Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.106.2.1
      1 /*	$NetBSD: crypto.c,v 1.106.2.1 2020/04/13 08:05:17 martin Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.106.2.1 2020/04/13 08:05:17 martin Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/proc.h>
     62 #include <sys/pool.h>
     63 #include <sys/kthread.h>
     64 #include <sys/once.h>
     65 #include <sys/sysctl.h>
     66 #include <sys/intr.h>
     67 #include <sys/errno.h>
     68 #include <sys/module.h>
     69 #include <sys/xcall.h>
     70 #include <sys/device.h>
     71 #include <sys/cpu.h>
     72 #include <sys/percpu.h>
     73 #include <sys/kmem.h>
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ocf.h"
     77 #endif
     78 
     79 #include <opencrypto/cryptodev.h>
     80 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     81 
     82 /*
     83  * Crypto drivers register themselves by allocating a slot in the
     84  * crypto_drivers table with crypto_get_driverid() and then registering
     85  * each algorithm they support with crypto_register() and crypto_kregister().
     86  */
     87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
     88 static struct {
     89 	kmutex_t mtx;
     90 	int num;
     91 	struct cryptocap *list;
     92 } crypto_drv __cacheline_aligned;
     93 #define crypto_drv_mtx		(crypto_drv.mtx)
     94 #define crypto_drivers_num	(crypto_drv.num)
     95 #define crypto_drivers		(crypto_drv.list)
     96 
     97 static	void *crypto_q_si;
     98 static	void *crypto_ret_si;
     99 
    100 /*
    101  * There are two queues for crypto requests; one for symmetric (e.g.
    102  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    103  * See below for how synchronization is handled.
    104  */
    105 TAILQ_HEAD(crypto_crp_q, cryptop);
    106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
    107 struct crypto_crp_qs {
    108 	struct crypto_crp_q *crp_q;
    109 	struct crypto_crp_kq *crp_kq;
    110 };
    111 static percpu_t *crypto_crp_qs_percpu;
    112 
    113 static inline struct crypto_crp_qs *
    114 crypto_get_crp_qs(int *s)
    115 {
    116 
    117 	KASSERT(s != NULL);
    118 
    119 	*s = splsoftnet();
    120 	return percpu_getref(crypto_crp_qs_percpu);
    121 }
    122 
    123 static inline void
    124 crypto_put_crp_qs(int *s)
    125 {
    126 
    127 	KASSERT(s != NULL);
    128 
    129 	percpu_putref(crypto_crp_qs_percpu);
    130 	splx(*s);
    131 }
    132 
    133 static void
    134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
    135 {
    136 	struct crypto_crp_qs *qs_pc = p;
    137 	bool *isempty = arg;
    138 
    139 	if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
    140 		*isempty = true;
    141 }
    142 
    143 static void
    144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
    145 {
    146 	struct crypto_crp_qs *qs = p;
    147 
    148 	qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
    149 	qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
    150 
    151 	TAILQ_INIT(qs->crp_q);
    152 	TAILQ_INIT(qs->crp_kq);
    153 }
    154 
    155 /*
    156  * There are two queues for processing completed crypto requests; one
    157  * for the symmetric and one for the asymmetric ops.  We only need one
    158  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    159  * for how synchronization is handled.
    160  */
    161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
    162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
    163 struct crypto_crp_ret_qs {
    164 	kmutex_t crp_ret_q_mtx;
    165 	bool crp_ret_q_exit_flag;
    166 
    167 	struct crypto_crp_ret_q crp_ret_q;
    168 	int crp_ret_q_len;
    169 	int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
    170 	int crp_ret_q_drops;
    171 
    172 	struct crypto_crp_ret_kq crp_ret_kq;
    173 	int crp_ret_kq_len;
    174 	int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
    175 	int crp_ret_kq_drops;
    176 };
    177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
    178 
    179 
    180 static inline struct crypto_crp_ret_qs *
    181 crypto_get_crp_ret_qs(struct cpu_info *ci)
    182 {
    183 	u_int cpuid;
    184 	struct crypto_crp_ret_qs *qs;
    185 
    186 	KASSERT(ci != NULL);
    187 
    188 	cpuid = cpu_index(ci);
    189 	qs = crypto_crp_ret_qs_list[cpuid];
    190 	mutex_enter(&qs->crp_ret_q_mtx);
    191 	return qs;
    192 }
    193 
    194 static inline void
    195 crypto_put_crp_ret_qs(struct cpu_info *ci)
    196 {
    197 	u_int cpuid;
    198 	struct crypto_crp_ret_qs *qs;
    199 
    200 	KASSERT(ci != NULL);
    201 
    202 	cpuid = cpu_index(ci);
    203 	qs = crypto_crp_ret_qs_list[cpuid];
    204 	mutex_exit(&qs->crp_ret_q_mtx);
    205 }
    206 
    207 #ifndef CRYPTO_RET_Q_MAXLEN
    208 #define CRYPTO_RET_Q_MAXLEN 0
    209 #endif
    210 #ifndef CRYPTO_RET_KQ_MAXLEN
    211 #define CRYPTO_RET_KQ_MAXLEN 0
    212 #endif
    213 
    214 static int
    215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
    216 {
    217 	int error, len = 0;
    218 	struct sysctlnode node = *rnode;
    219 
    220 	for (int i = 0; i < ncpu; i++) {
    221 		struct crypto_crp_ret_qs *qs;
    222 		struct cpu_info *ci = cpu_lookup(i);
    223 
    224 		qs = crypto_get_crp_ret_qs(ci);
    225 		len += qs->crp_ret_q_len;
    226 		crypto_put_crp_ret_qs(ci);
    227 	}
    228 
    229 	node.sysctl_data = &len;
    230 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    231 	if (error || newp == NULL)
    232 		return error;
    233 
    234 	return 0;
    235 }
    236 
    237 static int
    238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
    239 {
    240 	int error, drops = 0;
    241 	struct sysctlnode node = *rnode;
    242 
    243 	for (int i = 0; i < ncpu; i++) {
    244 		struct crypto_crp_ret_qs *qs;
    245 		struct cpu_info *ci = cpu_lookup(i);
    246 
    247 		qs = crypto_get_crp_ret_qs(ci);
    248 		drops += qs->crp_ret_q_drops;
    249 		crypto_put_crp_ret_qs(ci);
    250 	}
    251 
    252 	node.sysctl_data = &drops;
    253 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    254 	if (error || newp == NULL)
    255 		return error;
    256 
    257 	return 0;
    258 }
    259 
    260 static int
    261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
    262 {
    263 	int error, maxlen;
    264 	struct crypto_crp_ret_qs *qs;
    265 	struct sysctlnode node = *rnode;
    266 
    267 	/* each crp_ret_kq_maxlen is the same. */
    268 	qs = crypto_get_crp_ret_qs(curcpu());
    269 	maxlen = qs->crp_ret_q_maxlen;
    270 	crypto_put_crp_ret_qs(curcpu());
    271 
    272 	node.sysctl_data = &maxlen;
    273 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    274 	if (error || newp == NULL)
    275 		return error;
    276 
    277 	for (int i = 0; i < ncpu; i++) {
    278 		struct cpu_info *ci = cpu_lookup(i);
    279 
    280 		qs = crypto_get_crp_ret_qs(ci);
    281 		qs->crp_ret_q_maxlen = maxlen;
    282 		crypto_put_crp_ret_qs(ci);
    283 	}
    284 
    285 	return 0;
    286 }
    287 
    288 static int
    289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
    290 {
    291 	int error, len = 0;
    292 	struct sysctlnode node = *rnode;
    293 
    294 	for (int i = 0; i < ncpu; i++) {
    295 		struct crypto_crp_ret_qs *qs;
    296 		struct cpu_info *ci = cpu_lookup(i);
    297 
    298 		qs = crypto_get_crp_ret_qs(ci);
    299 		len += qs->crp_ret_kq_len;
    300 		crypto_put_crp_ret_qs(ci);
    301 	}
    302 
    303 	node.sysctl_data = &len;
    304 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    305 	if (error || newp == NULL)
    306 		return error;
    307 
    308 	return 0;
    309 }
    310 
    311 static int
    312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
    313 {
    314 	int error, drops = 0;
    315 	struct sysctlnode node = *rnode;
    316 
    317 	for (int i = 0; i < ncpu; i++) {
    318 		struct crypto_crp_ret_qs *qs;
    319 		struct cpu_info *ci = cpu_lookup(i);
    320 
    321 		qs = crypto_get_crp_ret_qs(ci);
    322 		drops += qs->crp_ret_kq_drops;
    323 		crypto_put_crp_ret_qs(ci);
    324 	}
    325 
    326 	node.sysctl_data = &drops;
    327 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    328 	if (error || newp == NULL)
    329 		return error;
    330 
    331 	return 0;
    332 }
    333 
    334 static int
    335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
    336 {
    337 	int error, maxlen;
    338 	struct crypto_crp_ret_qs *qs;
    339 	struct sysctlnode node = *rnode;
    340 
    341 	/* each crp_ret_kq_maxlen is the same. */
    342 	qs = crypto_get_crp_ret_qs(curcpu());
    343 	maxlen = qs->crp_ret_kq_maxlen;
    344 	crypto_put_crp_ret_qs(curcpu());
    345 
    346 	node.sysctl_data = &maxlen;
    347 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    348 	if (error || newp == NULL)
    349 		return error;
    350 
    351 	for (int i = 0; i < ncpu; i++) {
    352 		struct cpu_info *ci = cpu_lookup(i);
    353 
    354 		qs = crypto_get_crp_ret_qs(ci);
    355 		qs->crp_ret_kq_maxlen = maxlen;
    356 		crypto_put_crp_ret_qs(ci);
    357 	}
    358 
    359 	return 0;
    360 }
    361 
    362 /*
    363  * Crypto op and descriptor data structures are allocated
    364  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    365  */
    366 static pool_cache_t cryptop_cache;
    367 static pool_cache_t cryptodesc_cache;
    368 static pool_cache_t cryptkop_cache;
    369 
    370 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    371 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    372 /*
    373  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    374  * access to hardware versus software transforms as below:
    375  *
    376  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    377  *                              transforms, always
    378  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    379  *                              requests for non-accelerated transforms
    380  *                              (handling the latter in software)
    381  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    382  *                               are hardware-accelerated.
    383  */
    384 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    385 
    386 static void
    387 sysctl_opencrypto_setup(struct sysctllog **clog)
    388 {
    389 	const struct sysctlnode *ocnode;
    390 	const struct sysctlnode *retqnode, *retkqnode;
    391 
    392 	sysctl_createv(clog, 0, NULL, NULL,
    393 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    394 		       CTLTYPE_INT, "usercrypto",
    395 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    396 			   "crypto support"),
    397 		       NULL, 0, &crypto_usercrypto, 0,
    398 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    399 	sysctl_createv(clog, 0, NULL, NULL,
    400 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    401 		       CTLTYPE_INT, "userasymcrypto",
    402 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    403 			   "asymmetric crypto support"),
    404 		       NULL, 0, &crypto_userasymcrypto, 0,
    405 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    406 	sysctl_createv(clog, 0, NULL, NULL,
    407 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    408 		       CTLTYPE_INT, "cryptodevallowsoft",
    409 		       SYSCTL_DESCR("Enable/disable use of software "
    410 			   "asymmetric crypto support"),
    411 		       NULL, 0, &crypto_devallowsoft, 0,
    412 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    413 
    414 	sysctl_createv(clog, 0, NULL, &ocnode,
    415 		       CTLFLAG_PERMANENT,
    416 		       CTLTYPE_NODE, "opencrypto",
    417 		       SYSCTL_DESCR("opencrypto related entries"),
    418 		       NULL, 0, NULL, 0,
    419 		       CTL_CREATE, CTL_EOL);
    420 
    421 	sysctl_createv(clog, 0, &ocnode, &retqnode,
    422 		       CTLFLAG_PERMANENT,
    423 		       CTLTYPE_NODE, "crypto_ret_q",
    424 		       SYSCTL_DESCR("crypto_ret_q related entries"),
    425 		       NULL, 0, NULL, 0,
    426 		       CTL_CREATE, CTL_EOL);
    427 	sysctl_createv(clog, 0, &retqnode, NULL,
    428 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    429 		       CTLTYPE_INT, "len",
    430 		       SYSCTL_DESCR("Current queue length"),
    431 		       sysctl_opencrypto_q_len, 0,
    432 		       NULL, 0,
    433 		       CTL_CREATE, CTL_EOL);
    434 	sysctl_createv(clog, 0, &retqnode, NULL,
    435 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    436 		       CTLTYPE_INT, "drops",
    437 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    438 		       sysctl_opencrypto_q_drops, 0,
    439 		       NULL, 0,
    440 		       CTL_CREATE, CTL_EOL);
    441 	sysctl_createv(clog, 0, &retqnode, NULL,
    442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    443 		       CTLTYPE_INT, "maxlen",
    444 		       SYSCTL_DESCR("Maximum allowed queue length"),
    445 		       sysctl_opencrypto_q_maxlen, 0,
    446 		       NULL, 0,
    447 		       CTL_CREATE, CTL_EOL);
    448 
    449 
    450 	sysctl_createv(clog, 0, &ocnode, &retkqnode,
    451 		       CTLFLAG_PERMANENT,
    452 		       CTLTYPE_NODE, "crypto_ret_kq",
    453 		       SYSCTL_DESCR("crypto_ret_kq related entries"),
    454 		       NULL, 0, NULL, 0,
    455 		       CTL_CREATE, CTL_EOL);
    456 	sysctl_createv(clog, 0, &retkqnode, NULL,
    457 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    458 		       CTLTYPE_INT, "len",
    459 		       SYSCTL_DESCR("Current queue length"),
    460 		       sysctl_opencrypto_kq_len, 0,
    461 		       NULL, 0,
    462 		       CTL_CREATE, CTL_EOL);
    463 	sysctl_createv(clog, 0, &retkqnode, NULL,
    464 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    465 		       CTLTYPE_INT, "drops",
    466 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    467 		       sysctl_opencrypto_kq_drops, 0,
    468 		       NULL, 0,
    469 		       CTL_CREATE, CTL_EOL);
    470 	sysctl_createv(clog, 0, &retkqnode, NULL,
    471 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    472 		       CTLTYPE_INT, "maxlen",
    473 		       SYSCTL_DESCR("Maximum allowed queue length"),
    474 		       sysctl_opencrypto_kq_maxlen, 0,
    475 		       NULL, 0,
    476 		       CTL_CREATE, CTL_EOL);
    477 }
    478 
    479 /*
    480  * Synchronization: read carefully, this is non-trivial.
    481  *
    482  * Crypto requests are submitted via crypto_dispatch.  Typically
    483  * these come in from network protocols at spl0 (output path) or
    484  * spl[,soft]net (input path).
    485  *
    486  * Requests are typically passed on the driver directly, but they
    487  * may also be queued for processing by a software interrupt thread,
    488  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    489  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    490  * when a request is complete.  Hardware crypto drivers are assumed
    491  * to register their IRQ's as network devices so their interrupt handlers
    492  * and subsequent "done callbacks" happen at spl[imp,net].
    493  *
    494  * Completed crypto ops are queued for a separate kernel thread that
    495  * handles the callbacks at spl0.  This decoupling insures the crypto
    496  * driver interrupt service routine is not delayed while the callback
    497  * takes place and that callbacks are delivered after a context switch
    498  * (as opposed to a software interrupt that clients must block).
    499  *
    500  * This scheme is not intended for SMP machines.
    501  */
    502 static	void cryptointr(void *);	/* swi thread to dispatch ops */
    503 static	void cryptoret_softint(void *);	/* kernel thread for callbacks*/
    504 static	int crypto_destroy(bool);
    505 static	int crypto_invoke(struct cryptop *crp, int hint);
    506 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    507 
    508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
    509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
    510 static struct cryptocap *crypto_checkdriver(u_int32_t);
    511 static void crypto_driver_lock(struct cryptocap *);
    512 static void crypto_driver_unlock(struct cryptocap *);
    513 static void crypto_driver_clear(struct cryptocap *);
    514 
    515 static int crypto_init_finalize(device_t);
    516 
    517 static struct cryptostats cryptostats;
    518 #ifdef CRYPTO_TIMING
    519 static	int crypto_timing = 0;
    520 #endif
    521 
    522 static struct sysctllog *sysctl_opencrypto_clog;
    523 
    524 static void
    525 crypto_crp_ret_qs_init(void)
    526 {
    527 	int i;
    528 
    529 	crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
    530 	    KM_SLEEP);
    531 
    532 	for (i = 0; i < ncpu; i++) {
    533 		struct crypto_crp_ret_qs *qs;
    534 
    535 		qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
    536 		mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    537 		qs->crp_ret_q_exit_flag = false;
    538 
    539 		TAILQ_INIT(&qs->crp_ret_q);
    540 		qs->crp_ret_q_len = 0;
    541 		qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
    542 		qs->crp_ret_q_drops = 0;
    543 
    544 		TAILQ_INIT(&qs->crp_ret_kq);
    545 		qs->crp_ret_kq_len = 0;
    546 		qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
    547 		qs->crp_ret_kq_drops = 0;
    548 
    549 		crypto_crp_ret_qs_list[i] = qs;
    550 	}
    551 }
    552 
    553 static int
    554 crypto_init0(void)
    555 {
    556 
    557 	mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
    558 	cryptop_cache = pool_cache_init(sizeof(struct cryptop),
    559 	    coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
    560 	cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
    561 	    coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
    562 	cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
    563 	    coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
    564 
    565 	crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
    566 	    crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);
    567 
    568 	crypto_crp_ret_qs_init();
    569 
    570 	crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
    571 	    sizeof(struct cryptocap), KM_SLEEP);
    572 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    573 
    574 	crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
    575 	if (crypto_q_si == NULL) {
    576 		printf("crypto_init: cannot establish request queue handler\n");
    577 		return crypto_destroy(false);
    578 	}
    579 
    580 	/*
    581 	 * Some encryption devices (such as mvcesa) are attached before
    582 	 * ipi_sysinit(). That causes an assertion in ipi_register() as
    583 	 * crypto_ret_si softint uses SOFTINT_RCPU.
    584 	 */
    585 	if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
    586 		printf("crypto_init: cannot register crypto_init_finalize\n");
    587 		return crypto_destroy(false);
    588 	}
    589 
    590 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    591 
    592 	return 0;
    593 }
    594 
    595 static int
    596 crypto_init_finalize(device_t self __unused)
    597 {
    598 
    599 	crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
    600 	    &cryptoret_softint, NULL);
    601 	KASSERT(crypto_ret_si != NULL);
    602 
    603 	return 0;
    604 }
    605 
    606 int
    607 crypto_init(void)
    608 {
    609 	static ONCE_DECL(crypto_init_once);
    610 
    611 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    612 }
    613 
    614 static int
    615 crypto_destroy(bool exit_kthread)
    616 {
    617 	int i;
    618 
    619 	if (exit_kthread) {
    620 		struct cryptocap *cap = NULL;
    621 		bool is_busy = false;
    622 
    623 		/* if we have any in-progress requests, don't unload */
    624 		percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
    625 				   &is_busy);
    626 		if (is_busy)
    627 			return EBUSY;
    628 		/* FIXME:
    629 		 * prohibit enqueue to crp_q and crp_kq after here.
    630 		 */
    631 
    632 		mutex_enter(&crypto_drv_mtx);
    633 		for (i = 0; i < crypto_drivers_num; i++) {
    634 			cap = crypto_checkdriver(i);
    635 			if (cap == NULL)
    636 				continue;
    637 			if (cap->cc_sessions != 0) {
    638 				mutex_exit(&crypto_drv_mtx);
    639 				return EBUSY;
    640 			}
    641 		}
    642 		mutex_exit(&crypto_drv_mtx);
    643 		/* FIXME:
    644 		 * prohibit touch crypto_drivers[] and each element after here.
    645 		 */
    646 
    647 		/* Ensure cryptoret_softint() is never scheduled again.  */
    648 		for (i = 0; i < ncpu; i++) {
    649 			struct crypto_crp_ret_qs *qs;
    650 			struct cpu_info *ci = cpu_lookup(i);
    651 
    652 			qs = crypto_get_crp_ret_qs(ci);
    653 			qs->crp_ret_q_exit_flag = true;
    654 			crypto_put_crp_ret_qs(ci);
    655 		}
    656 	}
    657 
    658 	if (sysctl_opencrypto_clog != NULL)
    659 		sysctl_teardown(&sysctl_opencrypto_clog);
    660 
    661 	if (crypto_ret_si != NULL)
    662 		softint_disestablish(crypto_ret_si);
    663 
    664 	if (crypto_q_si != NULL)
    665 		softint_disestablish(crypto_q_si);
    666 
    667 	mutex_enter(&crypto_drv_mtx);
    668 	if (crypto_drivers != NULL)
    669 		kmem_free(crypto_drivers,
    670 		    crypto_drivers_num * sizeof(struct cryptocap));
    671 	mutex_exit(&crypto_drv_mtx);
    672 
    673 	percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
    674 
    675 	pool_cache_destroy(cryptop_cache);
    676 	pool_cache_destroy(cryptodesc_cache);
    677 	pool_cache_destroy(cryptkop_cache);
    678 
    679 	mutex_destroy(&crypto_drv_mtx);
    680 
    681 	return 0;
    682 }
    683 
    684 static bool
    685 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
    686 {
    687 	struct cryptoini *cr;
    688 
    689 	for (cr = cri; cr; cr = cr->cri_next)
    690 		if (cap->cc_alg[cr->cri_alg] == 0) {
    691 			DPRINTF("alg %d not supported\n", cr->cri_alg);
    692 			return false;
    693 		}
    694 
    695 	return true;
    696 }
    697 
    698 #define CRYPTO_ACCEPT_HARDWARE 0x1
    699 #define CRYPTO_ACCEPT_SOFTWARE 0x2
    700 /*
    701  * The algorithm we use here is pretty stupid; just use the
    702  * first driver that supports all the algorithms we need.
    703  * If there are multiple drivers we choose the driver with
    704  * the fewest active sessions. We prefer hardware-backed
    705  * drivers to software ones.
    706  *
    707  * XXX We need more smarts here (in real life too, but that's
    708  * XXX another story altogether).
    709  */
    710 static struct cryptocap *
    711 crypto_select_driver_lock(struct cryptoini *cri, int hard)
    712 {
    713 	u_int32_t hid;
    714 	int accept;
    715 	struct cryptocap *cap, *best;
    716 	int error = 0;
    717 
    718 	best = NULL;
    719 	/*
    720 	 * hard == 0 can use both hardware and software drivers.
    721 	 * We use hardware drivers prior to software drivers, so search
    722 	 * hardware drivers at first time.
    723 	 */
    724 	if (hard >= 0)
    725 		accept = CRYPTO_ACCEPT_HARDWARE;
    726 	else
    727 		accept = CRYPTO_ACCEPT_SOFTWARE;
    728 again:
    729 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    730 		cap = crypto_checkdriver(hid);
    731 		if (cap == NULL)
    732 			continue;
    733 
    734 		crypto_driver_lock(cap);
    735 
    736 		/*
    737 		 * If it's not initialized or has remaining sessions
    738 		 * referencing it, skip.
    739 		 */
    740 		if (cap->cc_newsession == NULL ||
    741 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
    742 			crypto_driver_unlock(cap);
    743 			continue;
    744 		}
    745 
    746 		/* Hardware required -- ignore software drivers. */
    747 		if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
    748 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
    749 			crypto_driver_unlock(cap);
    750 			continue;
    751 		}
    752 		/* Software required -- ignore hardware drivers. */
    753 		if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
    754 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
    755 			crypto_driver_unlock(cap);
    756 			continue;
    757 		}
    758 
    759 		/* See if all the algorithms are supported. */
    760 		if (crypto_driver_suitable(cap, cri)) {
    761 			if (best == NULL) {
    762 				/* keep holding crypto_driver_lock(cap) */
    763 				best = cap;
    764 				continue;
    765 			} else if (cap->cc_sessions < best->cc_sessions) {
    766 				crypto_driver_unlock(best);
    767 				/* keep holding crypto_driver_lock(cap) */
    768 				best = cap;
    769 				continue;
    770 			}
    771 		}
    772 
    773 		crypto_driver_unlock(cap);
    774 	}
    775 	if (best == NULL && hard == 0
    776 	    && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
    777 		accept = CRYPTO_ACCEPT_SOFTWARE;
    778 		goto again;
    779 	}
    780 
    781 	if (best == NULL && hard == 0 && error == 0) {
    782 		mutex_exit(&crypto_drv_mtx);
    783 		error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
    784 		mutex_enter(&crypto_drv_mtx);
    785 		if (error == 0) {
    786 			error = EINVAL;
    787 			goto again;
    788 		}
    789 	}
    790 
    791 	return best;
    792 }
    793 
    794 /*
    795  * Create a new session.
    796  */
    797 int
    798 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    799 {
    800 	struct cryptocap *cap;
    801 	int err = EINVAL;
    802 
    803 	mutex_enter(&crypto_drv_mtx);
    804 
    805 	cap = crypto_select_driver_lock(cri, hard);
    806 	if (cap != NULL) {
    807 		u_int32_t hid, lid;
    808 
    809 		hid = cap - crypto_drivers;
    810 		/*
    811 		 * Can't do everything in one session.
    812 		 *
    813 		 * XXX Fix this. We need to inject a "virtual" session layer right
    814 		 * XXX about here.
    815 		 */
    816 
    817 		/* Call the driver initialization routine. */
    818 		lid = hid;		/* Pass the driver ID. */
    819 		crypto_driver_unlock(cap);
    820 		err = cap->cc_newsession(cap->cc_arg, &lid, cri);
    821 		crypto_driver_lock(cap);
    822 		if (err == 0) {
    823 			(*sid) = hid;
    824 			(*sid) <<= 32;
    825 			(*sid) |= (lid & 0xffffffff);
    826 			(cap->cc_sessions)++;
    827 		} else {
    828 			DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
    829 			    hid, err);
    830 		}
    831 		crypto_driver_unlock(cap);
    832 	}
    833 
    834 	mutex_exit(&crypto_drv_mtx);
    835 
    836 	return err;
    837 }
    838 
    839 /*
    840  * Delete an existing session (or a reserved session on an unregistered
    841  * driver).
    842  */
    843 int
    844 crypto_freesession(u_int64_t sid)
    845 {
    846 	struct cryptocap *cap;
    847 	int err = 0;
    848 
    849 	/* Determine two IDs. */
    850 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
    851 	if (cap == NULL)
    852 		return ENOENT;
    853 
    854 	if (cap->cc_sessions)
    855 		(cap->cc_sessions)--;
    856 
    857 	/* Call the driver cleanup routine, if available. */
    858 	if (cap->cc_freesession)
    859 		err = cap->cc_freesession(cap->cc_arg, sid);
    860 	else
    861 		err = 0;
    862 
    863 	/*
    864 	 * If this was the last session of a driver marked as invalid,
    865 	 * make the entry available for reuse.
    866 	 */
    867 	if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
    868 		crypto_driver_clear(cap);
    869 
    870 	crypto_driver_unlock(cap);
    871 	return err;
    872 }
    873 
    874 static bool
    875 crypto_checkdriver_initialized(const struct cryptocap *cap)
    876 {
    877 
    878 	return cap->cc_process != NULL ||
    879 	    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
    880 	    cap->cc_sessions != 0;
    881 }
    882 
    883 /*
    884  * Return an unused driver id.  Used by drivers prior to registering
    885  * support for the algorithms they handle.
    886  */
    887 int32_t
    888 crypto_get_driverid(u_int32_t flags)
    889 {
    890 	struct cryptocap *newdrv;
    891 	struct cryptocap *cap = NULL;
    892 	int i;
    893 
    894 	(void)crypto_init();		/* XXX oh, this is foul! */
    895 
    896 	mutex_enter(&crypto_drv_mtx);
    897 	for (i = 0; i < crypto_drivers_num; i++) {
    898 		cap = crypto_checkdriver_uninit(i);
    899 		if (cap == NULL || crypto_checkdriver_initialized(cap))
    900 			continue;
    901 		break;
    902 	}
    903 
    904 	/* Out of entries, allocate some more. */
    905 	if (cap == NULL) {
    906 		/* Be careful about wrap-around. */
    907 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    908 			mutex_exit(&crypto_drv_mtx);
    909 			printf("crypto: driver count wraparound!\n");
    910 			return -1;
    911 		}
    912 
    913 		newdrv = kmem_zalloc(2 * crypto_drivers_num *
    914 		    sizeof(struct cryptocap), KM_SLEEP);
    915 		memcpy(newdrv, crypto_drivers,
    916 		    crypto_drivers_num * sizeof(struct cryptocap));
    917 		kmem_free(crypto_drivers,
    918 		    crypto_drivers_num * sizeof(struct cryptocap));
    919 
    920 		crypto_drivers_num *= 2;
    921 		crypto_drivers = newdrv;
    922 
    923 		cap = crypto_checkdriver_uninit(i);
    924 		KASSERT(cap != NULL);
    925 	}
    926 
    927 	/* NB: state is zero'd on free */
    928 	cap->cc_sessions = 1;	/* Mark */
    929 	cap->cc_flags = flags;
    930 	mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
    931 
    932 	if (bootverbose)
    933 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    934 
    935 	mutex_exit(&crypto_drv_mtx);
    936 
    937 	return i;
    938 }
    939 
    940 static struct cryptocap *
    941 crypto_checkdriver_lock(u_int32_t hid)
    942 {
    943 	struct cryptocap *cap;
    944 
    945 	KASSERT(crypto_drivers != NULL);
    946 
    947 	if (hid >= crypto_drivers_num)
    948 		return NULL;
    949 
    950 	cap = &crypto_drivers[hid];
    951 	mutex_enter(&cap->cc_lock);
    952 	return cap;
    953 }
    954 
    955 /*
    956  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    957  * situations
    958  *     - crypto_drivers[] may not be allocated
    959  *     - crypto_drivers[hid] may not be initialized
    960  */
    961 static struct cryptocap *
    962 crypto_checkdriver_uninit(u_int32_t hid)
    963 {
    964 
    965 	KASSERT(mutex_owned(&crypto_drv_mtx));
    966 
    967 	if (crypto_drivers == NULL)
    968 		return NULL;
    969 
    970 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    971 }
    972 
    973 /*
    974  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    975  * situations
    976  *     - crypto_drivers[] may not be allocated
    977  *     - crypto_drivers[hid] may not be initialized
    978  */
    979 static struct cryptocap *
    980 crypto_checkdriver(u_int32_t hid)
    981 {
    982 
    983 	KASSERT(mutex_owned(&crypto_drv_mtx));
    984 
    985 	if (crypto_drivers == NULL || hid >= crypto_drivers_num)
    986 		return NULL;
    987 
    988 	struct cryptocap *cap = &crypto_drivers[hid];
    989 	return crypto_checkdriver_initialized(cap) ? cap : NULL;
    990 }
    991 
    992 static inline void
    993 crypto_driver_lock(struct cryptocap *cap)
    994 {
    995 
    996 	KASSERT(cap != NULL);
    997 
    998 	mutex_enter(&cap->cc_lock);
    999 }
   1000 
   1001 static inline void
   1002 crypto_driver_unlock(struct cryptocap *cap)
   1003 {
   1004 
   1005 	KASSERT(cap != NULL);
   1006 
   1007 	mutex_exit(&cap->cc_lock);
   1008 }
   1009 
   1010 static void
   1011 crypto_driver_clear(struct cryptocap *cap)
   1012 {
   1013 
   1014 	if (cap == NULL)
   1015 		return;
   1016 
   1017 	KASSERT(mutex_owned(&cap->cc_lock));
   1018 
   1019 	cap->cc_sessions = 0;
   1020 	memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
   1021 	memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
   1022 	memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
   1023 	cap->cc_flags = 0;
   1024 	cap->cc_qblocked = 0;
   1025 	cap->cc_kqblocked = 0;
   1026 
   1027 	cap->cc_arg = NULL;
   1028 	cap->cc_newsession = NULL;
   1029 	cap->cc_process = NULL;
   1030 	cap->cc_freesession = NULL;
   1031 	cap->cc_kprocess = NULL;
   1032 }
   1033 
   1034 /*
   1035  * Register support for a key-related algorithm.  This routine
   1036  * is called once for each algorithm supported a driver.
   1037  */
   1038 int
   1039 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
   1040     int (*kprocess)(void *, struct cryptkop *, int),
   1041     void *karg)
   1042 {
   1043 	struct cryptocap *cap;
   1044 	int err;
   1045 
   1046 	mutex_enter(&crypto_drv_mtx);
   1047 
   1048 	cap = crypto_checkdriver_lock(driverid);
   1049 	if (cap != NULL &&
   1050 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
   1051 		/*
   1052 		 * XXX Do some performance testing to determine placing.
   1053 		 * XXX We probably need an auxiliary data structure that
   1054 		 * XXX describes relative performances.
   1055 		 */
   1056 
   1057 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
   1058 		if (bootverbose) {
   1059 			printf("crypto: driver %u registers key alg %u "
   1060 			       " flags %u\n",
   1061 				driverid,
   1062 				kalg,
   1063 				flags
   1064 			);
   1065 		}
   1066 
   1067 		if (cap->cc_kprocess == NULL) {
   1068 			cap->cc_karg = karg;
   1069 			cap->cc_kprocess = kprocess;
   1070 		}
   1071 		err = 0;
   1072 	} else
   1073 		err = EINVAL;
   1074 
   1075 	mutex_exit(&crypto_drv_mtx);
   1076 	return err;
   1077 }
   1078 
   1079 /*
   1080  * Register support for a non-key-related algorithm.  This routine
   1081  * is called once for each such algorithm supported by a driver.
   1082  */
   1083 int
   1084 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
   1085     u_int32_t flags,
   1086     int (*newses)(void *, u_int32_t*, struct cryptoini*),
   1087     int (*freeses)(void *, u_int64_t),
   1088     int (*process)(void *, struct cryptop *, int),
   1089     void *arg)
   1090 {
   1091 	struct cryptocap *cap;
   1092 	int err;
   1093 
   1094 	cap = crypto_checkdriver_lock(driverid);
   1095 	if (cap == NULL)
   1096 		return EINVAL;
   1097 
   1098 	/* NB: algorithms are in the range [1..max] */
   1099 	if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
   1100 		/*
   1101 		 * XXX Do some performance testing to determine placing.
   1102 		 * XXX We probably need an auxiliary data structure that
   1103 		 * XXX describes relative performances.
   1104 		 */
   1105 
   1106 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
   1107 		cap->cc_max_op_len[alg] = maxoplen;
   1108 		if (bootverbose) {
   1109 			printf("crypto: driver %u registers alg %u "
   1110 				"flags %u maxoplen %u\n",
   1111 				driverid,
   1112 				alg,
   1113 				flags,
   1114 				maxoplen
   1115 			);
   1116 		}
   1117 
   1118 		if (cap->cc_process == NULL) {
   1119 			cap->cc_arg = arg;
   1120 			cap->cc_newsession = newses;
   1121 			cap->cc_process = process;
   1122 			cap->cc_freesession = freeses;
   1123 			cap->cc_sessions = 0;		/* Unmark */
   1124 		}
   1125 		err = 0;
   1126 	} else
   1127 		err = EINVAL;
   1128 
   1129 	crypto_driver_unlock(cap);
   1130 
   1131 	return err;
   1132 }
   1133 
   1134 static int
   1135 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
   1136 {
   1137 	int i;
   1138 	u_int32_t ses;
   1139 	bool lastalg = true;
   1140 
   1141 	KASSERT(cap != NULL);
   1142 	KASSERT(mutex_owned(&cap->cc_lock));
   1143 
   1144 	if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
   1145 		return EINVAL;
   1146 
   1147 	if (!all && cap->cc_alg[alg] == 0)
   1148 		return EINVAL;
   1149 
   1150 	cap->cc_alg[alg] = 0;
   1151 	cap->cc_max_op_len[alg] = 0;
   1152 
   1153 	if (all) {
   1154 		if (alg != CRYPTO_ALGORITHM_MAX)
   1155 			lastalg = false;
   1156 	} else {
   1157 		/* Was this the last algorithm ? */
   1158 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
   1159 			if (cap->cc_alg[i] != 0) {
   1160 				lastalg = false;
   1161 				break;
   1162 			}
   1163 	}
   1164 	if (lastalg) {
   1165 		ses = cap->cc_sessions;
   1166 		crypto_driver_clear(cap);
   1167 		if (ses != 0) {
   1168 			/*
   1169 			 * If there are pending sessions, just mark as invalid.
   1170 			 */
   1171 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
   1172 			cap->cc_sessions = ses;
   1173 		}
   1174 	}
   1175 
   1176 	return 0;
   1177 }
   1178 
   1179 /*
   1180  * Unregister a crypto driver. If there are pending sessions using it,
   1181  * leave enough information around so that subsequent calls using those
   1182  * sessions will correctly detect the driver has been unregistered and
   1183  * reroute requests.
   1184  */
   1185 int
   1186 crypto_unregister(u_int32_t driverid, int alg)
   1187 {
   1188 	int err;
   1189 	struct cryptocap *cap;
   1190 
   1191 	cap = crypto_checkdriver_lock(driverid);
   1192 	err = crypto_unregister_locked(cap, alg, false);
   1193 	crypto_driver_unlock(cap);
   1194 
   1195 	return err;
   1196 }
   1197 
   1198 /*
   1199  * Unregister all algorithms associated with a crypto driver.
   1200  * If there are pending sessions using it, leave enough information
   1201  * around so that subsequent calls using those sessions will
   1202  * correctly detect the driver has been unregistered and reroute
   1203  * requests.
   1204  */
   1205 int
   1206 crypto_unregister_all(u_int32_t driverid)
   1207 {
   1208 	int err, i;
   1209 	struct cryptocap *cap;
   1210 
   1211 	cap = crypto_checkdriver_lock(driverid);
   1212 	for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
   1213 		err = crypto_unregister_locked(cap, i, true);
   1214 		if (err)
   1215 			break;
   1216 	}
   1217 	crypto_driver_unlock(cap);
   1218 
   1219 	return err;
   1220 }
   1221 
   1222 /*
   1223  * Clear blockage on a driver.  The what parameter indicates whether
   1224  * the driver is now ready for cryptop's and/or cryptokop's.
   1225  */
   1226 int
   1227 crypto_unblock(u_int32_t driverid, int what)
   1228 {
   1229 	struct cryptocap *cap;
   1230 	int needwakeup = 0;
   1231 
   1232 	cap = crypto_checkdriver_lock(driverid);
   1233 	if (cap == NULL)
   1234 		return EINVAL;
   1235 
   1236 	if (what & CRYPTO_SYMQ) {
   1237 		needwakeup |= cap->cc_qblocked;
   1238 		cap->cc_qblocked = 0;
   1239 	}
   1240 	if (what & CRYPTO_ASYMQ) {
   1241 		needwakeup |= cap->cc_kqblocked;
   1242 		cap->cc_kqblocked = 0;
   1243 	}
   1244 	crypto_driver_unlock(cap);
   1245 	if (needwakeup) {
   1246 		kpreempt_disable();
   1247 		softint_schedule(crypto_q_si);
   1248 		kpreempt_enable();
   1249 	}
   1250 
   1251 	return 0;
   1252 }
   1253 
   1254 /*
   1255  * Dispatch a crypto request to a driver or queue
   1256  * it, to be processed by the kernel thread.
   1257  */
   1258 int
   1259 crypto_dispatch(struct cryptop *crp)
   1260 {
   1261 	int result, s;
   1262 	struct cryptocap *cap;
   1263 	struct crypto_crp_qs *crp_qs;
   1264 	struct crypto_crp_q *crp_q;
   1265 
   1266 	KASSERT(crp != NULL);
   1267 
   1268 	DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
   1269 
   1270 	cryptostats.cs_ops++;
   1271 
   1272 #ifdef CRYPTO_TIMING
   1273 	if (crypto_timing)
   1274 		nanouptime(&crp->crp_tstamp);
   1275 #endif
   1276 
   1277 	if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1278 		int wasempty;
   1279 		/*
   1280 		 * Caller marked the request as ``ok to delay'';
   1281 		 * queue it for the swi thread.  This is desirable
   1282 		 * when the operation is low priority and/or suitable
   1283 		 * for batching.
   1284 		 *
   1285 		 * don't care list order in batch job.
   1286 		 */
   1287 		crp_qs = crypto_get_crp_qs(&s);
   1288 		crp_q = crp_qs->crp_q;
   1289 		wasempty  = TAILQ_EMPTY(crp_q);
   1290 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
   1291 		crypto_put_crp_qs(&s);
   1292 		crp_q = NULL;
   1293 		if (wasempty) {
   1294 			kpreempt_disable();
   1295 			softint_schedule(crypto_q_si);
   1296 			kpreempt_enable();
   1297 		}
   1298 
   1299 		return 0;
   1300 	}
   1301 
   1302 	crp_qs = crypto_get_crp_qs(&s);
   1303 	crp_q = crp_qs->crp_q;
   1304 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1305 	/*
   1306 	 * TODO:
   1307 	 * If we can ensure the driver has been valid until the driver is
   1308 	 * done crypto_unregister(), this migrate operation is not required.
   1309 	 */
   1310 	if (cap == NULL) {
   1311 		/*
   1312 		 * The driver must be detached, so this request will migrate
   1313 		 * to other drivers in cryptointr() later.
   1314 		 */
   1315 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
   1316 		result = 0;
   1317 		goto out;
   1318 	}
   1319 
   1320 	if (cap->cc_qblocked != 0) {
   1321 		crypto_driver_unlock(cap);
   1322 		/*
   1323 		 * The driver is blocked, just queue the op until
   1324 		 * it unblocks and the swi thread gets kicked.
   1325 		 */
   1326 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
   1327 		result = 0;
   1328 		goto out;
   1329 	}
   1330 
   1331 	/*
   1332 	 * Caller marked the request to be processed
   1333 	 * immediately; dispatch it directly to the
   1334 	 * driver unless the driver is currently blocked.
   1335 	 */
   1336 	crypto_driver_unlock(cap);
   1337 	result = crypto_invoke(crp, 0);
   1338 	if (result == ERESTART) {
   1339 		/*
   1340 		 * The driver ran out of resources, mark the
   1341 		 * driver ``blocked'' for cryptop's and put
   1342 		 * the op on the queue.
   1343 		 */
   1344 		crypto_driver_lock(cap);
   1345 		cap->cc_qblocked = 1;
   1346 		crypto_driver_unlock(cap);
   1347 		TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
   1348 		cryptostats.cs_blocks++;
   1349 
   1350 		/*
   1351 		 * The crp is enqueued to crp_q, that is,
   1352 		 * no error occurs. So, this function should
   1353 		 * not return error.
   1354 		 */
   1355 		result = 0;
   1356 	}
   1357 
   1358 out:
   1359 	crypto_put_crp_qs(&s);
   1360 	return result;
   1361 }
   1362 
   1363 /*
   1364  * Add an asymetric crypto request to a queue,
   1365  * to be processed by the kernel thread.
   1366  */
   1367 int
   1368 crypto_kdispatch(struct cryptkop *krp)
   1369 {
   1370 	int result, s;
   1371 	struct cryptocap *cap;
   1372 	struct crypto_crp_qs *crp_qs;
   1373 	struct crypto_crp_kq *crp_kq;
   1374 
   1375 	KASSERT(krp != NULL);
   1376 
   1377 	cryptostats.cs_kops++;
   1378 
   1379 	crp_qs = crypto_get_crp_qs(&s);
   1380 	crp_kq = crp_qs->crp_kq;
   1381 	cap = crypto_checkdriver_lock(krp->krp_hid);
   1382 	/*
   1383 	 * TODO:
   1384 	 * If we can ensure the driver has been valid until the driver is
   1385 	 * done crypto_unregister(), this migrate operation is not required.
   1386 	 */
   1387 	if (cap == NULL) {
   1388 		TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
   1389 		result = 0;
   1390 		goto out;
   1391 	}
   1392 
   1393 	if (cap->cc_kqblocked != 0) {
   1394 		crypto_driver_unlock(cap);
   1395 		/*
   1396 		 * The driver is blocked, just queue the op until
   1397 		 * it unblocks and the swi thread gets kicked.
   1398 		 */
   1399 		TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
   1400 		result = 0;
   1401 		goto out;
   1402 	}
   1403 
   1404 	crypto_driver_unlock(cap);
   1405 	result = crypto_kinvoke(krp, 0);
   1406 	if (result == ERESTART) {
   1407 		/*
   1408 		 * The driver ran out of resources, mark the
   1409 		 * driver ``blocked'' for cryptop's and put
   1410 		 * the op on the queue.
   1411 		 */
   1412 		crypto_driver_lock(cap);
   1413 		cap->cc_kqblocked = 1;
   1414 		crypto_driver_unlock(cap);
   1415 		TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
   1416 		cryptostats.cs_kblocks++;
   1417 
   1418 		/*
   1419 		 * The krp is enqueued to crp_kq, that is,
   1420 		 * no error occurs. So, this function should
   1421 		 * not return error.
   1422 		 */
   1423 		result = 0;
   1424 	}
   1425 
   1426 out:
   1427 	crypto_put_crp_qs(&s);
   1428 	return result;
   1429 }
   1430 
   1431 /*
   1432  * Dispatch an assymetric crypto request to the appropriate crypto devices.
   1433  */
   1434 static int
   1435 crypto_kinvoke(struct cryptkop *krp, int hint)
   1436 {
   1437 	struct cryptocap *cap = NULL;
   1438 	u_int32_t hid;
   1439 	int error;
   1440 
   1441 	KASSERT(krp != NULL);
   1442 
   1443 	/* Sanity checks. */
   1444 	if (krp->krp_callback == NULL) {
   1445 		cv_destroy(&krp->krp_cv);
   1446 		crypto_kfreereq(krp);
   1447 		return EINVAL;
   1448 	}
   1449 
   1450 	mutex_enter(&crypto_drv_mtx);
   1451 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1452 		cap = crypto_checkdriver(hid);
   1453 		if (cap == NULL)
   1454 			continue;
   1455 		crypto_driver_lock(cap);
   1456 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1457 		    crypto_devallowsoft == 0) {
   1458 			crypto_driver_unlock(cap);
   1459 			continue;
   1460 		}
   1461 		if (cap->cc_kprocess == NULL) {
   1462 			crypto_driver_unlock(cap);
   1463 			continue;
   1464 		}
   1465 		if ((cap->cc_kalg[krp->krp_op] &
   1466 			CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
   1467 			crypto_driver_unlock(cap);
   1468 			continue;
   1469 		}
   1470 		break;
   1471 	}
   1472 	mutex_exit(&crypto_drv_mtx);
   1473 	if (cap != NULL) {
   1474 		int (*process)(void *, struct cryptkop *, int);
   1475 		void *arg;
   1476 
   1477 		process = cap->cc_kprocess;
   1478 		arg = cap->cc_karg;
   1479 		krp->krp_hid = hid;
   1480 		krp->reqcpu = curcpu();
   1481 		crypto_driver_unlock(cap);
   1482 		error = (*process)(arg, krp, hint);
   1483 	} else {
   1484 		error = ENODEV;
   1485 	}
   1486 
   1487 	if (error) {
   1488 		krp->krp_status = error;
   1489 		crypto_kdone(krp);
   1490 	}
   1491 	return 0;
   1492 }
   1493 
   1494 #ifdef CRYPTO_TIMING
   1495 static void
   1496 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
   1497 {
   1498 	struct timespec now, t;
   1499 
   1500 	nanouptime(&now);
   1501 	t.tv_sec = now.tv_sec - tv->tv_sec;
   1502 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
   1503 	if (t.tv_nsec < 0) {
   1504 		t.tv_sec--;
   1505 		t.tv_nsec += 1000000000;
   1506 	}
   1507 	timespecadd(&ts->acc, &t, &t);
   1508 	if (timespeccmp(&t, &ts->min, <))
   1509 		ts->min = t;
   1510 	if (timespeccmp(&t, &ts->max, >))
   1511 		ts->max = t;
   1512 	ts->count++;
   1513 
   1514 	*tv = now;
   1515 }
   1516 #endif
   1517 
   1518 /*
   1519  * Dispatch a crypto request to the appropriate crypto devices.
   1520  */
   1521 static int
   1522 crypto_invoke(struct cryptop *crp, int hint)
   1523 {
   1524 	struct cryptocap *cap;
   1525 
   1526 	KASSERT(crp != NULL);
   1527 
   1528 #ifdef CRYPTO_TIMING
   1529 	if (crypto_timing)
   1530 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
   1531 #endif
   1532 	/* Sanity checks. */
   1533 	if (crp->crp_callback == NULL) {
   1534 		return EINVAL;
   1535 	}
   1536 	if (crp->crp_desc == NULL) {
   1537 		crp->crp_etype = EINVAL;
   1538 		crypto_done(crp);
   1539 		return 0;
   1540 	}
   1541 
   1542 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1543 	if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
   1544 		int (*process)(void *, struct cryptop *, int);
   1545 		void *arg;
   1546 
   1547 		process = cap->cc_process;
   1548 		arg = cap->cc_arg;
   1549 		crp->reqcpu = curcpu();
   1550 
   1551 		/*
   1552 		 * Invoke the driver to process the request.
   1553 		 */
   1554 		DPRINTF("calling process for %p\n", crp);
   1555 		crypto_driver_unlock(cap);
   1556 		return (*process)(arg, crp, hint);
   1557 	} else {
   1558 		struct cryptodesc *crd;
   1559 		u_int64_t nid = 0;
   1560 
   1561 		if (cap != NULL)
   1562 			crypto_driver_unlock(cap);
   1563 
   1564 		/*
   1565 		 * Driver has unregistered; migrate the session and return
   1566 		 * an error to the caller so they'll resubmit the op.
   1567 		 */
   1568 		crypto_freesession(crp->crp_sid);
   1569 
   1570 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1571 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1572 
   1573 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1574 			crp->crp_sid = nid;
   1575 
   1576 		crp->crp_etype = EAGAIN;
   1577 
   1578 		crypto_done(crp);
   1579 		return 0;
   1580 	}
   1581 }
   1582 
   1583 /*
   1584  * Release a set of crypto descriptors.
   1585  */
   1586 void
   1587 crypto_freereq(struct cryptop *crp)
   1588 {
   1589 	struct cryptodesc *crd;
   1590 
   1591 	if (crp == NULL)
   1592 		return;
   1593 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1594 
   1595 	/* sanity check */
   1596 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1597 		panic("crypto_freereq() freeing crp on RETQ\n");
   1598 	}
   1599 
   1600 	while ((crd = crp->crp_desc) != NULL) {
   1601 		crp->crp_desc = crd->crd_next;
   1602 		pool_cache_put(cryptodesc_cache, crd);
   1603 	}
   1604 	pool_cache_put(cryptop_cache, crp);
   1605 }
   1606 
   1607 /*
   1608  * Acquire a set of crypto descriptors.
   1609  */
   1610 struct cryptop *
   1611 crypto_getreq(int num)
   1612 {
   1613 	struct cryptodesc *crd;
   1614 	struct cryptop *crp;
   1615 	struct crypto_crp_ret_qs *qs;
   1616 
   1617 	/*
   1618 	 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
   1619 	 * by error callback.
   1620 	 */
   1621 	qs = crypto_get_crp_ret_qs(curcpu());
   1622 	if (qs->crp_ret_q_maxlen > 0
   1623 	    && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
   1624 		qs->crp_ret_q_drops++;
   1625 		crypto_put_crp_ret_qs(curcpu());
   1626 		return NULL;
   1627 	}
   1628 	crypto_put_crp_ret_qs(curcpu());
   1629 
   1630 	crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
   1631 	if (crp == NULL) {
   1632 		return NULL;
   1633 	}
   1634 	memset(crp, 0, sizeof(struct cryptop));
   1635 
   1636 	while (num--) {
   1637 		crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
   1638 		if (crd == NULL) {
   1639 			crypto_freereq(crp);
   1640 			return NULL;
   1641 		}
   1642 
   1643 		memset(crd, 0, sizeof(struct cryptodesc));
   1644 		crd->crd_next = crp->crp_desc;
   1645 		crp->crp_desc = crd;
   1646 	}
   1647 
   1648 	return crp;
   1649 }
   1650 
   1651 /*
   1652  * Release a set of asymmetric crypto descriptors.
   1653  * Currently, support one descriptor only.
   1654  */
   1655 void
   1656 crypto_kfreereq(struct cryptkop *krp)
   1657 {
   1658 
   1659 	if (krp == NULL)
   1660 		return;
   1661 
   1662 	DPRINTF("krp %p\n", krp);
   1663 
   1664 	/* sanity check */
   1665 	if (krp->krp_flags & CRYPTO_F_ONRETQ) {
   1666 		panic("crypto_kfreereq() freeing krp on RETQ\n");
   1667 	}
   1668 
   1669 	pool_cache_put(cryptkop_cache, krp);
   1670 }
   1671 
   1672 /*
   1673  * Acquire a set of asymmetric crypto descriptors.
   1674  * Currently, support one descriptor only.
   1675  */
   1676 struct cryptkop *
   1677 crypto_kgetreq(int num __unused, int prflags)
   1678 {
   1679 	struct cryptkop *krp;
   1680 	struct crypto_crp_ret_qs *qs;
   1681 
   1682 	/*
   1683 	 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
   1684 	 * overflow by error callback.
   1685 	 */
   1686 	qs = crypto_get_crp_ret_qs(curcpu());
   1687 	if (qs->crp_ret_kq_maxlen > 0
   1688 	    && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
   1689 		qs->crp_ret_kq_drops++;
   1690 		crypto_put_crp_ret_qs(curcpu());
   1691 		return NULL;
   1692 	}
   1693 	crypto_put_crp_ret_qs(curcpu());
   1694 
   1695 	krp = pool_cache_get(cryptkop_cache, prflags);
   1696 	if (krp == NULL) {
   1697 		return NULL;
   1698 	}
   1699 	memset(krp, 0, sizeof(struct cryptkop));
   1700 
   1701 	return krp;
   1702 }
   1703 
   1704 /*
   1705  * Invoke the callback on behalf of the driver.
   1706  */
   1707 void
   1708 crypto_done(struct cryptop *crp)
   1709 {
   1710 
   1711 	KASSERT(crp != NULL);
   1712 
   1713 	if (crp->crp_etype != 0)
   1714 		cryptostats.cs_errs++;
   1715 #ifdef CRYPTO_TIMING
   1716 	if (crypto_timing)
   1717 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1718 #endif
   1719 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1720 
   1721 	/*
   1722 	 * Normal case; queue the callback for the thread.
   1723 	 *
   1724 	 * The return queue is manipulated by the swi thread
   1725 	 * and, potentially, by crypto device drivers calling
   1726 	 * back to mark operations completed.  Thus we need
   1727 	 * to mask both while manipulating the return queue.
   1728 	 */
   1729   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1730 		/*
   1731 	 	* Do the callback directly.  This is ok when the
   1732   	 	* callback routine does very little (e.g. the
   1733 	 	* /dev/crypto callback method just does a wakeup).
   1734 	 	*/
   1735 		crp->crp_flags |= CRYPTO_F_DONE;
   1736 
   1737 #ifdef CRYPTO_TIMING
   1738 		if (crypto_timing) {
   1739 			/*
   1740 		 	* NB: We must copy the timestamp before
   1741 		 	* doing the callback as the cryptop is
   1742 		 	* likely to be reclaimed.
   1743 		 	*/
   1744 			struct timespec t = crp->crp_tstamp;
   1745 			crypto_tstat(&cryptostats.cs_cb, &t);
   1746 			crp->crp_callback(crp);
   1747 			crypto_tstat(&cryptostats.cs_finis, &t);
   1748 		} else
   1749 #endif
   1750 		crp->crp_callback(crp);
   1751 	} else {
   1752 		crp->crp_flags |= CRYPTO_F_DONE;
   1753 #if 0
   1754 		if (crp->crp_flags & CRYPTO_F_USER) {
   1755 			/*
   1756 			 * TODO:
   1757 			 * If crp->crp_flags & CRYPTO_F_USER and the used
   1758 			 * encryption driver does all the processing in
   1759 			 * the same context, we can skip enqueueing crp_ret_q
   1760 			 * and softint_schedule(crypto_ret_si).
   1761 			 */
   1762 			DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
   1763 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1764 		} else
   1765 #endif
   1766 		{
   1767 			int wasempty;
   1768 			struct crypto_crp_ret_qs *qs;
   1769 			struct crypto_crp_ret_q *crp_ret_q;
   1770 
   1771 			qs = crypto_get_crp_ret_qs(crp->reqcpu);
   1772 			crp_ret_q = &qs->crp_ret_q;
   1773 			wasempty = TAILQ_EMPTY(crp_ret_q);
   1774 			DPRINTF("lid[%u]: queueing %p\n",
   1775 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1776 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1777 			TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
   1778 			qs->crp_ret_q_len++;
   1779 			if (wasempty && !qs->crp_ret_q_exit_flag) {
   1780 				DPRINTF("lid[%u]: waking cryptoret,"
   1781 					"crp %p hit empty queue\n.",
   1782 					CRYPTO_SESID2LID(crp->crp_sid), crp);
   1783 				softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
   1784 			}
   1785 			crypto_put_crp_ret_qs(crp->reqcpu);
   1786 		}
   1787 	}
   1788 }
   1789 
   1790 /*
   1791  * Invoke the callback on behalf of the driver.
   1792  */
   1793 void
   1794 crypto_kdone(struct cryptkop *krp)
   1795 {
   1796 
   1797 	KASSERT(krp != NULL);
   1798 
   1799 	if (krp->krp_status != 0)
   1800 		cryptostats.cs_kerrs++;
   1801 
   1802 	krp->krp_flags |= CRYPTO_F_DONE;
   1803 
   1804 	/*
   1805 	 * The return queue is manipulated by the swi thread
   1806 	 * and, potentially, by crypto device drivers calling
   1807 	 * back to mark operations completed.  Thus we need
   1808 	 * to mask both while manipulating the return queue.
   1809 	 */
   1810 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1811 		krp->krp_callback(krp);
   1812 	} else {
   1813 		int wasempty;
   1814 		struct crypto_crp_ret_qs *qs;
   1815 		struct crypto_crp_ret_kq *crp_ret_kq;
   1816 
   1817 		qs = crypto_get_crp_ret_qs(krp->reqcpu);
   1818 		crp_ret_kq = &qs->crp_ret_kq;
   1819 
   1820 		wasempty = TAILQ_EMPTY(crp_ret_kq);
   1821 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1822 		TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
   1823 		qs->crp_ret_kq_len++;
   1824 		if (wasempty && !qs->crp_ret_q_exit_flag)
   1825 			softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
   1826 		crypto_put_crp_ret_qs(krp->reqcpu);
   1827 	}
   1828 }
   1829 
   1830 int
   1831 crypto_getfeat(int *featp)
   1832 {
   1833 
   1834 	if (crypto_userasymcrypto == 0) {
   1835 		*featp = 0;
   1836 		return 0;
   1837 	}
   1838 
   1839 	mutex_enter(&crypto_drv_mtx);
   1840 
   1841 	int feat = 0;
   1842 	for (int hid = 0; hid < crypto_drivers_num; hid++) {
   1843 		struct cryptocap *cap;
   1844 		cap = crypto_checkdriver(hid);
   1845 		if (cap == NULL)
   1846 			continue;
   1847 
   1848 		crypto_driver_lock(cap);
   1849 
   1850 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1851 		    crypto_devallowsoft == 0)
   1852 			goto unlock;
   1853 
   1854 		if (cap->cc_kprocess == NULL)
   1855 			goto unlock;
   1856 
   1857 		for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1858 			if ((cap->cc_kalg[kalg] &
   1859 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1860 				feat |=  1 << kalg;
   1861 
   1862 unlock:		crypto_driver_unlock(cap);
   1863 	}
   1864 
   1865 	mutex_exit(&crypto_drv_mtx);
   1866 	*featp = feat;
   1867 	return (0);
   1868 }
   1869 
   1870 /*
   1871  * Software interrupt thread to dispatch crypto requests.
   1872  */
   1873 static void
   1874 cryptointr(void *arg __unused)
   1875 {
   1876 	struct cryptop *crp, *submit, *cnext;
   1877 	struct cryptkop *krp, *knext;
   1878 	struct cryptocap *cap;
   1879 	struct crypto_crp_qs *crp_qs;
   1880 	struct crypto_crp_q *crp_q;
   1881 	struct crypto_crp_kq *crp_kq;
   1882 	int result, hint, s;
   1883 
   1884 	cryptostats.cs_intrs++;
   1885 	crp_qs = crypto_get_crp_qs(&s);
   1886 	crp_q = crp_qs->crp_q;
   1887 	crp_kq = crp_qs->crp_kq;
   1888 	do {
   1889 		/*
   1890 		 * Find the first element in the queue that can be
   1891 		 * processed and look-ahead to see if multiple ops
   1892 		 * are ready for the same driver.
   1893 		 */
   1894 		submit = NULL;
   1895 		hint = 0;
   1896 		TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
   1897 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1898 			cap = crypto_checkdriver_lock(hid);
   1899 			if (cap == NULL || cap->cc_process == NULL) {
   1900 				if (cap != NULL)
   1901 					crypto_driver_unlock(cap);
   1902 				/* Op needs to be migrated, process it. */
   1903 				submit = crp;
   1904 				break;
   1905 			}
   1906 
   1907 			/*
   1908 			 * skip blocked crp regardless of CRYPTO_F_BATCH
   1909 			 */
   1910 			if (cap->cc_qblocked != 0) {
   1911 				crypto_driver_unlock(cap);
   1912 				continue;
   1913 			}
   1914 			crypto_driver_unlock(cap);
   1915 
   1916 			/*
   1917 			 * skip batch crp until the end of crp_q
   1918 			 */
   1919 			if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1920 				if (submit == NULL) {
   1921 					submit = crp;
   1922 				} else {
   1923 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1924 					    == hid)
   1925 						hint = CRYPTO_HINT_MORE;
   1926 				}
   1927 
   1928 				continue;
   1929 			}
   1930 
   1931 			/*
   1932 			 * found first crp which is neither blocked nor batch.
   1933 			 */
   1934 			submit = crp;
   1935 			/*
   1936 			 * batch crp can be processed much later, so clear hint.
   1937 			 */
   1938 			hint = 0;
   1939 			break;
   1940 		}
   1941 		if (submit != NULL) {
   1942 			TAILQ_REMOVE(crp_q, submit, crp_next);
   1943 			result = crypto_invoke(submit, hint);
   1944 			/* we must take here as the TAILQ op or kinvoke
   1945 			   may need this mutex below.  sigh. */
   1946 			if (result == ERESTART) {
   1947 				/*
   1948 				 * The driver ran out of resources, mark the
   1949 				 * driver ``blocked'' for cryptop's and put
   1950 				 * the request back in the queue.  It would
   1951 				 * best to put the request back where we got
   1952 				 * it but that's hard so for now we put it
   1953 				 * at the front.  This should be ok; putting
   1954 				 * it at the end does not work.
   1955 				 */
   1956 				/* validate sid again */
   1957 				cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
   1958 				if (cap == NULL) {
   1959 					/* migrate again, sigh... */
   1960 					TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
   1961 				} else {
   1962 					cap->cc_qblocked = 1;
   1963 					crypto_driver_unlock(cap);
   1964 					TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
   1965 					cryptostats.cs_blocks++;
   1966 				}
   1967 			}
   1968 		}
   1969 
   1970 		/* As above, but for key ops */
   1971 		TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
   1972 			cap = crypto_checkdriver_lock(krp->krp_hid);
   1973 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1974 				if (cap != NULL)
   1975 					crypto_driver_unlock(cap);
   1976 				/* Op needs to be migrated, process it. */
   1977 				break;
   1978 			}
   1979 			if (!cap->cc_kqblocked) {
   1980 				crypto_driver_unlock(cap);
   1981 				break;
   1982 			}
   1983 			crypto_driver_unlock(cap);
   1984 		}
   1985 		if (krp != NULL) {
   1986 			TAILQ_REMOVE(crp_kq, krp, krp_next);
   1987 			result = crypto_kinvoke(krp, 0);
   1988 			/* the next iteration will want the mutex. :-/ */
   1989 			if (result == ERESTART) {
   1990 				/*
   1991 				 * The driver ran out of resources, mark the
   1992 				 * driver ``blocked'' for cryptkop's and put
   1993 				 * the request back in the queue.  It would
   1994 				 * best to put the request back where we got
   1995 				 * it but that's hard so for now we put it
   1996 				 * at the front.  This should be ok; putting
   1997 				 * it at the end does not work.
   1998 				 */
   1999 				/* validate sid again */
   2000 				cap = crypto_checkdriver_lock(krp->krp_hid);
   2001 				if (cap == NULL) {
   2002 					/* migrate again, sigh... */
   2003 					TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
   2004 				} else {
   2005 					cap->cc_kqblocked = 1;
   2006 					crypto_driver_unlock(cap);
   2007 					TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
   2008 					cryptostats.cs_kblocks++;
   2009 				}
   2010 			}
   2011 		}
   2012 	} while (submit != NULL || krp != NULL);
   2013 	crypto_put_crp_qs(&s);
   2014 }
   2015 
   2016 /*
   2017  * softint handler to do callbacks.
   2018  */
   2019 static void
   2020 cryptoret_softint(void *arg __unused)
   2021 {
   2022 	struct crypto_crp_ret_qs *qs;
   2023 	struct crypto_crp_ret_q *crp_ret_q;
   2024 	struct crypto_crp_ret_kq *crp_ret_kq;
   2025 
   2026 	qs = crypto_get_crp_ret_qs(curcpu());
   2027 	crp_ret_q = &qs->crp_ret_q;
   2028 	crp_ret_kq = &qs->crp_ret_kq;
   2029 	for (;;) {
   2030 		struct cryptop *crp;
   2031 		struct cryptkop *krp;
   2032 
   2033 		crp = TAILQ_FIRST(crp_ret_q);
   2034 		if (crp != NULL) {
   2035 			TAILQ_REMOVE(crp_ret_q, crp, crp_next);
   2036 			qs->crp_ret_q_len--;
   2037 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   2038 		}
   2039 		krp = TAILQ_FIRST(crp_ret_kq);
   2040 		if (krp != NULL) {
   2041 			TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
   2042 			qs->crp_ret_q_len--;
   2043 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   2044 		}
   2045 
   2046 		/* drop before calling any callbacks. */
   2047 		if (crp == NULL && krp == NULL)
   2048 			break;
   2049 
   2050 		mutex_spin_exit(&qs->crp_ret_q_mtx);
   2051 		if (crp != NULL) {
   2052 #ifdef CRYPTO_TIMING
   2053 			if (crypto_timing) {
   2054 				/*
   2055 				 * NB: We must copy the timestamp before
   2056 				 * doing the callback as the cryptop is
   2057 				 * likely to be reclaimed.
   2058 				 */
   2059 				struct timespec t = crp->crp_tstamp;
   2060 				crypto_tstat(&cryptostats.cs_cb, &t);
   2061 				crp->crp_callback(crp);
   2062 				crypto_tstat(&cryptostats.cs_finis, &t);
   2063 			} else
   2064 #endif
   2065 			{
   2066 				crp->crp_callback(crp);
   2067 			}
   2068 		}
   2069 		if (krp != NULL)
   2070 			krp->krp_callback(krp);
   2071 
   2072 		mutex_spin_enter(&qs->crp_ret_q_mtx);
   2073 	}
   2074 	crypto_put_crp_ret_qs(curcpu());
   2075 }
   2076 
   2077 /* NetBSD module interface */
   2078 
   2079 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   2080 
   2081 static int
   2082 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   2083 {
   2084 	int error = 0;
   2085 
   2086 	switch (cmd) {
   2087 	case MODULE_CMD_INIT:
   2088 #ifdef _MODULE
   2089 		error = crypto_init();
   2090 #endif
   2091 		break;
   2092 	case MODULE_CMD_FINI:
   2093 #ifdef _MODULE
   2094 		error = crypto_destroy(true);
   2095 #endif
   2096 		break;
   2097 	default:
   2098 		error = ENOTTY;
   2099 	}
   2100 	return error;
   2101 }
   2102