crypto.c revision 1.108 1 /* $NetBSD: crypto.c,v 1.108 2019/07/11 23:28:17 christos Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.108 2019/07/11 23:28:17 christos Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81
82 /*
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
86 */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 kmutex_t mtx;
90 int num;
91 struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx (crypto_drv.mtx)
94 #define crypto_drivers_num (crypto_drv.num)
95 #define crypto_drivers (crypto_drv.list)
96
97 static void *crypto_q_si;
98 static void *crypto_ret_si;
99
100 /*
101 * There are two queues for crypto requests; one for symmetric (e.g.
102 * cipher) operations and one for asymmetric (e.g. MOD) operations.
103 * See below for how synchronization is handled.
104 */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 struct crypto_crp_q *crp_q;
109 struct crypto_crp_kq *crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112
113 static inline struct crypto_crp_qs *
114 crypto_get_crp_qs(int *s)
115 {
116
117 KASSERT(s != NULL);
118
119 *s = splsoftnet();
120 return percpu_getref(crypto_crp_qs_percpu);
121 }
122
123 static inline void
124 crypto_put_crp_qs(int *s)
125 {
126
127 KASSERT(s != NULL);
128
129 percpu_putref(crypto_crp_qs_percpu);
130 splx(*s);
131 }
132
133 static void
134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 struct crypto_crp_qs *qs_pc = p;
137 bool *isempty = arg;
138
139 if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
140 *isempty = true;
141 }
142
143 static void
144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 struct crypto_crp_qs *qs = p;
147
148 qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
149 qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
150
151 TAILQ_INIT(qs->crp_q);
152 TAILQ_INIT(qs->crp_kq);
153 }
154
155 /*
156 * There are two queues for processing completed crypto requests; one
157 * for the symmetric and one for the asymmetric ops. We only need one
158 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
159 * for how synchronization is handled.
160 */
161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
163 struct crypto_crp_ret_qs {
164 kmutex_t crp_ret_q_mtx;
165 bool crp_ret_q_exit_flag;
166
167 struct crypto_crp_ret_q crp_ret_q;
168 int crp_ret_q_len;
169 int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
170 int crp_ret_q_drops;
171
172 struct crypto_crp_ret_kq crp_ret_kq;
173 int crp_ret_kq_len;
174 int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
175 int crp_ret_kq_drops;
176 };
177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
178
179
180 static inline struct crypto_crp_ret_qs *
181 crypto_get_crp_ret_qs(struct cpu_info *ci)
182 {
183 u_int cpuid;
184 struct crypto_crp_ret_qs *qs;
185
186 KASSERT(ci != NULL);
187
188 cpuid = cpu_index(ci);
189 qs = crypto_crp_ret_qs_list[cpuid];
190 mutex_enter(&qs->crp_ret_q_mtx);
191 return qs;
192 }
193
194 static inline void
195 crypto_put_crp_ret_qs(struct cpu_info *ci)
196 {
197 u_int cpuid;
198 struct crypto_crp_ret_qs *qs;
199
200 KASSERT(ci != NULL);
201
202 cpuid = cpu_index(ci);
203 qs = crypto_crp_ret_qs_list[cpuid];
204 mutex_exit(&qs->crp_ret_q_mtx);
205 }
206
207 #ifndef CRYPTO_RET_Q_MAXLEN
208 #define CRYPTO_RET_Q_MAXLEN 0
209 #endif
210 #ifndef CRYPTO_RET_KQ_MAXLEN
211 #define CRYPTO_RET_KQ_MAXLEN 0
212 #endif
213
214 static int
215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
216 {
217 int error, len = 0;
218 struct sysctlnode node = *rnode;
219
220 for (int i = 0; i < ncpu; i++) {
221 struct crypto_crp_ret_qs *qs;
222 struct cpu_info *ci = cpu_lookup(i);
223
224 qs = crypto_get_crp_ret_qs(ci);
225 len += qs->crp_ret_q_len;
226 crypto_put_crp_ret_qs(ci);
227 }
228
229 node.sysctl_data = &len;
230 error = sysctl_lookup(SYSCTLFN_CALL(&node));
231 if (error || newp == NULL)
232 return error;
233
234 return 0;
235 }
236
237 static int
238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
239 {
240 int error, drops = 0;
241 struct sysctlnode node = *rnode;
242
243 for (int i = 0; i < ncpu; i++) {
244 struct crypto_crp_ret_qs *qs;
245 struct cpu_info *ci = cpu_lookup(i);
246
247 qs = crypto_get_crp_ret_qs(ci);
248 drops += qs->crp_ret_q_drops;
249 crypto_put_crp_ret_qs(ci);
250 }
251
252 node.sysctl_data = &drops;
253 error = sysctl_lookup(SYSCTLFN_CALL(&node));
254 if (error || newp == NULL)
255 return error;
256
257 return 0;
258 }
259
260 static int
261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
262 {
263 int error, maxlen;
264 struct crypto_crp_ret_qs *qs;
265 struct sysctlnode node = *rnode;
266
267 /* each crp_ret_kq_maxlen is the same. */
268 qs = crypto_get_crp_ret_qs(curcpu());
269 maxlen = qs->crp_ret_q_maxlen;
270 crypto_put_crp_ret_qs(curcpu());
271
272 node.sysctl_data = &maxlen;
273 error = sysctl_lookup(SYSCTLFN_CALL(&node));
274 if (error || newp == NULL)
275 return error;
276
277 for (int i = 0; i < ncpu; i++) {
278 struct cpu_info *ci = cpu_lookup(i);
279
280 qs = crypto_get_crp_ret_qs(ci);
281 qs->crp_ret_q_maxlen = maxlen;
282 crypto_put_crp_ret_qs(ci);
283 }
284
285 return 0;
286 }
287
288 static int
289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
290 {
291 int error, len = 0;
292 struct sysctlnode node = *rnode;
293
294 for (int i = 0; i < ncpu; i++) {
295 struct crypto_crp_ret_qs *qs;
296 struct cpu_info *ci = cpu_lookup(i);
297
298 qs = crypto_get_crp_ret_qs(ci);
299 len += qs->crp_ret_kq_len;
300 crypto_put_crp_ret_qs(ci);
301 }
302
303 node.sysctl_data = &len;
304 error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 if (error || newp == NULL)
306 return error;
307
308 return 0;
309 }
310
311 static int
312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
313 {
314 int error, drops = 0;
315 struct sysctlnode node = *rnode;
316
317 for (int i = 0; i < ncpu; i++) {
318 struct crypto_crp_ret_qs *qs;
319 struct cpu_info *ci = cpu_lookup(i);
320
321 qs = crypto_get_crp_ret_qs(ci);
322 drops += qs->crp_ret_kq_drops;
323 crypto_put_crp_ret_qs(ci);
324 }
325
326 node.sysctl_data = &drops;
327 error = sysctl_lookup(SYSCTLFN_CALL(&node));
328 if (error || newp == NULL)
329 return error;
330
331 return 0;
332 }
333
334 static int
335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
336 {
337 int error, maxlen;
338 struct crypto_crp_ret_qs *qs;
339 struct sysctlnode node = *rnode;
340
341 /* each crp_ret_kq_maxlen is the same. */
342 qs = crypto_get_crp_ret_qs(curcpu());
343 maxlen = qs->crp_ret_kq_maxlen;
344 crypto_put_crp_ret_qs(curcpu());
345
346 node.sysctl_data = &maxlen;
347 error = sysctl_lookup(SYSCTLFN_CALL(&node));
348 if (error || newp == NULL)
349 return error;
350
351 for (int i = 0; i < ncpu; i++) {
352 struct cpu_info *ci = cpu_lookup(i);
353
354 qs = crypto_get_crp_ret_qs(ci);
355 qs->crp_ret_kq_maxlen = maxlen;
356 crypto_put_crp_ret_qs(ci);
357 }
358
359 return 0;
360 }
361
362 /*
363 * Crypto op and descriptor data structures are allocated
364 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
365 */
366 static pool_cache_t cryptop_cache;
367 static pool_cache_t cryptodesc_cache;
368 static pool_cache_t cryptkop_cache;
369
370 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
371 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
372 /*
373 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
374 * access to hardware versus software transforms as below:
375 *
376 * crypto_devallowsoft < 0: Force userlevel requests to use software
377 * transforms, always
378 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
379 * requests for non-accelerated transforms
380 * (handling the latter in software)
381 * crypto_devallowsoft > 0: Allow user requests only for transforms which
382 * are hardware-accelerated.
383 */
384 int crypto_devallowsoft = 1; /* only use hardware crypto */
385
386 static void
387 sysctl_opencrypto_setup(struct sysctllog **clog)
388 {
389 const struct sysctlnode *ocnode;
390 const struct sysctlnode *retqnode, *retkqnode;
391
392 sysctl_createv(clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 CTLTYPE_INT, "usercrypto",
395 SYSCTL_DESCR("Enable/disable user-mode access to "
396 "crypto support"),
397 NULL, 0, &crypto_usercrypto, 0,
398 CTL_KERN, CTL_CREATE, CTL_EOL);
399 sysctl_createv(clog, 0, NULL, NULL,
400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 CTLTYPE_INT, "userasymcrypto",
402 SYSCTL_DESCR("Enable/disable user-mode access to "
403 "asymmetric crypto support"),
404 NULL, 0, &crypto_userasymcrypto, 0,
405 CTL_KERN, CTL_CREATE, CTL_EOL);
406 sysctl_createv(clog, 0, NULL, NULL,
407 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
408 CTLTYPE_INT, "cryptodevallowsoft",
409 SYSCTL_DESCR("Enable/disable use of software "
410 "asymmetric crypto support"),
411 NULL, 0, &crypto_devallowsoft, 0,
412 CTL_KERN, CTL_CREATE, CTL_EOL);
413
414 sysctl_createv(clog, 0, NULL, &ocnode,
415 CTLFLAG_PERMANENT,
416 CTLTYPE_NODE, "opencrypto",
417 SYSCTL_DESCR("opencrypto related entries"),
418 NULL, 0, NULL, 0,
419 CTL_CREATE, CTL_EOL);
420
421 sysctl_createv(clog, 0, &ocnode, &retqnode,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_NODE, "crypto_ret_q",
424 SYSCTL_DESCR("crypto_ret_q related entries"),
425 NULL, 0, NULL, 0,
426 CTL_CREATE, CTL_EOL);
427 sysctl_createv(clog, 0, &retqnode, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
429 CTLTYPE_INT, "len",
430 SYSCTL_DESCR("Current queue length"),
431 sysctl_opencrypto_q_len, 0,
432 NULL, 0,
433 CTL_CREATE, CTL_EOL);
434 sysctl_createv(clog, 0, &retqnode, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
436 CTLTYPE_INT, "drops",
437 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
438 sysctl_opencrypto_q_drops, 0,
439 NULL, 0,
440 CTL_CREATE, CTL_EOL);
441 sysctl_createv(clog, 0, &retqnode, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 CTLTYPE_INT, "maxlen",
444 SYSCTL_DESCR("Maximum allowed queue length"),
445 sysctl_opencrypto_q_maxlen, 0,
446 NULL, 0,
447 CTL_CREATE, CTL_EOL);
448
449
450 sysctl_createv(clog, 0, &ocnode, &retkqnode,
451 CTLFLAG_PERMANENT,
452 CTLTYPE_NODE, "crypto_ret_kq",
453 SYSCTL_DESCR("crypto_ret_kq related entries"),
454 NULL, 0, NULL, 0,
455 CTL_CREATE, CTL_EOL);
456 sysctl_createv(clog, 0, &retkqnode, NULL,
457 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
458 CTLTYPE_INT, "len",
459 SYSCTL_DESCR("Current queue length"),
460 sysctl_opencrypto_kq_len, 0,
461 NULL, 0,
462 CTL_CREATE, CTL_EOL);
463 sysctl_createv(clog, 0, &retkqnode, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
465 CTLTYPE_INT, "drops",
466 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
467 sysctl_opencrypto_kq_drops, 0,
468 NULL, 0,
469 CTL_CREATE, CTL_EOL);
470 sysctl_createv(clog, 0, &retkqnode, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 CTLTYPE_INT, "maxlen",
473 SYSCTL_DESCR("Maximum allowed queue length"),
474 sysctl_opencrypto_kq_maxlen, 0,
475 NULL, 0,
476 CTL_CREATE, CTL_EOL);
477 }
478
479 /*
480 * Synchronization: read carefully, this is non-trivial.
481 *
482 * Crypto requests are submitted via crypto_dispatch. Typically
483 * these come in from network protocols at spl0 (output path) or
484 * spl[,soft]net (input path).
485 *
486 * Requests are typically passed on the driver directly, but they
487 * may also be queued for processing by a software interrupt thread,
488 * cryptointr, that runs at splsoftcrypto. This thread dispatches
489 * the requests to crypto drivers (h/w or s/w) who call crypto_done
490 * when a request is complete. Hardware crypto drivers are assumed
491 * to register their IRQ's as network devices so their interrupt handlers
492 * and subsequent "done callbacks" happen at spl[imp,net].
493 *
494 * Completed crypto ops are queued for a separate kernel thread that
495 * handles the callbacks at spl0. This decoupling insures the crypto
496 * driver interrupt service routine is not delayed while the callback
497 * takes place and that callbacks are delivered after a context switch
498 * (as opposed to a software interrupt that clients must block).
499 *
500 * This scheme is not intended for SMP machines.
501 */
502 static void cryptointr(void *); /* swi thread to dispatch ops */
503 static void cryptoret_softint(void *); /* kernel thread for callbacks*/
504 static int crypto_destroy(bool);
505 static int crypto_invoke(struct cryptop *crp, int hint);
506 static int crypto_kinvoke(struct cryptkop *krp, int hint);
507
508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
510 static struct cryptocap *crypto_checkdriver(u_int32_t);
511 static void crypto_driver_lock(struct cryptocap *);
512 static void crypto_driver_unlock(struct cryptocap *);
513 static void crypto_driver_clear(struct cryptocap *);
514
515 static int crypto_init_finalize(device_t);
516
517 static struct cryptostats cryptostats;
518 #ifdef CRYPTO_TIMING
519 static int crypto_timing = 0;
520 #endif
521
522 static struct sysctllog *sysctl_opencrypto_clog;
523
524 static int
525 crypto_crp_ret_qs_init(void)
526 {
527 int i, j;
528
529 crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
530 KM_NOSLEEP);
531 if (crypto_crp_ret_qs_list == NULL) {
532 printf("crypto_init: crypto_crp_qs_list\n");
533 return ENOMEM;
534 }
535
536 for (i = 0; i < ncpu; i++) {
537 struct crypto_crp_ret_qs *qs;
538 qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_NOSLEEP);
539 if (qs == NULL)
540 break;
541
542 mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
543 qs->crp_ret_q_exit_flag = false;
544
545 TAILQ_INIT(&qs->crp_ret_q);
546 qs->crp_ret_q_len = 0;
547 qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
548 qs->crp_ret_q_drops = 0;
549
550 TAILQ_INIT(&qs->crp_ret_kq);
551 qs->crp_ret_kq_len = 0;
552 qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
553 qs->crp_ret_kq_drops = 0;
554
555 crypto_crp_ret_qs_list[i] = qs;
556 }
557 if (i == ncpu)
558 return 0;
559
560 for (j = 0; j < i; j++) {
561 struct crypto_crp_ret_qs *qs = crypto_crp_ret_qs_list[j];
562
563 mutex_destroy(&qs->crp_ret_q_mtx);
564 kmem_free(qs, sizeof(struct crypto_crp_ret_qs));
565 }
566 kmem_free(crypto_crp_ret_qs_list, sizeof(struct crypto_crp_ret_qs *) * ncpu);
567
568 return ENOMEM;
569 }
570
571 static int
572 crypto_init0(void)
573 {
574 int error;
575
576 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
577 cryptop_cache = pool_cache_init(sizeof(struct cryptop),
578 coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
579 cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
580 coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
581 cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
582 coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
583
584 crypto_crp_qs_percpu = percpu_alloc(sizeof(struct crypto_crp_qs));
585 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_qs_init_pc, NULL);
586
587 error = crypto_crp_ret_qs_init();
588 if (error) {
589 printf("crypto_init: cannot malloc ret_q list\n");
590 return ENOMEM;
591 }
592
593 crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
594 sizeof(struct cryptocap), KM_NOSLEEP);
595 if (crypto_drivers == NULL) {
596 printf("crypto_init: cannot malloc driver table\n");
597 return ENOMEM;
598 }
599 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
600
601 crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
602 if (crypto_q_si == NULL) {
603 printf("crypto_init: cannot establish request queue handler\n");
604 return crypto_destroy(false);
605 }
606
607 /*
608 * Some encryption devices (such as mvcesa) are attached before
609 * ipi_sysinit(). That causes an assertion in ipi_register() as
610 * crypto_ret_si softint uses SOFTINT_RCPU.
611 */
612 if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
613 printf("crypto_init: cannot register crypto_init_finalize\n");
614 return crypto_destroy(false);
615 }
616
617 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
618
619 return 0;
620 }
621
622 static int
623 crypto_init_finalize(device_t self __unused)
624 {
625
626 crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
627 &cryptoret_softint, NULL);
628 KASSERT(crypto_ret_si != NULL);
629
630 return 0;
631 }
632
633 int
634 crypto_init(void)
635 {
636 static ONCE_DECL(crypto_init_once);
637
638 return RUN_ONCE(&crypto_init_once, crypto_init0);
639 }
640
641 static int
642 crypto_destroy(bool exit_kthread)
643 {
644 int i;
645
646 if (exit_kthread) {
647 struct cryptocap *cap = NULL;
648 uint64_t where;
649 bool is_busy = false;
650
651 /* if we have any in-progress requests, don't unload */
652 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
653 &is_busy);
654 if (is_busy)
655 return EBUSY;
656 /* FIXME:
657 * prohibit enqueue to crp_q and crp_kq after here.
658 */
659
660 mutex_enter(&crypto_drv_mtx);
661 for (i = 0; i < crypto_drivers_num; i++) {
662 cap = crypto_checkdriver(i);
663 if (cap == NULL)
664 continue;
665 if (cap->cc_sessions != 0) {
666 mutex_exit(&crypto_drv_mtx);
667 return EBUSY;
668 }
669 }
670 mutex_exit(&crypto_drv_mtx);
671 /* FIXME:
672 * prohibit touch crypto_drivers[] and each element after here.
673 */
674
675 /*
676 * Ensure cryptoret_softint() is never scheduled and then wait
677 * for last softint_execute().
678 */
679 for (i = 0; i < ncpu; i++) {
680 struct crypto_crp_ret_qs *qs;
681 struct cpu_info *ci = cpu_lookup(i);
682
683 qs = crypto_get_crp_ret_qs(ci);
684 qs->crp_ret_q_exit_flag = true;
685 crypto_put_crp_ret_qs(ci);
686 }
687 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
688 xc_wait(where);
689 }
690
691 if (sysctl_opencrypto_clog != NULL)
692 sysctl_teardown(&sysctl_opencrypto_clog);
693
694 if (crypto_ret_si != NULL)
695 softint_disestablish(crypto_ret_si);
696
697 if (crypto_q_si != NULL)
698 softint_disestablish(crypto_q_si);
699
700 mutex_enter(&crypto_drv_mtx);
701 if (crypto_drivers != NULL)
702 kmem_free(crypto_drivers,
703 crypto_drivers_num * sizeof(struct cryptocap));
704 mutex_exit(&crypto_drv_mtx);
705
706 percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
707
708 pool_cache_destroy(cryptop_cache);
709 pool_cache_destroy(cryptodesc_cache);
710 pool_cache_destroy(cryptkop_cache);
711
712 mutex_destroy(&crypto_drv_mtx);
713
714 return 0;
715 }
716
717 static bool
718 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
719 {
720 struct cryptoini *cr;
721
722 for (cr = cri; cr; cr = cr->cri_next)
723 if (cap->cc_alg[cr->cri_alg] == 0) {
724 DPRINTF("alg %d not supported\n", cr->cri_alg);
725 return false;
726 }
727
728 return true;
729 }
730
731 #define CRYPTO_ACCEPT_HARDWARE 0x1
732 #define CRYPTO_ACCEPT_SOFTWARE 0x2
733 /*
734 * The algorithm we use here is pretty stupid; just use the
735 * first driver that supports all the algorithms we need.
736 * If there are multiple drivers we choose the driver with
737 * the fewest active sessions. We prefer hardware-backed
738 * drivers to software ones.
739 *
740 * XXX We need more smarts here (in real life too, but that's
741 * XXX another story altogether).
742 */
743 static struct cryptocap *
744 crypto_select_driver_lock(struct cryptoini *cri, int hard)
745 {
746 u_int32_t hid;
747 int accept;
748 struct cryptocap *cap, *best;
749 int error = 0;
750
751 best = NULL;
752 /*
753 * hard == 0 can use both hardware and software drivers.
754 * We use hardware drivers prior to software drivers, so search
755 * hardware drivers at first time.
756 */
757 if (hard >= 0)
758 accept = CRYPTO_ACCEPT_HARDWARE;
759 else
760 accept = CRYPTO_ACCEPT_SOFTWARE;
761 again:
762 for (hid = 0; hid < crypto_drivers_num; hid++) {
763 cap = crypto_checkdriver(hid);
764 if (cap == NULL)
765 continue;
766
767 crypto_driver_lock(cap);
768
769 /*
770 * If it's not initialized or has remaining sessions
771 * referencing it, skip.
772 */
773 if (cap->cc_newsession == NULL ||
774 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
775 crypto_driver_unlock(cap);
776 continue;
777 }
778
779 /* Hardware required -- ignore software drivers. */
780 if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
781 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
782 crypto_driver_unlock(cap);
783 continue;
784 }
785 /* Software required -- ignore hardware drivers. */
786 if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
787 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
788 crypto_driver_unlock(cap);
789 continue;
790 }
791
792 /* See if all the algorithms are supported. */
793 if (crypto_driver_suitable(cap, cri)) {
794 if (best == NULL) {
795 /* keep holding crypto_driver_lock(cap) */
796 best = cap;
797 continue;
798 } else if (cap->cc_sessions < best->cc_sessions) {
799 crypto_driver_unlock(best);
800 /* keep holding crypto_driver_lock(cap) */
801 best = cap;
802 continue;
803 }
804 }
805
806 crypto_driver_unlock(cap);
807 }
808 if (best == NULL && hard == 0
809 && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
810 accept = CRYPTO_ACCEPT_SOFTWARE;
811 goto again;
812 }
813
814 if (best == NULL && hard == 0 && error == 0) {
815 mutex_exit(&crypto_drv_mtx);
816 error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
817 mutex_enter(&crypto_drv_mtx);
818 if (error == 0) {
819 error = EINVAL;
820 goto again;
821 }
822 }
823
824 return best;
825 }
826
827 /*
828 * Create a new session.
829 */
830 int
831 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
832 {
833 struct cryptocap *cap;
834 int err = EINVAL;
835
836 mutex_enter(&crypto_drv_mtx);
837
838 cap = crypto_select_driver_lock(cri, hard);
839 if (cap != NULL) {
840 u_int32_t hid, lid;
841
842 hid = cap - crypto_drivers;
843 /*
844 * Can't do everything in one session.
845 *
846 * XXX Fix this. We need to inject a "virtual" session layer right
847 * XXX about here.
848 */
849
850 /* Call the driver initialization routine. */
851 lid = hid; /* Pass the driver ID. */
852 crypto_driver_unlock(cap);
853 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
854 crypto_driver_lock(cap);
855 if (err == 0) {
856 (*sid) = hid;
857 (*sid) <<= 32;
858 (*sid) |= (lid & 0xffffffff);
859 (cap->cc_sessions)++;
860 } else {
861 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
862 hid, err);
863 }
864 crypto_driver_unlock(cap);
865 }
866
867 mutex_exit(&crypto_drv_mtx);
868
869 return err;
870 }
871
872 /*
873 * Delete an existing session (or a reserved session on an unregistered
874 * driver).
875 */
876 int
877 crypto_freesession(u_int64_t sid)
878 {
879 struct cryptocap *cap;
880 int err = 0;
881
882 /* Determine two IDs. */
883 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
884 if (cap == NULL)
885 return ENOENT;
886
887 if (cap->cc_sessions)
888 (cap->cc_sessions)--;
889
890 /* Call the driver cleanup routine, if available. */
891 if (cap->cc_freesession)
892 err = cap->cc_freesession(cap->cc_arg, sid);
893 else
894 err = 0;
895
896 /*
897 * If this was the last session of a driver marked as invalid,
898 * make the entry available for reuse.
899 */
900 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
901 crypto_driver_clear(cap);
902
903 crypto_driver_unlock(cap);
904 return err;
905 }
906
907 static bool
908 crypto_checkdriver_initialized(const struct cryptocap *cap)
909 {
910
911 return cap->cc_process != NULL ||
912 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
913 cap->cc_sessions != 0;
914 }
915
916 /*
917 * Return an unused driver id. Used by drivers prior to registering
918 * support for the algorithms they handle.
919 */
920 int32_t
921 crypto_get_driverid(u_int32_t flags)
922 {
923 struct cryptocap *newdrv;
924 struct cryptocap *cap = NULL;
925 int i;
926
927 (void)crypto_init(); /* XXX oh, this is foul! */
928
929 mutex_enter(&crypto_drv_mtx);
930 for (i = 0; i < crypto_drivers_num; i++) {
931 cap = crypto_checkdriver_uninit(i);
932 if (cap == NULL || crypto_checkdriver_initialized(cap))
933 continue;
934 break;
935 }
936
937 /* Out of entries, allocate some more. */
938 if (cap == NULL) {
939 /* Be careful about wrap-around. */
940 if (2 * crypto_drivers_num <= crypto_drivers_num) {
941 mutex_exit(&crypto_drv_mtx);
942 printf("crypto: driver count wraparound!\n");
943 return -1;
944 }
945
946 newdrv = kmem_zalloc(2 * crypto_drivers_num *
947 sizeof(struct cryptocap), KM_NOSLEEP);
948 if (newdrv == NULL) {
949 mutex_exit(&crypto_drv_mtx);
950 printf("crypto: no space to expand driver table!\n");
951 return -1;
952 }
953
954 memcpy(newdrv, crypto_drivers,
955 crypto_drivers_num * sizeof(struct cryptocap));
956 kmem_free(crypto_drivers,
957 crypto_drivers_num * sizeof(struct cryptocap));
958
959 crypto_drivers_num *= 2;
960 crypto_drivers = newdrv;
961
962 cap = crypto_checkdriver_uninit(i);
963 KASSERT(cap != NULL);
964 }
965
966 /* NB: state is zero'd on free */
967 cap->cc_sessions = 1; /* Mark */
968 cap->cc_flags = flags;
969 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
970
971 if (bootverbose)
972 printf("crypto: assign driver %u, flags %u\n", i, flags);
973
974 mutex_exit(&crypto_drv_mtx);
975
976 return i;
977 }
978
979 static struct cryptocap *
980 crypto_checkdriver_lock(u_int32_t hid)
981 {
982 struct cryptocap *cap;
983
984 KASSERT(crypto_drivers != NULL);
985
986 if (hid >= crypto_drivers_num)
987 return NULL;
988
989 cap = &crypto_drivers[hid];
990 mutex_enter(&cap->cc_lock);
991 return cap;
992 }
993
994 /*
995 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
996 * situations
997 * - crypto_drivers[] may not be allocated
998 * - crypto_drivers[hid] may not be initialized
999 */
1000 static struct cryptocap *
1001 crypto_checkdriver_uninit(u_int32_t hid)
1002 {
1003
1004 KASSERT(mutex_owned(&crypto_drv_mtx));
1005
1006 if (crypto_drivers == NULL)
1007 return NULL;
1008
1009 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
1010 }
1011
1012 /*
1013 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
1014 * situations
1015 * - crypto_drivers[] may not be allocated
1016 * - crypto_drivers[hid] may not be initialized
1017 */
1018 static struct cryptocap *
1019 crypto_checkdriver(u_int32_t hid)
1020 {
1021
1022 KASSERT(mutex_owned(&crypto_drv_mtx));
1023
1024 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
1025 return NULL;
1026
1027 struct cryptocap *cap = &crypto_drivers[hid];
1028 return crypto_checkdriver_initialized(cap) ? cap : NULL;
1029 }
1030
1031 static inline void
1032 crypto_driver_lock(struct cryptocap *cap)
1033 {
1034
1035 KASSERT(cap != NULL);
1036
1037 mutex_enter(&cap->cc_lock);
1038 }
1039
1040 static inline void
1041 crypto_driver_unlock(struct cryptocap *cap)
1042 {
1043
1044 KASSERT(cap != NULL);
1045
1046 mutex_exit(&cap->cc_lock);
1047 }
1048
1049 static void
1050 crypto_driver_clear(struct cryptocap *cap)
1051 {
1052
1053 if (cap == NULL)
1054 return;
1055
1056 KASSERT(mutex_owned(&cap->cc_lock));
1057
1058 cap->cc_sessions = 0;
1059 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1060 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1061 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1062 cap->cc_flags = 0;
1063 cap->cc_qblocked = 0;
1064 cap->cc_kqblocked = 0;
1065
1066 cap->cc_arg = NULL;
1067 cap->cc_newsession = NULL;
1068 cap->cc_process = NULL;
1069 cap->cc_freesession = NULL;
1070 cap->cc_kprocess = NULL;
1071 }
1072
1073 /*
1074 * Register support for a key-related algorithm. This routine
1075 * is called once for each algorithm supported a driver.
1076 */
1077 int
1078 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1079 int (*kprocess)(void *, struct cryptkop *, int),
1080 void *karg)
1081 {
1082 struct cryptocap *cap;
1083 int err;
1084
1085 mutex_enter(&crypto_drv_mtx);
1086
1087 cap = crypto_checkdriver_lock(driverid);
1088 if (cap != NULL &&
1089 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1090 /*
1091 * XXX Do some performance testing to determine placing.
1092 * XXX We probably need an auxiliary data structure that
1093 * XXX describes relative performances.
1094 */
1095
1096 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1097 if (bootverbose) {
1098 printf("crypto: driver %u registers key alg %u "
1099 " flags %u\n",
1100 driverid,
1101 kalg,
1102 flags
1103 );
1104 }
1105
1106 if (cap->cc_kprocess == NULL) {
1107 cap->cc_karg = karg;
1108 cap->cc_kprocess = kprocess;
1109 }
1110 err = 0;
1111 } else
1112 err = EINVAL;
1113
1114 mutex_exit(&crypto_drv_mtx);
1115 return err;
1116 }
1117
1118 /*
1119 * Register support for a non-key-related algorithm. This routine
1120 * is called once for each such algorithm supported by a driver.
1121 */
1122 int
1123 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1124 u_int32_t flags,
1125 int (*newses)(void *, u_int32_t*, struct cryptoini*),
1126 int (*freeses)(void *, u_int64_t),
1127 int (*process)(void *, struct cryptop *, int),
1128 void *arg)
1129 {
1130 struct cryptocap *cap;
1131 int err;
1132
1133 cap = crypto_checkdriver_lock(driverid);
1134 if (cap == NULL)
1135 return EINVAL;
1136
1137 /* NB: algorithms are in the range [1..max] */
1138 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1139 /*
1140 * XXX Do some performance testing to determine placing.
1141 * XXX We probably need an auxiliary data structure that
1142 * XXX describes relative performances.
1143 */
1144
1145 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1146 cap->cc_max_op_len[alg] = maxoplen;
1147 if (bootverbose) {
1148 printf("crypto: driver %u registers alg %u "
1149 "flags %u maxoplen %u\n",
1150 driverid,
1151 alg,
1152 flags,
1153 maxoplen
1154 );
1155 }
1156
1157 if (cap->cc_process == NULL) {
1158 cap->cc_arg = arg;
1159 cap->cc_newsession = newses;
1160 cap->cc_process = process;
1161 cap->cc_freesession = freeses;
1162 cap->cc_sessions = 0; /* Unmark */
1163 }
1164 err = 0;
1165 } else
1166 err = EINVAL;
1167
1168 crypto_driver_unlock(cap);
1169
1170 return err;
1171 }
1172
1173 static int
1174 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1175 {
1176 int i;
1177 u_int32_t ses;
1178 bool lastalg = true;
1179
1180 KASSERT(cap != NULL);
1181 KASSERT(mutex_owned(&cap->cc_lock));
1182
1183 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1184 return EINVAL;
1185
1186 if (!all && cap->cc_alg[alg] == 0)
1187 return EINVAL;
1188
1189 cap->cc_alg[alg] = 0;
1190 cap->cc_max_op_len[alg] = 0;
1191
1192 if (all) {
1193 if (alg != CRYPTO_ALGORITHM_MAX)
1194 lastalg = false;
1195 } else {
1196 /* Was this the last algorithm ? */
1197 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1198 if (cap->cc_alg[i] != 0) {
1199 lastalg = false;
1200 break;
1201 }
1202 }
1203 if (lastalg) {
1204 ses = cap->cc_sessions;
1205 crypto_driver_clear(cap);
1206 if (ses != 0) {
1207 /*
1208 * If there are pending sessions, just mark as invalid.
1209 */
1210 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1211 cap->cc_sessions = ses;
1212 }
1213 }
1214
1215 return 0;
1216 }
1217
1218 /*
1219 * Unregister a crypto driver. If there are pending sessions using it,
1220 * leave enough information around so that subsequent calls using those
1221 * sessions will correctly detect the driver has been unregistered and
1222 * reroute requests.
1223 */
1224 int
1225 crypto_unregister(u_int32_t driverid, int alg)
1226 {
1227 int err;
1228 struct cryptocap *cap;
1229
1230 cap = crypto_checkdriver_lock(driverid);
1231 err = crypto_unregister_locked(cap, alg, false);
1232 crypto_driver_unlock(cap);
1233
1234 return err;
1235 }
1236
1237 /*
1238 * Unregister all algorithms associated with a crypto driver.
1239 * If there are pending sessions using it, leave enough information
1240 * around so that subsequent calls using those sessions will
1241 * correctly detect the driver has been unregistered and reroute
1242 * requests.
1243 */
1244 int
1245 crypto_unregister_all(u_int32_t driverid)
1246 {
1247 int err, i;
1248 struct cryptocap *cap;
1249
1250 cap = crypto_checkdriver_lock(driverid);
1251 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1252 err = crypto_unregister_locked(cap, i, true);
1253 if (err)
1254 break;
1255 }
1256 crypto_driver_unlock(cap);
1257
1258 return err;
1259 }
1260
1261 /*
1262 * Clear blockage on a driver. The what parameter indicates whether
1263 * the driver is now ready for cryptop's and/or cryptokop's.
1264 */
1265 int
1266 crypto_unblock(u_int32_t driverid, int what)
1267 {
1268 struct cryptocap *cap;
1269 int needwakeup = 0;
1270
1271 cap = crypto_checkdriver_lock(driverid);
1272 if (cap == NULL)
1273 return EINVAL;
1274
1275 if (what & CRYPTO_SYMQ) {
1276 needwakeup |= cap->cc_qblocked;
1277 cap->cc_qblocked = 0;
1278 }
1279 if (what & CRYPTO_ASYMQ) {
1280 needwakeup |= cap->cc_kqblocked;
1281 cap->cc_kqblocked = 0;
1282 }
1283 crypto_driver_unlock(cap);
1284 if (needwakeup) {
1285 kpreempt_disable();
1286 softint_schedule(crypto_q_si);
1287 kpreempt_enable();
1288 }
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * Dispatch a crypto request to a driver or queue
1295 * it, to be processed by the kernel thread.
1296 */
1297 int
1298 crypto_dispatch(struct cryptop *crp)
1299 {
1300 int result, s;
1301 struct cryptocap *cap;
1302 struct crypto_crp_qs *crp_qs;
1303 struct crypto_crp_q *crp_q;
1304
1305 KASSERT(crp != NULL);
1306
1307 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1308
1309 cryptostats.cs_ops++;
1310
1311 #ifdef CRYPTO_TIMING
1312 if (crypto_timing)
1313 nanouptime(&crp->crp_tstamp);
1314 #endif
1315
1316 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1317 int wasempty;
1318 /*
1319 * Caller marked the request as ``ok to delay'';
1320 * queue it for the swi thread. This is desirable
1321 * when the operation is low priority and/or suitable
1322 * for batching.
1323 *
1324 * don't care list order in batch job.
1325 */
1326 crp_qs = crypto_get_crp_qs(&s);
1327 crp_q = crp_qs->crp_q;
1328 wasempty = TAILQ_EMPTY(crp_q);
1329 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1330 crypto_put_crp_qs(&s);
1331 crp_q = NULL;
1332 if (wasempty) {
1333 kpreempt_disable();
1334 softint_schedule(crypto_q_si);
1335 kpreempt_enable();
1336 }
1337
1338 return 0;
1339 }
1340
1341 crp_qs = crypto_get_crp_qs(&s);
1342 crp_q = crp_qs->crp_q;
1343 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1344 /*
1345 * TODO:
1346 * If we can ensure the driver has been valid until the driver is
1347 * done crypto_unregister(), this migrate operation is not required.
1348 */
1349 if (cap == NULL) {
1350 /*
1351 * The driver must be detached, so this request will migrate
1352 * to other drivers in cryptointr() later.
1353 */
1354 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1355 result = 0;
1356 goto out;
1357 }
1358
1359 if (cap->cc_qblocked != 0) {
1360 crypto_driver_unlock(cap);
1361 /*
1362 * The driver is blocked, just queue the op until
1363 * it unblocks and the swi thread gets kicked.
1364 */
1365 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1366 result = 0;
1367 goto out;
1368 }
1369
1370 /*
1371 * Caller marked the request to be processed
1372 * immediately; dispatch it directly to the
1373 * driver unless the driver is currently blocked.
1374 */
1375 crypto_driver_unlock(cap);
1376 result = crypto_invoke(crp, 0);
1377 if (result == ERESTART) {
1378 /*
1379 * The driver ran out of resources, mark the
1380 * driver ``blocked'' for cryptop's and put
1381 * the op on the queue.
1382 */
1383 crypto_driver_lock(cap);
1384 cap->cc_qblocked = 1;
1385 crypto_driver_unlock(cap);
1386 TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1387 cryptostats.cs_blocks++;
1388
1389 /*
1390 * The crp is enqueued to crp_q, that is,
1391 * no error occurs. So, this function should
1392 * not return error.
1393 */
1394 result = 0;
1395 }
1396
1397 out:
1398 crypto_put_crp_qs(&s);
1399 return result;
1400 }
1401
1402 /*
1403 * Add an asymetric crypto request to a queue,
1404 * to be processed by the kernel thread.
1405 */
1406 int
1407 crypto_kdispatch(struct cryptkop *krp)
1408 {
1409 int result, s;
1410 struct cryptocap *cap;
1411 struct crypto_crp_qs *crp_qs;
1412 struct crypto_crp_kq *crp_kq;
1413
1414 KASSERT(krp != NULL);
1415
1416 cryptostats.cs_kops++;
1417
1418 crp_qs = crypto_get_crp_qs(&s);
1419 crp_kq = crp_qs->crp_kq;
1420 cap = crypto_checkdriver_lock(krp->krp_hid);
1421 /*
1422 * TODO:
1423 * If we can ensure the driver has been valid until the driver is
1424 * done crypto_unregister(), this migrate operation is not required.
1425 */
1426 if (cap == NULL) {
1427 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1428 result = 0;
1429 goto out;
1430 }
1431
1432 if (cap->cc_kqblocked != 0) {
1433 crypto_driver_unlock(cap);
1434 /*
1435 * The driver is blocked, just queue the op until
1436 * it unblocks and the swi thread gets kicked.
1437 */
1438 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1439 result = 0;
1440 goto out;
1441 }
1442
1443 crypto_driver_unlock(cap);
1444 result = crypto_kinvoke(krp, 0);
1445 if (result == ERESTART) {
1446 /*
1447 * The driver ran out of resources, mark the
1448 * driver ``blocked'' for cryptop's and put
1449 * the op on the queue.
1450 */
1451 crypto_driver_lock(cap);
1452 cap->cc_kqblocked = 1;
1453 crypto_driver_unlock(cap);
1454 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1455 cryptostats.cs_kblocks++;
1456
1457 /*
1458 * The krp is enqueued to crp_kq, that is,
1459 * no error occurs. So, this function should
1460 * not return error.
1461 */
1462 result = 0;
1463 }
1464
1465 out:
1466 crypto_put_crp_qs(&s);
1467 return result;
1468 }
1469
1470 /*
1471 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1472 */
1473 static int
1474 crypto_kinvoke(struct cryptkop *krp, int hint)
1475 {
1476 struct cryptocap *cap = NULL;
1477 u_int32_t hid;
1478 int error;
1479
1480 KASSERT(krp != NULL);
1481
1482 /* Sanity checks. */
1483 if (krp->krp_callback == NULL) {
1484 cv_destroy(&krp->krp_cv);
1485 crypto_kfreereq(krp);
1486 return EINVAL;
1487 }
1488
1489 mutex_enter(&crypto_drv_mtx);
1490 for (hid = 0; hid < crypto_drivers_num; hid++) {
1491 cap = crypto_checkdriver(hid);
1492 if (cap == NULL)
1493 continue;
1494 crypto_driver_lock(cap);
1495 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1496 crypto_devallowsoft == 0) {
1497 crypto_driver_unlock(cap);
1498 continue;
1499 }
1500 if (cap->cc_kprocess == NULL) {
1501 crypto_driver_unlock(cap);
1502 continue;
1503 }
1504 if ((cap->cc_kalg[krp->krp_op] &
1505 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1506 crypto_driver_unlock(cap);
1507 continue;
1508 }
1509 break;
1510 }
1511 mutex_exit(&crypto_drv_mtx);
1512 if (cap != NULL) {
1513 int (*process)(void *, struct cryptkop *, int);
1514 void *arg;
1515
1516 process = cap->cc_kprocess;
1517 arg = cap->cc_karg;
1518 krp->krp_hid = hid;
1519 krp->reqcpu = curcpu();
1520 crypto_driver_unlock(cap);
1521 error = (*process)(arg, krp, hint);
1522 } else {
1523 error = ENODEV;
1524 }
1525
1526 if (error) {
1527 krp->krp_status = error;
1528 crypto_kdone(krp);
1529 }
1530 return 0;
1531 }
1532
1533 #ifdef CRYPTO_TIMING
1534 static void
1535 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1536 {
1537 struct timespec now, t;
1538
1539 nanouptime(&now);
1540 t.tv_sec = now.tv_sec - tv->tv_sec;
1541 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1542 if (t.tv_nsec < 0) {
1543 t.tv_sec--;
1544 t.tv_nsec += 1000000000;
1545 }
1546 timespecadd(&ts->acc, &t, &t);
1547 if (timespeccmp(&t, &ts->min, <))
1548 ts->min = t;
1549 if (timespeccmp(&t, &ts->max, >))
1550 ts->max = t;
1551 ts->count++;
1552
1553 *tv = now;
1554 }
1555 #endif
1556
1557 /*
1558 * Dispatch a crypto request to the appropriate crypto devices.
1559 */
1560 static int
1561 crypto_invoke(struct cryptop *crp, int hint)
1562 {
1563 struct cryptocap *cap;
1564
1565 KASSERT(crp != NULL);
1566
1567 #ifdef CRYPTO_TIMING
1568 if (crypto_timing)
1569 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1570 #endif
1571 /* Sanity checks. */
1572 if (crp->crp_callback == NULL) {
1573 return EINVAL;
1574 }
1575 if (crp->crp_desc == NULL) {
1576 crp->crp_etype = EINVAL;
1577 crypto_done(crp);
1578 return 0;
1579 }
1580
1581 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1582 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1583 int (*process)(void *, struct cryptop *, int);
1584 void *arg;
1585
1586 process = cap->cc_process;
1587 arg = cap->cc_arg;
1588 crp->reqcpu = curcpu();
1589
1590 /*
1591 * Invoke the driver to process the request.
1592 */
1593 DPRINTF("calling process for %p\n", crp);
1594 crypto_driver_unlock(cap);
1595 return (*process)(arg, crp, hint);
1596 } else {
1597 struct cryptodesc *crd;
1598 u_int64_t nid = 0;
1599
1600 if (cap != NULL)
1601 crypto_driver_unlock(cap);
1602
1603 /*
1604 * Driver has unregistered; migrate the session and return
1605 * an error to the caller so they'll resubmit the op.
1606 */
1607 crypto_freesession(crp->crp_sid);
1608
1609 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1610 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1611
1612 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1613 crp->crp_sid = nid;
1614
1615 crp->crp_etype = EAGAIN;
1616
1617 crypto_done(crp);
1618 return 0;
1619 }
1620 }
1621
1622 /*
1623 * Release a set of crypto descriptors.
1624 */
1625 void
1626 crypto_freereq(struct cryptop *crp)
1627 {
1628 struct cryptodesc *crd;
1629
1630 if (crp == NULL)
1631 return;
1632 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1633
1634 /* sanity check */
1635 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1636 panic("crypto_freereq() freeing crp on RETQ\n");
1637 }
1638
1639 while ((crd = crp->crp_desc) != NULL) {
1640 crp->crp_desc = crd->crd_next;
1641 pool_cache_put(cryptodesc_cache, crd);
1642 }
1643 pool_cache_put(cryptop_cache, crp);
1644 }
1645
1646 /*
1647 * Acquire a set of crypto descriptors.
1648 */
1649 struct cryptop *
1650 crypto_getreq(int num)
1651 {
1652 struct cryptodesc *crd;
1653 struct cryptop *crp;
1654 struct crypto_crp_ret_qs *qs;
1655
1656 /*
1657 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1658 * by error callback.
1659 */
1660 qs = crypto_get_crp_ret_qs(curcpu());
1661 if (qs->crp_ret_q_maxlen > 0
1662 && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1663 qs->crp_ret_q_drops++;
1664 crypto_put_crp_ret_qs(curcpu());
1665 return NULL;
1666 }
1667 crypto_put_crp_ret_qs(curcpu());
1668
1669 crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
1670 if (crp == NULL) {
1671 return NULL;
1672 }
1673 memset(crp, 0, sizeof(struct cryptop));
1674
1675 while (num--) {
1676 crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
1677 if (crd == NULL) {
1678 crypto_freereq(crp);
1679 return NULL;
1680 }
1681
1682 memset(crd, 0, sizeof(struct cryptodesc));
1683 crd->crd_next = crp->crp_desc;
1684 crp->crp_desc = crd;
1685 }
1686
1687 return crp;
1688 }
1689
1690 /*
1691 * Release a set of asymmetric crypto descriptors.
1692 * Currently, support one descriptor only.
1693 */
1694 void
1695 crypto_kfreereq(struct cryptkop *krp)
1696 {
1697
1698 if (krp == NULL)
1699 return;
1700
1701 DPRINTF("krp %p\n", krp);
1702
1703 /* sanity check */
1704 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1705 panic("crypto_kfreereq() freeing krp on RETQ\n");
1706 }
1707
1708 pool_cache_put(cryptkop_cache, krp);
1709 }
1710
1711 /*
1712 * Acquire a set of asymmetric crypto descriptors.
1713 * Currently, support one descriptor only.
1714 */
1715 struct cryptkop *
1716 crypto_kgetreq(int num __unused, int prflags)
1717 {
1718 struct cryptkop *krp;
1719 struct crypto_crp_ret_qs *qs;
1720
1721 /*
1722 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1723 * overflow by error callback.
1724 */
1725 qs = crypto_get_crp_ret_qs(curcpu());
1726 if (qs->crp_ret_kq_maxlen > 0
1727 && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1728 qs->crp_ret_kq_drops++;
1729 crypto_put_crp_ret_qs(curcpu());
1730 return NULL;
1731 }
1732 crypto_put_crp_ret_qs(curcpu());
1733
1734 krp = pool_cache_get(cryptkop_cache, prflags);
1735 if (krp == NULL) {
1736 return NULL;
1737 }
1738 memset(krp, 0, sizeof(struct cryptkop));
1739
1740 return krp;
1741 }
1742
1743 /*
1744 * Invoke the callback on behalf of the driver.
1745 */
1746 void
1747 crypto_done(struct cryptop *crp)
1748 {
1749
1750 KASSERT(crp != NULL);
1751
1752 if (crp->crp_etype != 0)
1753 cryptostats.cs_errs++;
1754 #ifdef CRYPTO_TIMING
1755 if (crypto_timing)
1756 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1757 #endif
1758 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1759
1760 /*
1761 * Normal case; queue the callback for the thread.
1762 *
1763 * The return queue is manipulated by the swi thread
1764 * and, potentially, by crypto device drivers calling
1765 * back to mark operations completed. Thus we need
1766 * to mask both while manipulating the return queue.
1767 */
1768 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1769 /*
1770 * Do the callback directly. This is ok when the
1771 * callback routine does very little (e.g. the
1772 * /dev/crypto callback method just does a wakeup).
1773 */
1774 crp->crp_flags |= CRYPTO_F_DONE;
1775
1776 #ifdef CRYPTO_TIMING
1777 if (crypto_timing) {
1778 /*
1779 * NB: We must copy the timestamp before
1780 * doing the callback as the cryptop is
1781 * likely to be reclaimed.
1782 */
1783 struct timespec t = crp->crp_tstamp;
1784 crypto_tstat(&cryptostats.cs_cb, &t);
1785 crp->crp_callback(crp);
1786 crypto_tstat(&cryptostats.cs_finis, &t);
1787 } else
1788 #endif
1789 crp->crp_callback(crp);
1790 } else {
1791 crp->crp_flags |= CRYPTO_F_DONE;
1792 #if 0
1793 if (crp->crp_flags & CRYPTO_F_USER) {
1794 /*
1795 * TODO:
1796 * If crp->crp_flags & CRYPTO_F_USER and the used
1797 * encryption driver does all the processing in
1798 * the same context, we can skip enqueueing crp_ret_q
1799 * and softint_schedule(crypto_ret_si).
1800 */
1801 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1802 CRYPTO_SESID2LID(crp->crp_sid), crp);
1803 } else
1804 #endif
1805 {
1806 int wasempty;
1807 struct crypto_crp_ret_qs *qs;
1808 struct crypto_crp_ret_q *crp_ret_q;
1809
1810 qs = crypto_get_crp_ret_qs(crp->reqcpu);
1811 crp_ret_q = &qs->crp_ret_q;
1812 wasempty = TAILQ_EMPTY(crp_ret_q);
1813 DPRINTF("lid[%u]: queueing %p\n",
1814 CRYPTO_SESID2LID(crp->crp_sid), crp);
1815 crp->crp_flags |= CRYPTO_F_ONRETQ;
1816 TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1817 qs->crp_ret_q_len++;
1818 if (wasempty && !qs->crp_ret_q_exit_flag) {
1819 DPRINTF("lid[%u]: waking cryptoret,"
1820 "crp %p hit empty queue\n.",
1821 CRYPTO_SESID2LID(crp->crp_sid), crp);
1822 softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1823 }
1824 crypto_put_crp_ret_qs(crp->reqcpu);
1825 }
1826 }
1827 }
1828
1829 /*
1830 * Invoke the callback on behalf of the driver.
1831 */
1832 void
1833 crypto_kdone(struct cryptkop *krp)
1834 {
1835
1836 KASSERT(krp != NULL);
1837
1838 if (krp->krp_status != 0)
1839 cryptostats.cs_kerrs++;
1840
1841 krp->krp_flags |= CRYPTO_F_DONE;
1842
1843 /*
1844 * The return queue is manipulated by the swi thread
1845 * and, potentially, by crypto device drivers calling
1846 * back to mark operations completed. Thus we need
1847 * to mask both while manipulating the return queue.
1848 */
1849 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1850 krp->krp_callback(krp);
1851 } else {
1852 int wasempty;
1853 struct crypto_crp_ret_qs *qs;
1854 struct crypto_crp_ret_kq *crp_ret_kq;
1855
1856 qs = crypto_get_crp_ret_qs(krp->reqcpu);
1857 crp_ret_kq = &qs->crp_ret_kq;
1858
1859 wasempty = TAILQ_EMPTY(crp_ret_kq);
1860 krp->krp_flags |= CRYPTO_F_ONRETQ;
1861 TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1862 qs->crp_ret_kq_len++;
1863 if (wasempty && !qs->crp_ret_q_exit_flag)
1864 softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1865 crypto_put_crp_ret_qs(krp->reqcpu);
1866 }
1867 }
1868
1869 int
1870 crypto_getfeat(int *featp)
1871 {
1872
1873 if (crypto_userasymcrypto == 0) {
1874 *featp = 0;
1875 return 0;
1876 }
1877
1878 mutex_enter(&crypto_drv_mtx);
1879
1880 int feat = 0;
1881 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1882 struct cryptocap *cap;
1883 cap = crypto_checkdriver(hid);
1884 if (cap == NULL)
1885 continue;
1886
1887 crypto_driver_lock(cap);
1888
1889 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1890 crypto_devallowsoft == 0)
1891 goto unlock;
1892
1893 if (cap->cc_kprocess == NULL)
1894 goto unlock;
1895
1896 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1897 if ((cap->cc_kalg[kalg] &
1898 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1899 feat |= 1 << kalg;
1900
1901 unlock: crypto_driver_unlock(cap);
1902 }
1903
1904 mutex_exit(&crypto_drv_mtx);
1905 *featp = feat;
1906 return (0);
1907 }
1908
1909 /*
1910 * Software interrupt thread to dispatch crypto requests.
1911 */
1912 static void
1913 cryptointr(void *arg __unused)
1914 {
1915 struct cryptop *crp, *submit, *cnext;
1916 struct cryptkop *krp, *knext;
1917 struct cryptocap *cap;
1918 struct crypto_crp_qs *crp_qs;
1919 struct crypto_crp_q *crp_q;
1920 struct crypto_crp_kq *crp_kq;
1921 int result, hint, s;
1922
1923 cryptostats.cs_intrs++;
1924 crp_qs = crypto_get_crp_qs(&s);
1925 crp_q = crp_qs->crp_q;
1926 crp_kq = crp_qs->crp_kq;
1927 do {
1928 /*
1929 * Find the first element in the queue that can be
1930 * processed and look-ahead to see if multiple ops
1931 * are ready for the same driver.
1932 */
1933 submit = NULL;
1934 hint = 0;
1935 TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1936 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1937 cap = crypto_checkdriver_lock(hid);
1938 if (cap == NULL || cap->cc_process == NULL) {
1939 if (cap != NULL)
1940 crypto_driver_unlock(cap);
1941 /* Op needs to be migrated, process it. */
1942 submit = crp;
1943 break;
1944 }
1945
1946 /*
1947 * skip blocked crp regardless of CRYPTO_F_BATCH
1948 */
1949 if (cap->cc_qblocked != 0) {
1950 crypto_driver_unlock(cap);
1951 continue;
1952 }
1953 crypto_driver_unlock(cap);
1954
1955 /*
1956 * skip batch crp until the end of crp_q
1957 */
1958 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1959 if (submit == NULL) {
1960 submit = crp;
1961 } else {
1962 if (CRYPTO_SESID2HID(submit->crp_sid)
1963 == hid)
1964 hint = CRYPTO_HINT_MORE;
1965 }
1966
1967 continue;
1968 }
1969
1970 /*
1971 * found first crp which is neither blocked nor batch.
1972 */
1973 submit = crp;
1974 /*
1975 * batch crp can be processed much later, so clear hint.
1976 */
1977 hint = 0;
1978 break;
1979 }
1980 if (submit != NULL) {
1981 TAILQ_REMOVE(crp_q, submit, crp_next);
1982 result = crypto_invoke(submit, hint);
1983 /* we must take here as the TAILQ op or kinvoke
1984 may need this mutex below. sigh. */
1985 if (result == ERESTART) {
1986 /*
1987 * The driver ran out of resources, mark the
1988 * driver ``blocked'' for cryptop's and put
1989 * the request back in the queue. It would
1990 * best to put the request back where we got
1991 * it but that's hard so for now we put it
1992 * at the front. This should be ok; putting
1993 * it at the end does not work.
1994 */
1995 /* validate sid again */
1996 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1997 if (cap == NULL) {
1998 /* migrate again, sigh... */
1999 TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
2000 } else {
2001 cap->cc_qblocked = 1;
2002 crypto_driver_unlock(cap);
2003 TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
2004 cryptostats.cs_blocks++;
2005 }
2006 }
2007 }
2008
2009 /* As above, but for key ops */
2010 TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
2011 cap = crypto_checkdriver_lock(krp->krp_hid);
2012 if (cap == NULL || cap->cc_kprocess == NULL) {
2013 if (cap != NULL)
2014 crypto_driver_unlock(cap);
2015 /* Op needs to be migrated, process it. */
2016 break;
2017 }
2018 if (!cap->cc_kqblocked) {
2019 crypto_driver_unlock(cap);
2020 break;
2021 }
2022 crypto_driver_unlock(cap);
2023 }
2024 if (krp != NULL) {
2025 TAILQ_REMOVE(crp_kq, krp, krp_next);
2026 result = crypto_kinvoke(krp, 0);
2027 /* the next iteration will want the mutex. :-/ */
2028 if (result == ERESTART) {
2029 /*
2030 * The driver ran out of resources, mark the
2031 * driver ``blocked'' for cryptkop's and put
2032 * the request back in the queue. It would
2033 * best to put the request back where we got
2034 * it but that's hard so for now we put it
2035 * at the front. This should be ok; putting
2036 * it at the end does not work.
2037 */
2038 /* validate sid again */
2039 cap = crypto_checkdriver_lock(krp->krp_hid);
2040 if (cap == NULL) {
2041 /* migrate again, sigh... */
2042 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
2043 } else {
2044 cap->cc_kqblocked = 1;
2045 crypto_driver_unlock(cap);
2046 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
2047 cryptostats.cs_kblocks++;
2048 }
2049 }
2050 }
2051 } while (submit != NULL || krp != NULL);
2052 crypto_put_crp_qs(&s);
2053 }
2054
2055 /*
2056 * softint handler to do callbacks.
2057 */
2058 static void
2059 cryptoret_softint(void *arg __unused)
2060 {
2061 struct crypto_crp_ret_qs *qs;
2062 struct crypto_crp_ret_q *crp_ret_q;
2063 struct crypto_crp_ret_kq *crp_ret_kq;
2064
2065 qs = crypto_get_crp_ret_qs(curcpu());
2066 crp_ret_q = &qs->crp_ret_q;
2067 crp_ret_kq = &qs->crp_ret_kq;
2068 for (;;) {
2069 struct cryptop *crp;
2070 struct cryptkop *krp;
2071
2072 crp = TAILQ_FIRST(crp_ret_q);
2073 if (crp != NULL) {
2074 TAILQ_REMOVE(crp_ret_q, crp, crp_next);
2075 qs->crp_ret_q_len--;
2076 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
2077 }
2078 krp = TAILQ_FIRST(crp_ret_kq);
2079 if (krp != NULL) {
2080 TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
2081 qs->crp_ret_q_len--;
2082 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
2083 }
2084
2085 /* drop before calling any callbacks. */
2086 if (crp == NULL && krp == NULL)
2087 break;
2088
2089 mutex_spin_exit(&qs->crp_ret_q_mtx);
2090 if (crp != NULL) {
2091 #ifdef CRYPTO_TIMING
2092 if (crypto_timing) {
2093 /*
2094 * NB: We must copy the timestamp before
2095 * doing the callback as the cryptop is
2096 * likely to be reclaimed.
2097 */
2098 struct timespec t = crp->crp_tstamp;
2099 crypto_tstat(&cryptostats.cs_cb, &t);
2100 crp->crp_callback(crp);
2101 crypto_tstat(&cryptostats.cs_finis, &t);
2102 } else
2103 #endif
2104 {
2105 crp->crp_callback(crp);
2106 }
2107 }
2108 if (krp != NULL)
2109 krp->krp_callback(krp);
2110
2111 mutex_spin_enter(&qs->crp_ret_q_mtx);
2112 }
2113 crypto_put_crp_ret_qs(curcpu());
2114 }
2115
2116 /* NetBSD module interface */
2117
2118 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2119
2120 static int
2121 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2122 {
2123 int error = 0;
2124
2125 switch (cmd) {
2126 case MODULE_CMD_INIT:
2127 #ifdef _MODULE
2128 error = crypto_init();
2129 #endif
2130 break;
2131 case MODULE_CMD_FINI:
2132 #ifdef _MODULE
2133 error = crypto_destroy(true);
2134 #endif
2135 break;
2136 default:
2137 error = ENOTTY;
2138 }
2139 return error;
2140 }
2141