error || newp == NULL)
232 return error;
233
234 return 0;
235 }
236
237 static int
238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
239 {
240 int error, drops = 0;
241 struct sysctlnode node = *rnode;
242
243 for (int i = 0; i < ncpu; i++) {
244 struct crypto_crp_ret_qs *qs;
245 struct cpu_info *ci = cpu_lookup(i);
246
247 qs = crypto_get_crp_ret_qs(ci);
248 drops += qs->crp_ret_q_drops;
249 crypto_put_crp_ret_qs(ci);
250 }
251
252 node.sysctl_data = &drops;
253 error = sysctl_lookup(SYSCTLFN_CALL(&node));
254 if (error || newp == NULL)
255 return error;
256
257 return 0;
258 }
259
260 static int
261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
262 {
263 int error, maxlen;
264 struct crypto_crp_ret_qs *qs;
265 struct sysctlnode node = *rnode;
266
267 /* each crp_ret_kq_maxlen is the same. */
268 qs = crypto_get_crp_ret_qs(curcpu());
269 maxlen = qs->crp_ret_q_maxlen;
270 crypto_put_crp_ret_qs(curcpu());
271
272 node.sysctl_data = &maxlen;
273 error = sysctl_lookup(SYSCTLFN_CALL(&node));
274 if (error || newp == NULL)
275 return error;
276
277 for (int i = 0; i < ncpu; i++) {
278 struct cpu_info *ci = cpu_lookup(i);
279
280 qs = crypto_get_crp_ret_qs(ci);
281 qs->crp_ret_q_maxlen = maxlen;
282 crypto_put_crp_ret_qs(ci);
283 }
284
285 return 0;
286 }
287
288 static int
289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
290 {
291 int error, len = 0;
292 struct sysctlnode node = *rnode;
293
294 for (int i = 0; i < ncpu; i++) {
295 struct crypto_crp_ret_qs *qs;
296 struct cpu_info *ci = cpu_lookup(i);
297
298 qs = crypto_get_crp_ret_qs(ci);
299 len += qs->crp_ret_kq_len;
300 crypto_put_crp_ret_qs(ci);
301 }
302
303 node.sysctl_data = &len;
304 error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 if (error || newp == NULL)
306 return error;
307
308 return 0;
309 }
310
311 static int
312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
313 {
314 int error, drops = 0;
315 struct sysctlnode node = *rnode;
316
317 for (int i = 0; i < ncpu; i++) {
318 struct crypto_crp_ret_qs *qs;
319 struct cpu_info *ci = cpu_lookup(i);
320
321 qs = crypto_get_crp_ret_qs(ci);
322 drops += qs->crp_ret_kq_drops;
323 crypto_put_crp_ret_qs(ci);
324 }
325
326 node.sysctl_data = &drops;
327 error = sysctl_lookup(SYSCTLFN_CALL(&node));
328 if (error || newp == NULL)
329 return error;
330
331 return 0;
332 }
333
334 static int
335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
336 {
337 int error, maxlen;
338 struct crypto_crp_ret_qs *qs;
339 struct sysctlnode node = *rnode;
340
341 /* each crp_ret_kq_maxlen is the same. */
342 qs = crypto_get_crp_ret_qs(curcpu());
343 maxlen = qs->crp_ret_kq_maxlen;
344 crypto_put_crp_ret_qs(curcpu());
345
346 node.sysctl_data = &maxlen;
347 error = sysctl_lookup(SYSCTLFN_CALL(&node));
348 if (error || newp == NULL)
349 return error;
350
351 for (int i = 0; i < ncpu; i++) {
352 struct cpu_info *ci = cpu_lookup(i);
353
354 qs = crypto_get_crp_ret_qs(ci);
355 qs->crp_ret_kq_maxlen = maxlen;
356 crypto_put_crp_ret_qs(ci);
357 }
358
359 return 0;
360 }
361
362 /*
363 * Crypto op and descriptor data structures are allocated
364 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
365 */
366 static pool_cache_t cryptop_cache;
367 static pool_cache_t cryptodesc_cache;
368 static pool_cache_t cryptkop_cache;
369
370 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
371 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
372 /*
373 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
374 * access to hardware versus software transforms as below:
375 *
376 * crypto_devallowsoft < 0: Force userlevel requests to use software
377 * transforms, always
378 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
379 * requests for non-accelerated transforms
380 * (handling the latter in software)
381 * crypto_devallowsoft > 0: Allow user requests only for transforms which
382 * are hardware-accelerated.
383 */
384 int crypto_devallowsoft = 1; /* only use hardware crypto */
385
386 static void
387 sysctl_opencrypto_setup(struct sysctllog **clog)
388 {
389 const struct sysctlnode *ocnode;
390 const struct sysctlnode *retqnode, *retkqnode;
391
392 sysctl_createv(clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 CTLTYPE_INT, "usercrypto",
395 SYSCTL_DESCR("Enable/disable user-mode access to "
396 "crypto support"),
397 NULL, 0, &crypto_usercrypto, 0,
398 CTL_KERN, CTL_CREATE, CTL_EOL);
399 sysctl_createv(clog, 0, NULL, NULL,
400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 CTLTYPE_INT, "userasymcrypto",
402 SYSCTL_DESCR("Enable/disable user-mode access to "
403 "asymmetric crypto support"),
404 NULL, 0, &crypto_userasymcrypto, 0,
405 CTL_KERN, CTL_CREATE, CTL_EOL);
406 sysctl_createv(clog, 0, NULL, NULL,
407 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
408 CTLTYPE_INT, "cryptodevallowsoft",
409 SYSCTL_DESCR("Enable/disable use of software "
410 "asymmetric crypto support"),
411 NULL, 0, &crypto_devallowsoft, 0,
412 CTL_KERN, CTL_CREATE, CTL_EOL);
413
414 sysctl_createv(clog, 0, NULL, &ocnode,
415 CTLFLAG_PERMANENT,
416 CTLTYPE_NODE, "opencrypto",
417 SYSCTL_DESCR("opencrypto related entries"),
418 NULL, 0, NULL, 0,
419 CTL_CREATE, CTL_EOL);
420
421 sysctl_createv(clog, 0, &ocnode, &retqnode,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_NODE, "crypto_ret_q",
424 SYSCTL_DESCR("crypto_ret_q related entries"),
425 NULL, 0, NULL, 0,
426 CTL_CREATE, CTL_EOL);
427 sysctl_createv(clog, 0, &retqnode, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
429 CTLTYPE_INT, "len",
430 SYSCTL_DESCR("Current queue length"),
431 sysctl_opencrypto_q_len, 0,
432 NULL, 0,
433 CTL_CREATE, CTL_EOL);
434 sysctl_createv(clog, 0, &retqnode, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
436 CTLTYPE_INT, "drops",
437 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
438 sysctl_opencrypto_q_drops, 0,
439 NULL, 0,
440 CTL_CREATE, CTL_EOL);
441 sysctl_createv(clog, 0, &retqnode, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 CTLTYPE_INT, "maxlen",
444 SYSCTL_DESCR("Maximum allowed queue length"),
445 sysctl_opencrypto_q_maxlen, 0,
446 NULL, 0,
447 CTL_CREATE, CTL_EOL);
448
449
450 sysctl_createv(clog, 0, &ocnode, &retkqnode,
451 CTLFLAG_PERMANENT,
452 CTLTYPE_NODE, "crypto_ret_kq",
453 SYSCTL_DESCR("crypto_ret_kq related entries"),
454 NULL, 0, NULL, 0,
455 CTL_CREATE, CTL_EOL);
456 sysctl_createv(clog, 0, &retkqnode, NULL,
457 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
458 CTLTYPE_INT, "len",
459 SYSCTL_DESCR("Current queue length"),
460 sysctl_opencrypto_kq_len, 0,
461 NULL, 0,
462 CTL_CREATE, CTL_EOL);
463 sysctl_createv(clog, 0, &retkqnode, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
465 CTLTYPE_INT, "drops",
466 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
467 sysctl_opencrypto_kq_drops, 0,
468 NULL, 0,
469 CTL_CREATE, CTL_EOL);
470 sysctl_createv(clog, 0, &retkqnode, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 CTLTYPE_INT, "maxlen",
473 SYSCTL_DESCR("Maximum allowed queue length"),
474 sysctl_opencrypto_kq_maxlen, 0,
475 NULL, 0,
476 CTL_CREATE, CTL_EOL);
477 }
478
479 /*
480 * Synchronization: read carefully, this is non-trivial.
481 *
482 * Crypto requests are submitted via crypto_dispatch. Typically
483 * these come in from network protocols at spl0 (output path) or
484 * spl[,soft]net (input path).
485 *
486 * Requests are typically passed on the driver directly, but they
487 * may also be queued for processing by a software interrupt thread,
488 * cryptointr, that runs at splsoftcrypto. This thread dispatches
489 * the requests to crypto drivers (h/w or s/w) who call crypto_done
490 * when a request is complete. Hardware crypto drivers are assumed
491 * to register their IRQ's as network devices so their interrupt handlers
492 * and subsequent "done callbacks" happen at spl[imp,net].
493 *
494 * Completed crypto ops are queued for a separate kernel thread that
495 * handles the callbacks at spl0. This decoupling insures the crypto
496 * driver interrupt service routine is not delayed while the callback
497 * takes place and that callbacks are delivered after a context switch
498 * (as opposed to a software interrupt that clients must block).
499 *
500 * This scheme is not intended for SMP machines.
501 */
502 static void cryptointr(void *); /* swi thread to dispatch ops */
503 static void cryptoret_softint(void *); /* kernel thread for callbacks*/
504 static int crypto_destroy(bool);
505 static int crypto_invoke(struct cryptop *crp, int hint);
506 static int crypto_kinvoke(struct cryptkop *krp, int hint);
507
508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
510 static struct cryptocap *crypto_checkdriver(u_int32_t);
511 static void crypto_driver_lock(struct cryptocap *);
512 static void crypto_driver_unlock(struct cryptocap *);
513 static void crypto_driver_clear(struct cryptocap *);
514
515 static int crypto_init_finalize(device_t);
516
517 static struct cryptostats cryptostats;
518 #ifdef CRYPTO_TIMING
519 static int crypto_timing = 0;
520 #endif
521
522 static struct sysctllog *sysctl_opencrypto_clog;
523
524 static void
525 crypto_crp_ret_qs_init(void)
526 {
527 int i;
528
529 crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
530 KM_SLEEP);
531
532 for (i = 0; i < ncpu; i++) {
533 struct crypto_crp_ret_qs *qs;
534
535 qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
536 mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
537 qs->crp_ret_q_exit_flag = false;
538
539 TAILQ_INIT(&qs->crp_ret_q);
540 qs->crp_ret_q_len = 0;
541 qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
542 qs->crp_ret_q_drops = 0;
543
544 TAILQ_INIT(&qs->crp_ret_kq);
545 qs->crp_ret_kq_len = 0;
546 qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
547 qs->crp_ret_kq_drops = 0;
548
549 crypto_crp_ret_qs_list[i] = qs;
550 }
551 }
552
553 static int
554 crypto_init0(void)
555 {
556
557 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
558 cryptop_cache = pool_cache_init(sizeof(struct cryptop),
559 coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
560 cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
561 coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
562 cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
563 coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
564
565 crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
566 crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);
567
568 crypto_crp_ret_qs_init();
569
570 crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
571 sizeof(struct cryptocap), KM_SLEEP);
572 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
573
574 crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
575 if (crypto_q_si == NULL) {
576 printf("crypto_init: cannot establish request queue handler\n");
577 return crypto_destroy(false);
578 }
579
580 /*
581 * Some encryption devices (such as mvcesa) are attached before
582 * ipi_sysinit(). That causes an assertion in ipi_register() as
583 * crypto_ret_si softint uses SOFTINT_RCPU.
584 */
585 if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
586 printf("crypto_init: cannot register crypto_init_finalize\n");
587 return crypto_destroy(false);
588 }
589
590 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
591
592 return 0;
593 }
594
595 static int
596 crypto_init_finalize(device_t self __unused)
597 {
598
599 crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
600 &cryptoret_softint, NULL);
601 KASSERT(crypto_ret_si != NULL);
602
603 return 0;
604 }
605
606 int
607 crypto_init(void)
608 {
609 static ONCE_DECL(crypto_init_once);
610
611 return RUN_ONCE(&crypto_init_once, crypto_init0);
612 }
613
614 static int
615 crypto_destroy(bool exit_kthread)
616 {
617 int i;
618
619 if (exit_kthread) {
620 struct cryptocap *cap = NULL;
621 bool is_busy = false;
622
623 /* if we have any in-progress requests, don't unload */
624 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
625 &is_busy);
626 if (is_busy)
627 return EBUSY;
628 /* FIXME:
629 * prohibit enqueue to crp_q and crp_kq after here.
630 */
631
632 mutex_enter(&crypto_drv_mtx);
633 for (i = 0; i < crypto_drivers_num; i++) {
634 cap = crypto_checkdriver(i);
635 if (cap == NULL)
636 continue;
637 if (cap->cc_sessions != 0) {
638 mutex_exit(&crypto_drv_mtx);
639 return EBUSY;
640 }
641 }
642 mutex_exit(&crypto_drv_mtx);
643 /* FIXME:
644 * prohibit touch crypto_drivers[] and each element after here.
645 */
646
647 /* Ensure cryptoret_softint() is never scheduled again. */
648 for (i = 0; i < ncpu; i++) {
649 struct crypto_crp_ret_qs *qs;
650 struct cpu_info *ci = cpu_lookup(i);
651
652 qs = crypto_get_crp_ret_qs(ci);
653 qs->crp_ret_q_exit_flag = true;
654 crypto_put_crp_ret_qs(ci);
655 }
656 }
657
658 if (sysctl_opencrypto_clog != NULL)
659 sysctl_teardown(&sysctl_opencrypto_clog);
660
661 if (crypto_ret_si != NULL)
662 softint_disestablish(crypto_ret_si);
663
664 if (crypto_q_si != NULL)
665 softint_disestablish(crypto_q_si);
666
667 mutex_enter(&crypto_drv_mtx);
668 if (crypto_drivers != NULL)
669 kmem_free(crypto_drivers,
670 crypto_drivers_num * sizeof(struct cryptocap));
671 mutex_exit(&crypto_drv_mtx);
672
673 percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
674
675 pool_cache_destroy(cryptop_cache);
676 pool_cache_destroy(cryptodesc_cache);
677 pool_cache_destroy(cryptkop_cache);
678
679 mutex_destroy(&crypto_drv_mtx);
680
681 return 0;
682 }
683
684 static bool
685 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
686 {
687 struct cryptoini *cr;
688
689 for (cr = cri; cr; cr = cr->cri_next)
690 if (cap->cc_alg[cr->cri_alg] == 0) {
691 DPRINTF("alg %d not supported\n", cr->cri_alg);
692 return false;
693 }
694
695 return true;
696 }
697
698 #define CRYPTO_ACCEPT_HARDWARE 0x1
699 #define CRYPTO_ACCEPT_SOFTWARE 0x2
700 /*
701 * The algorithm we use here is pretty stupid; just use the
702 * first driver that supports all the algorithms we need.
703 * If there are multiple drivers we choose the driver with
704 * the fewest active sessions. We prefer hardware-backed
705 * drivers to software ones.
706 *
707 * XXX We need more smarts here (in real life too, but that's
708 * XXX another story altogether).
709 */
710 static struct cryptocap *
711 crypto_select_driver_lock(struct cryptoini *cri, int hard)
712 {
713 u_int32_t hid;
714 int accept;
715 struct cryptocap *cap, *best;
716 int error = 0;
717
718 best = NULL;
719 /*
720 * hard == 0 can use both hardware and software drivers.
721 * We use hardware drivers prior to software drivers, so search
722 * hardware drivers at first time.
723 */
724 if (hard >= 0)
725 accept = CRYPTO_ACCEPT_HARDWARE;
726 else
727 accept = CRYPTO_ACCEPT_SOFTWARE;
728 again:
729 for (hid = 0; hid < crypto_drivers_num; hid++) {
730 cap = crypto_checkdriver(hid);
731 if (cap == NULL)
732 continue;
733
734 crypto_driver_lock(cap);
735
736 /*
737 * If it's not initialized or has remaining sessions
738 * referencing it, skip.
739 */
740 if (cap->cc_newsession == NULL ||
741 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
742 crypto_driver_unlock(cap);
743 continue;
744 }
745
746 /* Hardware required -- ignore software drivers. */
747 if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
748 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
749 crypto_driver_unlock(cap);
750 continue;
751 }
752 /* Software required -- ignore hardware drivers. */
753 if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
754 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
755 crypto_driver_unlock(cap);
756 continue;
757 }
758
759 /* See if all the algorithms are supported. */
760 if (crypto_driver_suitable(cap, cri)) {
761 if (best == NULL) {
762 /* keep holding crypto_driver_lock(cap) */
763 best = cap;
764 continue;
765 } else if (cap->cc_sessions < best->cc_sessions) {
766 crypto_driver_unlock(best);
767 /* keep holding crypto_driver_lock(cap) */
768 best = cap;
769 continue;
770 }
771 }
772
773 crypto_driver_unlock(cap);
774 }
775 if (best == NULL && hard == 0
776 && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
777 accept = CRYPTO_ACCEPT_SOFTWARE;
778 goto again;
779 }
780
781 if (best == NULL && hard == 0 && error == 0) {
782 mutex_exit(&crypto_drv_mtx);
783 error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
784 mutex_enter(&crypto_drv_mtx);
785 if (error == 0) {
786 error = EINVAL;
787 goto again;
788 }
789 }
790
791 return best;
792 }
793
794 /*
795 * Create a new session.
796 */
797 int
798 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
799 {
800 struct cryptocap *cap;
801 int err = EINVAL;
802
803 mutex_enter(&crypto_drv_mtx);
804
805 cap = crypto_select_driver_lock(cri, hard);
806 if (cap != NULL) {
807 u_int32_t hid, lid;
808
809 hid = cap - crypto_drivers;
810 /*
811 * Can't do everything in one session.
812 *
813 * XXX Fix this. We need to inject a "virtual" session layer right
814 * XXX about here.
815 */
816
817 /* Call the driver initialization routine. */
818 lid = hid; /* Pass the driver ID. */
819 crypto_driver_unlock(cap);
820 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
821 crypto_driver_lock(cap);
822 if (err == 0) {
823 (*sid) = hid;
824 (*sid) <<= 32;
825 (*sid) |= (lid & 0xffffffff);
826 (cap->cc_sessions)++;
827 } else {
828 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
829 hid, err);
830 }
831 crypto_driver_unlock(cap);
832 }
833
834 mutex_exit(&crypto_drv_mtx);
835
836 return err;
837 }
838
839 /*
840 * Delete an existing session (or a reserved session on an unregistered
841 * driver).
842 */
843 int
844 crypto_freesession(u_int64_t sid)
845 {
846 struct cryptocap *cap;
847 int err = 0;
848
849 /* Determine two IDs. */
850 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
851 if (cap == NULL)
852 return ENOENT;
853
854 if (cap->cc_sessions)
855 (cap->cc_sessions)--;
856
857 /* Call the driver cleanup routine, if available. */
858 if (cap->cc_freesession)
859 err = cap->cc_freesession(cap->cc_arg, sid);
860 else
861 err = 0;
862
863 /*
864 * If this was the last session of a driver marked as invalid,
865 * make the entry available for reuse.
866 */
867 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
868 crypto_driver_clear(cap);
869
870 crypto_driver_unlock(cap);
871 return err;
872 }
873
874 static bool
875 crypto_checkdriver_initialized(const struct cryptocap *cap)
876 {
877
878 return cap->cc_process != NULL ||
879 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
880 cap->cc_sessions != 0;
881 }
882
883 /*
884 * Return an unused driver id. Used by drivers prior to registering
885 * support for the algorithms they handle.
886 */
887 int32_t
888 crypto_get_driverid(u_int32_t flags)
889 {
890 struct cryptocap *newdrv;
891 struct cryptocap *cap = NULL;
892 int i;
893
894 (void)crypto_init(); /* XXX oh, this is foul! */
895
896 mutex_enter(&crypto_drv_mtx);
897 for (i = 0; i < crypto_drivers_num; i++) {
898 cap = crypto_checkdriver_uninit(i);
899 if (cap == NULL || crypto_checkdriver_initialized(cap))
900 continue;
901 break;
902 }
903
904 /* Out of entries, allocate some more. */
905 if (cap == NULL) {
906 /* Be careful about wrap-around. */
907 if (2 * crypto_drivers_num <= crypto_drivers_num) {
908 mutex_exit(&crypto_drv_mtx);
909 printf("crypto: driver count wraparound!\n");
910 return -1;
911 }
912
913 newdrv = kmem_zalloc(2 * crypto_drivers_num *
914 sizeof(struct cryptocap), KM_SLEEP);
915 memcpy(newdrv, crypto_drivers,
916 crypto_drivers_num * sizeof(struct cryptocap));
917 kmem_free(crypto_drivers,
918 crypto_drivers_num * sizeof(struct cryptocap));
919
920 crypto_drivers_num *= 2;
921 crypto_drivers = newdrv;
922
923 cap = crypto_checkdriver_uninit(i);
924 KASSERT(cap != NULL);
925 }
926
927 /* NB: state is zero'd on free */
928 cap->cc_sessions = 1; /* Mark */
929 cap->cc_flags = flags;
930 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
931
932 if (bootverbose)
933 printf("crypto: assign driver %u, flags %u\n", i, flags);
934
935 mutex_exit(&crypto_drv_mtx);
936
937 return i;
938 }
939
940 static struct cryptocap *
941 crypto_checkdriver_lock(u_int32_t hid)
942 {
943 struct cryptocap *cap;
944
945 KASSERT(crypto_drivers != NULL);
946
947 if (hid >= crypto_drivers_num)
948 return NULL;
949
950 cap = &crypto_drivers[hid];
951 mutex_enter(&cap->cc_lock);
952 return cap;
953 }
954
955 /*
956 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
957 * situations
958 * - crypto_drivers[] may not be allocated
959 * - crypto_drivers[hid] may not be initialized
960 */
961 static struct cryptocap *
962 crypto_checkdriver_uninit(u_int32_t hid)
963 {
964
965 KASSERT(mutex_owned(&crypto_drv_mtx));
966
967 if (crypto_drivers == NULL)
968 return NULL;
969
970 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
971 }
972
973 /*
974 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
975 * situations
976 * - crypto_drivers[] may not be allocated
977 * - crypto_drivers[hid] may not be initialized
978 */
979 static struct cryptocap *
980 crypto_checkdriver(u_int32_t hid)
981 {
982
983 KASSERT(mutex_owned(&crypto_drv_mtx));
984
985 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
986 return NULL;
987
988 struct cryptocap *cap = &crypto_drivers[hid];
989 return crypto_checkdriver_initialized(cap) ? cap : NULL;
990 }
991
992 static inline void
993 crypto_driver_lock(struct cryptocap *cap)
994 {
995
996 KASSERT(cap != NULL);
997
998 mutex_enter(&cap->cc_lock);
999 }
1000
1001 static inline void
1002 crypto_driver_unlock(struct cryptocap *cap)
1003 {
1004
1005 KASSERT(cap != NULL);
1006
1007 mutex_exit(&cap->cc_lock);
1008 }
1009
1010 static void
1011 crypto_driver_clear(struct cryptocap *cap)
1012 {
1013
1014 if (cap == NULL)
1015 return;
1016
1017 KASSERT(mutex_owned(&cap->cc_lock));
1018
1019 cap->cc_sessions = 0;
1020 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1021 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1022 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1023 cap->cc_flags = 0;
1024 cap->cc_qblocked = 0;
1025 cap->cc_kqblocked = 0;
1026
1027 cap->cc_arg = NULL;
1028 cap->cc_newsession = NULL;
1029 cap->cc_process = NULL;
1030 cap->cc_freesession = NULL;
1031 cap->cc_kprocess = NULL;
1032 }
1033
1034 /*
1035 * Register support for a key-related algorithm. This routine
1036 * is called once for each algorithm supported a driver.
1037 */
1038 int
1039 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1040 int (*kprocess)(void *, struct cryptkop *, int),
1041 void *karg)
1042 {
1043 struct cryptocap *cap;
1044 int err;
1045
1046 mutex_enter(&crypto_drv_mtx);
1047
1048 cap = crypto_checkdriver_lock(driverid);
1049 if (cap != NULL &&
1050 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1051 /*
1052 * XXX Do some performance testing to determine placing.
1053 * XXX We probably need an auxiliary data structure that
1054 * XXX describes relative performances.
1055 */
1056
1057 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1058 if (bootverbose) {
1059 printf("crypto: driver %u registers key alg %u "
1060 " flags %u\n",
1061 driverid,
1062 kalg,
1063 flags
1064 );
1065 }
1066
1067 if (cap->cc_kprocess == NULL) {
1068 cap->cc_karg = karg;
1069 cap->cc_kprocess = kprocess;
1070 }
1071 err = 0;
1072 } else
1073 err = EINVAL;
1074
1075 mutex_exit(&crypto_drv_mtx);
1076 return err;
1077 }
1078
1079 /*
1080 * Register support for a non-key-related algorithm. This routine
1081 * is called once for each such algorithm supported by a driver.
1082 */
1083 int
1084 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1085 u_int32_t flags,
1086 int (*newses)(void *, u_int32_t*, struct cryptoini*),
1087 int (*freeses)(void *, u_int64_t),
1088 int (*process)(void *, struct cryptop *, int),
1089 void *arg)
1090 {
1091 struct cryptocap *cap;
1092 int err;
1093
1094 cap = crypto_checkdriver_lock(driverid);
1095 if (cap == NULL)
1096 return EINVAL;
1097
1098 /* NB: algorithms are in the range [1..max] */
1099 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1100 /*
1101 * XXX Do some performance testing to determine placing.
1102 * XXX We probably need an auxiliary data structure that
1103 * XXX describes relative performances.
1104 */
1105
1106 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1107 cap->cc_max_op_len[alg] = maxoplen;
1108 if (bootverbose) {
1109 printf("crypto: driver %u registers alg %u "
1110 "flags %u maxoplen %u\n",
1111 driverid,
1112 alg,
1113 flags,
1114 maxoplen
1115 );
1116 }
1117
1118 if (cap->cc_process == NULL) {
1119 cap->cc_arg = arg;
1120 cap->cc_newsession = newses;
1121 cap->cc_process = process;
1122 cap->cc_freesession = freeses;
1123 cap->cc_sessions = 0; /* Unmark */
1124 }
1125 err = 0;
1126 } else
1127 err = EINVAL;
1128
1129 crypto_driver_unlock(cap);
1130
1131 return err;
1132 }
1133
1134 static int
1135 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1136 {
1137 int i;
1138 u_int32_t ses;
1139 bool lastalg = true;
1140
1141 KASSERT(cap != NULL);
1142 KASSERT(mutex_owned(&cap->cc_lock));
1143
1144 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1145 return EINVAL;
1146
1147 if (!all && cap->cc_alg[alg] == 0)
1148 return EINVAL;
1149
1150 cap->cc_alg[alg] = 0;
1151 cap->cc_max_op_len[alg] = 0;
1152
1153 if (all) {
1154 if (alg != CRYPTO_ALGORITHM_MAX)
1155 lastalg = false;
1156 } else {
1157 /* Was this the last algorithm ? */
1158 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1159 if (cap->cc_alg[i] != 0) {
1160 lastalg = false;
1161 break;
1162 }
1163 }
1164 if (lastalg) {
1165 ses = cap->cc_sessions;
1166 crypto_driver_clear(cap);
1167 if (ses != 0) {
1168 /*
1169 * If there are pending sessions, just mark as invalid.
1170 */
1171 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1172 cap->cc_sessions = ses;
1173 }
1174 }
1175
1176 return 0;
1177 }
1178
1179 /*
1180 * Unregister a crypto driver. If there are pending sessions using it,
1181 * leave enough information around so that subsequent calls using those
1182 * sessions will correctly detect the driver has been unregistered and
1183 * reroute requests.
1184 */
1185 int
1186 crypto_unregister(u_int32_t driverid, int alg)
1187 {
1188 int err;
1189 struct cryptocap *cap;
1190
1191 cap = crypto_checkdriver_lock(driverid);
1192 err = crypto_unregister_locked(cap, alg, false);
1193 crypto_driver_unlock(cap);
1194
1195 return err;
1196 }
1197
1198 /*
1199 * Unregister all algorithms associated with a crypto driver.
1200 * If there are pending sessions using it, leave enough information
1201 * around so that subsequent calls using those sessions will
1202 * correctly detect the driver has been unregistered and reroute
1203 * requests.
1204 */
1205 int
1206 crypto_unregister_all(u_int32_t driverid)
1207 {
1208 int err, i;
1209 struct cryptocap *cap;
1210
1211 cap = crypto_checkdriver_lock(driverid);
1212 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1213 err = crypto_unregister_locked(cap, i, true);
1214 if (err)
1215 break;
1216 }
1217 crypto_driver_unlock(cap);
1218
1219 return err;
1220 }
1221
1222 /*
1223 * Clear blockage on a driver. The what parameter indicates whether
1224 * the driver is now ready for cryptop's and/or cryptokop's.
1225 */
1226 int
1227 crypto_unblock(u_int32_t driverid, int what)
1228 {
1229 struct cryptocap *cap;
1230 int needwakeup = 0;
1231
1232 cap = crypto_checkdriver_lock(driverid);
1233 if (cap == NULL)
1234 return EINVAL;
1235
1236 if (what & CRYPTO_SYMQ) {
1237 needwakeup |= cap->cc_qblocked;
1238 cap->cc_qblocked = 0;
1239 }
1240 if (what & CRYPTO_ASYMQ) {
1241 needwakeup |= cap->cc_kqblocked;
1242 cap->cc_kqblocked = 0;
1243 }
1244 crypto_driver_unlock(cap);
1245 if (needwakeup) {
1246 kpreempt_disable();
1247 softint_schedule(crypto_q_si);
1248 kpreempt_enable();
1249 }
1250
1251 return 0;
1252 }
1253
1254 /*
1255 * Dispatch a crypto request to a driver or queue
1256 * it, to be processed by the kernel thread.
1257 */
1258 int
1259 crypto_dispatch(struct cryptop *crp)
1260 {
1261 int result, s;
1262 struct cryptocap *cap;
1263 struct crypto_crp_qs *crp_qs;
1264 struct crypto_crp_q *crp_q;
1265
1266 KASSERT(crp != NULL);
1267
1268 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1269
1270 cryptostats.cs_ops++;
1271
1272 #ifdef CRYPTO_TIMING
1273 if (crypto_timing)
1274 nanouptime(&crp->crp_tstamp);
1275 #endif
1276
1277 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1278 int wasempty;
1279 /*
1280 * Caller marked the request as ``ok to delay'';
1281 * queue it for the swi thread. This is desirable
1282 * when the operation is low priority and/or suitable
1283 * for batching.
1284 *
1285 * don't care list order in batch job.
1286 */
1287 crp_qs = crypto_get_crp_qs(&s);
1288 crp_q = crp_qs->crp_q;
1289 wasempty = TAILQ_EMPTY(crp_q);
1290 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1291 crypto_put_crp_qs(&s);
1292 crp_q = NULL;
1293 if (wasempty) {
1294 kpreempt_disable();
1295 softint_schedule(crypto_q_si);
1296 kpreempt_enable();
1297 }
1298
1299 return 0;
1300 }
1301
1302 crp_qs = crypto_get_crp_qs(&s);
1303 crp_q = crp_qs->crp_q;
1304 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1305 /*
1306 * TODO:
1307 * If we can ensure the driver has been valid until the driver is
1308 * done crypto_unregister(), this migrate operation is not required.
1309 */
1310 if (cap == NULL) {
1311 /*
1312 * The driver must be detached, so this request will migrate
1313 * to other drivers in cryptointr() later.
1314 */
1315 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1316 result = 0;
1317 goto out;
1318 }
1319
1320 if (cap->cc_qblocked != 0) {
1321 crypto_driver_unlock(cap);
1322 /*
1323 * The driver is blocked, just queue the op until
1324 * it unblocks and the swi thread gets kicked.
1325 */
1326 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1327 result = 0;
1328 goto out;
1329 }
1330
1331 /*
1332 * Caller marked the request to be processed
1333 * immediately; dispatch it directly to the
1334 * driver unless the driver is currently blocked.
1335 */
1336 crypto_driver_unlock(cap);
1337 result = crypto_invoke(crp, 0);
1338 if (result == ERESTART) {
1339 /*
1340 * The driver ran out of resources, mark the
1341 * driver ``blocked'' for cryptop's and put
1342 * the op on the queue.
1343 */
1344 crypto_driver_lock(cap);
1345 cap->cc_qblocked = 1;
1346 crypto_driver_unlock(cap);
1347 TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1348 cryptostats.cs_blocks++;
1349
1350 /*
1351 * The crp is enqueued to crp_q, that is,
1352 * no error occurs. So, this function should
1353 * not return error.
1354 */
1355 result = 0;
1356 }
1357
1358 out:
1359 crypto_put_crp_qs(&s);
1360 return result;
1361 }
1362
1363 /*
1364 * Add an asymetric crypto request to a queue,
1365 * to be processed by the kernel thread.
1366 */
1367 int
1368 crypto_kdispatch(struct cryptkop *krp)
1369 {
1370 int result, s;
1371 struct cryptocap *cap;
1372 struct crypto_crp_qs *crp_qs;
1373 struct crypto_crp_kq *crp_kq;
1374
1375 KASSERT(krp != NULL);
1376
1377 cryptostats.cs_kops++;
1378
1379 crp_qs = crypto_get_crp_qs(&s);
1380 crp_kq = crp_qs->crp_kq;
1381 cap = crypto_checkdriver_lock(krp->krp_hid);
1382 /*
1383 * TODO:
1384 * If we can ensure the driver has been valid until the driver is
1385 * done crypto_unregister(), this migrate operation is not required.
1386 */
1387 if (cap == NULL) {
1388 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1389 result = 0;
1390 goto out;
1391 }
1392
1393 if (cap->cc_kqblocked != 0) {
1394 crypto_driver_unlock(cap);
1395 /*
1396 * The driver is blocked, just queue the op until
1397 * it unblocks and the swi thread gets kicked.
1398 */
1399 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1400 result = 0;
1401 goto out;
1402 }
1403
1404 crypto_driver_unlock(cap);
1405 result = crypto_kinvoke(krp, 0);
1406 if (result == ERESTART) {
1407 /*
1408 * The driver ran out of resources, mark the
1409 * driver ``blocked'' for cryptop's and put
1410 * the op on the queue.
1411 */
1412 crypto_driver_lock(cap);
1413 cap->cc_kqblocked = 1;
1414 crypto_driver_unlock(cap);
1415 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1416 cryptostats.cs_kblocks++;
1417
1418 /*
1419 * The krp is enqueued to crp_kq, that is,
1420 * no error occurs. So, this function should
1421 * not return error.
1422 */
1423 result = 0;
1424 }
1425
1426 out:
1427 crypto_put_crp_qs(&s);
1428 return result;
1429 }
1430
1431 /*
1432 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1433 */
1434 static int
1435 crypto_kinvoke(struct cryptkop *krp, int hint)
1436 {
1437 struct cryptocap *cap = NULL;
1438 u_int32_t hid;
1439 int error;
1440
1441 KASSERT(krp != NULL);
1442
1443 /* Sanity checks. */
1444 if (krp->krp_callback == NULL) {
1445 cv_destroy(&krp->krp_cv);
1446 crypto_kfreereq(krp);
1447 return EINVAL;
1448 }
1449
1450 mutex_enter(&crypto_drv_mtx);
1451 for (hid = 0; hid < crypto_drivers_num; hid++) {
1452 cap = crypto_checkdriver(hid);
1453 if (cap == NULL)
1454 continue;
1455 crypto_driver_lock(cap);
1456 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1457 crypto_devallowsoft == 0) {
1458 crypto_driver_unlock(cap);
1459 continue;
1460 }
1461 if (cap->cc_kprocess == NULL) {
1462 crypto_driver_unlock(cap);
1463 continue;
1464 }
1465 if ((cap->cc_kalg[krp->krp_op] &
1466 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1467 crypto_driver_unlock(cap);
1468 continue;
1469 }
1470 break;
1471 }
1472 mutex_exit(&crypto_drv_mtx);
1473 if (cap != NULL) {
1474 int (*process)(void *, struct cryptkop *, int);
1475 void *arg;
1476
1477 process = cap->cc_kprocess;
1478 arg = cap->cc_karg;
1479 krp->krp_hid = hid;
1480 krp->reqcpu = curcpu();
1481 crypto_driver_unlock(cap);
1482 error = (*process)(arg, krp, hint);
1483 } else {
1484 error = ENODEV;
1485 }
1486
1487 if (error) {
1488 krp->krp_status = error;
1489 crypto_kdone(krp);
1490 }
1491 return 0;
1492 }
1493
1494 #ifdef CRYPTO_TIMING
1495 static void
1496 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1497 {
1498 struct timespec now, t;
1499
1500 nanouptime(&now);
1501 t.tv_sec = now.tv_sec - tv->tv_sec;
1502 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1503 if (t.tv_nsec < 0) {
1504 t.tv_sec--;
1505 t.tv_nsec += 1000000000;
1506 }
1507 timespecadd(&ts->acc, &t, &t);
1508 if (timespeccmp(&t, &ts->min, <))
1509 ts->min = t;
1510 if (timespeccmp(&t, &ts->max, >))
1511 ts->max = t;
1512 ts->count++;
1513
1514 *tv = now;
1515 }
1516 #endif
1517
1518 /*
1519 * Dispatch a crypto request to the appropriate crypto devices.
1520 */
1521 static int
1522 crypto_invoke(struct cryptop *crp, int hint)
1523 {
1524 struct cryptocap *cap;
1525
1526 KASSERT(crp != NULL);
1527
1528 #ifdef CRYPTO_TIMING
1529 if (crypto_timing)
1530 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1531 #endif
1532 /* Sanity checks. */
1533 if (crp->crp_callback == NULL) {
1534 return EINVAL;
1535 }
1536 if (crp->crp_desc == NULL) {
1537 crp->crp_etype = EINVAL;
1538 crypto_done(crp);
1539 return 0;
1540 }
1541
1542 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1543 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1544 int (*process)(void *, struct cryptop *, int);
1545 void *arg;
1546
1547 process = cap->cc_process;
1548 arg = cap->cc_arg;
1549 crp->reqcpu = curcpu();
1550
1551 /*
1552 * Invoke the driver to process the request.
1553 */
1554 DPRINTF("calling process for %p\n", crp);
1555 crypto_driver_unlock(cap);
1556 return (*process)(arg, crp, hint);
1557 } else {
1558 struct cryptodesc *crd;
1559 u_int64_t nid = 0;
1560
1561 if (cap != NULL)
1562 crypto_driver_unlock(cap);
1563
1564 /*
1565 * Driver has unregistered; migrate the session and return
1566 * an error to the caller so they'll resubmit the op.
1567 */
1568 crypto_freesession(crp->crp_sid);
1569
1570 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1571 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1572
1573 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1574 crp->crp_sid = nid;
1575
1576 crp->crp_etype = EAGAIN;
1577
1578 crypto_done(crp);
1579 return 0;
1580 }
1581 }
1582
1583 /*
1584 * Release a set of crypto descriptors.
1585 */
1586 void
1587 crypto_freereq(struct cryptop *crp)
1588 {
1589 struct cryptodesc *crd;
1590
1591 if (crp == NULL)
1592 return;
1593 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1594
1595 /* sanity check */
1596 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1597 panic("crypto_freereq() freeing crp on RETQ\n");
1598 }
1599
1600 while ((crd = crp->crp_desc) != NULL) {
1601 crp->crp_desc = crd->crd_next;
1602 pool_cache_put(cryptodesc_cache, crd);
1603 }
1604 pool_cache_put(cryptop_cache, crp);
1605 }
1606
1607 /*
1608 * Acquire a set of crypto descriptors.
1609 */
1610 struct cryptop *
1611 crypto_getreq(int num)
1612 {
1613 struct cryptodesc *crd;
1614 struct cryptop *crp;
1615 struct crypto_crp_ret_qs *qs;
1616
1617 /*
1618 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1619 * by error callback.
1620 */
1621 qs = crypto_get_crp_ret_qs(curcpu());
1622 if (qs->crp_ret_q_maxlen > 0
1623 && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1624 qs->crp_ret_q_drops++;
1625 crypto_put_crp_ret_qs(curcpu());
1626 return NULL;
1627 }
1628 crypto_put_crp_ret_qs(curcpu());
1629
1630 crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
1631 if (crp == NULL) {
1632 return NULL;
1633 }
1634 memset(crp, 0, sizeof(struct cryptop));
1635
1636 while (num--) {
1637 crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
1638 if (crd == NULL) {
1639 crypto_freereq(crp);
1640 return NULL;
1641 }
1642
1643 memset(crd, 0, sizeof(struct cryptodesc));
1644 crd->crd_next = crp->crp_desc;
1645 crp->crp_desc = crd;
1646 }
1647
1648 return crp;
1649 }
1650
1651 /*
1652 * Release a set of asymmetric crypto descriptors.
1653 * Currently, support one descriptor only.
1654 */
1655 void
1656 crypto_kfreereq(struct cryptkop *krp)
1657 {
1658
1659 if (krp == NULL)
1660 return;
1661
1662 DPRINTF("krp %p\n", krp);
1663
1664 /* sanity check */
1665 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1666 panic("crypto_kfreereq() freeing krp on RETQ\n");
1667 }
1668
1669 pool_cache_put(cryptkop_cache, krp);
1670 }
1671
1672 /*
1673 * Acquire a set of asymmetric crypto descriptors.
1674 * Currently, support one descriptor only.
1675 */
1676 struct cryptkop *
1677 crypto_kgetreq(int num __unused, int prflags)
1678 {
1679 struct cryptkop *krp;
1680 struct crypto_crp_ret_qs *qs;
1681
1682 /*
1683 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1684 * overflow by error callback.
1685 */
1686 qs = crypto_get_crp_ret_qs(curcpu());
1687 if (qs->crp_ret_kq_maxlen > 0
1688 && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1689 qs->crp_ret_kq_drops++;
1690 crypto_put_crp_ret_qs(curcpu());
1691 return NULL;
1692 }
1693 crypto_put_crp_ret_qs(curcpu());
1694
1695 krp = pool_cache_get(cryptkop_cache, prflags);
1696 if (krp == NULL) {
1697 return NULL;
1698 }
1699 memset(krp, 0, sizeof(struct cryptkop));
1700
1701 return krp;
1702 }
1703
1704 /*
1705 * Invoke the callback on behalf of the driver.
1706 */
1707 void
1708 crypto_done(struct cryptop *crp)
1709 {
1710
1711 KASSERT(crp != NULL);
1712
1713 if (crp->crp_etype != 0)
1714 cryptostats.cs_errs++;
1715 #ifdef CRYPTO_TIMING
1716 if (crypto_timing)
1717 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1718 #endif
1719 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1720
1721 /*
1722 * Normal case; queue the callback for the thread.
1723 *
1724 * The return queue is manipulated by the swi thread
1725 * and, potentially, by crypto device drivers calling
1726 * back to mark operations completed. Thus we need
1727 * to mask both while manipulating the return queue.
1728 */
1729 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1730 /*
1731 * Do the callback directly. This is ok when the
1732 * callback routine does very little (e.g. the
1733 * /dev/crypto callback method just does a wakeup).
1734 */
1735 crp->crp_flags |= CRYPTO_F_DONE;
1736
1737 #ifdef CRYPTO_TIMING
1738 if (crypto_timing) {
1739 /*
1740 * NB: We must copy the timestamp before
1741 * doing the callback as the cryptop is
1742 * likely to be reclaimed.
1743 */
1744 struct timespec t = crp->crp_tstamp;
1745 crypto_tstat(&cryptostats.cs_cb, &t);
1746 crp->crp_callback(crp);
1747 crypto_tstat(&cryptostats.cs_finis, &t);
1748 } else
1749 #endif
1750 crp->crp_callback(crp);
1751 } else {
1752 crp->crp_flags |= CRYPTO_F_DONE;
1753 #if 0
1754 if (crp->crp_flags & CRYPTO_F_USER) {
1755 /*
1756 * TODO:
1757 * If crp->crp_flags & CRYPTO_F_USER and the used
1758 * encryption driver does all the processing in
1759 * the same context, we can skip enqueueing crp_ret_q
1760 * and softint_schedule(crypto_ret_si).
1761 */
1762 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1763 CRYPTO_SESID2LID(crp->crp_sid), crp);
1764 } else
1765 #endif
1766 {
1767 int wasempty;
1768 struct crypto_crp_ret_qs *qs;
1769 struct crypto_crp_ret_q *crp_ret_q;
1770
1771 qs = crypto_get_crp_ret_qs(crp->reqcpu);
1772 crp_ret_q = &qs->crp_ret_q;
1773 wasempty = TAILQ_EMPTY(crp_ret_q);
1774 DPRINTF("lid[%u]: queueing %p\n",
1775 CRYPTO_SESID2LID(crp->crp_sid), crp);
1776 crp->crp_flags |= CRYPTO_F_ONRETQ;
1777 TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1778 qs->crp_ret_q_len++;
1779 if (wasempty && !qs->crp_ret_q_exit_flag) {
1780 DPRINTF("lid[%u]: waking cryptoret,"
1781 "crp %p hit empty queue\n.",
1782 CRYPTO_SESID2LID(crp->crp_sid), crp);
1783 softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1784 }
1785 crypto_put_crp_ret_qs(crp->reqcpu);
1786 }
1787 }
1788 }
1789
1790 /*
1791 * Invoke the callback on behalf of the driver.
1792 */
1793 void
1794 crypto_kdone(struct cryptkop *krp)
1795 {
1796
1797 KASSERT(krp != NULL);
1798
1799 if (krp->krp_status != 0)
1800 cryptostats.cs_kerrs++;
1801
1802 krp->krp_flags |= CRYPTO_F_DONE;
1803
1804 /*
1805 * The return queue is manipulated by the swi thread
1806 * and, potentially, by crypto device drivers calling
1807 * back to mark operations completed. Thus we need
1808 * to mask both while manipulating the return queue.
1809 */
1810 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1811 krp->krp_callback(krp);
1812 } else {
1813 int wasempty;
1814 struct crypto_crp_ret_qs *qs;
1815 struct crypto_crp_ret_kq *crp_ret_kq;
1816
1817 qs = crypto_get_crp_ret_qs(krp->reqcpu);
1818 crp_ret_kq = &qs->crp_ret_kq;
1819
1820 wasempty = TAILQ_EMPTY(crp_ret_kq);
1821 krp->krp_flags |= CRYPTO_F_ONRETQ;
1822 TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1823 qs->crp_ret_kq_len++;
1824 if (wasempty && !qs->crp_ret_q_exit_flag)
1825 softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1826 crypto_put_crp_ret_qs(krp->reqcpu);
1827 }
1828 }
1829
1830 int
1831 crypto_getfeat(int *featp)
1832 {
1833
1834 if (crypto_userasymcrypto == 0) {
1835 *featp = 0;
1836 return 0;
1837 }
1838
1839 mutex_enter(&crypto_drv_mtx);
1840
1841 int feat = 0;
1842 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1843 struct cryptocap *cap;
1844 cap = crypto_checkdriver(hid);
1845 if (cap == NULL)
1846 continue;
1847
1848 crypto_driver_lock(cap);
1849
1850 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1851 crypto_devallowsoft == 0)
1852 goto unlock;
1853
1854 if (cap->cc_kprocess == NULL)
1855 goto unlock;
1856
1857 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1858 if ((cap->cc_kalg[kalg] &
1859 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1860 feat |= 1 << kalg;
1861
1862 unlock: crypto_driver_unlock(cap);
1863 }
1864
1865 mutex_exit(&crypto_drv_mtx);
1866 *featp = feat;
1867 return (0);
1868 }
1869
1870 /*
1871 * Software interrupt thread to dispatch crypto requests.
1872 */
1873 static void
1874 cryptointr(void *arg __unused)
1875 {
1876 struct cryptop *crp, *submit, *cnext;
1877 struct cryptkop *krp, *knext;
1878 struct cryptocap *cap;
1879 struct crypto_crp_qs *crp_qs;
1880 struct crypto_crp_q *crp_q;
1881 struct crypto_crp_kq *crp_kq;
1882 int result, hint, s;
1883
1884 cryptostats.cs_intrs++;
1885 crp_qs = crypto_get_crp_qs(&s);
1886 crp_q = crp_qs->crp_q;
1887 crp_kq = crp_qs->crp_kq;
1888 do {
1889 /*
1890 * Find the first element in the queue that can be
1891 * processed and look-ahead to see if multiple ops
1892 * are ready for the same driver.
1893 */
1894 submit = NULL;
1895 hint = 0;
1896 TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1897 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1898 cap = crypto_checkdriver_lock(hid);
1899 if (cap == NULL || cap->cc_process == NULL) {
1900 if (cap != NULL)
1901 crypto_driver_unlock(cap);
1902 /* Op needs to be migrated, process it. */
1903 submit = crp;
1904 break;
1905 }
1906
1907 /*
1908 * skip blocked crp regardless of CRYPTO_F_BATCH
1909 */
1910 if (cap->cc_qblocked != 0) {
1911 crypto_driver_unlock(cap);
1912 continue;
1913 }
1914 crypto_driver_unlock(cap);
1915
1916 /*
1917 * skip batch crp until the end of crp_q
1918 */
1919 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1920 if (submit == NULL) {
1921 submit = crp;
1922 } else {
1923 if (CRYPTO_SESID2HID(submit->crp_sid)
1924 == hid)
1925 hint = CRYPTO_HINT_MORE;
1926 }
1927
1928 continue;
1929 }
1930
1931 /*
1932 * found first crp which is neither blocked nor batch.
1933 */
1934 submit = crp;
1935 /*
1936 * batch crp can be processed much later, so clear hint.
1937 */
1938 hint = 0;
1939 break;
1940 }
1941 if (submit != NULL) {
1942 TAILQ_REMOVE(crp_q, submit, crp_next);
1943 result = crypto_invoke(submit, hint);
1944 /* we must take here as the TAILQ op or kinvoke
1945 may need this mutex below. sigh. */
1946 if (result == ERESTART) {
1947 /*
1948 * The driver ran out of resources, mark the
1949 * driver ``blocked'' for cryptop's and put
1950 * the request back in the queue. It would
1951 * best to put the request back where we got
1952 * it but that's hard so for now we put it
1953 * at the front. This should be ok; putting
1954 * it at the end does not work.
1955 */
1956 /* validate sid again */
1957 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1958 if (cap == NULL) {
1959 /* migrate again, sigh... */
1960 TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
1961 } else {
1962 cap->cc_qblocked = 1;
1963 crypto_driver_unlock(cap);
1964 TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
1965 cryptostats.cs_blocks++;
1966 }
1967 }
1968 }
1969
1970 /* As above, but for key ops */
1971 TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
1972 cap = crypto_checkdriver_lock(krp->krp_hid);
1973 if (cap == NULL || cap->cc_kprocess == NULL) {
1974 if (cap != NULL)
1975 crypto_driver_unlock(cap);
1976 /* Op needs to be migrated, process it. */
1977 break;
1978 }
1979 if (!cap->cc_kqblocked) {
1980 crypto_driver_unlock(cap);
1981 break;
1982 }
1983 crypto_driver_unlock(cap);
1984 }
1985 if (krp != NULL) {
1986 TAILQ_REMOVE(crp_kq, krp, krp_next);
1987 result = crypto_kinvoke(krp, 0);
1988 /* the next iteration will want the mutex. :-/ */
1989 if (result == ERESTART) {
1990 /*
1991 * The driver ran out of resources, mark the
1992 * driver ``blocked'' for cryptkop's and put
1993 * the request back in the queue. It would
1994 * best to put the request back where we got
1995 * it but that's hard so for now we put it
1996 * at the front. This should be ok; putting
1997 * it at the end does not work.
1998 */
1999 /* validate sid again */
2000 cap = crypto_checkdriver_lock(krp->krp_hid);
2001 if (cap == NULL) {
2002 /* migrate again, sigh... */
2003 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
2004 } else {
2005 cap->cc_kqblocked = 1;
2006 crypto_driver_unlock(cap);
2007 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
2008 cryptostats.cs_kblocks++;
2009 }
2010 }
2011 }
2012 } while (submit != NULL || krp != NULL);
2013 crypto_put_crp_qs(&s);
2014 }
2015
2016 /*
2017 * softint handler to do callbacks.
2018 */
2019 static void
2020 cryptoret_softint(void *arg __unused)
2021 {
2022 struct crypto_crp_ret_qs *qs;
2023 struct crypto_crp_ret_q *crp_ret_q;
2024 struct crypto_crp_ret_kq *crp_ret_kq;
2025
2026 qs = crypto_get_crp_ret_qs(curcpu());
2027 crp_ret_q = &qs->crp_ret_q;
2028 crp_ret_kq = &qs->crp_ret_kq;
2029 for (;;) {
2030 struct cryptop *crp;
2031 struct cryptkop *krp;
2032
2033 crp = TAILQ_FIRST(crp_ret_q);
2034 if (crp != NULL) {
2035 TAILQ_REMOVE(crp_ret_q, crp, crp_next);
2036 qs->crp_ret_q_len--;
2037 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
2038 }
2039 krp = TAILQ_FIRST(crp_ret_kq);
2040 if (krp != NULL) {
2041 TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
2042 qs->crp_ret_q_len--;
2043 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
2044 }
2045
2046 /* drop before calling any callbacks. */
2047 if (crp == NULL && krp == NULL)
2048 break;
2049
2050 mutex_spin_exit(&qs->crp_ret_q_mtx);
2051 if (crp != NULL) {
2052 #ifdef CRYPTO_TIMING
2053 if (crypto_timing) {
2054 /*
2055 * NB: We must copy the timestamp before
2056 * doing the callback as the cryptop is
2057 * likely to be reclaimed.
2058 */
2059 struct timespec t = crp->crp_tstamp;
2060 crypto_tstat(&cryptostats.cs_cb, &t);
2061 crp->crp_callback(crp);
2062 crypto_tstat(&cryptostats.cs_finis, &t);
2063 } else
2064 #endif
2065 {
2066 crp->crp_callback(crp);
2067 }
2068 }
2069 if (krp != NULL)
2070 krp->krp_callback(krp);
2071
2072 mutex_spin_enter(&qs->crp_ret_q_mtx);
2073 }
2074 crypto_put_crp_ret_qs(curcpu());
2075 }
2076
2077 /* NetBSD module interface */
2078
2079 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2080
2081 static int
2082 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2083 {
2084 int error = 0;
2085
2086 switch (cmd) {
2087 case MODULE_CMD_INIT:
2088 #ifdef _MODULE
2089 error = crypto_init();
2090 #endif
2091 break;
2092 case MODULE_CMD_FINI:
2093 #ifdef _MODULE
2094 error = crypto_destroy(true);
2095 #endif
2096 break;
2097 default:
2098 error = ENOTTY;
2099 }
2100 return error;
2101 }
2102