crypto.c revision 1.111 1 /* $NetBSD: crypto.c,v 1.111 2020/02/01 12:54:30 riastradh Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.111 2020/02/01 12:54:30 riastradh Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81
82 /*
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
86 */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 kmutex_t mtx;
90 int num;
91 struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx (crypto_drv.mtx)
94 #define crypto_drivers_num (crypto_drv.num)
95 #define crypto_drivers (crypto_drv.list)
96
97 static void *crypto_q_si;
98 static void *crypto_ret_si;
99
100 /*
101 * There are two queues for crypto requests; one for symmetric (e.g.
102 * cipher) operations and one for asymmetric (e.g. MOD) operations.
103 * See below for how synchronization is handled.
104 */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 struct crypto_crp_q *crp_q;
109 struct crypto_crp_kq *crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112
113 static inline struct crypto_crp_qs *
114 crypto_get_crp_qs(int *s)
115 {
116
117 KASSERT(s != NULL);
118
119 *s = splsoftnet();
120 return percpu_getref(crypto_crp_qs_percpu);
121 }
122
123 static inline void
124 crypto_put_crp_qs(int *s)
125 {
126
127 KASSERT(s != NULL);
128
129 percpu_putref(crypto_crp_qs_percpu);
130 splx(*s);
131 }
132
133 static void
134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 struct crypto_crp_qs *qs_pc = p;
137 bool *isempty = arg;
138
139 if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
140 *isempty = true;
141 }
142
143 static void
144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 struct crypto_crp_qs *qs = p;
147
148 qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
149 qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
150
151 TAILQ_INIT(qs->crp_q);
152 TAILQ_INIT(qs->crp_kq);
153 }
154
155 /*
156 * There are two queues for processing completed crypto requests; one
157 * for the symmetric and one for the asymmetric ops. We only need one
158 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
159 * for how synchronization is handled.
160 */
161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
163 struct crypto_crp_ret_qs {
164 kmutex_t crp_ret_q_mtx;
165 bool crp_ret_q_exit_flag;
166
167 struct crypto_crp_ret_q crp_ret_q;
168 int crp_ret_q_len;
169 int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
170 int crp_ret_q_drops;
171
172 struct crypto_crp_ret_kq crp_ret_kq;
173 int crp_ret_kq_len;
174 int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
175 int crp_ret_kq_drops;
176 };
177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
178
179
180 static inline struct crypto_crp_ret_qs *
181 crypto_get_crp_ret_qs(struct cpu_info *ci)
182 {
183 u_int cpuid;
184 struct crypto_crp_ret_qs *qs;
185
186 KASSERT(ci != NULL);
187
188 cpuid = cpu_index(ci);
189 qs = crypto_crp_ret_qs_list[cpuid];
190 mutex_enter(&qs->crp_ret_q_mtx);
191 return qs;
192 }
193
194 static inline void
195 crypto_put_crp_ret_qs(struct cpu_info *ci)
196 {
197 u_int cpuid;
198 struct crypto_crp_ret_qs *qs;
199
200 KASSERT(ci != NULL);
201
202 cpuid = cpu_index(ci);
203 qs = crypto_crp_ret_qs_list[cpuid];
204 mutex_exit(&qs->crp_ret_q_mtx);
205 }
206
207 #ifndef CRYPTO_RET_Q_MAXLEN
208 #define CRYPTO_RET_Q_MAXLEN 0
209 #endif
210 #ifndef CRYPTO_RET_KQ_MAXLEN
211 #define CRYPTO_RET_KQ_MAXLEN 0
212 #endif
213
214 static int
215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
216 {
217 int error, len = 0;
218 struct sysctlnode node = *rnode;
219
220 for (int i = 0; i < ncpu; i++) {
221 struct crypto_crp_ret_qs *qs;
222 struct cpu_info *ci = cpu_lookup(i);
223
224 qs = crypto_get_crp_ret_qs(ci);
225 len += qs->crp_ret_q_len;
226 crypto_put_crp_ret_qs(ci);
227 }
228
229 node.sysctl_data = &len;
230 error = sysctl_lookup(SYSCTLFN_CALL(&node));
231 if (error || newp == NULL)
232 return error;
233
234 return 0;
235 }
236
237 static int
238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
239 {
240 int error, drops = 0;
241 struct sysctlnode node = *rnode;
242
243 for (int i = 0; i < ncpu; i++) {
244 struct crypto_crp_ret_qs *qs;
245 struct cpu_info *ci = cpu_lookup(i);
246
247 qs = crypto_get_crp_ret_qs(ci);
248 drops += qs->crp_ret_q_drops;
249 crypto_put_crp_ret_qs(ci);
250 }
251
252 node.sysctl_data = &drops;
253 error = sysctl_lookup(SYSCTLFN_CALL(&node));
254 if (error || newp == NULL)
255 return error;
256
257 return 0;
258 }
259
260 static int
261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
262 {
263 int error, maxlen;
264 struct crypto_crp_ret_qs *qs;
265 struct sysctlnode node = *rnode;
266
267 /* each crp_ret_kq_maxlen is the same. */
268 qs = crypto_get_crp_ret_qs(curcpu());
269 maxlen = qs->crp_ret_q_maxlen;
270 crypto_put_crp_ret_qs(curcpu());
271
272 node.sysctl_data = &maxlen;
273 error = sysctl_lookup(SYSCTLFN_CALL(&node));
274 if (error || newp == NULL)
275 return error;
276
277 for (int i = 0; i < ncpu; i++) {
278 struct cpu_info *ci = cpu_lookup(i);
279
280 qs = crypto_get_crp_ret_qs(ci);
281 qs->crp_ret_q_maxlen = maxlen;
282 crypto_put_crp_ret_qs(ci);
283 }
284
285 return 0;
286 }
287
288 static int
289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
290 {
291 int error, len = 0;
292 struct sysctlnode node = *rnode;
293
294 for (int i = 0; i < ncpu; i++) {
295 struct crypto_crp_ret_qs *qs;
296 struct cpu_info *ci = cpu_lookup(i);
297
298 qs = crypto_get_crp_ret_qs(ci);
299 len += qs->crp_ret_kq_len;
300 crypto_put_crp_ret_qs(ci);
301 }
302
303 node.sysctl_data = &len;
304 error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 if (error || newp == NULL)
306 return error;
307
308 return 0;
309 }
310
311 static int
312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
313 {
314 int error, drops = 0;
315 struct sysctlnode node = *rnode;
316
317 for (int i = 0; i < ncpu; i++) {
318 struct crypto_crp_ret_qs *qs;
319 struct cpu_info *ci = cpu_lookup(i);
320
321 qs = crypto_get_crp_ret_qs(ci);
322 drops += qs->crp_ret_kq_drops;
323 crypto_put_crp_ret_qs(ci);
324 }
325
326 node.sysctl_data = &drops;
327 error = sysctl_lookup(SYSCTLFN_CALL(&node));
328 if (error || newp == NULL)
329 return error;
330
331 return 0;
332 }
333
334 static int
335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
336 {
337 int error, maxlen;
338 struct crypto_crp_ret_qs *qs;
339 struct sysctlnode node = *rnode;
340
341 /* each crp_ret_kq_maxlen is the same. */
342 qs = crypto_get_crp_ret_qs(curcpu());
343 maxlen = qs->crp_ret_kq_maxlen;
344 crypto_put_crp_ret_qs(curcpu());
345
346 node.sysctl_data = &maxlen;
347 error = sysctl_lookup(SYSCTLFN_CALL(&node));
348 if (error || newp == NULL)
349 return error;
350
351 for (int i = 0; i < ncpu; i++) {
352 struct cpu_info *ci = cpu_lookup(i);
353
354 qs = crypto_get_crp_ret_qs(ci);
355 qs->crp_ret_kq_maxlen = maxlen;
356 crypto_put_crp_ret_qs(ci);
357 }
358
359 return 0;
360 }
361
362 /*
363 * Crypto op and descriptor data structures are allocated
364 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
365 */
366 static pool_cache_t cryptop_cache;
367 static pool_cache_t cryptodesc_cache;
368 static pool_cache_t cryptkop_cache;
369
370 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
371 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
372 /*
373 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
374 * access to hardware versus software transforms as below:
375 *
376 * crypto_devallowsoft < 0: Force userlevel requests to use software
377 * transforms, always
378 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
379 * requests for non-accelerated transforms
380 * (handling the latter in software)
381 * crypto_devallowsoft > 0: Allow user requests only for transforms which
382 * are hardware-accelerated.
383 */
384 int crypto_devallowsoft = 1; /* only use hardware crypto */
385
386 static void
387 sysctl_opencrypto_setup(struct sysctllog **clog)
388 {
389 const struct sysctlnode *ocnode;
390 const struct sysctlnode *retqnode, *retkqnode;
391
392 sysctl_createv(clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 CTLTYPE_INT, "usercrypto",
395 SYSCTL_DESCR("Enable/disable user-mode access to "
396 "crypto support"),
397 NULL, 0, &crypto_usercrypto, 0,
398 CTL_KERN, CTL_CREATE, CTL_EOL);
399 sysctl_createv(clog, 0, NULL, NULL,
400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 CTLTYPE_INT, "userasymcrypto",
402 SYSCTL_DESCR("Enable/disable user-mode access to "
403 "asymmetric crypto support"),
404 NULL, 0, &crypto_userasymcrypto, 0,
405 CTL_KERN, CTL_CREATE, CTL_EOL);
406 sysctl_createv(clog, 0, NULL, NULL,
407 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
408 CTLTYPE_INT, "cryptodevallowsoft",
409 SYSCTL_DESCR("Enable/disable use of software "
410 "asymmetric crypto support"),
411 NULL, 0, &crypto_devallowsoft, 0,
412 CTL_KERN, CTL_CREATE, CTL_EOL);
413
414 sysctl_createv(clog, 0, NULL, &ocnode,
415 CTLFLAG_PERMANENT,
416 CTLTYPE_NODE, "opencrypto",
417 SYSCTL_DESCR("opencrypto related entries"),
418 NULL, 0, NULL, 0,
419 CTL_CREATE, CTL_EOL);
420
421 sysctl_createv(clog, 0, &ocnode, &retqnode,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_NODE, "crypto_ret_q",
424 SYSCTL_DESCR("crypto_ret_q related entries"),
425 NULL, 0, NULL, 0,
426 CTL_CREATE, CTL_EOL);
427 sysctl_createv(clog, 0, &retqnode, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
429 CTLTYPE_INT, "len",
430 SYSCTL_DESCR("Current queue length"),
431 sysctl_opencrypto_q_len, 0,
432 NULL, 0,
433 CTL_CREATE, CTL_EOL);
434 sysctl_createv(clog, 0, &retqnode, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
436 CTLTYPE_INT, "drops",
437 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
438 sysctl_opencrypto_q_drops, 0,
439 NULL, 0,
440 CTL_CREATE, CTL_EOL);
441 sysctl_createv(clog, 0, &retqnode, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 CTLTYPE_INT, "maxlen",
444 SYSCTL_DESCR("Maximum allowed queue length"),
445 sysctl_opencrypto_q_maxlen, 0,
446 NULL, 0,
447 CTL_CREATE, CTL_EOL);
448
449
450 sysctl_createv(clog, 0, &ocnode, &retkqnode,
451 CTLFLAG_PERMANENT,
452 CTLTYPE_NODE, "crypto_ret_kq",
453 SYSCTL_DESCR("crypto_ret_kq related entries"),
454 NULL, 0, NULL, 0,
455 CTL_CREATE, CTL_EOL);
456 sysctl_createv(clog, 0, &retkqnode, NULL,
457 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
458 CTLTYPE_INT, "len",
459 SYSCTL_DESCR("Current queue length"),
460 sysctl_opencrypto_kq_len, 0,
461 NULL, 0,
462 CTL_CREATE, CTL_EOL);
463 sysctl_createv(clog, 0, &retkqnode, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
465 CTLTYPE_INT, "drops",
466 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
467 sysctl_opencrypto_kq_drops, 0,
468 NULL, 0,
469 CTL_CREATE, CTL_EOL);
470 sysctl_createv(clog, 0, &retkqnode, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 CTLTYPE_INT, "maxlen",
473 SYSCTL_DESCR("Maximum allowed queue length"),
474 sysctl_opencrypto_kq_maxlen, 0,
475 NULL, 0,
476 CTL_CREATE, CTL_EOL);
477 }
478
479 /*
480 * Synchronization: read carefully, this is non-trivial.
481 *
482 * Crypto requests are submitted via crypto_dispatch. Typically
483 * these come in from network protocols at spl0 (output path) or
484 * spl[,soft]net (input path).
485 *
486 * Requests are typically passed on the driver directly, but they
487 * may also be queued for processing by a software interrupt thread,
488 * cryptointr, that runs at splsoftcrypto. This thread dispatches
489 * the requests to crypto drivers (h/w or s/w) who call crypto_done
490 * when a request is complete. Hardware crypto drivers are assumed
491 * to register their IRQ's as network devices so their interrupt handlers
492 * and subsequent "done callbacks" happen at spl[imp,net].
493 *
494 * Completed crypto ops are queued for a separate kernel thread that
495 * handles the callbacks at spl0. This decoupling insures the crypto
496 * driver interrupt service routine is not delayed while the callback
497 * takes place and that callbacks are delivered after a context switch
498 * (as opposed to a software interrupt that clients must block).
499 *
500 * This scheme is not intended for SMP machines.
501 */
502 static void cryptointr(void *); /* swi thread to dispatch ops */
503 static void cryptoret_softint(void *); /* kernel thread for callbacks*/
504 static int crypto_destroy(bool);
505 static int crypto_invoke(struct cryptop *crp, int hint);
506 static int crypto_kinvoke(struct cryptkop *krp, int hint);
507
508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
510 static struct cryptocap *crypto_checkdriver(u_int32_t);
511 static void crypto_driver_lock(struct cryptocap *);
512 static void crypto_driver_unlock(struct cryptocap *);
513 static void crypto_driver_clear(struct cryptocap *);
514
515 static int crypto_init_finalize(device_t);
516
517 static struct cryptostats cryptostats;
518 #ifdef CRYPTO_TIMING
519 static int crypto_timing = 0;
520 #endif
521
522 static struct sysctllog *sysctl_opencrypto_clog;
523
524 static void
525 crypto_crp_ret_qs_init(void)
526 {
527 int i;
528
529 crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
530 KM_SLEEP);
531
532 for (i = 0; i < ncpu; i++) {
533 struct crypto_crp_ret_qs *qs;
534
535 qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
536 mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
537 qs->crp_ret_q_exit_flag = false;
538
539 TAILQ_INIT(&qs->crp_ret_q);
540 qs->crp_ret_q_len = 0;
541 qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
542 qs->crp_ret_q_drops = 0;
543
544 TAILQ_INIT(&qs->crp_ret_kq);
545 qs->crp_ret_kq_len = 0;
546 qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
547 qs->crp_ret_kq_drops = 0;
548
549 crypto_crp_ret_qs_list[i] = qs;
550 }
551 }
552
553 static int
554 crypto_init0(void)
555 {
556
557 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
558 cryptop_cache = pool_cache_init(sizeof(struct cryptop),
559 coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
560 cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
561 coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
562 cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
563 coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
564
565 crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
566 crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);
567
568 crypto_crp_ret_qs_init();
569
570 crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
571 sizeof(struct cryptocap), KM_SLEEP);
572 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
573
574 crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
575 if (crypto_q_si == NULL) {
576 printf("crypto_init: cannot establish request queue handler\n");
577 return crypto_destroy(false);
578 }
579
580 /*
581 * Some encryption devices (such as mvcesa) are attached before
582 * ipi_sysinit(). That causes an assertion in ipi_register() as
583 * crypto_ret_si softint uses SOFTINT_RCPU.
584 */
585 if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
586 printf("crypto_init: cannot register crypto_init_finalize\n");
587 return crypto_destroy(false);
588 }
589
590 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
591
592 return 0;
593 }
594
595 static int
596 crypto_init_finalize(device_t self __unused)
597 {
598
599 crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
600 &cryptoret_softint, NULL);
601 KASSERT(crypto_ret_si != NULL);
602
603 return 0;
604 }
605
606 int
607 crypto_init(void)
608 {
609 static ONCE_DECL(crypto_init_once);
610
611 return RUN_ONCE(&crypto_init_once, crypto_init0);
612 }
613
614 static int
615 crypto_destroy(bool exit_kthread)
616 {
617 int i;
618
619 if (exit_kthread) {
620 struct cryptocap *cap = NULL;
621 bool is_busy = false;
622
623 /* if we have any in-progress requests, don't unload */
624 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
625 &is_busy);
626 if (is_busy)
627 return EBUSY;
628 /* FIXME:
629 * prohibit enqueue to crp_q and crp_kq after here.
630 */
631
632 mutex_enter(&crypto_drv_mtx);
633 for (i = 0; i < crypto_drivers_num; i++) {
634 cap = crypto_checkdriver(i);
635 if (cap == NULL)
636 continue;
637 if (cap->cc_sessions != 0) {
638 mutex_exit(&crypto_drv_mtx);
639 return EBUSY;
640 }
641 }
642 mutex_exit(&crypto_drv_mtx);
643 /* FIXME:
644 * prohibit touch crypto_drivers[] and each element after here.
645 */
646
647 /*
648 * Ensure cryptoret_softint() is never scheduled and then wait
649 * for last softint_execute().
650 */
651 for (i = 0; i < ncpu; i++) {
652 struct crypto_crp_ret_qs *qs;
653 struct cpu_info *ci = cpu_lookup(i);
654
655 qs = crypto_get_crp_ret_qs(ci);
656 qs->crp_ret_q_exit_flag = true;
657 crypto_put_crp_ret_qs(ci);
658 }
659 xc_barrier(0);
660 }
661
662 if (sysctl_opencrypto_clog != NULL)
663 sysctl_teardown(&sysctl_opencrypto_clog);
664
665 if (crypto_ret_si != NULL)
666 softint_disestablish(crypto_ret_si);
667
668 if (crypto_q_si != NULL)
669 softint_disestablish(crypto_q_si);
670
671 mutex_enter(&crypto_drv_mtx);
672 if (crypto_drivers != NULL)
673 kmem_free(crypto_drivers,
674 crypto_drivers_num * sizeof(struct cryptocap));
675 mutex_exit(&crypto_drv_mtx);
676
677 percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
678
679 pool_cache_destroy(cryptop_cache);
680 pool_cache_destroy(cryptodesc_cache);
681 pool_cache_destroy(cryptkop_cache);
682
683 mutex_destroy(&crypto_drv_mtx);
684
685 return 0;
686 }
687
688 static bool
689 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
690 {
691 struct cryptoini *cr;
692
693 for (cr = cri; cr; cr = cr->cri_next)
694 if (cap->cc_alg[cr->cri_alg] == 0) {
695 DPRINTF("alg %d not supported\n", cr->cri_alg);
696 return false;
697 }
698
699 return true;
700 }
701
702 #define CRYPTO_ACCEPT_HARDWARE 0x1
703 #define CRYPTO_ACCEPT_SOFTWARE 0x2
704 /*
705 * The algorithm we use here is pretty stupid; just use the
706 * first driver that supports all the algorithms we need.
707 * If there are multiple drivers we choose the driver with
708 * the fewest active sessions. We prefer hardware-backed
709 * drivers to software ones.
710 *
711 * XXX We need more smarts here (in real life too, but that's
712 * XXX another story altogether).
713 */
714 static struct cryptocap *
715 crypto_select_driver_lock(struct cryptoini *cri, int hard)
716 {
717 u_int32_t hid;
718 int accept;
719 struct cryptocap *cap, *best;
720 int error = 0;
721
722 best = NULL;
723 /*
724 * hard == 0 can use both hardware and software drivers.
725 * We use hardware drivers prior to software drivers, so search
726 * hardware drivers at first time.
727 */
728 if (hard >= 0)
729 accept = CRYPTO_ACCEPT_HARDWARE;
730 else
731 accept = CRYPTO_ACCEPT_SOFTWARE;
732 again:
733 for (hid = 0; hid < crypto_drivers_num; hid++) {
734 cap = crypto_checkdriver(hid);
735 if (cap == NULL)
736 continue;
737
738 crypto_driver_lock(cap);
739
740 /*
741 * If it's not initialized or has remaining sessions
742 * referencing it, skip.
743 */
744 if (cap->cc_newsession == NULL ||
745 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
746 crypto_driver_unlock(cap);
747 continue;
748 }
749
750 /* Hardware required -- ignore software drivers. */
751 if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
752 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
753 crypto_driver_unlock(cap);
754 continue;
755 }
756 /* Software required -- ignore hardware drivers. */
757 if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
758 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
759 crypto_driver_unlock(cap);
760 continue;
761 }
762
763 /* See if all the algorithms are supported. */
764 if (crypto_driver_suitable(cap, cri)) {
765 if (best == NULL) {
766 /* keep holding crypto_driver_lock(cap) */
767 best = cap;
768 continue;
769 } else if (cap->cc_sessions < best->cc_sessions) {
770 crypto_driver_unlock(best);
771 /* keep holding crypto_driver_lock(cap) */
772 best = cap;
773 continue;
774 }
775 }
776
777 crypto_driver_unlock(cap);
778 }
779 if (best == NULL && hard == 0
780 && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
781 accept = CRYPTO_ACCEPT_SOFTWARE;
782 goto again;
783 }
784
785 if (best == NULL && hard == 0 && error == 0) {
786 mutex_exit(&crypto_drv_mtx);
787 error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
788 mutex_enter(&crypto_drv_mtx);
789 if (error == 0) {
790 error = EINVAL;
791 goto again;
792 }
793 }
794
795 return best;
796 }
797
798 /*
799 * Create a new session.
800 */
801 int
802 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
803 {
804 struct cryptocap *cap;
805 int err = EINVAL;
806
807 mutex_enter(&crypto_drv_mtx);
808
809 cap = crypto_select_driver_lock(cri, hard);
810 if (cap != NULL) {
811 u_int32_t hid, lid;
812
813 hid = cap - crypto_drivers;
814 /*
815 * Can't do everything in one session.
816 *
817 * XXX Fix this. We need to inject a "virtual" session layer right
818 * XXX about here.
819 */
820
821 /* Call the driver initialization routine. */
822 lid = hid; /* Pass the driver ID. */
823 crypto_driver_unlock(cap);
824 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
825 crypto_driver_lock(cap);
826 if (err == 0) {
827 (*sid) = hid;
828 (*sid) <<= 32;
829 (*sid) |= (lid & 0xffffffff);
830 (cap->cc_sessions)++;
831 } else {
832 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
833 hid, err);
834 }
835 crypto_driver_unlock(cap);
836 }
837
838 mutex_exit(&crypto_drv_mtx);
839
840 return err;
841 }
842
843 /*
844 * Delete an existing session (or a reserved session on an unregistered
845 * driver).
846 */
847 int
848 crypto_freesession(u_int64_t sid)
849 {
850 struct cryptocap *cap;
851 int err = 0;
852
853 /* Determine two IDs. */
854 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
855 if (cap == NULL)
856 return ENOENT;
857
858 if (cap->cc_sessions)
859 (cap->cc_sessions)--;
860
861 /* Call the driver cleanup routine, if available. */
862 if (cap->cc_freesession)
863 err = cap->cc_freesession(cap->cc_arg, sid);
864 else
865 err = 0;
866
867 /*
868 * If this was the last session of a driver marked as invalid,
869 * make the entry available for reuse.
870 */
871 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
872 crypto_driver_clear(cap);
873
874 crypto_driver_unlock(cap);
875 return err;
876 }
877
878 static bool
879 crypto_checkdriver_initialized(const struct cryptocap *cap)
880 {
881
882 return cap->cc_process != NULL ||
883 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
884 cap->cc_sessions != 0;
885 }
886
887 /*
888 * Return an unused driver id. Used by drivers prior to registering
889 * support for the algorithms they handle.
890 */
891 int32_t
892 crypto_get_driverid(u_int32_t flags)
893 {
894 struct cryptocap *newdrv;
895 struct cryptocap *cap = NULL;
896 int i;
897
898 (void)crypto_init(); /* XXX oh, this is foul! */
899
900 mutex_enter(&crypto_drv_mtx);
901 for (i = 0; i < crypto_drivers_num; i++) {
902 cap = crypto_checkdriver_uninit(i);
903 if (cap == NULL || crypto_checkdriver_initialized(cap))
904 continue;
905 break;
906 }
907
908 /* Out of entries, allocate some more. */
909 if (cap == NULL) {
910 /* Be careful about wrap-around. */
911 if (2 * crypto_drivers_num <= crypto_drivers_num) {
912 mutex_exit(&crypto_drv_mtx);
913 printf("crypto: driver count wraparound!\n");
914 return -1;
915 }
916
917 newdrv = kmem_zalloc(2 * crypto_drivers_num *
918 sizeof(struct cryptocap), KM_SLEEP);
919 memcpy(newdrv, crypto_drivers,
920 crypto_drivers_num * sizeof(struct cryptocap));
921 kmem_free(crypto_drivers,
922 crypto_drivers_num * sizeof(struct cryptocap));
923
924 crypto_drivers_num *= 2;
925 crypto_drivers = newdrv;
926
927 cap = crypto_checkdriver_uninit(i);
928 KASSERT(cap != NULL);
929 }
930
931 /* NB: state is zero'd on free */
932 cap->cc_sessions = 1; /* Mark */
933 cap->cc_flags = flags;
934 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
935
936 if (bootverbose)
937 printf("crypto: assign driver %u, flags %u\n", i, flags);
938
939 mutex_exit(&crypto_drv_mtx);
940
941 return i;
942 }
943
944 static struct cryptocap *
945 crypto_checkdriver_lock(u_int32_t hid)
946 {
947 struct cryptocap *cap;
948
949 KASSERT(crypto_drivers != NULL);
950
951 if (hid >= crypto_drivers_num)
952 return NULL;
953
954 cap = &crypto_drivers[hid];
955 mutex_enter(&cap->cc_lock);
956 return cap;
957 }
958
959 /*
960 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
961 * situations
962 * - crypto_drivers[] may not be allocated
963 * - crypto_drivers[hid] may not be initialized
964 */
965 static struct cryptocap *
966 crypto_checkdriver_uninit(u_int32_t hid)
967 {
968
969 KASSERT(mutex_owned(&crypto_drv_mtx));
970
971 if (crypto_drivers == NULL)
972 return NULL;
973
974 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
975 }
976
977 /*
978 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
979 * situations
980 * - crypto_drivers[] may not be allocated
981 * - crypto_drivers[hid] may not be initialized
982 */
983 static struct cryptocap *
984 crypto_checkdriver(u_int32_t hid)
985 {
986
987 KASSERT(mutex_owned(&crypto_drv_mtx));
988
989 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
990 return NULL;
991
992 struct cryptocap *cap = &crypto_drivers[hid];
993 return crypto_checkdriver_initialized(cap) ? cap : NULL;
994 }
995
996 static inline void
997 crypto_driver_lock(struct cryptocap *cap)
998 {
999
1000 KASSERT(cap != NULL);
1001
1002 mutex_enter(&cap->cc_lock);
1003 }
1004
1005 static inline void
1006 crypto_driver_unlock(struct cryptocap *cap)
1007 {
1008
1009 KASSERT(cap != NULL);
1010
1011 mutex_exit(&cap->cc_lock);
1012 }
1013
1014 static void
1015 crypto_driver_clear(struct cryptocap *cap)
1016 {
1017
1018 if (cap == NULL)
1019 return;
1020
1021 KASSERT(mutex_owned(&cap->cc_lock));
1022
1023 cap->cc_sessions = 0;
1024 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1025 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1026 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1027 cap->cc_flags = 0;
1028 cap->cc_qblocked = 0;
1029 cap->cc_kqblocked = 0;
1030
1031 cap->cc_arg = NULL;
1032 cap->cc_newsession = NULL;
1033 cap->cc_process = NULL;
1034 cap->cc_freesession = NULL;
1035 cap->cc_kprocess = NULL;
1036 }
1037
1038 /*
1039 * Register support for a key-related algorithm. This routine
1040 * is called once for each algorithm supported a driver.
1041 */
1042 int
1043 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1044 int (*kprocess)(void *, struct cryptkop *, int),
1045 void *karg)
1046 {
1047 struct cryptocap *cap;
1048 int err;
1049
1050 mutex_enter(&crypto_drv_mtx);
1051
1052 cap = crypto_checkdriver_lock(driverid);
1053 if (cap != NULL &&
1054 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1055 /*
1056 * XXX Do some performance testing to determine placing.
1057 * XXX We probably need an auxiliary data structure that
1058 * XXX describes relative performances.
1059 */
1060
1061 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1062 if (bootverbose) {
1063 printf("crypto: driver %u registers key alg %u "
1064 " flags %u\n",
1065 driverid,
1066 kalg,
1067 flags
1068 );
1069 }
1070
1071 if (cap->cc_kprocess == NULL) {
1072 cap->cc_karg = karg;
1073 cap->cc_kprocess = kprocess;
1074 }
1075 err = 0;
1076 } else
1077 err = EINVAL;
1078
1079 mutex_exit(&crypto_drv_mtx);
1080 return err;
1081 }
1082
1083 /*
1084 * Register support for a non-key-related algorithm. This routine
1085 * is called once for each such algorithm supported by a driver.
1086 */
1087 int
1088 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1089 u_int32_t flags,
1090 int (*newses)(void *, u_int32_t*, struct cryptoini*),
1091 int (*freeses)(void *, u_int64_t),
1092 int (*process)(void *, struct cryptop *, int),
1093 void *arg)
1094 {
1095 struct cryptocap *cap;
1096 int err;
1097
1098 cap = crypto_checkdriver_lock(driverid);
1099 if (cap == NULL)
1100 return EINVAL;
1101
1102 /* NB: algorithms are in the range [1..max] */
1103 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1104 /*
1105 * XXX Do some performance testing to determine placing.
1106 * XXX We probably need an auxiliary data structure that
1107 * XXX describes relative performances.
1108 */
1109
1110 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1111 cap->cc_max_op_len[alg] = maxoplen;
1112 if (bootverbose) {
1113 printf("crypto: driver %u registers alg %u "
1114 "flags %u maxoplen %u\n",
1115 driverid,
1116 alg,
1117 flags,
1118 maxoplen
1119 );
1120 }
1121
1122 if (cap->cc_process == NULL) {
1123 cap->cc_arg = arg;
1124 cap->cc_newsession = newses;
1125 cap->cc_process = process;
1126 cap->cc_freesession = freeses;
1127 cap->cc_sessions = 0; /* Unmark */
1128 }
1129 err = 0;
1130 } else
1131 err = EINVAL;
1132
1133 crypto_driver_unlock(cap);
1134
1135 return err;
1136 }
1137
1138 static int
1139 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1140 {
1141 int i;
1142 u_int32_t ses;
1143 bool lastalg = true;
1144
1145 KASSERT(cap != NULL);
1146 KASSERT(mutex_owned(&cap->cc_lock));
1147
1148 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1149 return EINVAL;
1150
1151 if (!all && cap->cc_alg[alg] == 0)
1152 return EINVAL;
1153
1154 cap->cc_alg[alg] = 0;
1155 cap->cc_max_op_len[alg] = 0;
1156
1157 if (all) {
1158 if (alg != CRYPTO_ALGORITHM_MAX)
1159 lastalg = false;
1160 } else {
1161 /* Was this the last algorithm ? */
1162 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1163 if (cap->cc_alg[i] != 0) {
1164 lastalg = false;
1165 break;
1166 }
1167 }
1168 if (lastalg) {
1169 ses = cap->cc_sessions;
1170 crypto_driver_clear(cap);
1171 if (ses != 0) {
1172 /*
1173 * If there are pending sessions, just mark as invalid.
1174 */
1175 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1176 cap->cc_sessions = ses;
1177 }
1178 }
1179
1180 return 0;
1181 }
1182
1183 /*
1184 * Unregister a crypto driver. If there are pending sessions using it,
1185 * leave enough information around so that subsequent calls using those
1186 * sessions will correctly detect the driver has been unregistered and
1187 * reroute requests.
1188 */
1189 int
1190 crypto_unregister(u_int32_t driverid, int alg)
1191 {
1192 int err;
1193 struct cryptocap *cap;
1194
1195 cap = crypto_checkdriver_lock(driverid);
1196 err = crypto_unregister_locked(cap, alg, false);
1197 crypto_driver_unlock(cap);
1198
1199 return err;
1200 }
1201
1202 /*
1203 * Unregister all algorithms associated with a crypto driver.
1204 * If there are pending sessions using it, leave enough information
1205 * around so that subsequent calls using those sessions will
1206 * correctly detect the driver has been unregistered and reroute
1207 * requests.
1208 */
1209 int
1210 crypto_unregister_all(u_int32_t driverid)
1211 {
1212 int err, i;
1213 struct cryptocap *cap;
1214
1215 cap = crypto_checkdriver_lock(driverid);
1216 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1217 err = crypto_unregister_locked(cap, i, true);
1218 if (err)
1219 break;
1220 }
1221 crypto_driver_unlock(cap);
1222
1223 return err;
1224 }
1225
1226 /*
1227 * Clear blockage on a driver. The what parameter indicates whether
1228 * the driver is now ready for cryptop's and/or cryptokop's.
1229 */
1230 int
1231 crypto_unblock(u_int32_t driverid, int what)
1232 {
1233 struct cryptocap *cap;
1234 int needwakeup = 0;
1235
1236 cap = crypto_checkdriver_lock(driverid);
1237 if (cap == NULL)
1238 return EINVAL;
1239
1240 if (what & CRYPTO_SYMQ) {
1241 needwakeup |= cap->cc_qblocked;
1242 cap->cc_qblocked = 0;
1243 }
1244 if (what & CRYPTO_ASYMQ) {
1245 needwakeup |= cap->cc_kqblocked;
1246 cap->cc_kqblocked = 0;
1247 }
1248 crypto_driver_unlock(cap);
1249 if (needwakeup) {
1250 kpreempt_disable();
1251 softint_schedule(crypto_q_si);
1252 kpreempt_enable();
1253 }
1254
1255 return 0;
1256 }
1257
1258 /*
1259 * Dispatch a crypto request to a driver or queue
1260 * it, to be processed by the kernel thread.
1261 */
1262 int
1263 crypto_dispatch(struct cryptop *crp)
1264 {
1265 int result, s;
1266 struct cryptocap *cap;
1267 struct crypto_crp_qs *crp_qs;
1268 struct crypto_crp_q *crp_q;
1269
1270 KASSERT(crp != NULL);
1271
1272 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1273
1274 cryptostats.cs_ops++;
1275
1276 #ifdef CRYPTO_TIMING
1277 if (crypto_timing)
1278 nanouptime(&crp->crp_tstamp);
1279 #endif
1280
1281 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1282 int wasempty;
1283 /*
1284 * Caller marked the request as ``ok to delay'';
1285 * queue it for the swi thread. This is desirable
1286 * when the operation is low priority and/or suitable
1287 * for batching.
1288 *
1289 * don't care list order in batch job.
1290 */
1291 crp_qs = crypto_get_crp_qs(&s);
1292 crp_q = crp_qs->crp_q;
1293 wasempty = TAILQ_EMPTY(crp_q);
1294 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1295 crypto_put_crp_qs(&s);
1296 crp_q = NULL;
1297 if (wasempty) {
1298 kpreempt_disable();
1299 softint_schedule(crypto_q_si);
1300 kpreempt_enable();
1301 }
1302
1303 return 0;
1304 }
1305
1306 crp_qs = crypto_get_crp_qs(&s);
1307 crp_q = crp_qs->crp_q;
1308 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1309 /*
1310 * TODO:
1311 * If we can ensure the driver has been valid until the driver is
1312 * done crypto_unregister(), this migrate operation is not required.
1313 */
1314 if (cap == NULL) {
1315 /*
1316 * The driver must be detached, so this request will migrate
1317 * to other drivers in cryptointr() later.
1318 */
1319 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1320 result = 0;
1321 goto out;
1322 }
1323
1324 if (cap->cc_qblocked != 0) {
1325 crypto_driver_unlock(cap);
1326 /*
1327 * The driver is blocked, just queue the op until
1328 * it unblocks and the swi thread gets kicked.
1329 */
1330 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1331 result = 0;
1332 goto out;
1333 }
1334
1335 /*
1336 * Caller marked the request to be processed
1337 * immediately; dispatch it directly to the
1338 * driver unless the driver is currently blocked.
1339 */
1340 crypto_driver_unlock(cap);
1341 result = crypto_invoke(crp, 0);
1342 if (result == ERESTART) {
1343 /*
1344 * The driver ran out of resources, mark the
1345 * driver ``blocked'' for cryptop's and put
1346 * the op on the queue.
1347 */
1348 crypto_driver_lock(cap);
1349 cap->cc_qblocked = 1;
1350 crypto_driver_unlock(cap);
1351 TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1352 cryptostats.cs_blocks++;
1353
1354 /*
1355 * The crp is enqueued to crp_q, that is,
1356 * no error occurs. So, this function should
1357 * not return error.
1358 */
1359 result = 0;
1360 }
1361
1362 out:
1363 crypto_put_crp_qs(&s);
1364 return result;
1365 }
1366
1367 /*
1368 * Add an asymetric crypto request to a queue,
1369 * to be processed by the kernel thread.
1370 */
1371 int
1372 crypto_kdispatch(struct cryptkop *krp)
1373 {
1374 int result, s;
1375 struct cryptocap *cap;
1376 struct crypto_crp_qs *crp_qs;
1377 struct crypto_crp_kq *crp_kq;
1378
1379 KASSERT(krp != NULL);
1380
1381 cryptostats.cs_kops++;
1382
1383 crp_qs = crypto_get_crp_qs(&s);
1384 crp_kq = crp_qs->crp_kq;
1385 cap = crypto_checkdriver_lock(krp->krp_hid);
1386 /*
1387 * TODO:
1388 * If we can ensure the driver has been valid until the driver is
1389 * done crypto_unregister(), this migrate operation is not required.
1390 */
1391 if (cap == NULL) {
1392 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1393 result = 0;
1394 goto out;
1395 }
1396
1397 if (cap->cc_kqblocked != 0) {
1398 crypto_driver_unlock(cap);
1399 /*
1400 * The driver is blocked, just queue the op until
1401 * it unblocks and the swi thread gets kicked.
1402 */
1403 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1404 result = 0;
1405 goto out;
1406 }
1407
1408 crypto_driver_unlock(cap);
1409 result = crypto_kinvoke(krp, 0);
1410 if (result == ERESTART) {
1411 /*
1412 * The driver ran out of resources, mark the
1413 * driver ``blocked'' for cryptop's and put
1414 * the op on the queue.
1415 */
1416 crypto_driver_lock(cap);
1417 cap->cc_kqblocked = 1;
1418 crypto_driver_unlock(cap);
1419 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1420 cryptostats.cs_kblocks++;
1421
1422 /*
1423 * The krp is enqueued to crp_kq, that is,
1424 * no error occurs. So, this function should
1425 * not return error.
1426 */
1427 result = 0;
1428 }
1429
1430 out:
1431 crypto_put_crp_qs(&s);
1432 return result;
1433 }
1434
1435 /*
1436 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1437 */
1438 static int
1439 crypto_kinvoke(struct cryptkop *krp, int hint)
1440 {
1441 struct cryptocap *cap = NULL;
1442 u_int32_t hid;
1443 int error;
1444
1445 KASSERT(krp != NULL);
1446
1447 /* Sanity checks. */
1448 if (krp->krp_callback == NULL) {
1449 cv_destroy(&krp->krp_cv);
1450 crypto_kfreereq(krp);
1451 return EINVAL;
1452 }
1453
1454 mutex_enter(&crypto_drv_mtx);
1455 for (hid = 0; hid < crypto_drivers_num; hid++) {
1456 cap = crypto_checkdriver(hid);
1457 if (cap == NULL)
1458 continue;
1459 crypto_driver_lock(cap);
1460 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1461 crypto_devallowsoft == 0) {
1462 crypto_driver_unlock(cap);
1463 continue;
1464 }
1465 if (cap->cc_kprocess == NULL) {
1466 crypto_driver_unlock(cap);
1467 continue;
1468 }
1469 if ((cap->cc_kalg[krp->krp_op] &
1470 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1471 crypto_driver_unlock(cap);
1472 continue;
1473 }
1474 break;
1475 }
1476 mutex_exit(&crypto_drv_mtx);
1477 if (cap != NULL) {
1478 int (*process)(void *, struct cryptkop *, int);
1479 void *arg;
1480
1481 process = cap->cc_kprocess;
1482 arg = cap->cc_karg;
1483 krp->krp_hid = hid;
1484 krp->reqcpu = curcpu();
1485 crypto_driver_unlock(cap);
1486 error = (*process)(arg, krp, hint);
1487 } else {
1488 error = ENODEV;
1489 }
1490
1491 if (error) {
1492 krp->krp_status = error;
1493 crypto_kdone(krp);
1494 }
1495 return 0;
1496 }
1497
1498 #ifdef CRYPTO_TIMING
1499 static void
1500 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1501 {
1502 struct timespec now, t;
1503
1504 nanouptime(&now);
1505 t.tv_sec = now.tv_sec - tv->tv_sec;
1506 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1507 if (t.tv_nsec < 0) {
1508 t.tv_sec--;
1509 t.tv_nsec += 1000000000;
1510 }
1511 timespecadd(&ts->acc, &t, &t);
1512 if (timespeccmp(&t, &ts->min, <))
1513 ts->min = t;
1514 if (timespeccmp(&t, &ts->max, >))
1515 ts->max = t;
1516 ts->count++;
1517
1518 *tv = now;
1519 }
1520 #endif
1521
1522 /*
1523 * Dispatch a crypto request to the appropriate crypto devices.
1524 */
1525 static int
1526 crypto_invoke(struct cryptop *crp, int hint)
1527 {
1528 struct cryptocap *cap;
1529
1530 KASSERT(crp != NULL);
1531
1532 #ifdef CRYPTO_TIMING
1533 if (crypto_timing)
1534 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1535 #endif
1536 /* Sanity checks. */
1537 if (crp->crp_callback == NULL) {
1538 return EINVAL;
1539 }
1540 if (crp->crp_desc == NULL) {
1541 crp->crp_etype = EINVAL;
1542 crypto_done(crp);
1543 return 0;
1544 }
1545
1546 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1547 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1548 int (*process)(void *, struct cryptop *, int);
1549 void *arg;
1550
1551 process = cap->cc_process;
1552 arg = cap->cc_arg;
1553 crp->reqcpu = curcpu();
1554
1555 /*
1556 * Invoke the driver to process the request.
1557 */
1558 DPRINTF("calling process for %p\n", crp);
1559 crypto_driver_unlock(cap);
1560 return (*process)(arg, crp, hint);
1561 } else {
1562 struct cryptodesc *crd;
1563 u_int64_t nid = 0;
1564
1565 if (cap != NULL)
1566 crypto_driver_unlock(cap);
1567
1568 /*
1569 * Driver has unregistered; migrate the session and return
1570 * an error to the caller so they'll resubmit the op.
1571 */
1572 crypto_freesession(crp->crp_sid);
1573
1574 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1575 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1576
1577 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1578 crp->crp_sid = nid;
1579
1580 crp->crp_etype = EAGAIN;
1581
1582 crypto_done(crp);
1583 return 0;
1584 }
1585 }
1586
1587 /*
1588 * Release a set of crypto descriptors.
1589 */
1590 void
1591 crypto_freereq(struct cryptop *crp)
1592 {
1593 struct cryptodesc *crd;
1594
1595 if (crp == NULL)
1596 return;
1597 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1598
1599 /* sanity check */
1600 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1601 panic("crypto_freereq() freeing crp on RETQ\n");
1602 }
1603
1604 while ((crd = crp->crp_desc) != NULL) {
1605 crp->crp_desc = crd->crd_next;
1606 pool_cache_put(cryptodesc_cache, crd);
1607 }
1608 pool_cache_put(cryptop_cache, crp);
1609 }
1610
1611 /*
1612 * Acquire a set of crypto descriptors.
1613 */
1614 struct cryptop *
1615 crypto_getreq(int num)
1616 {
1617 struct cryptodesc *crd;
1618 struct cryptop *crp;
1619 struct crypto_crp_ret_qs *qs;
1620
1621 /*
1622 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1623 * by error callback.
1624 */
1625 qs = crypto_get_crp_ret_qs(curcpu());
1626 if (qs->crp_ret_q_maxlen > 0
1627 && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1628 qs->crp_ret_q_drops++;
1629 crypto_put_crp_ret_qs(curcpu());
1630 return NULL;
1631 }
1632 crypto_put_crp_ret_qs(curcpu());
1633
1634 crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
1635 if (crp == NULL) {
1636 return NULL;
1637 }
1638 memset(crp, 0, sizeof(struct cryptop));
1639
1640 while (num--) {
1641 crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
1642 if (crd == NULL) {
1643 crypto_freereq(crp);
1644 return NULL;
1645 }
1646
1647 memset(crd, 0, sizeof(struct cryptodesc));
1648 crd->crd_next = crp->crp_desc;
1649 crp->crp_desc = crd;
1650 }
1651
1652 return crp;
1653 }
1654
1655 /*
1656 * Release a set of asymmetric crypto descriptors.
1657 * Currently, support one descriptor only.
1658 */
1659 void
1660 crypto_kfreereq(struct cryptkop *krp)
1661 {
1662
1663 if (krp == NULL)
1664 return;
1665
1666 DPRINTF("krp %p\n", krp);
1667
1668 /* sanity check */
1669 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1670 panic("crypto_kfreereq() freeing krp on RETQ\n");
1671 }
1672
1673 pool_cache_put(cryptkop_cache, krp);
1674 }
1675
1676 /*
1677 * Acquire a set of asymmetric crypto descriptors.
1678 * Currently, support one descriptor only.
1679 */
1680 struct cryptkop *
1681 crypto_kgetreq(int num __unused, int prflags)
1682 {
1683 struct cryptkop *krp;
1684 struct crypto_crp_ret_qs *qs;
1685
1686 /*
1687 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1688 * overflow by error callback.
1689 */
1690 qs = crypto_get_crp_ret_qs(curcpu());
1691 if (qs->crp_ret_kq_maxlen > 0
1692 && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1693 qs->crp_ret_kq_drops++;
1694 crypto_put_crp_ret_qs(curcpu());
1695 return NULL;
1696 }
1697 crypto_put_crp_ret_qs(curcpu());
1698
1699 krp = pool_cache_get(cryptkop_cache, prflags);
1700 if (krp == NULL) {
1701 return NULL;
1702 }
1703 memset(krp, 0, sizeof(struct cryptkop));
1704
1705 return krp;
1706 }
1707
1708 /*
1709 * Invoke the callback on behalf of the driver.
1710 */
1711 void
1712 crypto_done(struct cryptop *crp)
1713 {
1714
1715 KASSERT(crp != NULL);
1716
1717 if (crp->crp_etype != 0)
1718 cryptostats.cs_errs++;
1719 #ifdef CRYPTO_TIMING
1720 if (crypto_timing)
1721 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1722 #endif
1723 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1724
1725 /*
1726 * Normal case; queue the callback for the thread.
1727 *
1728 * The return queue is manipulated by the swi thread
1729 * and, potentially, by crypto device drivers calling
1730 * back to mark operations completed. Thus we need
1731 * to mask both while manipulating the return queue.
1732 */
1733 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1734 /*
1735 * Do the callback directly. This is ok when the
1736 * callback routine does very little (e.g. the
1737 * /dev/crypto callback method just does a wakeup).
1738 */
1739 crp->crp_flags |= CRYPTO_F_DONE;
1740
1741 #ifdef CRYPTO_TIMING
1742 if (crypto_timing) {
1743 /*
1744 * NB: We must copy the timestamp before
1745 * doing the callback as the cryptop is
1746 * likely to be reclaimed.
1747 */
1748 struct timespec t = crp->crp_tstamp;
1749 crypto_tstat(&cryptostats.cs_cb, &t);
1750 crp->crp_callback(crp);
1751 crypto_tstat(&cryptostats.cs_finis, &t);
1752 } else
1753 #endif
1754 crp->crp_callback(crp);
1755 } else {
1756 crp->crp_flags |= CRYPTO_F_DONE;
1757 #if 0
1758 if (crp->crp_flags & CRYPTO_F_USER) {
1759 /*
1760 * TODO:
1761 * If crp->crp_flags & CRYPTO_F_USER and the used
1762 * encryption driver does all the processing in
1763 * the same context, we can skip enqueueing crp_ret_q
1764 * and softint_schedule(crypto_ret_si).
1765 */
1766 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1767 CRYPTO_SESID2LID(crp->crp_sid), crp);
1768 } else
1769 #endif
1770 {
1771 int wasempty;
1772 struct crypto_crp_ret_qs *qs;
1773 struct crypto_crp_ret_q *crp_ret_q;
1774
1775 qs = crypto_get_crp_ret_qs(crp->reqcpu);
1776 crp_ret_q = &qs->crp_ret_q;
1777 wasempty = TAILQ_EMPTY(crp_ret_q);
1778 DPRINTF("lid[%u]: queueing %p\n",
1779 CRYPTO_SESID2LID(crp->crp_sid), crp);
1780 crp->crp_flags |= CRYPTO_F_ONRETQ;
1781 TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1782 qs->crp_ret_q_len++;
1783 if (wasempty && !qs->crp_ret_q_exit_flag) {
1784 DPRINTF("lid[%u]: waking cryptoret,"
1785 "crp %p hit empty queue\n.",
1786 CRYPTO_SESID2LID(crp->crp_sid), crp);
1787 softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1788 }
1789 crypto_put_crp_ret_qs(crp->reqcpu);
1790 }
1791 }
1792 }
1793
1794 /*
1795 * Invoke the callback on behalf of the driver.
1796 */
1797 void
1798 crypto_kdone(struct cryptkop *krp)
1799 {
1800
1801 KASSERT(krp != NULL);
1802
1803 if (krp->krp_status != 0)
1804 cryptostats.cs_kerrs++;
1805
1806 krp->krp_flags |= CRYPTO_F_DONE;
1807
1808 /*
1809 * The return queue is manipulated by the swi thread
1810 * and, potentially, by crypto device drivers calling
1811 * back to mark operations completed. Thus we need
1812 * to mask both while manipulating the return queue.
1813 */
1814 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1815 krp->krp_callback(krp);
1816 } else {
1817 int wasempty;
1818 struct crypto_crp_ret_qs *qs;
1819 struct crypto_crp_ret_kq *crp_ret_kq;
1820
1821 qs = crypto_get_crp_ret_qs(krp->reqcpu);
1822 crp_ret_kq = &qs->crp_ret_kq;
1823
1824 wasempty = TAILQ_EMPTY(crp_ret_kq);
1825 krp->krp_flags |= CRYPTO_F_ONRETQ;
1826 TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1827 qs->crp_ret_kq_len++;
1828 if (wasempty && !qs->crp_ret_q_exit_flag)
1829 softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1830 crypto_put_crp_ret_qs(krp->reqcpu);
1831 }
1832 }
1833
1834 int
1835 crypto_getfeat(int *featp)
1836 {
1837
1838 if (crypto_userasymcrypto == 0) {
1839 *featp = 0;
1840 return 0;
1841 }
1842
1843 mutex_enter(&crypto_drv_mtx);
1844
1845 int feat = 0;
1846 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1847 struct cryptocap *cap;
1848 cap = crypto_checkdriver(hid);
1849 if (cap == NULL)
1850 continue;
1851
1852 crypto_driver_lock(cap);
1853
1854 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1855 crypto_devallowsoft == 0)
1856 goto unlock;
1857
1858 if (cap->cc_kprocess == NULL)
1859 goto unlock;
1860
1861 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1862 if ((cap->cc_kalg[kalg] &
1863 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1864 feat |= 1 << kalg;
1865
1866 unlock: crypto_driver_unlock(cap);
1867 }
1868
1869 mutex_exit(&crypto_drv_mtx);
1870 *featp = feat;
1871 return (0);
1872 }
1873
1874 /*
1875 * Software interrupt thread to dispatch crypto requests.
1876 */
1877 static void
1878 cryptointr(void *arg __unused)
1879 {
1880 struct cryptop *crp, *submit, *cnext;
1881 struct cryptkop *krp, *knext;
1882 struct cryptocap *cap;
1883 struct crypto_crp_qs *crp_qs;
1884 struct crypto_crp_q *crp_q;
1885 struct crypto_crp_kq *crp_kq;
1886 int result, hint, s;
1887
1888 cryptostats.cs_intrs++;
1889 crp_qs = crypto_get_crp_qs(&s);
1890 crp_q = crp_qs->crp_q;
1891 crp_kq = crp_qs->crp_kq;
1892 do {
1893 /*
1894 * Find the first element in the queue that can be
1895 * processed and look-ahead to see if multiple ops
1896 * are ready for the same driver.
1897 */
1898 submit = NULL;
1899 hint = 0;
1900 TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1901 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1902 cap = crypto_checkdriver_lock(hid);
1903 if (cap == NULL || cap->cc_process == NULL) {
1904 if (cap != NULL)
1905 crypto_driver_unlock(cap);
1906 /* Op needs to be migrated, process it. */
1907 submit = crp;
1908 break;
1909 }
1910
1911 /*
1912 * skip blocked crp regardless of CRYPTO_F_BATCH
1913 */
1914 if (cap->cc_qblocked != 0) {
1915 crypto_driver_unlock(cap);
1916 continue;
1917 }
1918 crypto_driver_unlock(cap);
1919
1920 /*
1921 * skip batch crp until the end of crp_q
1922 */
1923 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1924 if (submit == NULL) {
1925 submit = crp;
1926 } else {
1927 if (CRYPTO_SESID2HID(submit->crp_sid)
1928 == hid)
1929 hint = CRYPTO_HINT_MORE;
1930 }
1931
1932 continue;
1933 }
1934
1935 /*
1936 * found first crp which is neither blocked nor batch.
1937 */
1938 submit = crp;
1939 /*
1940 * batch crp can be processed much later, so clear hint.
1941 */
1942 hint = 0;
1943 break;
1944 }
1945 if (submit != NULL) {
1946 TAILQ_REMOVE(crp_q, submit, crp_next);
1947 result = crypto_invoke(submit, hint);
1948 /* we must take here as the TAILQ op or kinvoke
1949 may need this mutex below. sigh. */
1950 if (result == ERESTART) {
1951 /*
1952 * The driver ran out of resources, mark the
1953 * driver ``blocked'' for cryptop's and put
1954 * the request back in the queue. It would
1955 * best to put the request back where we got
1956 * it but that's hard so for now we put it
1957 * at the front. This should be ok; putting
1958 * it at the end does not work.
1959 */
1960 /* validate sid again */
1961 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1962 if (cap == NULL) {
1963 /* migrate again, sigh... */
1964 TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
1965 } else {
1966 cap->cc_qblocked = 1;
1967 crypto_driver_unlock(cap);
1968 TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
1969 cryptostats.cs_blocks++;
1970 }
1971 }
1972 }
1973
1974 /* As above, but for key ops */
1975 TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
1976 cap = crypto_checkdriver_lock(krp->krp_hid);
1977 if (cap == NULL || cap->cc_kprocess == NULL) {
1978 if (cap != NULL)
1979 crypto_driver_unlock(cap);
1980 /* Op needs to be migrated, process it. */
1981 break;
1982 }
1983 if (!cap->cc_kqblocked) {
1984 crypto_driver_unlock(cap);
1985 break;
1986 }
1987 crypto_driver_unlock(cap);
1988 }
1989 if (krp != NULL) {
1990 TAILQ_REMOVE(crp_kq, krp, krp_next);
1991 result = crypto_kinvoke(krp, 0);
1992 /* the next iteration will want the mutex. :-/ */
1993 if (result == ERESTART) {
1994 /*
1995 * The driver ran out of resources, mark the
1996 * driver ``blocked'' for cryptkop's and put
1997 * the request back in the queue. It would
1998 * best to put the request back where we got
1999 * it but that's hard so for now we put it
2000 * at the front. This should be ok; putting
2001 * it at the end does not work.
2002 */
2003 /* validate sid again */
2004 cap = crypto_checkdriver_lock(krp->krp_hid);
2005 if (cap == NULL) {
2006 /* migrate again, sigh... */
2007 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
2008 } else {
2009 cap->cc_kqblocked = 1;
2010 crypto_driver_unlock(cap);
2011 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
2012 cryptostats.cs_kblocks++;
2013 }
2014 }
2015 }
2016 } while (submit != NULL || krp != NULL);
2017 crypto_put_crp_qs(&s);
2018 }
2019
2020 /*
2021 * softint handler to do callbacks.
2022 */
2023 static void
2024 cryptoret_softint(void *arg __unused)
2025 {
2026 struct crypto_crp_ret_qs *qs;
2027 struct crypto_crp_ret_q *crp_ret_q;
2028 struct crypto_crp_ret_kq *crp_ret_kq;
2029
2030 qs = crypto_get_crp_ret_qs(curcpu());
2031 crp_ret_q = &qs->crp_ret_q;
2032 crp_ret_kq = &qs->crp_ret_kq;
2033 for (;;) {
2034 struct cryptop *crp;
2035 struct cryptkop *krp;
2036
2037 crp = TAILQ_FIRST(crp_ret_q);
2038 if (crp != NULL) {
2039 TAILQ_REMOVE(crp_ret_q, crp, crp_next);
2040 qs->crp_ret_q_len--;
2041 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
2042 }
2043 krp = TAILQ_FIRST(crp_ret_kq);
2044 if (krp != NULL) {
2045 TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
2046 qs->crp_ret_q_len--;
2047 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
2048 }
2049
2050 /* drop before calling any callbacks. */
2051 if (crp == NULL && krp == NULL)
2052 break;
2053
2054 mutex_spin_exit(&qs->crp_ret_q_mtx);
2055 if (crp != NULL) {
2056 #ifdef CRYPTO_TIMING
2057 if (crypto_timing) {
2058 /*
2059 * NB: We must copy the timestamp before
2060 * doing the callback as the cryptop is
2061 * likely to be reclaimed.
2062 */
2063 struct timespec t = crp->crp_tstamp;
2064 crypto_tstat(&cryptostats.cs_cb, &t);
2065 crp->crp_callback(crp);
2066 crypto_tstat(&cryptostats.cs_finis, &t);
2067 } else
2068 #endif
2069 {
2070 crp->crp_callback(crp);
2071 }
2072 }
2073 if (krp != NULL)
2074 krp->krp_callback(krp);
2075
2076 mutex_spin_enter(&qs->crp_ret_q_mtx);
2077 }
2078 crypto_put_crp_ret_qs(curcpu());
2079 }
2080
2081 /* NetBSD module interface */
2082
2083 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2084
2085 static int
2086 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2087 {
2088 int error = 0;
2089
2090 switch (cmd) {
2091 case MODULE_CMD_INIT:
2092 #ifdef _MODULE
2093 error = crypto_init();
2094 #endif
2095 break;
2096 case MODULE_CMD_FINI:
2097 #ifdef _MODULE
2098 error = crypto_destroy(true);
2099 #endif
2100 break;
2101 default:
2102 error = ENOTTY;
2103 }
2104 return error;
2105 }
2106