Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.11
      1 /*	$NetBSD: crypto.c,v 1.11 2005/11/25 16:16:46 thorpej Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*
      6  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
      7  *
      8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
      9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     10  * supported the development of this code.
     11  *
     12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     13  *
     14  * Permission to use, copy, and modify this software with or without fee
     15  * is hereby granted, provided that this entire notice is included in
     16  * all source code copies of any software which is or includes a copy or
     17  * modification of this software.
     18  *
     19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     23  * PURPOSE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.11 2005/11/25 16:16:46 thorpej Exp $");
     28 
     29 /* XXX FIXME: should be defopt'ed */
     30 #define CRYPTO_TIMING			/* enable cryptop timing stuff */
     31 
     32 #include <sys/param.h>
     33 #include <sys/reboot.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/proc.h>
     37 #include <sys/pool.h>
     38 #include <opencrypto/cryptodev.h>
     39 #include <sys/kthread.h>
     40 #include <sys/once.h>
     41 
     42 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     43 
     44 #ifdef __NetBSD__
     45   #define splcrypto splnet
     46   /* below is kludges to check whats still missing */
     47   #define SWI_CRYPTO 17
     48   #define register_swi(lvl, fn)  \
     49   softintr_establish(IPL_SOFTNET, (void (*)(void*))fn, NULL)
     50   #define unregister_swi(lvl, fn)  softintr_disestablish(softintr_cookie)
     51   #define setsoftcrypto(x) softintr_schedule(x)
     52 
     53 static void nanouptime(struct timespec *);
     54 static void
     55 nanouptime(struct timespec *tp)
     56 {
     57 	struct timeval tv;
     58 	microtime(&tv);
     59 	TIMEVAL_TO_TIMESPEC(&tv, tp);
     60 }
     61 
     62 #endif
     63 
     64 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
     65 
     66 /*
     67  * Crypto drivers register themselves by allocating a slot in the
     68  * crypto_drivers table with crypto_get_driverid() and then registering
     69  * each algorithm they support with crypto_register() and crypto_kregister().
     70  */
     71 static	struct cryptocap *crypto_drivers;
     72 static	int crypto_drivers_num;
     73 static	void* softintr_cookie;
     74 
     75 /*
     76  * There are two queues for crypto requests; one for symmetric (e.g.
     77  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     78  * See below for how synchronization is handled.
     79  */
     80 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
     81 		TAILQ_HEAD_INITIALIZER(crp_q);
     82 static	TAILQ_HEAD(,cryptkop) crp_kq =
     83 		TAILQ_HEAD_INITIALIZER(crp_kq);
     84 
     85 /*
     86  * There are two queues for processing completed crypto requests; one
     87  * for the symmetric and one for the asymmetric ops.  We only need one
     88  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
     89  * for how synchronization is handled.
     90  */
     91 static	TAILQ_HEAD(,cryptop) crp_ret_q =	/* callback queues */
     92 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
     93 static	TAILQ_HEAD(,cryptkop) crp_ret_kq =
     94 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
     95 
     96 /*
     97  * Crypto op and desciptor data structures are allocated
     98  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
     99  */
    100 struct pool cryptop_pool;
    101 struct pool cryptodesc_pool;
    102 int crypto_pool_initialized = 0;
    103 
    104 #ifdef __NetBSD__
    105 static void deferred_crypto_thread(void *arg);
    106 #endif
    107 
    108 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    109 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    110 /*
    111  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    112  * access to hardware versus software transforms as below:
    113  *
    114  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    115  *                              transforms, always
    116  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    117  *                              requests for non-accelerated transforms
    118  *                              (handling the latter in software)
    119  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    120  *                               are hardware-accelerated.
    121  */
    122 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    123 
    124 #ifdef __FreeBSD__
    125 SYSCTL_INT(_kern, OID_AUTO, usercrypto, CTLFLAG_RW,
    126 	   &crypto_usercrypto, 0,
    127 	   "Enable/disable user-mode access to crypto support");
    128 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
    129 	   &crypto_userasymcrypto, 0,
    130 	   "Enable/disable user-mode access to asymmetric crypto support");
    131 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
    132 	   &crypto_devallowsoft, 0,
    133 	   "Enable/disable use of software asym crypto support");
    134 #endif
    135 
    136 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    137 
    138 /*
    139  * Synchronization: read carefully, this is non-trivial.
    140  *
    141  * Crypto requests are submitted via crypto_dispatch.  Typically
    142  * these come in from network protocols at spl0 (output path) or
    143  * spl[,soft]net (input path).
    144  *
    145  * Requests are typically passed on the driver directly, but they
    146  * may also be queued for processing by a software interrupt thread,
    147  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    148  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    149  * when a request is complete.  Hardware crypto drivers are assumed
    150  * to register their IRQ's as network devices so their interrupt handlers
    151  * and subsequent "done callbacks" happen at spl[imp,net].
    152  *
    153  * Completed crypto ops are queued for a separate kernel thread that
    154  * handles the callbacks at spl0.  This decoupling insures the crypto
    155  * driver interrupt service routine is not delayed while the callback
    156  * takes place and that callbacks are delivered after a context switch
    157  * (as opposed to a software interrupt that clients must block).
    158  *
    159  * This scheme is not intended for SMP machines.
    160  */
    161 static	void cryptointr(void);		/* swi thread to dispatch ops */
    162 static	void cryptoret(void);		/* kernel thread for callbacks*/
    163 static	struct proc *cryptoproc;
    164 static	void crypto_destroy(void);
    165 static	int crypto_invoke(struct cryptop *crp, int hint);
    166 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    167 
    168 static struct cryptostats cryptostats;
    169 static	int crypto_timing = 0;
    170 
    171 #ifdef __FreeBSD__
    172 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
    173 	    cryptostats, "Crypto system statistics");
    174 
    175 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
    176 	   &crypto_timing, 0, "Enable/disable crypto timing support");
    177 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
    178 	    cryptostats, "Crypto system statistics");
    179 #endif /* __FreeBSD__ */
    180 
    181 static void
    182 crypto_init0(void)
    183 {
    184 #ifdef __FreeBSD__
    185 	int error;
    186 
    187 	cryptop_zone = zinit("cryptop", sizeof (struct cryptop), 0, 0, 1);
    188 	cryptodesc_zone = zinit("cryptodesc", sizeof (struct cryptodesc),
    189 				0, 0, 1);
    190 	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
    191 		printf("crypto_init: cannot setup crypto zones\n");
    192 		return;
    193 	}
    194 #endif
    195 
    196 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    197 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    198 	if (crypto_drivers == NULL) {
    199 		printf("crypto_init: cannot malloc driver table\n");
    200 		return;
    201 	}
    202 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    203 
    204 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    205 #ifdef __FreeBSD__
    206 	error = kthread_create((void (*)(void *)) cryptoret, NULL,
    207 		    &cryptoproc, "cryptoret");
    208 	if (error) {
    209 		printf("crypto_init: cannot start cryptoret thread; error %d",
    210 			error);
    211 		crypto_destroy();
    212 	}
    213 #else
    214 	/* defer thread creation until after boot */
    215 	kthread_create( deferred_crypto_thread, NULL);
    216 #endif
    217 }
    218 
    219 void
    220 crypto_init(void)
    221 {
    222 	ONCE_DECL(crypto_init_once);
    223 
    224 	RUN_ONCE(&crypto_init_once, crypto_init0);
    225 }
    226 
    227 static void
    228 crypto_destroy(void)
    229 {
    230 	/* XXX no wait to reclaim zones */
    231 	if (crypto_drivers != NULL)
    232 		free(crypto_drivers, M_CRYPTO_DATA);
    233 	unregister_swi(SWI_CRYPTO, cryptointr);
    234 }
    235 
    236 /*
    237  * Create a new session.
    238  */
    239 int
    240 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    241 {
    242 	struct cryptoini *cr;
    243 	u_int32_t hid, lid;
    244 	int err = EINVAL;
    245 	int s;
    246 
    247 	s = splcrypto();
    248 
    249 	if (crypto_drivers == NULL)
    250 		goto done;
    251 
    252 	/*
    253 	 * The algorithm we use here is pretty stupid; just use the
    254 	 * first driver that supports all the algorithms we need.
    255 	 *
    256 	 * XXX We need more smarts here (in real life too, but that's
    257 	 * XXX another story altogether).
    258 	 */
    259 
    260 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    261 		/*
    262 		 * If it's not initialized or has remaining sessions
    263 		 * referencing it, skip.
    264 		 */
    265 		if (crypto_drivers[hid].cc_newsession == NULL ||
    266 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    267 			continue;
    268 
    269 		/* Hardware required -- ignore software drivers. */
    270 		if (hard > 0 &&
    271 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    272 			continue;
    273 		/* Software required -- ignore hardware drivers. */
    274 		if (hard < 0 &&
    275 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    276 			continue;
    277 
    278 		/* See if all the algorithms are supported. */
    279 		for (cr = cri; cr; cr = cr->cri_next)
    280 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
    281 				break;
    282 
    283 		if (cr == NULL) {
    284 			/* Ok, all algorithms are supported. */
    285 
    286 			/*
    287 			 * Can't do everything in one session.
    288 			 *
    289 			 * XXX Fix this. We need to inject a "virtual" session layer right
    290 			 * XXX about here.
    291 			 */
    292 
    293 			/* Call the driver initialization routine. */
    294 			lid = hid;		/* Pass the driver ID. */
    295 			err = crypto_drivers[hid].cc_newsession(
    296 					crypto_drivers[hid].cc_arg, &lid, cri);
    297 			if (err == 0) {
    298 				(*sid) = hid;
    299 				(*sid) <<= 32;
    300 				(*sid) |= (lid & 0xffffffff);
    301 				crypto_drivers[hid].cc_sessions++;
    302 			}
    303 			goto done;
    304 			/*break;*/
    305 		}
    306 	}
    307 done:
    308 	splx(s);
    309 	return err;
    310 }
    311 
    312 /*
    313  * Delete an existing session (or a reserved session on an unregistered
    314  * driver).
    315  */
    316 int
    317 crypto_freesession(u_int64_t sid)
    318 {
    319 	u_int32_t hid;
    320 	int err = 0;
    321 	int s;
    322 
    323 	s = splcrypto();
    324 
    325 	if (crypto_drivers == NULL) {
    326 		err = EINVAL;
    327 		goto done;
    328 	}
    329 
    330 	/* Determine two IDs. */
    331 	hid = SESID2HID(sid);
    332 
    333 	if (hid >= crypto_drivers_num) {
    334 		err = ENOENT;
    335 		goto done;
    336 	}
    337 
    338 	if (crypto_drivers[hid].cc_sessions)
    339 		crypto_drivers[hid].cc_sessions--;
    340 
    341 	/* Call the driver cleanup routine, if available. */
    342 	if (crypto_drivers[hid].cc_freesession)
    343 		err = crypto_drivers[hid].cc_freesession(
    344 				crypto_drivers[hid].cc_arg, sid);
    345 	else
    346 		err = 0;
    347 
    348 	/*
    349 	 * If this was the last session of a driver marked as invalid,
    350 	 * make the entry available for reuse.
    351 	 */
    352 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    353 	    crypto_drivers[hid].cc_sessions == 0)
    354 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
    355 
    356 done:
    357 	splx(s);
    358 	return err;
    359 }
    360 
    361 /*
    362  * Return an unused driver id.  Used by drivers prior to registering
    363  * support for the algorithms they handle.
    364  */
    365 int32_t
    366 crypto_get_driverid(u_int32_t flags)
    367 {
    368 	struct cryptocap *newdrv;
    369 	int i, s;
    370 
    371 	crypto_init();
    372 
    373 	s = splcrypto();
    374 	for (i = 0; i < crypto_drivers_num; i++)
    375 		if (crypto_drivers[i].cc_process == NULL &&
    376 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    377 		    crypto_drivers[i].cc_sessions == 0)
    378 			break;
    379 
    380 	/* Out of entries, allocate some more. */
    381 	if (i == crypto_drivers_num) {
    382 		/* Be careful about wrap-around. */
    383 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    384 			splx(s);
    385 			printf("crypto: driver count wraparound!\n");
    386 			return -1;
    387 		}
    388 
    389 		newdrv = malloc(2 * crypto_drivers_num *
    390 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    391 		if (newdrv == NULL) {
    392 			splx(s);
    393 			printf("crypto: no space to expand driver table!\n");
    394 			return -1;
    395 		}
    396 
    397 		bcopy(crypto_drivers, newdrv,
    398 		    crypto_drivers_num * sizeof(struct cryptocap));
    399 
    400 		crypto_drivers_num *= 2;
    401 
    402 		free(crypto_drivers, M_CRYPTO_DATA);
    403 		crypto_drivers = newdrv;
    404 	}
    405 
    406 	/* NB: state is zero'd on free */
    407 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    408 	crypto_drivers[i].cc_flags = flags;
    409 
    410 	if (bootverbose)
    411 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    412 
    413 	splx(s);
    414 
    415 	return i;
    416 }
    417 
    418 static struct cryptocap *
    419 crypto_checkdriver(u_int32_t hid)
    420 {
    421 	if (crypto_drivers == NULL)
    422 		return NULL;
    423 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    424 }
    425 
    426 /*
    427  * Register support for a key-related algorithm.  This routine
    428  * is called once for each algorithm supported a driver.
    429  */
    430 int
    431 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    432     int (*kprocess)(void*, struct cryptkop *, int),
    433     void *karg)
    434 {
    435 	int s;
    436 	struct cryptocap *cap;
    437 	int err;
    438 
    439 	s = splcrypto();
    440 
    441 	cap = crypto_checkdriver(driverid);
    442 	if (cap != NULL &&
    443 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    444 		/*
    445 		 * XXX Do some performance testing to determine placing.
    446 		 * XXX We probably need an auxiliary data structure that
    447 		 * XXX describes relative performances.
    448 		 */
    449 
    450 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    451 		if (bootverbose)
    452 			printf("crypto: driver %u registers key alg %u flags %u\n"
    453 				, driverid
    454 				, kalg
    455 				, flags
    456 			);
    457 
    458 		if (cap->cc_kprocess == NULL) {
    459 			cap->cc_karg = karg;
    460 			cap->cc_kprocess = kprocess;
    461 		}
    462 		err = 0;
    463 	} else
    464 		err = EINVAL;
    465 
    466 	splx(s);
    467 	return err;
    468 }
    469 
    470 /*
    471  * Register support for a non-key-related algorithm.  This routine
    472  * is called once for each such algorithm supported by a driver.
    473  */
    474 int
    475 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    476     u_int32_t flags,
    477     int (*newses)(void*, u_int32_t*, struct cryptoini*),
    478     int (*freeses)(void*, u_int64_t),
    479     int (*process)(void*, struct cryptop *, int),
    480     void *arg)
    481 {
    482 	struct cryptocap *cap;
    483 	int s, err;
    484 
    485 	s = splcrypto();
    486 
    487 	cap = crypto_checkdriver(driverid);
    488 	/* NB: algorithms are in the range [1..max] */
    489 	if (cap != NULL &&
    490 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    491 		/*
    492 		 * XXX Do some performance testing to determine placing.
    493 		 * XXX We probably need an auxiliary data structure that
    494 		 * XXX describes relative performances.
    495 		 */
    496 
    497 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    498 		cap->cc_max_op_len[alg] = maxoplen;
    499 		if (bootverbose)
    500 			printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
    501 				, driverid
    502 				, alg
    503 				, flags
    504 				, maxoplen
    505 			);
    506 
    507 		if (cap->cc_process == NULL) {
    508 			cap->cc_arg = arg;
    509 			cap->cc_newsession = newses;
    510 			cap->cc_process = process;
    511 			cap->cc_freesession = freeses;
    512 			cap->cc_sessions = 0;		/* Unmark */
    513 		}
    514 		err = 0;
    515 	} else
    516 		err = EINVAL;
    517 
    518 	splx(s);
    519 	return err;
    520 }
    521 
    522 /*
    523  * Unregister a crypto driver. If there are pending sessions using it,
    524  * leave enough information around so that subsequent calls using those
    525  * sessions will correctly detect the driver has been unregistered and
    526  * reroute requests.
    527  */
    528 int
    529 crypto_unregister(u_int32_t driverid, int alg)
    530 {
    531 	int i, err, s;
    532 	u_int32_t ses;
    533 	struct cryptocap *cap;
    534 
    535 	s = splcrypto();
    536 
    537 	cap = crypto_checkdriver(driverid);
    538 	if (cap != NULL &&
    539 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    540 	    cap->cc_alg[alg] != 0) {
    541 		cap->cc_alg[alg] = 0;
    542 		cap->cc_max_op_len[alg] = 0;
    543 
    544 		/* Was this the last algorithm ? */
    545 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    546 			if (cap->cc_alg[i] != 0)
    547 				break;
    548 
    549 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    550 			ses = cap->cc_sessions;
    551 			bzero(cap, sizeof(struct cryptocap));
    552 			if (ses != 0) {
    553 				/*
    554 				 * If there are pending sessions, just mark as invalid.
    555 				 */
    556 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    557 				cap->cc_sessions = ses;
    558 			}
    559 		}
    560 		err = 0;
    561 	} else
    562 		err = EINVAL;
    563 
    564 	splx(s);
    565 	return err;
    566 }
    567 
    568 /*
    569  * Unregister all algorithms associated with a crypto driver.
    570  * If there are pending sessions using it, leave enough information
    571  * around so that subsequent calls using those sessions will
    572  * correctly detect the driver has been unregistered and reroute
    573  * requests.
    574  */
    575 int
    576 crypto_unregister_all(u_int32_t driverid)
    577 {
    578 	int i, err, s = splcrypto();
    579 	u_int32_t ses;
    580 	struct cryptocap *cap;
    581 
    582 	cap = crypto_checkdriver(driverid);
    583 	if (cap != NULL) {
    584 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    585 			cap->cc_alg[i] = 0;
    586 			cap->cc_max_op_len[i] = 0;
    587 		}
    588 		ses = cap->cc_sessions;
    589 		bzero(cap, sizeof(struct cryptocap));
    590 		if (ses != 0) {
    591 			/*
    592 			 * If there are pending sessions, just mark as invalid.
    593 			 */
    594 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    595 			cap->cc_sessions = ses;
    596 		}
    597 		err = 0;
    598 	} else
    599 		err = EINVAL;
    600 
    601 	splx(s);
    602 	return err;
    603 }
    604 
    605 /*
    606  * Clear blockage on a driver.  The what parameter indicates whether
    607  * the driver is now ready for cryptop's and/or cryptokop's.
    608  */
    609 int
    610 crypto_unblock(u_int32_t driverid, int what)
    611 {
    612 	struct cryptocap *cap;
    613 	int needwakeup, err, s;
    614 
    615 	s = splcrypto();
    616 	cap = crypto_checkdriver(driverid);
    617 	if (cap != NULL) {
    618 		needwakeup = 0;
    619 		if (what & CRYPTO_SYMQ) {
    620 			needwakeup |= cap->cc_qblocked;
    621 			cap->cc_qblocked = 0;
    622 		}
    623 		if (what & CRYPTO_ASYMQ) {
    624 			needwakeup |= cap->cc_kqblocked;
    625 			cap->cc_kqblocked = 0;
    626 		}
    627 		if (needwakeup) {
    628 			setsoftcrypto(softintr_cookie);
    629 		}
    630 		err = 0;
    631 	} else
    632 		err = EINVAL;
    633 	splx(s);
    634 
    635 	return err;
    636 }
    637 
    638 /*
    639  * Dispatch a crypto request to a driver or queue
    640  * it, to be processed by the kernel thread.
    641  */
    642 int
    643 crypto_dispatch(struct cryptop *crp)
    644 {
    645 	u_int32_t hid = SESID2HID(crp->crp_sid);
    646 	int s, result;
    647 
    648 	s = splcrypto();
    649 
    650 	cryptostats.cs_ops++;
    651 
    652 #ifdef CRYPTO_TIMING
    653 	if (crypto_timing)
    654 		nanouptime(&crp->crp_tstamp);
    655 #endif
    656 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    657 		struct cryptocap *cap;
    658 		/*
    659 		 * Caller marked the request to be processed
    660 		 * immediately; dispatch it directly to the
    661 		 * driver unless the driver is currently blocked.
    662 		 */
    663 		cap = crypto_checkdriver(hid);
    664 		if (cap && !cap->cc_qblocked) {
    665 			result = crypto_invoke(crp, 0);
    666 			if (result == ERESTART) {
    667 				/*
    668 				 * The driver ran out of resources, mark the
    669 				 * driver ``blocked'' for cryptop's and put
    670 				 * the op on the queue.
    671 				 */
    672 				crypto_drivers[hid].cc_qblocked = 1;
    673 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    674 				cryptostats.cs_blocks++;
    675 			}
    676 		} else {
    677 			/*
    678 			 * The driver is blocked, just queue the op until
    679 			 * it unblocks and the swi thread gets kicked.
    680 			 */
    681 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    682 			result = 0;
    683 		}
    684 	} else {
    685 		int wasempty = TAILQ_EMPTY(&crp_q);
    686 		/*
    687 		 * Caller marked the request as ``ok to delay'';
    688 		 * queue it for the swi thread.  This is desirable
    689 		 * when the operation is low priority and/or suitable
    690 		 * for batching.
    691 		 */
    692 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    693 		if (wasempty) {
    694 			setsoftcrypto(softintr_cookie);
    695 		}
    696 
    697 		result = 0;
    698 	}
    699 	splx(s);
    700 
    701 	return result;
    702 }
    703 
    704 /*
    705  * Add an asymetric crypto request to a queue,
    706  * to be processed by the kernel thread.
    707  */
    708 int
    709 crypto_kdispatch(struct cryptkop *krp)
    710 {
    711 	struct cryptocap *cap;
    712 	int s, result;
    713 
    714 	s = splcrypto();
    715 	cryptostats.cs_kops++;
    716 
    717 	cap = crypto_checkdriver(krp->krp_hid);
    718 	if (cap && !cap->cc_kqblocked) {
    719 		result = crypto_kinvoke(krp, 0);
    720 		if (result == ERESTART) {
    721 			/*
    722 			 * The driver ran out of resources, mark the
    723 			 * driver ``blocked'' for cryptop's and put
    724 			 * the op on the queue.
    725 			 */
    726 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    727 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    728 			cryptostats.cs_kblocks++;
    729 		}
    730 	} else {
    731 		/*
    732 		 * The driver is blocked, just queue the op until
    733 		 * it unblocks and the swi thread gets kicked.
    734 		 */
    735 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    736 		result = 0;
    737 	}
    738 	splx(s);
    739 
    740 	return result;
    741 }
    742 
    743 /*
    744  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    745  */
    746 static int
    747 crypto_kinvoke(struct cryptkop *krp, int hint)
    748 {
    749 	u_int32_t hid;
    750 	int error;
    751 
    752 	/* Sanity checks. */
    753 	if (krp == NULL)
    754 		return EINVAL;
    755 	if (krp->krp_callback == NULL) {
    756 		free(krp, M_XDATA);		/* XXX allocated in cryptodev */
    757 		return EINVAL;
    758 	}
    759 
    760 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    761 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    762 		    crypto_devallowsoft == 0)
    763 			continue;
    764 		if (crypto_drivers[hid].cc_kprocess == NULL)
    765 			continue;
    766 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    767 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    768 			continue;
    769 		break;
    770 	}
    771 	if (hid < crypto_drivers_num) {
    772 		krp->krp_hid = hid;
    773 		error = crypto_drivers[hid].cc_kprocess(
    774 				crypto_drivers[hid].cc_karg, krp, hint);
    775 	} else {
    776 		error = ENODEV;
    777 	}
    778 
    779 	if (error) {
    780 		krp->krp_status = error;
    781 		crypto_kdone(krp);
    782 	}
    783 	return 0;
    784 }
    785 
    786 #ifdef CRYPTO_TIMING
    787 static void
    788 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    789 {
    790 	struct timespec now, t;
    791 
    792 	nanouptime(&now);
    793 	t.tv_sec = now.tv_sec - tv->tv_sec;
    794 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    795 	if (t.tv_nsec < 0) {
    796 		t.tv_sec--;
    797 		t.tv_nsec += 1000000000;
    798 	}
    799 	timespecadd(&ts->acc, &t, &t);
    800 	if (timespeccmp(&t, &ts->min, <))
    801 		ts->min = t;
    802 	if (timespeccmp(&t, &ts->max, >))
    803 		ts->max = t;
    804 	ts->count++;
    805 
    806 	*tv = now;
    807 }
    808 #endif
    809 
    810 /*
    811  * Dispatch a crypto request to the appropriate crypto devices.
    812  */
    813 static int
    814 crypto_invoke(struct cryptop *crp, int hint)
    815 {
    816 	u_int32_t hid;
    817 	int (*process)(void*, struct cryptop *, int);
    818 
    819 #ifdef CRYPTO_TIMING
    820 	if (crypto_timing)
    821 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    822 #endif
    823 	/* Sanity checks. */
    824 	if (crp == NULL)
    825 		return EINVAL;
    826 	if (crp->crp_callback == NULL) {
    827 		crypto_freereq(crp);
    828 		return EINVAL;
    829 	}
    830 	if (crp->crp_desc == NULL) {
    831 		crp->crp_etype = EINVAL;
    832 		crypto_done(crp);
    833 		return 0;
    834 	}
    835 
    836 	hid = SESID2HID(crp->crp_sid);
    837 	if (hid < crypto_drivers_num) {
    838 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    839 			crypto_freesession(crp->crp_sid);
    840 		process = crypto_drivers[hid].cc_process;
    841 	} else {
    842 		process = NULL;
    843 	}
    844 
    845 	if (process == NULL) {
    846 		struct cryptodesc *crd;
    847 		u_int64_t nid;
    848 
    849 		/*
    850 		 * Driver has unregistered; migrate the session and return
    851 		 * an error to the caller so they'll resubmit the op.
    852 		 */
    853 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    854 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    855 
    856 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    857 			crp->crp_sid = nid;
    858 
    859 		crp->crp_etype = EAGAIN;
    860 		crypto_done(crp);
    861 		return 0;
    862 	} else {
    863 		/*
    864 		 * Invoke the driver to process the request.
    865 		 */
    866 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
    867 	}
    868 }
    869 
    870 /*
    871  * Release a set of crypto descriptors.
    872  */
    873 void
    874 crypto_freereq(struct cryptop *crp)
    875 {
    876 	struct cryptodesc *crd;
    877 	int s;
    878 
    879 	if (crp == NULL)
    880 		return;
    881 
    882 	s = splcrypto();
    883 
    884 	while ((crd = crp->crp_desc) != NULL) {
    885 		crp->crp_desc = crd->crd_next;
    886 		pool_put(&cryptodesc_pool, crd);
    887 	}
    888 
    889 	pool_put(&cryptop_pool, crp);
    890 	splx(s);
    891 }
    892 
    893 /*
    894  * Acquire a set of crypto descriptors.
    895  */
    896 struct cryptop *
    897 crypto_getreq(int num)
    898 {
    899 	struct cryptodesc *crd;
    900 	struct cryptop *crp;
    901 	int s;
    902 
    903 	s = splcrypto();
    904 
    905 	if (crypto_pool_initialized == 0) {
    906 		pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    907 		    0, "cryptop", NULL);
    908 		pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    909 		    0, "cryptodesc", NULL);
    910 		crypto_pool_initialized = 1;
    911 	}
    912 
    913 	crp = pool_get(&cryptop_pool, 0);
    914 	if (crp == NULL) {
    915 		splx(s);
    916 		return NULL;
    917 	}
    918 	bzero(crp, sizeof(struct cryptop));
    919 
    920 	while (num--) {
    921 		crd = pool_get(&cryptodesc_pool, 0);
    922 		if (crd == NULL) {
    923 			splx(s);
    924 			crypto_freereq(crp);
    925 			return NULL;
    926 		}
    927 
    928 		bzero(crd, sizeof(struct cryptodesc));
    929 		crd->crd_next = crp->crp_desc;
    930 		crp->crp_desc = crd;
    931 	}
    932 
    933 	splx(s);
    934 	return crp;
    935 }
    936 
    937 /*
    938  * Invoke the callback on behalf of the driver.
    939  */
    940 void
    941 crypto_done(struct cryptop *crp)
    942 {
    943 	if (crp->crp_etype != 0)
    944 		cryptostats.cs_errs++;
    945 #ifdef CRYPTO_TIMING
    946 	if (crypto_timing)
    947 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
    948 #endif
    949 	/*
    950 	 * On netbsd 1.6O, CBIMM does its wake_one() before the requestor
    951 	 * has done its tsleep().
    952 	 */
    953 #ifndef __NetBSD__
    954 	if (crp->crp_flags & CRYPTO_F_CBIMM) {
    955 		/*
    956 		 * Do the callback directly.  This is ok when the
    957 		 * callback routine does very little (e.g. the
    958 		 * /dev/crypto callback method just does a wakeup).
    959 		 */
    960 #ifdef CRYPTO_TIMING
    961 		if (crypto_timing) {
    962 			/*
    963 			 * NB: We must copy the timestamp before
    964 			 * doing the callback as the cryptop is
    965 			 * likely to be reclaimed.
    966 			 */
    967 			struct timespec t = crp->crp_tstamp;
    968 			crypto_tstat(&cryptostats.cs_cb, &t);
    969 			crp->crp_callback(crp);
    970 			crypto_tstat(&cryptostats.cs_finis, &t);
    971 		} else
    972 #endif
    973 			crp->crp_callback(crp);
    974 	} else
    975 #endif /* __NetBSD__ */
    976 	{
    977 		int s, wasempty;
    978 		/*
    979 		 * Normal case; queue the callback for the thread.
    980 		 *
    981 		 * The return queue is manipulated by the swi thread
    982 		 * and, potentially, by crypto device drivers calling
    983 		 * back to mark operations completed.  Thus we need
    984 		 * to mask both while manipulating the return queue.
    985 		 */
    986 		s = splcrypto();
    987 		wasempty = TAILQ_EMPTY(&crp_ret_q);
    988 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
    989 		if (wasempty)
    990 			wakeup_one(&crp_ret_q);
    991 		splx(s);
    992 	}
    993 }
    994 
    995 /*
    996  * Invoke the callback on behalf of the driver.
    997  */
    998 void
    999 crypto_kdone(struct cryptkop *krp)
   1000 {
   1001 	int s, wasempty;
   1002 
   1003 	if (krp->krp_status != 0)
   1004 		cryptostats.cs_kerrs++;
   1005 	/*
   1006 	 * The return queue is manipulated by the swi thread
   1007 	 * and, potentially, by crypto device drivers calling
   1008 	 * back to mark operations completed.  Thus we need
   1009 	 * to mask both while manipulating the return queue.
   1010 	 */
   1011 	s = splcrypto();
   1012 	wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1013 	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1014 	if (wasempty)
   1015 		wakeup_one(&crp_ret_q);
   1016 	splx(s);
   1017 }
   1018 
   1019 int
   1020 crypto_getfeat(int *featp)
   1021 {
   1022 	int hid, kalg, feat = 0;
   1023 	int s;
   1024 
   1025 	s = splcrypto();
   1026 
   1027 	if (crypto_userasymcrypto == 0)
   1028 		goto out;
   1029 
   1030 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1031 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1032 		    crypto_devallowsoft == 0) {
   1033 			continue;
   1034 		}
   1035 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1036 			continue;
   1037 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1038 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1039 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1040 				feat |=  1 << kalg;
   1041 	}
   1042 out:
   1043 	splx(s);
   1044 	*featp = feat;
   1045 	return (0);
   1046 }
   1047 
   1048 /*
   1049  * Software interrupt thread to dispatch crypto requests.
   1050  */
   1051 static void
   1052 cryptointr(void)
   1053 {
   1054 	struct cryptop *crp, *submit;
   1055 	struct cryptkop *krp;
   1056 	struct cryptocap *cap;
   1057 	int result, hint, s;
   1058 
   1059 	printf("crypto softint\n");
   1060 	cryptostats.cs_intrs++;
   1061 	s = splcrypto();
   1062 	do {
   1063 		/*
   1064 		 * Find the first element in the queue that can be
   1065 		 * processed and look-ahead to see if multiple ops
   1066 		 * are ready for the same driver.
   1067 		 */
   1068 		submit = NULL;
   1069 		hint = 0;
   1070 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
   1071 			u_int32_t hid = SESID2HID(crp->crp_sid);
   1072 			cap = crypto_checkdriver(hid);
   1073 			if (cap == NULL || cap->cc_process == NULL) {
   1074 				/* Op needs to be migrated, process it. */
   1075 				if (submit == NULL)
   1076 					submit = crp;
   1077 				break;
   1078 			}
   1079 			if (!cap->cc_qblocked) {
   1080 				if (submit != NULL) {
   1081 					/*
   1082 					 * We stop on finding another op,
   1083 					 * regardless whether its for the same
   1084 					 * driver or not.  We could keep
   1085 					 * searching the queue but it might be
   1086 					 * better to just use a per-driver
   1087 					 * queue instead.
   1088 					 */
   1089 					if (SESID2HID(submit->crp_sid) == hid)
   1090 						hint = CRYPTO_HINT_MORE;
   1091 					break;
   1092 				} else {
   1093 					submit = crp;
   1094 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1095 						break;
   1096 					/* keep scanning for more are q'd */
   1097 				}
   1098 			}
   1099 		}
   1100 		if (submit != NULL) {
   1101 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1102 			result = crypto_invoke(submit, hint);
   1103 			if (result == ERESTART) {
   1104 				/*
   1105 				 * The driver ran out of resources, mark the
   1106 				 * driver ``blocked'' for cryptop's and put
   1107 				 * the request back in the queue.  It would
   1108 				 * best to put the request back where we got
   1109 				 * it but that's hard so for now we put it
   1110 				 * at the front.  This should be ok; putting
   1111 				 * it at the end does not work.
   1112 				 */
   1113 				/* XXX validate sid again? */
   1114 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1115 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1116 				cryptostats.cs_blocks++;
   1117 			}
   1118 		}
   1119 
   1120 		/* As above, but for key ops */
   1121 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
   1122 			cap = crypto_checkdriver(krp->krp_hid);
   1123 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1124 				/* Op needs to be migrated, process it. */
   1125 				break;
   1126 			}
   1127 			if (!cap->cc_kqblocked)
   1128 				break;
   1129 		}
   1130 		if (krp != NULL) {
   1131 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1132 			result = crypto_kinvoke(krp, 0);
   1133 			if (result == ERESTART) {
   1134 				/*
   1135 				 * The driver ran out of resources, mark the
   1136 				 * driver ``blocked'' for cryptkop's and put
   1137 				 * the request back in the queue.  It would
   1138 				 * best to put the request back where we got
   1139 				 * it but that's hard so for now we put it
   1140 				 * at the front.  This should be ok; putting
   1141 				 * it at the end does not work.
   1142 				 */
   1143 				/* XXX validate sid again? */
   1144 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1145 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1146 				cryptostats.cs_kblocks++;
   1147 			}
   1148 		}
   1149 	} while (submit != NULL || krp != NULL);
   1150 	splx(s);
   1151 }
   1152 
   1153 /*
   1154  * Kernel thread to do callbacks.
   1155  */
   1156 static void
   1157 cryptoret(void)
   1158 {
   1159 	struct cryptop *crp;
   1160 	struct cryptkop *krp;
   1161 	int s;
   1162 
   1163 	s = splcrypto();
   1164 	for (;;) {
   1165 		crp = TAILQ_FIRST(&crp_ret_q);
   1166 		if (crp != NULL)
   1167 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1168 		krp = TAILQ_FIRST(&crp_ret_kq);
   1169 		if (krp != NULL)
   1170 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1171 
   1172 		if (crp != NULL || krp != NULL) {
   1173 			splx(s);		/* lower ipl for callbacks */
   1174 			if (crp != NULL) {
   1175 #ifdef CRYPTO_TIMING
   1176 				if (crypto_timing) {
   1177 					/*
   1178 					 * NB: We must copy the timestamp before
   1179 					 * doing the callback as the cryptop is
   1180 					 * likely to be reclaimed.
   1181 					 */
   1182 					struct timespec t = crp->crp_tstamp;
   1183 					crypto_tstat(&cryptostats.cs_cb, &t);
   1184 					crp->crp_callback(crp);
   1185 					crypto_tstat(&cryptostats.cs_finis, &t);
   1186 				} else
   1187 #endif
   1188 					crp->crp_callback(crp);
   1189 			}
   1190 			if (krp != NULL)
   1191 				krp->krp_callback(krp);
   1192 			s  = splcrypto();
   1193 		} else {
   1194 			(void) tsleep(&crp_ret_q, PLOCK, "crypto_wait", 0);
   1195 			cryptostats.cs_rets++;
   1196 		}
   1197 	}
   1198 }
   1199 
   1200 static void
   1202 deferred_crypto_thread(void *arg)
   1203 {
   1204 	int error;
   1205 
   1206 	error = kthread_create1((void (*)(void*)) cryptoret, NULL,
   1207 				&cryptoproc, "cryptoret");
   1208 	if (error) {
   1209 		printf("crypto_init: cannot start cryptoret thread; error %d",
   1210 		    error);
   1211 		crypto_destroy();
   1212 	}
   1213 }
   1214 
   1215 #ifdef __FreeBSD__
   1216 /*
   1217  * Initialization code, both for static and dynamic loading.
   1218  */
   1219 static int
   1220 crypto_modevent(module_t mod, int type, void *unused)
   1221 {
   1222 	int error = EINVAL;
   1223 
   1224 	switch (type) {
   1225 	case MOD_LOAD:
   1226 		error = crypto_init();
   1227 		if (error == 0 && bootverbose)
   1228 			printf("crypto: <crypto core>\n");
   1229 		break;
   1230 	case MOD_UNLOAD:
   1231 		/*XXX disallow if active sessions */
   1232 		error = 0;
   1233 		crypto_destroy();
   1234 		break;
   1235 	}
   1236 	return error;
   1237 }
   1238 static moduledata_t crypto_mod = {
   1239 	"crypto",
   1240 	crypto_modevent,
   1241 	0
   1242 };
   1243 
   1244 MODULE_VERSION(crypto, 1);
   1245 DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
   1246 #endif /* __FreeBSD__ */
   1247 
   1248 
   1249