Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.12
      1 /*	$NetBSD: crypto.c,v 1.12 2006/01/16 21:45:38 yamt Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*
      6  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
      7  *
      8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
      9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     10  * supported the development of this code.
     11  *
     12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     13  *
     14  * Permission to use, copy, and modify this software with or without fee
     15  * is hereby granted, provided that this entire notice is included in
     16  * all source code copies of any software which is or includes a copy or
     17  * modification of this software.
     18  *
     19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     23  * PURPOSE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.12 2006/01/16 21:45:38 yamt Exp $");
     28 
     29 /* XXX FIXME: should be defopt'ed */
     30 #define CRYPTO_TIMING			/* enable cryptop timing stuff */
     31 
     32 #include <sys/param.h>
     33 #include <sys/reboot.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/proc.h>
     37 #include <sys/pool.h>
     38 #include <opencrypto/cryptodev.h>
     39 #include <sys/kthread.h>
     40 #include <sys/once.h>
     41 
     42 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     43 
     44 #ifdef __NetBSD__
     45   #define splcrypto splnet
     46   /* below is kludges to check whats still missing */
     47   #define SWI_CRYPTO 17
     48   #define register_swi(lvl, fn)  \
     49   softintr_establish(IPL_SOFTNET, (void (*)(void*))fn, NULL)
     50   #define unregister_swi(lvl, fn)  softintr_disestablish(softintr_cookie)
     51   #define setsoftcrypto(x) softintr_schedule(x)
     52 
     53 static void nanouptime(struct timespec *);
     54 static void
     55 nanouptime(struct timespec *tp)
     56 {
     57 	struct timeval tv;
     58 	microtime(&tv);
     59 	TIMEVAL_TO_TIMESPEC(&tv, tp);
     60 }
     61 
     62 #endif
     63 
     64 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
     65 
     66 /*
     67  * Crypto drivers register themselves by allocating a slot in the
     68  * crypto_drivers table with crypto_get_driverid() and then registering
     69  * each algorithm they support with crypto_register() and crypto_kregister().
     70  */
     71 static	struct cryptocap *crypto_drivers;
     72 static	int crypto_drivers_num;
     73 static	void* softintr_cookie;
     74 
     75 /*
     76  * There are two queues for crypto requests; one for symmetric (e.g.
     77  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     78  * See below for how synchronization is handled.
     79  */
     80 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
     81 		TAILQ_HEAD_INITIALIZER(crp_q);
     82 static	TAILQ_HEAD(,cryptkop) crp_kq =
     83 		TAILQ_HEAD_INITIALIZER(crp_kq);
     84 
     85 /*
     86  * There are two queues for processing completed crypto requests; one
     87  * for the symmetric and one for the asymmetric ops.  We only need one
     88  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
     89  * for how synchronization is handled.
     90  */
     91 static	TAILQ_HEAD(,cryptop) crp_ret_q =	/* callback queues */
     92 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
     93 static	TAILQ_HEAD(,cryptkop) crp_ret_kq =
     94 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
     95 
     96 /*
     97  * Crypto op and desciptor data structures are allocated
     98  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
     99  */
    100 struct pool cryptop_pool;
    101 struct pool cryptodesc_pool;
    102 int crypto_pool_initialized = 0;
    103 
    104 #ifdef __NetBSD__
    105 static void deferred_crypto_thread(void *arg);
    106 #endif
    107 
    108 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    109 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    110 /*
    111  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    112  * access to hardware versus software transforms as below:
    113  *
    114  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    115  *                              transforms, always
    116  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    117  *                              requests for non-accelerated transforms
    118  *                              (handling the latter in software)
    119  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    120  *                               are hardware-accelerated.
    121  */
    122 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    123 
    124 #ifdef __FreeBSD__
    125 SYSCTL_INT(_kern, OID_AUTO, usercrypto, CTLFLAG_RW,
    126 	   &crypto_usercrypto, 0,
    127 	   "Enable/disable user-mode access to crypto support");
    128 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
    129 	   &crypto_userasymcrypto, 0,
    130 	   "Enable/disable user-mode access to asymmetric crypto support");
    131 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
    132 	   &crypto_devallowsoft, 0,
    133 	   "Enable/disable use of software asym crypto support");
    134 #endif
    135 
    136 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    137 
    138 /*
    139  * Synchronization: read carefully, this is non-trivial.
    140  *
    141  * Crypto requests are submitted via crypto_dispatch.  Typically
    142  * these come in from network protocols at spl0 (output path) or
    143  * spl[,soft]net (input path).
    144  *
    145  * Requests are typically passed on the driver directly, but they
    146  * may also be queued for processing by a software interrupt thread,
    147  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    148  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    149  * when a request is complete.  Hardware crypto drivers are assumed
    150  * to register their IRQ's as network devices so their interrupt handlers
    151  * and subsequent "done callbacks" happen at spl[imp,net].
    152  *
    153  * Completed crypto ops are queued for a separate kernel thread that
    154  * handles the callbacks at spl0.  This decoupling insures the crypto
    155  * driver interrupt service routine is not delayed while the callback
    156  * takes place and that callbacks are delivered after a context switch
    157  * (as opposed to a software interrupt that clients must block).
    158  *
    159  * This scheme is not intended for SMP machines.
    160  */
    161 static	void cryptointr(void);		/* swi thread to dispatch ops */
    162 static	void cryptoret(void);		/* kernel thread for callbacks*/
    163 static	struct proc *cryptoproc;
    164 static	void crypto_destroy(void);
    165 static	int crypto_invoke(struct cryptop *crp, int hint);
    166 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    167 
    168 static struct cryptostats cryptostats;
    169 static	int crypto_timing = 0;
    170 
    171 #ifdef __FreeBSD__
    172 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
    173 	    cryptostats, "Crypto system statistics");
    174 
    175 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
    176 	   &crypto_timing, 0, "Enable/disable crypto timing support");
    177 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
    178 	    cryptostats, "Crypto system statistics");
    179 #endif /* __FreeBSD__ */
    180 
    181 static int
    182 crypto_init0(void)
    183 {
    184 #ifdef __FreeBSD__
    185 	int error;
    186 
    187 	cryptop_zone = zinit("cryptop", sizeof (struct cryptop), 0, 0, 1);
    188 	cryptodesc_zone = zinit("cryptodesc", sizeof (struct cryptodesc),
    189 				0, 0, 1);
    190 	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
    191 		printf("crypto_init: cannot setup crypto zones\n");
    192 		return;
    193 	}
    194 #endif
    195 
    196 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    197 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    198 	if (crypto_drivers == NULL) {
    199 		printf("crypto_init: cannot malloc driver table\n");
    200 		return 0;
    201 	}
    202 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    203 
    204 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    205 #ifdef __FreeBSD__
    206 	error = kthread_create((void (*)(void *)) cryptoret, NULL,
    207 		    &cryptoproc, "cryptoret");
    208 	if (error) {
    209 		printf("crypto_init: cannot start cryptoret thread; error %d",
    210 			error);
    211 		crypto_destroy();
    212 	}
    213 #else
    214 	/* defer thread creation until after boot */
    215 	kthread_create( deferred_crypto_thread, NULL);
    216 #endif
    217 	return 0;
    218 }
    219 
    220 void
    221 crypto_init(void)
    222 {
    223 	ONCE_DECL(crypto_init_once);
    224 
    225 	RUN_ONCE(&crypto_init_once, crypto_init0);
    226 }
    227 
    228 static void
    229 crypto_destroy(void)
    230 {
    231 	/* XXX no wait to reclaim zones */
    232 	if (crypto_drivers != NULL)
    233 		free(crypto_drivers, M_CRYPTO_DATA);
    234 	unregister_swi(SWI_CRYPTO, cryptointr);
    235 }
    236 
    237 /*
    238  * Create a new session.
    239  */
    240 int
    241 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    242 {
    243 	struct cryptoini *cr;
    244 	u_int32_t hid, lid;
    245 	int err = EINVAL;
    246 	int s;
    247 
    248 	s = splcrypto();
    249 
    250 	if (crypto_drivers == NULL)
    251 		goto done;
    252 
    253 	/*
    254 	 * The algorithm we use here is pretty stupid; just use the
    255 	 * first driver that supports all the algorithms we need.
    256 	 *
    257 	 * XXX We need more smarts here (in real life too, but that's
    258 	 * XXX another story altogether).
    259 	 */
    260 
    261 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    262 		/*
    263 		 * If it's not initialized or has remaining sessions
    264 		 * referencing it, skip.
    265 		 */
    266 		if (crypto_drivers[hid].cc_newsession == NULL ||
    267 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    268 			continue;
    269 
    270 		/* Hardware required -- ignore software drivers. */
    271 		if (hard > 0 &&
    272 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    273 			continue;
    274 		/* Software required -- ignore hardware drivers. */
    275 		if (hard < 0 &&
    276 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    277 			continue;
    278 
    279 		/* See if all the algorithms are supported. */
    280 		for (cr = cri; cr; cr = cr->cri_next)
    281 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
    282 				break;
    283 
    284 		if (cr == NULL) {
    285 			/* Ok, all algorithms are supported. */
    286 
    287 			/*
    288 			 * Can't do everything in one session.
    289 			 *
    290 			 * XXX Fix this. We need to inject a "virtual" session layer right
    291 			 * XXX about here.
    292 			 */
    293 
    294 			/* Call the driver initialization routine. */
    295 			lid = hid;		/* Pass the driver ID. */
    296 			err = crypto_drivers[hid].cc_newsession(
    297 					crypto_drivers[hid].cc_arg, &lid, cri);
    298 			if (err == 0) {
    299 				(*sid) = hid;
    300 				(*sid) <<= 32;
    301 				(*sid) |= (lid & 0xffffffff);
    302 				crypto_drivers[hid].cc_sessions++;
    303 			}
    304 			goto done;
    305 			/*break;*/
    306 		}
    307 	}
    308 done:
    309 	splx(s);
    310 	return err;
    311 }
    312 
    313 /*
    314  * Delete an existing session (or a reserved session on an unregistered
    315  * driver).
    316  */
    317 int
    318 crypto_freesession(u_int64_t sid)
    319 {
    320 	u_int32_t hid;
    321 	int err = 0;
    322 	int s;
    323 
    324 	s = splcrypto();
    325 
    326 	if (crypto_drivers == NULL) {
    327 		err = EINVAL;
    328 		goto done;
    329 	}
    330 
    331 	/* Determine two IDs. */
    332 	hid = SESID2HID(sid);
    333 
    334 	if (hid >= crypto_drivers_num) {
    335 		err = ENOENT;
    336 		goto done;
    337 	}
    338 
    339 	if (crypto_drivers[hid].cc_sessions)
    340 		crypto_drivers[hid].cc_sessions--;
    341 
    342 	/* Call the driver cleanup routine, if available. */
    343 	if (crypto_drivers[hid].cc_freesession)
    344 		err = crypto_drivers[hid].cc_freesession(
    345 				crypto_drivers[hid].cc_arg, sid);
    346 	else
    347 		err = 0;
    348 
    349 	/*
    350 	 * If this was the last session of a driver marked as invalid,
    351 	 * make the entry available for reuse.
    352 	 */
    353 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    354 	    crypto_drivers[hid].cc_sessions == 0)
    355 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
    356 
    357 done:
    358 	splx(s);
    359 	return err;
    360 }
    361 
    362 /*
    363  * Return an unused driver id.  Used by drivers prior to registering
    364  * support for the algorithms they handle.
    365  */
    366 int32_t
    367 crypto_get_driverid(u_int32_t flags)
    368 {
    369 	struct cryptocap *newdrv;
    370 	int i, s;
    371 
    372 	crypto_init();
    373 
    374 	s = splcrypto();
    375 	for (i = 0; i < crypto_drivers_num; i++)
    376 		if (crypto_drivers[i].cc_process == NULL &&
    377 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    378 		    crypto_drivers[i].cc_sessions == 0)
    379 			break;
    380 
    381 	/* Out of entries, allocate some more. */
    382 	if (i == crypto_drivers_num) {
    383 		/* Be careful about wrap-around. */
    384 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    385 			splx(s);
    386 			printf("crypto: driver count wraparound!\n");
    387 			return -1;
    388 		}
    389 
    390 		newdrv = malloc(2 * crypto_drivers_num *
    391 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    392 		if (newdrv == NULL) {
    393 			splx(s);
    394 			printf("crypto: no space to expand driver table!\n");
    395 			return -1;
    396 		}
    397 
    398 		bcopy(crypto_drivers, newdrv,
    399 		    crypto_drivers_num * sizeof(struct cryptocap));
    400 
    401 		crypto_drivers_num *= 2;
    402 
    403 		free(crypto_drivers, M_CRYPTO_DATA);
    404 		crypto_drivers = newdrv;
    405 	}
    406 
    407 	/* NB: state is zero'd on free */
    408 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    409 	crypto_drivers[i].cc_flags = flags;
    410 
    411 	if (bootverbose)
    412 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    413 
    414 	splx(s);
    415 
    416 	return i;
    417 }
    418 
    419 static struct cryptocap *
    420 crypto_checkdriver(u_int32_t hid)
    421 {
    422 	if (crypto_drivers == NULL)
    423 		return NULL;
    424 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    425 }
    426 
    427 /*
    428  * Register support for a key-related algorithm.  This routine
    429  * is called once for each algorithm supported a driver.
    430  */
    431 int
    432 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    433     int (*kprocess)(void*, struct cryptkop *, int),
    434     void *karg)
    435 {
    436 	int s;
    437 	struct cryptocap *cap;
    438 	int err;
    439 
    440 	s = splcrypto();
    441 
    442 	cap = crypto_checkdriver(driverid);
    443 	if (cap != NULL &&
    444 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    445 		/*
    446 		 * XXX Do some performance testing to determine placing.
    447 		 * XXX We probably need an auxiliary data structure that
    448 		 * XXX describes relative performances.
    449 		 */
    450 
    451 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    452 		if (bootverbose)
    453 			printf("crypto: driver %u registers key alg %u flags %u\n"
    454 				, driverid
    455 				, kalg
    456 				, flags
    457 			);
    458 
    459 		if (cap->cc_kprocess == NULL) {
    460 			cap->cc_karg = karg;
    461 			cap->cc_kprocess = kprocess;
    462 		}
    463 		err = 0;
    464 	} else
    465 		err = EINVAL;
    466 
    467 	splx(s);
    468 	return err;
    469 }
    470 
    471 /*
    472  * Register support for a non-key-related algorithm.  This routine
    473  * is called once for each such algorithm supported by a driver.
    474  */
    475 int
    476 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    477     u_int32_t flags,
    478     int (*newses)(void*, u_int32_t*, struct cryptoini*),
    479     int (*freeses)(void*, u_int64_t),
    480     int (*process)(void*, struct cryptop *, int),
    481     void *arg)
    482 {
    483 	struct cryptocap *cap;
    484 	int s, err;
    485 
    486 	s = splcrypto();
    487 
    488 	cap = crypto_checkdriver(driverid);
    489 	/* NB: algorithms are in the range [1..max] */
    490 	if (cap != NULL &&
    491 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    492 		/*
    493 		 * XXX Do some performance testing to determine placing.
    494 		 * XXX We probably need an auxiliary data structure that
    495 		 * XXX describes relative performances.
    496 		 */
    497 
    498 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    499 		cap->cc_max_op_len[alg] = maxoplen;
    500 		if (bootverbose)
    501 			printf("crypto: driver %u registers alg %u flags %u maxoplen %u\n"
    502 				, driverid
    503 				, alg
    504 				, flags
    505 				, maxoplen
    506 			);
    507 
    508 		if (cap->cc_process == NULL) {
    509 			cap->cc_arg = arg;
    510 			cap->cc_newsession = newses;
    511 			cap->cc_process = process;
    512 			cap->cc_freesession = freeses;
    513 			cap->cc_sessions = 0;		/* Unmark */
    514 		}
    515 		err = 0;
    516 	} else
    517 		err = EINVAL;
    518 
    519 	splx(s);
    520 	return err;
    521 }
    522 
    523 /*
    524  * Unregister a crypto driver. If there are pending sessions using it,
    525  * leave enough information around so that subsequent calls using those
    526  * sessions will correctly detect the driver has been unregistered and
    527  * reroute requests.
    528  */
    529 int
    530 crypto_unregister(u_int32_t driverid, int alg)
    531 {
    532 	int i, err, s;
    533 	u_int32_t ses;
    534 	struct cryptocap *cap;
    535 
    536 	s = splcrypto();
    537 
    538 	cap = crypto_checkdriver(driverid);
    539 	if (cap != NULL &&
    540 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    541 	    cap->cc_alg[alg] != 0) {
    542 		cap->cc_alg[alg] = 0;
    543 		cap->cc_max_op_len[alg] = 0;
    544 
    545 		/* Was this the last algorithm ? */
    546 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    547 			if (cap->cc_alg[i] != 0)
    548 				break;
    549 
    550 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    551 			ses = cap->cc_sessions;
    552 			bzero(cap, sizeof(struct cryptocap));
    553 			if (ses != 0) {
    554 				/*
    555 				 * If there are pending sessions, just mark as invalid.
    556 				 */
    557 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    558 				cap->cc_sessions = ses;
    559 			}
    560 		}
    561 		err = 0;
    562 	} else
    563 		err = EINVAL;
    564 
    565 	splx(s);
    566 	return err;
    567 }
    568 
    569 /*
    570  * Unregister all algorithms associated with a crypto driver.
    571  * If there are pending sessions using it, leave enough information
    572  * around so that subsequent calls using those sessions will
    573  * correctly detect the driver has been unregistered and reroute
    574  * requests.
    575  */
    576 int
    577 crypto_unregister_all(u_int32_t driverid)
    578 {
    579 	int i, err, s = splcrypto();
    580 	u_int32_t ses;
    581 	struct cryptocap *cap;
    582 
    583 	cap = crypto_checkdriver(driverid);
    584 	if (cap != NULL) {
    585 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    586 			cap->cc_alg[i] = 0;
    587 			cap->cc_max_op_len[i] = 0;
    588 		}
    589 		ses = cap->cc_sessions;
    590 		bzero(cap, sizeof(struct cryptocap));
    591 		if (ses != 0) {
    592 			/*
    593 			 * If there are pending sessions, just mark as invalid.
    594 			 */
    595 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    596 			cap->cc_sessions = ses;
    597 		}
    598 		err = 0;
    599 	} else
    600 		err = EINVAL;
    601 
    602 	splx(s);
    603 	return err;
    604 }
    605 
    606 /*
    607  * Clear blockage on a driver.  The what parameter indicates whether
    608  * the driver is now ready for cryptop's and/or cryptokop's.
    609  */
    610 int
    611 crypto_unblock(u_int32_t driverid, int what)
    612 {
    613 	struct cryptocap *cap;
    614 	int needwakeup, err, s;
    615 
    616 	s = splcrypto();
    617 	cap = crypto_checkdriver(driverid);
    618 	if (cap != NULL) {
    619 		needwakeup = 0;
    620 		if (what & CRYPTO_SYMQ) {
    621 			needwakeup |= cap->cc_qblocked;
    622 			cap->cc_qblocked = 0;
    623 		}
    624 		if (what & CRYPTO_ASYMQ) {
    625 			needwakeup |= cap->cc_kqblocked;
    626 			cap->cc_kqblocked = 0;
    627 		}
    628 		if (needwakeup) {
    629 			setsoftcrypto(softintr_cookie);
    630 		}
    631 		err = 0;
    632 	} else
    633 		err = EINVAL;
    634 	splx(s);
    635 
    636 	return err;
    637 }
    638 
    639 /*
    640  * Dispatch a crypto request to a driver or queue
    641  * it, to be processed by the kernel thread.
    642  */
    643 int
    644 crypto_dispatch(struct cryptop *crp)
    645 {
    646 	u_int32_t hid = SESID2HID(crp->crp_sid);
    647 	int s, result;
    648 
    649 	s = splcrypto();
    650 
    651 	cryptostats.cs_ops++;
    652 
    653 #ifdef CRYPTO_TIMING
    654 	if (crypto_timing)
    655 		nanouptime(&crp->crp_tstamp);
    656 #endif
    657 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    658 		struct cryptocap *cap;
    659 		/*
    660 		 * Caller marked the request to be processed
    661 		 * immediately; dispatch it directly to the
    662 		 * driver unless the driver is currently blocked.
    663 		 */
    664 		cap = crypto_checkdriver(hid);
    665 		if (cap && !cap->cc_qblocked) {
    666 			result = crypto_invoke(crp, 0);
    667 			if (result == ERESTART) {
    668 				/*
    669 				 * The driver ran out of resources, mark the
    670 				 * driver ``blocked'' for cryptop's and put
    671 				 * the op on the queue.
    672 				 */
    673 				crypto_drivers[hid].cc_qblocked = 1;
    674 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    675 				cryptostats.cs_blocks++;
    676 			}
    677 		} else {
    678 			/*
    679 			 * The driver is blocked, just queue the op until
    680 			 * it unblocks and the swi thread gets kicked.
    681 			 */
    682 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    683 			result = 0;
    684 		}
    685 	} else {
    686 		int wasempty = TAILQ_EMPTY(&crp_q);
    687 		/*
    688 		 * Caller marked the request as ``ok to delay'';
    689 		 * queue it for the swi thread.  This is desirable
    690 		 * when the operation is low priority and/or suitable
    691 		 * for batching.
    692 		 */
    693 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    694 		if (wasempty) {
    695 			setsoftcrypto(softintr_cookie);
    696 		}
    697 
    698 		result = 0;
    699 	}
    700 	splx(s);
    701 
    702 	return result;
    703 }
    704 
    705 /*
    706  * Add an asymetric crypto request to a queue,
    707  * to be processed by the kernel thread.
    708  */
    709 int
    710 crypto_kdispatch(struct cryptkop *krp)
    711 {
    712 	struct cryptocap *cap;
    713 	int s, result;
    714 
    715 	s = splcrypto();
    716 	cryptostats.cs_kops++;
    717 
    718 	cap = crypto_checkdriver(krp->krp_hid);
    719 	if (cap && !cap->cc_kqblocked) {
    720 		result = crypto_kinvoke(krp, 0);
    721 		if (result == ERESTART) {
    722 			/*
    723 			 * The driver ran out of resources, mark the
    724 			 * driver ``blocked'' for cryptop's and put
    725 			 * the op on the queue.
    726 			 */
    727 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    728 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    729 			cryptostats.cs_kblocks++;
    730 		}
    731 	} else {
    732 		/*
    733 		 * The driver is blocked, just queue the op until
    734 		 * it unblocks and the swi thread gets kicked.
    735 		 */
    736 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    737 		result = 0;
    738 	}
    739 	splx(s);
    740 
    741 	return result;
    742 }
    743 
    744 /*
    745  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    746  */
    747 static int
    748 crypto_kinvoke(struct cryptkop *krp, int hint)
    749 {
    750 	u_int32_t hid;
    751 	int error;
    752 
    753 	/* Sanity checks. */
    754 	if (krp == NULL)
    755 		return EINVAL;
    756 	if (krp->krp_callback == NULL) {
    757 		free(krp, M_XDATA);		/* XXX allocated in cryptodev */
    758 		return EINVAL;
    759 	}
    760 
    761 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    762 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    763 		    crypto_devallowsoft == 0)
    764 			continue;
    765 		if (crypto_drivers[hid].cc_kprocess == NULL)
    766 			continue;
    767 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    768 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    769 			continue;
    770 		break;
    771 	}
    772 	if (hid < crypto_drivers_num) {
    773 		krp->krp_hid = hid;
    774 		error = crypto_drivers[hid].cc_kprocess(
    775 				crypto_drivers[hid].cc_karg, krp, hint);
    776 	} else {
    777 		error = ENODEV;
    778 	}
    779 
    780 	if (error) {
    781 		krp->krp_status = error;
    782 		crypto_kdone(krp);
    783 	}
    784 	return 0;
    785 }
    786 
    787 #ifdef CRYPTO_TIMING
    788 static void
    789 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    790 {
    791 	struct timespec now, t;
    792 
    793 	nanouptime(&now);
    794 	t.tv_sec = now.tv_sec - tv->tv_sec;
    795 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    796 	if (t.tv_nsec < 0) {
    797 		t.tv_sec--;
    798 		t.tv_nsec += 1000000000;
    799 	}
    800 	timespecadd(&ts->acc, &t, &t);
    801 	if (timespeccmp(&t, &ts->min, <))
    802 		ts->min = t;
    803 	if (timespeccmp(&t, &ts->max, >))
    804 		ts->max = t;
    805 	ts->count++;
    806 
    807 	*tv = now;
    808 }
    809 #endif
    810 
    811 /*
    812  * Dispatch a crypto request to the appropriate crypto devices.
    813  */
    814 static int
    815 crypto_invoke(struct cryptop *crp, int hint)
    816 {
    817 	u_int32_t hid;
    818 	int (*process)(void*, struct cryptop *, int);
    819 
    820 #ifdef CRYPTO_TIMING
    821 	if (crypto_timing)
    822 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    823 #endif
    824 	/* Sanity checks. */
    825 	if (crp == NULL)
    826 		return EINVAL;
    827 	if (crp->crp_callback == NULL) {
    828 		crypto_freereq(crp);
    829 		return EINVAL;
    830 	}
    831 	if (crp->crp_desc == NULL) {
    832 		crp->crp_etype = EINVAL;
    833 		crypto_done(crp);
    834 		return 0;
    835 	}
    836 
    837 	hid = SESID2HID(crp->crp_sid);
    838 	if (hid < crypto_drivers_num) {
    839 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    840 			crypto_freesession(crp->crp_sid);
    841 		process = crypto_drivers[hid].cc_process;
    842 	} else {
    843 		process = NULL;
    844 	}
    845 
    846 	if (process == NULL) {
    847 		struct cryptodesc *crd;
    848 		u_int64_t nid;
    849 
    850 		/*
    851 		 * Driver has unregistered; migrate the session and return
    852 		 * an error to the caller so they'll resubmit the op.
    853 		 */
    854 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    855 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    856 
    857 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    858 			crp->crp_sid = nid;
    859 
    860 		crp->crp_etype = EAGAIN;
    861 		crypto_done(crp);
    862 		return 0;
    863 	} else {
    864 		/*
    865 		 * Invoke the driver to process the request.
    866 		 */
    867 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
    868 	}
    869 }
    870 
    871 /*
    872  * Release a set of crypto descriptors.
    873  */
    874 void
    875 crypto_freereq(struct cryptop *crp)
    876 {
    877 	struct cryptodesc *crd;
    878 	int s;
    879 
    880 	if (crp == NULL)
    881 		return;
    882 
    883 	s = splcrypto();
    884 
    885 	while ((crd = crp->crp_desc) != NULL) {
    886 		crp->crp_desc = crd->crd_next;
    887 		pool_put(&cryptodesc_pool, crd);
    888 	}
    889 
    890 	pool_put(&cryptop_pool, crp);
    891 	splx(s);
    892 }
    893 
    894 /*
    895  * Acquire a set of crypto descriptors.
    896  */
    897 struct cryptop *
    898 crypto_getreq(int num)
    899 {
    900 	struct cryptodesc *crd;
    901 	struct cryptop *crp;
    902 	int s;
    903 
    904 	s = splcrypto();
    905 
    906 	if (crypto_pool_initialized == 0) {
    907 		pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    908 		    0, "cryptop", NULL);
    909 		pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    910 		    0, "cryptodesc", NULL);
    911 		crypto_pool_initialized = 1;
    912 	}
    913 
    914 	crp = pool_get(&cryptop_pool, 0);
    915 	if (crp == NULL) {
    916 		splx(s);
    917 		return NULL;
    918 	}
    919 	bzero(crp, sizeof(struct cryptop));
    920 
    921 	while (num--) {
    922 		crd = pool_get(&cryptodesc_pool, 0);
    923 		if (crd == NULL) {
    924 			splx(s);
    925 			crypto_freereq(crp);
    926 			return NULL;
    927 		}
    928 
    929 		bzero(crd, sizeof(struct cryptodesc));
    930 		crd->crd_next = crp->crp_desc;
    931 		crp->crp_desc = crd;
    932 	}
    933 
    934 	splx(s);
    935 	return crp;
    936 }
    937 
    938 /*
    939  * Invoke the callback on behalf of the driver.
    940  */
    941 void
    942 crypto_done(struct cryptop *crp)
    943 {
    944 	if (crp->crp_etype != 0)
    945 		cryptostats.cs_errs++;
    946 #ifdef CRYPTO_TIMING
    947 	if (crypto_timing)
    948 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
    949 #endif
    950 	/*
    951 	 * On netbsd 1.6O, CBIMM does its wake_one() before the requestor
    952 	 * has done its tsleep().
    953 	 */
    954 #ifndef __NetBSD__
    955 	if (crp->crp_flags & CRYPTO_F_CBIMM) {
    956 		/*
    957 		 * Do the callback directly.  This is ok when the
    958 		 * callback routine does very little (e.g. the
    959 		 * /dev/crypto callback method just does a wakeup).
    960 		 */
    961 #ifdef CRYPTO_TIMING
    962 		if (crypto_timing) {
    963 			/*
    964 			 * NB: We must copy the timestamp before
    965 			 * doing the callback as the cryptop is
    966 			 * likely to be reclaimed.
    967 			 */
    968 			struct timespec t = crp->crp_tstamp;
    969 			crypto_tstat(&cryptostats.cs_cb, &t);
    970 			crp->crp_callback(crp);
    971 			crypto_tstat(&cryptostats.cs_finis, &t);
    972 		} else
    973 #endif
    974 			crp->crp_callback(crp);
    975 	} else
    976 #endif /* __NetBSD__ */
    977 	{
    978 		int s, wasempty;
    979 		/*
    980 		 * Normal case; queue the callback for the thread.
    981 		 *
    982 		 * The return queue is manipulated by the swi thread
    983 		 * and, potentially, by crypto device drivers calling
    984 		 * back to mark operations completed.  Thus we need
    985 		 * to mask both while manipulating the return queue.
    986 		 */
    987 		s = splcrypto();
    988 		wasempty = TAILQ_EMPTY(&crp_ret_q);
    989 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
    990 		if (wasempty)
    991 			wakeup_one(&crp_ret_q);
    992 		splx(s);
    993 	}
    994 }
    995 
    996 /*
    997  * Invoke the callback on behalf of the driver.
    998  */
    999 void
   1000 crypto_kdone(struct cryptkop *krp)
   1001 {
   1002 	int s, wasempty;
   1003 
   1004 	if (krp->krp_status != 0)
   1005 		cryptostats.cs_kerrs++;
   1006 	/*
   1007 	 * The return queue is manipulated by the swi thread
   1008 	 * and, potentially, by crypto device drivers calling
   1009 	 * back to mark operations completed.  Thus we need
   1010 	 * to mask both while manipulating the return queue.
   1011 	 */
   1012 	s = splcrypto();
   1013 	wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1014 	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1015 	if (wasempty)
   1016 		wakeup_one(&crp_ret_q);
   1017 	splx(s);
   1018 }
   1019 
   1020 int
   1021 crypto_getfeat(int *featp)
   1022 {
   1023 	int hid, kalg, feat = 0;
   1024 	int s;
   1025 
   1026 	s = splcrypto();
   1027 
   1028 	if (crypto_userasymcrypto == 0)
   1029 		goto out;
   1030 
   1031 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1032 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1033 		    crypto_devallowsoft == 0) {
   1034 			continue;
   1035 		}
   1036 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1037 			continue;
   1038 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1039 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1040 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1041 				feat |=  1 << kalg;
   1042 	}
   1043 out:
   1044 	splx(s);
   1045 	*featp = feat;
   1046 	return (0);
   1047 }
   1048 
   1049 /*
   1050  * Software interrupt thread to dispatch crypto requests.
   1051  */
   1052 static void
   1053 cryptointr(void)
   1054 {
   1055 	struct cryptop *crp, *submit;
   1056 	struct cryptkop *krp;
   1057 	struct cryptocap *cap;
   1058 	int result, hint, s;
   1059 
   1060 	printf("crypto softint\n");
   1061 	cryptostats.cs_intrs++;
   1062 	s = splcrypto();
   1063 	do {
   1064 		/*
   1065 		 * Find the first element in the queue that can be
   1066 		 * processed and look-ahead to see if multiple ops
   1067 		 * are ready for the same driver.
   1068 		 */
   1069 		submit = NULL;
   1070 		hint = 0;
   1071 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
   1072 			u_int32_t hid = SESID2HID(crp->crp_sid);
   1073 			cap = crypto_checkdriver(hid);
   1074 			if (cap == NULL || cap->cc_process == NULL) {
   1075 				/* Op needs to be migrated, process it. */
   1076 				if (submit == NULL)
   1077 					submit = crp;
   1078 				break;
   1079 			}
   1080 			if (!cap->cc_qblocked) {
   1081 				if (submit != NULL) {
   1082 					/*
   1083 					 * We stop on finding another op,
   1084 					 * regardless whether its for the same
   1085 					 * driver or not.  We could keep
   1086 					 * searching the queue but it might be
   1087 					 * better to just use a per-driver
   1088 					 * queue instead.
   1089 					 */
   1090 					if (SESID2HID(submit->crp_sid) == hid)
   1091 						hint = CRYPTO_HINT_MORE;
   1092 					break;
   1093 				} else {
   1094 					submit = crp;
   1095 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1096 						break;
   1097 					/* keep scanning for more are q'd */
   1098 				}
   1099 			}
   1100 		}
   1101 		if (submit != NULL) {
   1102 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1103 			result = crypto_invoke(submit, hint);
   1104 			if (result == ERESTART) {
   1105 				/*
   1106 				 * The driver ran out of resources, mark the
   1107 				 * driver ``blocked'' for cryptop's and put
   1108 				 * the request back in the queue.  It would
   1109 				 * best to put the request back where we got
   1110 				 * it but that's hard so for now we put it
   1111 				 * at the front.  This should be ok; putting
   1112 				 * it at the end does not work.
   1113 				 */
   1114 				/* XXX validate sid again? */
   1115 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1116 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1117 				cryptostats.cs_blocks++;
   1118 			}
   1119 		}
   1120 
   1121 		/* As above, but for key ops */
   1122 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
   1123 			cap = crypto_checkdriver(krp->krp_hid);
   1124 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1125 				/* Op needs to be migrated, process it. */
   1126 				break;
   1127 			}
   1128 			if (!cap->cc_kqblocked)
   1129 				break;
   1130 		}
   1131 		if (krp != NULL) {
   1132 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1133 			result = crypto_kinvoke(krp, 0);
   1134 			if (result == ERESTART) {
   1135 				/*
   1136 				 * The driver ran out of resources, mark the
   1137 				 * driver ``blocked'' for cryptkop's and put
   1138 				 * the request back in the queue.  It would
   1139 				 * best to put the request back where we got
   1140 				 * it but that's hard so for now we put it
   1141 				 * at the front.  This should be ok; putting
   1142 				 * it at the end does not work.
   1143 				 */
   1144 				/* XXX validate sid again? */
   1145 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1146 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1147 				cryptostats.cs_kblocks++;
   1148 			}
   1149 		}
   1150 	} while (submit != NULL || krp != NULL);
   1151 	splx(s);
   1152 }
   1153 
   1154 /*
   1155  * Kernel thread to do callbacks.
   1156  */
   1157 static void
   1158 cryptoret(void)
   1159 {
   1160 	struct cryptop *crp;
   1161 	struct cryptkop *krp;
   1162 	int s;
   1163 
   1164 	s = splcrypto();
   1165 	for (;;) {
   1166 		crp = TAILQ_FIRST(&crp_ret_q);
   1167 		if (crp != NULL)
   1168 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1169 		krp = TAILQ_FIRST(&crp_ret_kq);
   1170 		if (krp != NULL)
   1171 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1172 
   1173 		if (crp != NULL || krp != NULL) {
   1174 			splx(s);		/* lower ipl for callbacks */
   1175 			if (crp != NULL) {
   1176 #ifdef CRYPTO_TIMING
   1177 				if (crypto_timing) {
   1178 					/*
   1179 					 * NB: We must copy the timestamp before
   1180 					 * doing the callback as the cryptop is
   1181 					 * likely to be reclaimed.
   1182 					 */
   1183 					struct timespec t = crp->crp_tstamp;
   1184 					crypto_tstat(&cryptostats.cs_cb, &t);
   1185 					crp->crp_callback(crp);
   1186 					crypto_tstat(&cryptostats.cs_finis, &t);
   1187 				} else
   1188 #endif
   1189 					crp->crp_callback(crp);
   1190 			}
   1191 			if (krp != NULL)
   1192 				krp->krp_callback(krp);
   1193 			s  = splcrypto();
   1194 		} else {
   1195 			(void) tsleep(&crp_ret_q, PLOCK, "crypto_wait", 0);
   1196 			cryptostats.cs_rets++;
   1197 		}
   1198 	}
   1199 }
   1200 
   1201 static void
   1203 deferred_crypto_thread(void *arg)
   1204 {
   1205 	int error;
   1206 
   1207 	error = kthread_create1((void (*)(void*)) cryptoret, NULL,
   1208 				&cryptoproc, "cryptoret");
   1209 	if (error) {
   1210 		printf("crypto_init: cannot start cryptoret thread; error %d",
   1211 		    error);
   1212 		crypto_destroy();
   1213 	}
   1214 }
   1215 
   1216 #ifdef __FreeBSD__
   1217 /*
   1218  * Initialization code, both for static and dynamic loading.
   1219  */
   1220 static int
   1221 crypto_modevent(module_t mod, int type, void *unused)
   1222 {
   1223 	int error = EINVAL;
   1224 
   1225 	switch (type) {
   1226 	case MOD_LOAD:
   1227 		error = crypto_init();
   1228 		if (error == 0 && bootverbose)
   1229 			printf("crypto: <crypto core>\n");
   1230 		break;
   1231 	case MOD_UNLOAD:
   1232 		/*XXX disallow if active sessions */
   1233 		error = 0;
   1234 		crypto_destroy();
   1235 		break;
   1236 	}
   1237 	return error;
   1238 }
   1239 static moduledata_t crypto_mod = {
   1240 	"crypto",
   1241 	crypto_modevent,
   1242 	0
   1243 };
   1244 
   1245 MODULE_VERSION(crypto, 1);
   1246 DECLARE_MODULE(crypto, crypto_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
   1247 #endif /* __FreeBSD__ */
   1248 
   1249 
   1250