Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.126
      1 /*	$NetBSD: crypto.c,v 1.126 2022/05/22 11:39:54 riastradh Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.126 2022/05/22 11:39:54 riastradh Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/proc.h>
     62 #include <sys/pool.h>
     63 #include <sys/kthread.h>
     64 #include <sys/once.h>
     65 #include <sys/sysctl.h>
     66 #include <sys/intr.h>
     67 #include <sys/errno.h>
     68 #include <sys/module.h>
     69 #include <sys/xcall.h>
     70 #include <sys/device.h>
     71 #include <sys/cpu.h>
     72 #include <sys/percpu.h>
     73 #include <sys/kmem.h>
     74 
     75 #if defined(_KERNEL_OPT)
     76 #include "opt_ocf.h"
     77 #endif
     78 
     79 #include <opencrypto/cryptodev.h>
     80 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     81 
     82 /*
     83  * Crypto drivers register themselves by allocating a slot in the
     84  * crypto_drivers table with crypto_get_driverid() and then registering
     85  * each algorithm they support with crypto_register() and crypto_kregister().
     86  */
     87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
     88 static struct {
     89 	kmutex_t mtx;
     90 	int num;
     91 	struct cryptocap *list;
     92 } crypto_drv __cacheline_aligned;
     93 #define crypto_drv_mtx		(crypto_drv.mtx)
     94 #define crypto_drivers_num	(crypto_drv.num)
     95 #define crypto_drivers		(crypto_drv.list)
     96 
     97 static	void *crypto_q_si;
     98 static	void *crypto_ret_si;
     99 
    100 /*
    101  * There are two queues for crypto requests; one for symmetric (e.g.
    102  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    103  * See below for how synchronization is handled.
    104  */
    105 TAILQ_HEAD(crypto_crp_q, cryptop);
    106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
    107 struct crypto_crp_qs {
    108 	struct crypto_crp_q *crp_q;
    109 	struct crypto_crp_kq *crp_kq;
    110 };
    111 static percpu_t *crypto_crp_qs_percpu;
    112 
    113 static inline struct crypto_crp_qs *
    114 crypto_get_crp_qs(int *s)
    115 {
    116 
    117 	KASSERT(s != NULL);
    118 
    119 	*s = splsoftnet();
    120 	return percpu_getref(crypto_crp_qs_percpu);
    121 }
    122 
    123 static inline void
    124 crypto_put_crp_qs(int *s)
    125 {
    126 
    127 	KASSERT(s != NULL);
    128 
    129 	percpu_putref(crypto_crp_qs_percpu);
    130 	splx(*s);
    131 }
    132 
    133 static void
    134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
    135 {
    136 	struct crypto_crp_qs *qs_pc = p;
    137 	bool *isempty = arg;
    138 
    139 	if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
    140 		*isempty = true;
    141 }
    142 
    143 static void
    144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
    145 {
    146 	struct crypto_crp_qs *qs = p;
    147 
    148 	qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
    149 	qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
    150 
    151 	TAILQ_INIT(qs->crp_q);
    152 	TAILQ_INIT(qs->crp_kq);
    153 }
    154 
    155 /*
    156  * There are two queues for processing completed crypto requests; one
    157  * for the symmetric and one for the asymmetric ops.  We only need one
    158  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    159  * for how synchronization is handled.
    160  */
    161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
    162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
    163 struct crypto_crp_ret_qs {
    164 	kmutex_t crp_ret_q_mtx;
    165 	bool crp_ret_q_exit_flag;
    166 
    167 	struct crypto_crp_ret_q crp_ret_q;
    168 	int crp_ret_q_len;
    169 	int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
    170 	int crp_ret_q_drops;
    171 
    172 	struct crypto_crp_ret_kq crp_ret_kq;
    173 	int crp_ret_kq_len;
    174 	int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
    175 	int crp_ret_kq_drops;
    176 };
    177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
    178 
    179 
    180 static inline struct crypto_crp_ret_qs *
    181 crypto_get_crp_ret_qs(struct cpu_info *ci)
    182 {
    183 	u_int cpuid;
    184 	struct crypto_crp_ret_qs *qs;
    185 
    186 	KASSERT(ci != NULL);
    187 
    188 	cpuid = cpu_index(ci);
    189 	qs = crypto_crp_ret_qs_list[cpuid];
    190 	mutex_enter(&qs->crp_ret_q_mtx);
    191 	return qs;
    192 }
    193 
    194 static inline void
    195 crypto_put_crp_ret_qs(struct cpu_info *ci)
    196 {
    197 	u_int cpuid;
    198 	struct crypto_crp_ret_qs *qs;
    199 
    200 	KASSERT(ci != NULL);
    201 
    202 	cpuid = cpu_index(ci);
    203 	qs = crypto_crp_ret_qs_list[cpuid];
    204 	mutex_exit(&qs->crp_ret_q_mtx);
    205 }
    206 
    207 #ifndef CRYPTO_RET_Q_MAXLEN
    208 #define CRYPTO_RET_Q_MAXLEN 0
    209 #endif
    210 #ifndef CRYPTO_RET_KQ_MAXLEN
    211 #define CRYPTO_RET_KQ_MAXLEN 0
    212 #endif
    213 
    214 static int
    215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
    216 {
    217 	int error, len = 0;
    218 	struct sysctlnode node = *rnode;
    219 
    220 	for (int i = 0; i < ncpu; i++) {
    221 		struct crypto_crp_ret_qs *qs;
    222 		struct cpu_info *ci = cpu_lookup(i);
    223 
    224 		qs = crypto_get_crp_ret_qs(ci);
    225 		len += qs->crp_ret_q_len;
    226 		crypto_put_crp_ret_qs(ci);
    227 	}
    228 
    229 	node.sysctl_data = &len;
    230 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    231 	if (error || newp == NULL)
    232 		return error;
    233 
    234 	return 0;
    235 }
    236 
    237 static int
    238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
    239 {
    240 	int error, drops = 0;
    241 	struct sysctlnode node = *rnode;
    242 
    243 	for (int i = 0; i < ncpu; i++) {
    244 		struct crypto_crp_ret_qs *qs;
    245 		struct cpu_info *ci = cpu_lookup(i);
    246 
    247 		qs = crypto_get_crp_ret_qs(ci);
    248 		drops += qs->crp_ret_q_drops;
    249 		crypto_put_crp_ret_qs(ci);
    250 	}
    251 
    252 	node.sysctl_data = &drops;
    253 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    254 	if (error || newp == NULL)
    255 		return error;
    256 
    257 	return 0;
    258 }
    259 
    260 static int
    261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
    262 {
    263 	int error, maxlen;
    264 	struct crypto_crp_ret_qs *qs;
    265 	struct sysctlnode node = *rnode;
    266 
    267 	/* each crp_ret_kq_maxlen is the same. */
    268 	qs = crypto_get_crp_ret_qs(curcpu());
    269 	maxlen = qs->crp_ret_q_maxlen;
    270 	crypto_put_crp_ret_qs(curcpu());
    271 
    272 	node.sysctl_data = &maxlen;
    273 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    274 	if (error || newp == NULL)
    275 		return error;
    276 
    277 	for (int i = 0; i < ncpu; i++) {
    278 		struct cpu_info *ci = cpu_lookup(i);
    279 
    280 		qs = crypto_get_crp_ret_qs(ci);
    281 		qs->crp_ret_q_maxlen = maxlen;
    282 		crypto_put_crp_ret_qs(ci);
    283 	}
    284 
    285 	return 0;
    286 }
    287 
    288 static int
    289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
    290 {
    291 	int error, len = 0;
    292 	struct sysctlnode node = *rnode;
    293 
    294 	for (int i = 0; i < ncpu; i++) {
    295 		struct crypto_crp_ret_qs *qs;
    296 		struct cpu_info *ci = cpu_lookup(i);
    297 
    298 		qs = crypto_get_crp_ret_qs(ci);
    299 		len += qs->crp_ret_kq_len;
    300 		crypto_put_crp_ret_qs(ci);
    301 	}
    302 
    303 	node.sysctl_data = &len;
    304 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    305 	if (error || newp == NULL)
    306 		return error;
    307 
    308 	return 0;
    309 }
    310 
    311 static int
    312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
    313 {
    314 	int error, drops = 0;
    315 	struct sysctlnode node = *rnode;
    316 
    317 	for (int i = 0; i < ncpu; i++) {
    318 		struct crypto_crp_ret_qs *qs;
    319 		struct cpu_info *ci = cpu_lookup(i);
    320 
    321 		qs = crypto_get_crp_ret_qs(ci);
    322 		drops += qs->crp_ret_kq_drops;
    323 		crypto_put_crp_ret_qs(ci);
    324 	}
    325 
    326 	node.sysctl_data = &drops;
    327 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    328 	if (error || newp == NULL)
    329 		return error;
    330 
    331 	return 0;
    332 }
    333 
    334 static int
    335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
    336 {
    337 	int error, maxlen;
    338 	struct crypto_crp_ret_qs *qs;
    339 	struct sysctlnode node = *rnode;
    340 
    341 	/* each crp_ret_kq_maxlen is the same. */
    342 	qs = crypto_get_crp_ret_qs(curcpu());
    343 	maxlen = qs->crp_ret_kq_maxlen;
    344 	crypto_put_crp_ret_qs(curcpu());
    345 
    346 	node.sysctl_data = &maxlen;
    347 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    348 	if (error || newp == NULL)
    349 		return error;
    350 
    351 	for (int i = 0; i < ncpu; i++) {
    352 		struct cpu_info *ci = cpu_lookup(i);
    353 
    354 		qs = crypto_get_crp_ret_qs(ci);
    355 		qs->crp_ret_kq_maxlen = maxlen;
    356 		crypto_put_crp_ret_qs(ci);
    357 	}
    358 
    359 	return 0;
    360 }
    361 
    362 /*
    363  * Crypto op and descriptor data structures are allocated
    364  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    365  */
    366 static pool_cache_t cryptop_cache;
    367 static pool_cache_t cryptodesc_cache;
    368 static pool_cache_t cryptkop_cache;
    369 
    370 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    371 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    372 /*
    373  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    374  * access to hardware versus software transforms as below:
    375  *
    376  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    377  *                              transforms, always
    378  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    379  *                              requests for non-accelerated transforms
    380  *                              (handling the latter in software)
    381  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    382  *                               are hardware-accelerated.
    383  */
    384 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    385 
    386 static void
    387 sysctl_opencrypto_setup(struct sysctllog **clog)
    388 {
    389 	const struct sysctlnode *ocnode;
    390 	const struct sysctlnode *retqnode, *retkqnode;
    391 
    392 	sysctl_createv(clog, 0, NULL, NULL,
    393 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    394 		       CTLTYPE_INT, "usercrypto",
    395 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    396 			   "crypto support"),
    397 		       NULL, 0, &crypto_usercrypto, 0,
    398 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    399 	sysctl_createv(clog, 0, NULL, NULL,
    400 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    401 		       CTLTYPE_INT, "userasymcrypto",
    402 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    403 			   "asymmetric crypto support"),
    404 		       NULL, 0, &crypto_userasymcrypto, 0,
    405 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    406 	sysctl_createv(clog, 0, NULL, NULL,
    407 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    408 		       CTLTYPE_INT, "cryptodevallowsoft",
    409 		       SYSCTL_DESCR("Enable/disable use of software "
    410 			   "asymmetric crypto support"),
    411 		       NULL, 0, &crypto_devallowsoft, 0,
    412 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    413 
    414 	sysctl_createv(clog, 0, NULL, &ocnode,
    415 		       CTLFLAG_PERMANENT,
    416 		       CTLTYPE_NODE, "opencrypto",
    417 		       SYSCTL_DESCR("opencrypto related entries"),
    418 		       NULL, 0, NULL, 0,
    419 		       CTL_CREATE, CTL_EOL);
    420 
    421 	sysctl_createv(clog, 0, &ocnode, &retqnode,
    422 		       CTLFLAG_PERMANENT,
    423 		       CTLTYPE_NODE, "crypto_ret_q",
    424 		       SYSCTL_DESCR("crypto_ret_q related entries"),
    425 		       NULL, 0, NULL, 0,
    426 		       CTL_CREATE, CTL_EOL);
    427 	sysctl_createv(clog, 0, &retqnode, NULL,
    428 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    429 		       CTLTYPE_INT, "len",
    430 		       SYSCTL_DESCR("Current queue length"),
    431 		       sysctl_opencrypto_q_len, 0,
    432 		       NULL, 0,
    433 		       CTL_CREATE, CTL_EOL);
    434 	sysctl_createv(clog, 0, &retqnode, NULL,
    435 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    436 		       CTLTYPE_INT, "drops",
    437 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    438 		       sysctl_opencrypto_q_drops, 0,
    439 		       NULL, 0,
    440 		       CTL_CREATE, CTL_EOL);
    441 	sysctl_createv(clog, 0, &retqnode, NULL,
    442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    443 		       CTLTYPE_INT, "maxlen",
    444 		       SYSCTL_DESCR("Maximum allowed queue length"),
    445 		       sysctl_opencrypto_q_maxlen, 0,
    446 		       NULL, 0,
    447 		       CTL_CREATE, CTL_EOL);
    448 
    449 
    450 	sysctl_createv(clog, 0, &ocnode, &retkqnode,
    451 		       CTLFLAG_PERMANENT,
    452 		       CTLTYPE_NODE, "crypto_ret_kq",
    453 		       SYSCTL_DESCR("crypto_ret_kq related entries"),
    454 		       NULL, 0, NULL, 0,
    455 		       CTL_CREATE, CTL_EOL);
    456 	sysctl_createv(clog, 0, &retkqnode, NULL,
    457 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    458 		       CTLTYPE_INT, "len",
    459 		       SYSCTL_DESCR("Current queue length"),
    460 		       sysctl_opencrypto_kq_len, 0,
    461 		       NULL, 0,
    462 		       CTL_CREATE, CTL_EOL);
    463 	sysctl_createv(clog, 0, &retkqnode, NULL,
    464 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    465 		       CTLTYPE_INT, "drops",
    466 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    467 		       sysctl_opencrypto_kq_drops, 0,
    468 		       NULL, 0,
    469 		       CTL_CREATE, CTL_EOL);
    470 	sysctl_createv(clog, 0, &retkqnode, NULL,
    471 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    472 		       CTLTYPE_INT, "maxlen",
    473 		       SYSCTL_DESCR("Maximum allowed queue length"),
    474 		       sysctl_opencrypto_kq_maxlen, 0,
    475 		       NULL, 0,
    476 		       CTL_CREATE, CTL_EOL);
    477 }
    478 
    479 /*
    480  * Synchronization: read carefully, this is non-trivial.
    481  *
    482  * Crypto requests are submitted via crypto_dispatch.  Typically
    483  * these come in from network protocols at spl0 (output path) or
    484  * spl[,soft]net (input path).
    485  *
    486  * Requests are typically passed on the driver directly, but they
    487  * may also be queued for processing by a software interrupt thread,
    488  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    489  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    490  * when a request is complete.  Hardware crypto drivers are assumed
    491  * to register their IRQ's as network devices so their interrupt handlers
    492  * and subsequent "done callbacks" happen at spl[imp,net].
    493  *
    494  * Completed crypto ops are queued for a separate kernel thread that
    495  * handles the callbacks at spl0.  This decoupling insures the crypto
    496  * driver interrupt service routine is not delayed while the callback
    497  * takes place and that callbacks are delivered after a context switch
    498  * (as opposed to a software interrupt that clients must block).
    499  *
    500  * This scheme is not intended for SMP machines.
    501  */
    502 static	void cryptointr(void *);	/* swi thread to dispatch ops */
    503 static	void cryptoret_softint(void *);	/* kernel thread for callbacks*/
    504 static	int crypto_destroy(bool);
    505 static	int crypto_invoke(struct cryptop *crp, int hint);
    506 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    507 
    508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
    509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
    510 static struct cryptocap *crypto_checkdriver(u_int32_t);
    511 static void crypto_driver_lock(struct cryptocap *);
    512 static void crypto_driver_unlock(struct cryptocap *);
    513 static void crypto_driver_clear(struct cryptocap *);
    514 
    515 static int crypto_init_finalize(device_t);
    516 
    517 static struct cryptostats cryptostats;
    518 #ifdef CRYPTO_TIMING
    519 static	int crypto_timing = 0;
    520 #endif
    521 
    522 static struct sysctllog *sysctl_opencrypto_clog;
    523 
    524 static void
    525 crypto_crp_ret_qs_init(void)
    526 {
    527 	int i;
    528 
    529 	crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
    530 	    KM_SLEEP);
    531 
    532 	for (i = 0; i < ncpu; i++) {
    533 		struct crypto_crp_ret_qs *qs;
    534 
    535 		qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
    536 		mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    537 		qs->crp_ret_q_exit_flag = false;
    538 
    539 		TAILQ_INIT(&qs->crp_ret_q);
    540 		qs->crp_ret_q_len = 0;
    541 		qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
    542 		qs->crp_ret_q_drops = 0;
    543 
    544 		TAILQ_INIT(&qs->crp_ret_kq);
    545 		qs->crp_ret_kq_len = 0;
    546 		qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
    547 		qs->crp_ret_kq_drops = 0;
    548 
    549 		crypto_crp_ret_qs_list[i] = qs;
    550 	}
    551 }
    552 
    553 static int
    554 crypto_init0(void)
    555 {
    556 
    557 	mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
    558 	cryptop_cache = pool_cache_init(sizeof(struct cryptop),
    559 	    coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
    560 	cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
    561 	    coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
    562 	cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
    563 	    coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
    564 
    565 	crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
    566 	    crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);
    567 
    568 	crypto_crp_ret_qs_init();
    569 
    570 	crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
    571 	    sizeof(struct cryptocap), KM_SLEEP);
    572 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    573 
    574 	crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
    575 	if (crypto_q_si == NULL) {
    576 		printf("crypto_init: cannot establish request queue handler\n");
    577 		return crypto_destroy(false);
    578 	}
    579 
    580 	/*
    581 	 * Some encryption devices (such as mvcesa) are attached before
    582 	 * ipi_sysinit(). That causes an assertion in ipi_register() as
    583 	 * crypto_ret_si softint uses SOFTINT_RCPU.
    584 	 */
    585 	if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
    586 		printf("crypto_init: cannot register crypto_init_finalize\n");
    587 		return crypto_destroy(false);
    588 	}
    589 
    590 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    591 
    592 	return 0;
    593 }
    594 
    595 static int
    596 crypto_init_finalize(device_t self __unused)
    597 {
    598 
    599 	crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
    600 	    &cryptoret_softint, NULL);
    601 	KASSERT(crypto_ret_si != NULL);
    602 
    603 	return 0;
    604 }
    605 
    606 int
    607 crypto_init(void)
    608 {
    609 	static ONCE_DECL(crypto_init_once);
    610 
    611 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    612 }
    613 
    614 static int
    615 crypto_destroy(bool exit_kthread)
    616 {
    617 	int i;
    618 
    619 	if (exit_kthread) {
    620 		struct cryptocap *cap = NULL;
    621 		bool is_busy = false;
    622 
    623 		/* if we have any in-progress requests, don't unload */
    624 		percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
    625 				   &is_busy);
    626 		if (is_busy)
    627 			return EBUSY;
    628 		/* FIXME:
    629 		 * prohibit enqueue to crp_q and crp_kq after here.
    630 		 */
    631 
    632 		mutex_enter(&crypto_drv_mtx);
    633 		for (i = 0; i < crypto_drivers_num; i++) {
    634 			cap = crypto_checkdriver(i);
    635 			if (cap == NULL)
    636 				continue;
    637 			if (cap->cc_sessions != 0) {
    638 				mutex_exit(&crypto_drv_mtx);
    639 				return EBUSY;
    640 			}
    641 		}
    642 		mutex_exit(&crypto_drv_mtx);
    643 		/* FIXME:
    644 		 * prohibit touch crypto_drivers[] and each element after here.
    645 		 */
    646 
    647 		/* Ensure cryptoret_softint() is never scheduled again.  */
    648 		for (i = 0; i < ncpu; i++) {
    649 			struct crypto_crp_ret_qs *qs;
    650 			struct cpu_info *ci = cpu_lookup(i);
    651 
    652 			qs = crypto_get_crp_ret_qs(ci);
    653 			qs->crp_ret_q_exit_flag = true;
    654 			crypto_put_crp_ret_qs(ci);
    655 		}
    656 	}
    657 
    658 	if (sysctl_opencrypto_clog != NULL)
    659 		sysctl_teardown(&sysctl_opencrypto_clog);
    660 
    661 	if (crypto_ret_si != NULL)
    662 		softint_disestablish(crypto_ret_si);
    663 
    664 	if (crypto_q_si != NULL)
    665 		softint_disestablish(crypto_q_si);
    666 
    667 	mutex_enter(&crypto_drv_mtx);
    668 	if (crypto_drivers != NULL)
    669 		kmem_free(crypto_drivers,
    670 		    crypto_drivers_num * sizeof(struct cryptocap));
    671 	mutex_exit(&crypto_drv_mtx);
    672 
    673 	percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
    674 
    675 	pool_cache_destroy(cryptop_cache);
    676 	pool_cache_destroy(cryptodesc_cache);
    677 	pool_cache_destroy(cryptkop_cache);
    678 
    679 	mutex_destroy(&crypto_drv_mtx);
    680 
    681 	return 0;
    682 }
    683 
    684 static bool
    685 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
    686 {
    687 	struct cryptoini *cr;
    688 
    689 	for (cr = cri; cr; cr = cr->cri_next)
    690 		if (cap->cc_alg[cr->cri_alg] == 0) {
    691 			DPRINTF("alg %d not supported\n", cr->cri_alg);
    692 			return false;
    693 		}
    694 
    695 	return true;
    696 }
    697 
    698 #define CRYPTO_ACCEPT_HARDWARE 0x1
    699 #define CRYPTO_ACCEPT_SOFTWARE 0x2
    700 /*
    701  * The algorithm we use here is pretty stupid; just use the
    702  * first driver that supports all the algorithms we need.
    703  * If there are multiple drivers we choose the driver with
    704  * the fewest active sessions. We prefer hardware-backed
    705  * drivers to software ones.
    706  *
    707  * XXX We need more smarts here (in real life too, but that's
    708  * XXX another story altogether).
    709  */
    710 static struct cryptocap *
    711 crypto_select_driver_lock(struct cryptoini *cri, int hard)
    712 {
    713 	u_int32_t hid;
    714 	int accept;
    715 	struct cryptocap *cap, *best;
    716 	int error = 0;
    717 
    718 	best = NULL;
    719 	/*
    720 	 * hard == 0 can use both hardware and software drivers.
    721 	 * We use hardware drivers prior to software drivers, so search
    722 	 * hardware drivers at first time.
    723 	 */
    724 	if (hard >= 0)
    725 		accept = CRYPTO_ACCEPT_HARDWARE;
    726 	else
    727 		accept = CRYPTO_ACCEPT_SOFTWARE;
    728 again:
    729 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    730 		cap = crypto_checkdriver(hid);
    731 		if (cap == NULL)
    732 			continue;
    733 
    734 		crypto_driver_lock(cap);
    735 
    736 		/*
    737 		 * If it's not initialized or has remaining sessions
    738 		 * referencing it, skip.
    739 		 */
    740 		if (cap->cc_newsession == NULL ||
    741 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
    742 			crypto_driver_unlock(cap);
    743 			continue;
    744 		}
    745 
    746 		/* Hardware required -- ignore software drivers. */
    747 		if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
    748 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
    749 			crypto_driver_unlock(cap);
    750 			continue;
    751 		}
    752 		/* Software required -- ignore hardware drivers. */
    753 		if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
    754 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
    755 			crypto_driver_unlock(cap);
    756 			continue;
    757 		}
    758 
    759 		/* See if all the algorithms are supported. */
    760 		if (crypto_driver_suitable(cap, cri)) {
    761 			if (best == NULL) {
    762 				/* keep holding crypto_driver_lock(cap) */
    763 				best = cap;
    764 				continue;
    765 			} else if (cap->cc_sessions < best->cc_sessions) {
    766 				crypto_driver_unlock(best);
    767 				/* keep holding crypto_driver_lock(cap) */
    768 				best = cap;
    769 				continue;
    770 			}
    771 		}
    772 
    773 		crypto_driver_unlock(cap);
    774 	}
    775 	if (best == NULL && hard == 0
    776 	    && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
    777 		accept = CRYPTO_ACCEPT_SOFTWARE;
    778 		goto again;
    779 	}
    780 
    781 	if (best == NULL && hard == 0 && error == 0) {
    782 		mutex_exit(&crypto_drv_mtx);
    783 		error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
    784 		mutex_enter(&crypto_drv_mtx);
    785 		if (error == 0) {
    786 			error = EINVAL;
    787 			goto again;
    788 		}
    789 	}
    790 
    791 	return best;
    792 }
    793 
    794 /*
    795  * Create a new session.
    796  */
    797 int
    798 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    799 {
    800 	struct cryptocap *cap;
    801 	int err = EINVAL;
    802 
    803 	/*
    804 	 * On failure, leave *sid initialized to a sentinel value that
    805 	 * crypto_freesession will ignore.  This is the same as what
    806 	 * you get from zero-initialized memory -- some callers (I'm
    807 	 * looking at you, netipsec!) have paths that lead from
    808 	 * zero-initialized memory into crypto_freesession without any
    809 	 * crypto_newsession.
    810 	 */
    811 	*sid = 0;
    812 
    813 	mutex_enter(&crypto_drv_mtx);
    814 
    815 	cap = crypto_select_driver_lock(cri, hard);
    816 	if (cap != NULL) {
    817 		u_int32_t hid, lid;
    818 
    819 		hid = cap - crypto_drivers;
    820 		KASSERT(hid < 0xffffff);
    821 		/*
    822 		 * Can't do everything in one session.
    823 		 *
    824 		 * XXX Fix this. We need to inject a "virtual" session layer right
    825 		 * XXX about here.
    826 		 */
    827 
    828 		/* Call the driver initialization routine. */
    829 		lid = hid;		/* Pass the driver ID. */
    830 		crypto_driver_unlock(cap);
    831 		err = cap->cc_newsession(cap->cc_arg, &lid, cri);
    832 		crypto_driver_lock(cap);
    833 		if (err == 0) {
    834 			(*sid) = hid + 1;
    835 			(*sid) <<= 32;
    836 			(*sid) |= (lid & 0xffffffff);
    837 			KASSERT(*sid != 0);
    838 			cap->cc_sessions++;
    839 		} else {
    840 			DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
    841 			    hid, err);
    842 		}
    843 		crypto_driver_unlock(cap);
    844 	}
    845 
    846 	mutex_exit(&crypto_drv_mtx);
    847 
    848 	return err;
    849 }
    850 
    851 /*
    852  * Delete an existing session (or a reserved session on an unregistered
    853  * driver).
    854  */
    855 void
    856 crypto_freesession(u_int64_t sid)
    857 {
    858 	struct cryptocap *cap;
    859 
    860 	/*
    861 	 * crypto_newsession never returns 0 as a sid (by virtue of
    862 	 * never returning 0 as a hid, which is part of the sid).
    863 	 * However, some callers assume that freeing zero is safe.
    864 	 * Previously this relied on all drivers to agree that freeing
    865 	 * invalid sids is a no-op, but that's a terrible API contract
    866 	 * that we're getting rid of.
    867 	 */
    868 	if (sid == 0)
    869 		return;
    870 
    871 	/* Determine two IDs. */
    872 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
    873 	if (cap == NULL)	/* XXX should assert; need to audit callers */
    874 		return;
    875 
    876 	if (cap->cc_sessions)
    877 		(cap->cc_sessions)--;
    878 
    879 	/* Call the driver cleanup routine, if available. */
    880 	if (cap->cc_freesession)
    881 		cap->cc_freesession(cap->cc_arg, sid);
    882 
    883 	/*
    884 	 * If this was the last session of a driver marked as invalid,
    885 	 * make the entry available for reuse.
    886 	 */
    887 	if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
    888 		crypto_driver_clear(cap);
    889 
    890 	crypto_driver_unlock(cap);
    891 }
    892 
    893 static bool
    894 crypto_checkdriver_initialized(const struct cryptocap *cap)
    895 {
    896 
    897 	return cap->cc_process != NULL ||
    898 	    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
    899 	    cap->cc_sessions != 0;
    900 }
    901 
    902 /*
    903  * Return an unused driver id.  Used by drivers prior to registering
    904  * support for the algorithms they handle.
    905  */
    906 int32_t
    907 crypto_get_driverid(u_int32_t flags)
    908 {
    909 	struct cryptocap *newdrv;
    910 	struct cryptocap *cap = NULL;
    911 	int i;
    912 
    913 	(void)crypto_init();		/* XXX oh, this is foul! */
    914 
    915 	mutex_enter(&crypto_drv_mtx);
    916 	for (i = 0; i < crypto_drivers_num; i++) {
    917 		cap = crypto_checkdriver_uninit(i);
    918 		if (cap == NULL || crypto_checkdriver_initialized(cap))
    919 			continue;
    920 		break;
    921 	}
    922 
    923 	/* Out of entries, allocate some more. */
    924 	if (cap == NULL) {
    925 		/* Be careful about wrap-around. */
    926 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    927 			mutex_exit(&crypto_drv_mtx);
    928 			printf("crypto: driver count wraparound!\n");
    929 			return -1;
    930 		}
    931 
    932 		newdrv = kmem_zalloc(2 * crypto_drivers_num *
    933 		    sizeof(struct cryptocap), KM_SLEEP);
    934 		memcpy(newdrv, crypto_drivers,
    935 		    crypto_drivers_num * sizeof(struct cryptocap));
    936 		kmem_free(crypto_drivers,
    937 		    crypto_drivers_num * sizeof(struct cryptocap));
    938 
    939 		crypto_drivers_num *= 2;
    940 		crypto_drivers = newdrv;
    941 
    942 		cap = crypto_checkdriver_uninit(i);
    943 		KASSERT(cap != NULL);
    944 	}
    945 
    946 	/* NB: state is zero'd on free */
    947 	cap->cc_sessions = 1;	/* Mark */
    948 	cap->cc_flags = flags;
    949 	mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
    950 
    951 	if (bootverbose)
    952 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    953 
    954 	mutex_exit(&crypto_drv_mtx);
    955 
    956 	return i;
    957 }
    958 
    959 static struct cryptocap *
    960 crypto_checkdriver_lock(u_int32_t hid)
    961 {
    962 	struct cryptocap *cap;
    963 
    964 	KASSERT(crypto_drivers != NULL);
    965 
    966 	if (hid >= crypto_drivers_num)
    967 		return NULL;
    968 
    969 	cap = &crypto_drivers[hid];
    970 	mutex_enter(&cap->cc_lock);
    971 	return cap;
    972 }
    973 
    974 /*
    975  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    976  * situations
    977  *     - crypto_drivers[] may not be allocated
    978  *     - crypto_drivers[hid] may not be initialized
    979  */
    980 static struct cryptocap *
    981 crypto_checkdriver_uninit(u_int32_t hid)
    982 {
    983 
    984 	KASSERT(mutex_owned(&crypto_drv_mtx));
    985 
    986 	if (crypto_drivers == NULL)
    987 		return NULL;
    988 
    989 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    990 }
    991 
    992 /*
    993  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    994  * situations
    995  *     - crypto_drivers[] may not be allocated
    996  *     - crypto_drivers[hid] may not be initialized
    997  */
    998 static struct cryptocap *
    999 crypto_checkdriver(u_int32_t hid)
   1000 {
   1001 
   1002 	KASSERT(mutex_owned(&crypto_drv_mtx));
   1003 
   1004 	if (crypto_drivers == NULL || hid >= crypto_drivers_num)
   1005 		return NULL;
   1006 
   1007 	struct cryptocap *cap = &crypto_drivers[hid];
   1008 	return crypto_checkdriver_initialized(cap) ? cap : NULL;
   1009 }
   1010 
   1011 static inline void
   1012 crypto_driver_lock(struct cryptocap *cap)
   1013 {
   1014 
   1015 	KASSERT(cap != NULL);
   1016 
   1017 	mutex_enter(&cap->cc_lock);
   1018 }
   1019 
   1020 static inline void
   1021 crypto_driver_unlock(struct cryptocap *cap)
   1022 {
   1023 
   1024 	KASSERT(cap != NULL);
   1025 
   1026 	mutex_exit(&cap->cc_lock);
   1027 }
   1028 
   1029 static void
   1030 crypto_driver_clear(struct cryptocap *cap)
   1031 {
   1032 
   1033 	if (cap == NULL)
   1034 		return;
   1035 
   1036 	KASSERT(mutex_owned(&cap->cc_lock));
   1037 
   1038 	cap->cc_sessions = 0;
   1039 	memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
   1040 	memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
   1041 	memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
   1042 	cap->cc_flags = 0;
   1043 	cap->cc_qblocked = 0;
   1044 	cap->cc_kqblocked = 0;
   1045 
   1046 	cap->cc_arg = NULL;
   1047 	cap->cc_newsession = NULL;
   1048 	cap->cc_process = NULL;
   1049 	cap->cc_freesession = NULL;
   1050 	cap->cc_kprocess = NULL;
   1051 }
   1052 
   1053 /*
   1054  * Register support for a key-related algorithm.  This routine
   1055  * is called once for each algorithm supported a driver.
   1056  */
   1057 int
   1058 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
   1059     int (*kprocess)(void *, struct cryptkop *, int),
   1060     void *karg)
   1061 {
   1062 	struct cryptocap *cap;
   1063 	int err;
   1064 
   1065 	mutex_enter(&crypto_drv_mtx);
   1066 
   1067 	cap = crypto_checkdriver_lock(driverid);
   1068 	if (cap != NULL &&
   1069 	    (CRK_ALGORITHM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
   1070 		/*
   1071 		 * XXX Do some performance testing to determine placing.
   1072 		 * XXX We probably need an auxiliary data structure that
   1073 		 * XXX describes relative performances.
   1074 		 */
   1075 
   1076 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
   1077 		if (bootverbose) {
   1078 			printf("crypto: driver %u registers key alg %u "
   1079 			       " flags %u\n",
   1080 				driverid,
   1081 				kalg,
   1082 				flags
   1083 			);
   1084 		}
   1085 
   1086 		if (cap->cc_kprocess == NULL) {
   1087 			cap->cc_karg = karg;
   1088 			cap->cc_kprocess = kprocess;
   1089 		}
   1090 		err = 0;
   1091 	} else
   1092 		err = EINVAL;
   1093 
   1094 	mutex_exit(&crypto_drv_mtx);
   1095 	return err;
   1096 }
   1097 
   1098 /*
   1099  * Register support for a non-key-related algorithm.  This routine
   1100  * is called once for each such algorithm supported by a driver.
   1101  */
   1102 int
   1103 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
   1104     u_int32_t flags,
   1105     int (*newses)(void *, u_int32_t*, struct cryptoini*),
   1106     void (*freeses)(void *, u_int64_t),
   1107     int (*process)(void *, struct cryptop *, int),
   1108     void *arg)
   1109 {
   1110 	struct cryptocap *cap;
   1111 	int err;
   1112 
   1113 	cap = crypto_checkdriver_lock(driverid);
   1114 	if (cap == NULL)
   1115 		return EINVAL;
   1116 
   1117 	/* NB: algorithms are in the range [1..max] */
   1118 	if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
   1119 		/*
   1120 		 * XXX Do some performance testing to determine placing.
   1121 		 * XXX We probably need an auxiliary data structure that
   1122 		 * XXX describes relative performances.
   1123 		 */
   1124 
   1125 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
   1126 		cap->cc_max_op_len[alg] = maxoplen;
   1127 		if (bootverbose) {
   1128 			printf("crypto: driver %u registers alg %u "
   1129 				"flags %u maxoplen %u\n",
   1130 				driverid,
   1131 				alg,
   1132 				flags,
   1133 				maxoplen
   1134 			);
   1135 		}
   1136 
   1137 		if (cap->cc_process == NULL) {
   1138 			cap->cc_arg = arg;
   1139 			cap->cc_newsession = newses;
   1140 			cap->cc_process = process;
   1141 			cap->cc_freesession = freeses;
   1142 			cap->cc_sessions = 0;		/* Unmark */
   1143 		}
   1144 		err = 0;
   1145 	} else
   1146 		err = EINVAL;
   1147 
   1148 	crypto_driver_unlock(cap);
   1149 
   1150 	return err;
   1151 }
   1152 
   1153 static int
   1154 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
   1155 {
   1156 	int i;
   1157 	u_int32_t ses;
   1158 	bool lastalg = true;
   1159 
   1160 	KASSERT(cap != NULL);
   1161 	KASSERT(mutex_owned(&cap->cc_lock));
   1162 
   1163 	if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
   1164 		return EINVAL;
   1165 
   1166 	if (!all && cap->cc_alg[alg] == 0)
   1167 		return EINVAL;
   1168 
   1169 	cap->cc_alg[alg] = 0;
   1170 	cap->cc_max_op_len[alg] = 0;
   1171 
   1172 	if (all) {
   1173 		if (alg != CRYPTO_ALGORITHM_MAX)
   1174 			lastalg = false;
   1175 	} else {
   1176 		/* Was this the last algorithm ? */
   1177 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
   1178 			if (cap->cc_alg[i] != 0) {
   1179 				lastalg = false;
   1180 				break;
   1181 			}
   1182 	}
   1183 	if (lastalg) {
   1184 		ses = cap->cc_sessions;
   1185 		crypto_driver_clear(cap);
   1186 		if (ses != 0) {
   1187 			/*
   1188 			 * If there are pending sessions, just mark as invalid.
   1189 			 */
   1190 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
   1191 			cap->cc_sessions = ses;
   1192 		}
   1193 	}
   1194 
   1195 	return 0;
   1196 }
   1197 
   1198 /*
   1199  * Unregister a crypto driver. If there are pending sessions using it,
   1200  * leave enough information around so that subsequent calls using those
   1201  * sessions will correctly detect the driver has been unregistered and
   1202  * reroute requests.
   1203  */
   1204 int
   1205 crypto_unregister(u_int32_t driverid, int alg)
   1206 {
   1207 	int err;
   1208 	struct cryptocap *cap;
   1209 
   1210 	cap = crypto_checkdriver_lock(driverid);
   1211 	err = crypto_unregister_locked(cap, alg, false);
   1212 	crypto_driver_unlock(cap);
   1213 
   1214 	return err;
   1215 }
   1216 
   1217 /*
   1218  * Unregister all algorithms associated with a crypto driver.
   1219  * If there are pending sessions using it, leave enough information
   1220  * around so that subsequent calls using those sessions will
   1221  * correctly detect the driver has been unregistered and reroute
   1222  * requests.
   1223  */
   1224 int
   1225 crypto_unregister_all(u_int32_t driverid)
   1226 {
   1227 	int err, i;
   1228 	struct cryptocap *cap;
   1229 
   1230 	cap = crypto_checkdriver_lock(driverid);
   1231 	for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
   1232 		err = crypto_unregister_locked(cap, i, true);
   1233 		if (err)
   1234 			break;
   1235 	}
   1236 	crypto_driver_unlock(cap);
   1237 
   1238 	return err;
   1239 }
   1240 
   1241 /*
   1242  * Clear blockage on a driver.  The what parameter indicates whether
   1243  * the driver is now ready for cryptop's and/or cryptokop's.
   1244  */
   1245 int
   1246 crypto_unblock(u_int32_t driverid, int what)
   1247 {
   1248 	struct cryptocap *cap;
   1249 	int needwakeup = 0;
   1250 
   1251 	cap = crypto_checkdriver_lock(driverid);
   1252 	if (cap == NULL)
   1253 		return EINVAL;
   1254 
   1255 	if (what & CRYPTO_SYMQ) {
   1256 		needwakeup |= cap->cc_qblocked;
   1257 		cap->cc_qblocked = 0;
   1258 	}
   1259 	if (what & CRYPTO_ASYMQ) {
   1260 		needwakeup |= cap->cc_kqblocked;
   1261 		cap->cc_kqblocked = 0;
   1262 	}
   1263 	crypto_driver_unlock(cap);
   1264 	if (needwakeup) {
   1265 		kpreempt_disable();
   1266 		softint_schedule(crypto_q_si);
   1267 		kpreempt_enable();
   1268 	}
   1269 
   1270 	return 0;
   1271 }
   1272 
   1273 /*
   1274  * Dispatch a crypto request to a driver or queue
   1275  * it, to be processed by the kernel thread.
   1276  */
   1277 int
   1278 crypto_dispatch(struct cryptop *crp)
   1279 {
   1280 	int result, s;
   1281 	struct cryptocap *cap;
   1282 	struct crypto_crp_qs *crp_qs;
   1283 	struct crypto_crp_q *crp_q;
   1284 
   1285 	KASSERT(crp != NULL);
   1286 	KASSERT(crp->crp_callback != NULL);
   1287 	KASSERT(crp->crp_desc != NULL);
   1288 	KASSERT(crp->crp_buf != NULL);
   1289 	KASSERT(!cpu_intr_p());
   1290 
   1291 	DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
   1292 
   1293 	cryptostats.cs_ops++;
   1294 
   1295 #ifdef CRYPTO_TIMING
   1296 	if (crypto_timing)
   1297 		nanouptime(&crp->crp_tstamp);
   1298 #endif
   1299 
   1300 	if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1301 		int wasempty;
   1302 		/*
   1303 		 * Caller marked the request as ``ok to delay'';
   1304 		 * queue it for the swi thread.  This is desirable
   1305 		 * when the operation is low priority and/or suitable
   1306 		 * for batching.
   1307 		 *
   1308 		 * don't care list order in batch job.
   1309 		 */
   1310 		crp_qs = crypto_get_crp_qs(&s);
   1311 		crp_q = crp_qs->crp_q;
   1312 		wasempty  = TAILQ_EMPTY(crp_q);
   1313 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
   1314 		crypto_put_crp_qs(&s);
   1315 		crp_q = NULL;
   1316 		if (wasempty) {
   1317 			kpreempt_disable();
   1318 			softint_schedule(crypto_q_si);
   1319 			kpreempt_enable();
   1320 		}
   1321 
   1322 		return 0;
   1323 	}
   1324 
   1325 	crp_qs = crypto_get_crp_qs(&s);
   1326 	crp_q = crp_qs->crp_q;
   1327 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1328 	/*
   1329 	 * TODO:
   1330 	 * If we can ensure the driver has been valid until the driver is
   1331 	 * done crypto_unregister(), this migrate operation is not required.
   1332 	 */
   1333 	if (cap == NULL) {
   1334 		/*
   1335 		 * The driver must be detached, so this request will migrate
   1336 		 * to other drivers in cryptointr() later.
   1337 		 */
   1338 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
   1339 		result = 0;
   1340 		goto out;
   1341 	}
   1342 
   1343 	if (cap->cc_qblocked != 0) {
   1344 		crypto_driver_unlock(cap);
   1345 		/*
   1346 		 * The driver is blocked, just queue the op until
   1347 		 * it unblocks and the swi thread gets kicked.
   1348 		 */
   1349 		TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
   1350 		result = 0;
   1351 		goto out;
   1352 	}
   1353 
   1354 	/*
   1355 	 * Caller marked the request to be processed
   1356 	 * immediately; dispatch it directly to the
   1357 	 * driver unless the driver is currently blocked.
   1358 	 */
   1359 	crypto_driver_unlock(cap);
   1360 	result = crypto_invoke(crp, 0);
   1361 	if (result == ERESTART) {
   1362 		/*
   1363 		 * The driver ran out of resources, mark the
   1364 		 * driver ``blocked'' for cryptop's and put
   1365 		 * the op on the queue.
   1366 		 */
   1367 		crypto_driver_lock(cap);
   1368 		cap->cc_qblocked = 1;
   1369 		crypto_driver_unlock(cap);
   1370 		TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
   1371 		cryptostats.cs_blocks++;
   1372 
   1373 		/*
   1374 		 * The crp is enqueued to crp_q, that is,
   1375 		 * no error occurs. So, this function should
   1376 		 * not return error.
   1377 		 */
   1378 		result = 0;
   1379 	}
   1380 
   1381 out:
   1382 	crypto_put_crp_qs(&s);
   1383 	return result;
   1384 }
   1385 
   1386 /*
   1387  * Add an asymmetric crypto request to a queue,
   1388  * to be processed by the kernel thread.
   1389  */
   1390 int
   1391 crypto_kdispatch(struct cryptkop *krp)
   1392 {
   1393 	int result, s;
   1394 	struct cryptocap *cap;
   1395 	struct crypto_crp_qs *crp_qs;
   1396 	struct crypto_crp_kq *crp_kq;
   1397 
   1398 	KASSERT(krp != NULL);
   1399 	KASSERT(krp->krp_callback != NULL);
   1400 	KASSERT(!cpu_intr_p());
   1401 
   1402 	cryptostats.cs_kops++;
   1403 
   1404 	crp_qs = crypto_get_crp_qs(&s);
   1405 	crp_kq = crp_qs->crp_kq;
   1406 	cap = crypto_checkdriver_lock(krp->krp_hid);
   1407 	/*
   1408 	 * TODO:
   1409 	 * If we can ensure the driver has been valid until the driver is
   1410 	 * done crypto_unregister(), this migrate operation is not required.
   1411 	 */
   1412 	if (cap == NULL) {
   1413 		TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
   1414 		result = 0;
   1415 		goto out;
   1416 	}
   1417 
   1418 	if (cap->cc_kqblocked != 0) {
   1419 		crypto_driver_unlock(cap);
   1420 		/*
   1421 		 * The driver is blocked, just queue the op until
   1422 		 * it unblocks and the swi thread gets kicked.
   1423 		 */
   1424 		TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
   1425 		result = 0;
   1426 		goto out;
   1427 	}
   1428 
   1429 	crypto_driver_unlock(cap);
   1430 	result = crypto_kinvoke(krp, 0);
   1431 	if (result == ERESTART) {
   1432 		/*
   1433 		 * The driver ran out of resources, mark the
   1434 		 * driver ``blocked'' for cryptop's and put
   1435 		 * the op on the queue.
   1436 		 */
   1437 		crypto_driver_lock(cap);
   1438 		cap->cc_kqblocked = 1;
   1439 		crypto_driver_unlock(cap);
   1440 		TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
   1441 		cryptostats.cs_kblocks++;
   1442 
   1443 		/*
   1444 		 * The krp is enqueued to crp_kq, that is,
   1445 		 * no error occurs. So, this function should
   1446 		 * not return error.
   1447 		 */
   1448 		result = 0;
   1449 	}
   1450 
   1451 out:
   1452 	crypto_put_crp_qs(&s);
   1453 	return result;
   1454 }
   1455 
   1456 /*
   1457  * Dispatch an asymmetric crypto request to the appropriate crypto devices.
   1458  */
   1459 static int
   1460 crypto_kinvoke(struct cryptkop *krp, int hint)
   1461 {
   1462 	struct cryptocap *cap = NULL;
   1463 	u_int32_t hid;
   1464 	int error;
   1465 
   1466 	KASSERT(krp != NULL);
   1467 	KASSERT(krp->krp_callback != NULL);
   1468 	KASSERT(!cpu_intr_p());
   1469 
   1470 	mutex_enter(&crypto_drv_mtx);
   1471 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1472 		cap = crypto_checkdriver(hid);
   1473 		if (cap == NULL)
   1474 			continue;
   1475 		crypto_driver_lock(cap);
   1476 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1477 		    crypto_devallowsoft == 0) {
   1478 			crypto_driver_unlock(cap);
   1479 			continue;
   1480 		}
   1481 		if (cap->cc_kprocess == NULL) {
   1482 			crypto_driver_unlock(cap);
   1483 			continue;
   1484 		}
   1485 		if ((cap->cc_kalg[krp->krp_op] &
   1486 			CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
   1487 			crypto_driver_unlock(cap);
   1488 			continue;
   1489 		}
   1490 		break;
   1491 	}
   1492 	mutex_exit(&crypto_drv_mtx);
   1493 	if (cap != NULL) {
   1494 		int (*process)(void *, struct cryptkop *, int);
   1495 		void *arg;
   1496 
   1497 		process = cap->cc_kprocess;
   1498 		arg = cap->cc_karg;
   1499 		krp->krp_hid = hid;
   1500 		krp->reqcpu = curcpu();
   1501 		crypto_driver_unlock(cap);
   1502 		error = (*process)(arg, krp, hint);
   1503 	} else {
   1504 		error = ENODEV;
   1505 	}
   1506 
   1507 	if (error) {
   1508 		krp->krp_status = error;
   1509 		crypto_kdone(krp);
   1510 	}
   1511 	return 0;
   1512 }
   1513 
   1514 #ifdef CRYPTO_TIMING
   1515 static void
   1516 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
   1517 {
   1518 	struct timespec now, t;
   1519 
   1520 	nanouptime(&now);
   1521 	t.tv_sec = now.tv_sec - tv->tv_sec;
   1522 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
   1523 	if (t.tv_nsec < 0) {
   1524 		t.tv_sec--;
   1525 		t.tv_nsec += 1000000000;
   1526 	}
   1527 	timespecadd(&ts->acc, &t, &t);
   1528 	if (timespeccmp(&t, &ts->min, <))
   1529 		ts->min = t;
   1530 	if (timespeccmp(&t, &ts->max, >))
   1531 		ts->max = t;
   1532 	ts->count++;
   1533 
   1534 	*tv = now;
   1535 }
   1536 #endif
   1537 
   1538 /*
   1539  * Dispatch a crypto request to the appropriate crypto devices.
   1540  */
   1541 static int
   1542 crypto_invoke(struct cryptop *crp, int hint)
   1543 {
   1544 	struct cryptocap *cap;
   1545 
   1546 	KASSERT(crp != NULL);
   1547 	KASSERT(crp->crp_callback != NULL);
   1548 	KASSERT(crp->crp_desc != NULL);
   1549 	KASSERT(!cpu_intr_p());
   1550 
   1551 #ifdef CRYPTO_TIMING
   1552 	if (crypto_timing)
   1553 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
   1554 #endif
   1555 
   1556 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1557 	if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
   1558 		int (*process)(void *, struct cryptop *, int);
   1559 		void *arg;
   1560 
   1561 		process = cap->cc_process;
   1562 		arg = cap->cc_arg;
   1563 		crp->reqcpu = curcpu();
   1564 
   1565 		/*
   1566 		 * Invoke the driver to process the request.
   1567 		 */
   1568 		DPRINTF("calling process for %p\n", crp);
   1569 		crypto_driver_unlock(cap);
   1570 		return (*process)(arg, crp, hint);
   1571 	} else {
   1572 		struct cryptodesc *crd;
   1573 		u_int64_t nid = 0;
   1574 
   1575 		if (cap != NULL)
   1576 			crypto_driver_unlock(cap);
   1577 
   1578 		/*
   1579 		 * Driver has unregistered; migrate the session and return
   1580 		 * an error to the caller so they'll resubmit the op.
   1581 		 */
   1582 		crypto_freesession(crp->crp_sid);
   1583 
   1584 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1585 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1586 
   1587 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1588 			crp->crp_sid = nid;
   1589 
   1590 		crp->crp_etype = EAGAIN;
   1591 
   1592 		crypto_done(crp);
   1593 		return 0;
   1594 	}
   1595 }
   1596 
   1597 /*
   1598  * Release a set of crypto descriptors.
   1599  */
   1600 void
   1601 crypto_freereq(struct cryptop *crp)
   1602 {
   1603 	struct cryptodesc *crd;
   1604 
   1605 	if (crp == NULL)
   1606 		return;
   1607 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1608 
   1609 	/* sanity check */
   1610 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1611 		panic("crypto_freereq() freeing crp on RETQ\n");
   1612 	}
   1613 
   1614 	while ((crd = crp->crp_desc) != NULL) {
   1615 		crp->crp_desc = crd->crd_next;
   1616 		pool_cache_put(cryptodesc_cache, crd);
   1617 	}
   1618 	pool_cache_put(cryptop_cache, crp);
   1619 }
   1620 
   1621 /*
   1622  * Acquire a set of crypto descriptors.
   1623  */
   1624 struct cryptop *
   1625 crypto_getreq(int num)
   1626 {
   1627 	struct cryptodesc *crd;
   1628 	struct cryptop *crp;
   1629 	struct crypto_crp_ret_qs *qs;
   1630 
   1631 	KASSERT(num > 0);
   1632 
   1633 	/*
   1634 	 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
   1635 	 * by error callback.
   1636 	 */
   1637 	qs = crypto_get_crp_ret_qs(curcpu());
   1638 	if (qs->crp_ret_q_maxlen > 0
   1639 	    && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
   1640 		qs->crp_ret_q_drops++;
   1641 		crypto_put_crp_ret_qs(curcpu());
   1642 		return NULL;
   1643 	}
   1644 	crypto_put_crp_ret_qs(curcpu());
   1645 
   1646 	crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
   1647 	if (crp == NULL) {
   1648 		return NULL;
   1649 	}
   1650 	memset(crp, 0, sizeof(struct cryptop));
   1651 
   1652 	while (num--) {
   1653 		crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
   1654 		if (crd == NULL) {
   1655 			crypto_freereq(crp);
   1656 			return NULL;
   1657 		}
   1658 
   1659 		memset(crd, 0, sizeof(struct cryptodesc));
   1660 		crd->crd_next = crp->crp_desc;
   1661 		crp->crp_desc = crd;
   1662 	}
   1663 
   1664 	return crp;
   1665 }
   1666 
   1667 /*
   1668  * Release a set of asymmetric crypto descriptors.
   1669  * Currently, support one descriptor only.
   1670  */
   1671 void
   1672 crypto_kfreereq(struct cryptkop *krp)
   1673 {
   1674 
   1675 	if (krp == NULL)
   1676 		return;
   1677 
   1678 	DPRINTF("krp %p\n", krp);
   1679 
   1680 	/* sanity check */
   1681 	if (krp->krp_flags & CRYPTO_F_ONRETQ) {
   1682 		panic("crypto_kfreereq() freeing krp on RETQ\n");
   1683 	}
   1684 
   1685 	pool_cache_put(cryptkop_cache, krp);
   1686 }
   1687 
   1688 /*
   1689  * Acquire a set of asymmetric crypto descriptors.
   1690  * Currently, support one descriptor only.
   1691  */
   1692 struct cryptkop *
   1693 crypto_kgetreq(int num __diagused, int prflags)
   1694 {
   1695 	struct cryptkop *krp;
   1696 	struct crypto_crp_ret_qs *qs;
   1697 
   1698 	KASSERTMSG(num == 1, "num=%d not supported", num);
   1699 
   1700 	/*
   1701 	 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
   1702 	 * overflow by error callback.
   1703 	 */
   1704 	qs = crypto_get_crp_ret_qs(curcpu());
   1705 	if (qs->crp_ret_kq_maxlen > 0
   1706 	    && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
   1707 		qs->crp_ret_kq_drops++;
   1708 		crypto_put_crp_ret_qs(curcpu());
   1709 		return NULL;
   1710 	}
   1711 	crypto_put_crp_ret_qs(curcpu());
   1712 
   1713 	krp = pool_cache_get(cryptkop_cache, prflags);
   1714 	if (krp == NULL) {
   1715 		return NULL;
   1716 	}
   1717 	memset(krp, 0, sizeof(struct cryptkop));
   1718 
   1719 	return krp;
   1720 }
   1721 
   1722 /*
   1723  * Invoke the callback on behalf of the driver.
   1724  */
   1725 void
   1726 crypto_done(struct cryptop *crp)
   1727 {
   1728 	int wasempty;
   1729 	struct crypto_crp_ret_qs *qs;
   1730 	struct crypto_crp_ret_q *crp_ret_q;
   1731 
   1732 	KASSERT(crp != NULL);
   1733 
   1734 	if (crp->crp_etype != 0)
   1735 		cryptostats.cs_errs++;
   1736 #ifdef CRYPTO_TIMING
   1737 	if (crypto_timing)
   1738 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1739 #endif
   1740 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1741 
   1742 	qs = crypto_get_crp_ret_qs(crp->reqcpu);
   1743 	crp_ret_q = &qs->crp_ret_q;
   1744 	wasempty = TAILQ_EMPTY(crp_ret_q);
   1745 	DPRINTF("lid[%u]: queueing %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1746 	crp->crp_flags |= CRYPTO_F_ONRETQ;
   1747 	TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
   1748 	qs->crp_ret_q_len++;
   1749 	if (wasempty && !qs->crp_ret_q_exit_flag) {
   1750 		DPRINTF("lid[%u]: waking cryptoret, crp %p hit empty queue\n.",
   1751 		    CRYPTO_SESID2LID(crp->crp_sid), crp);
   1752 		softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
   1753 	}
   1754 	crypto_put_crp_ret_qs(crp->reqcpu);
   1755 }
   1756 
   1757 /*
   1758  * Invoke the callback on behalf of the driver.
   1759  */
   1760 void
   1761 crypto_kdone(struct cryptkop *krp)
   1762 {
   1763 	int wasempty;
   1764 	struct crypto_crp_ret_qs *qs;
   1765 	struct crypto_crp_ret_kq *crp_ret_kq;
   1766 
   1767 	KASSERT(krp != NULL);
   1768 
   1769 	if (krp->krp_status != 0)
   1770 		cryptostats.cs_kerrs++;
   1771 
   1772 	qs = crypto_get_crp_ret_qs(krp->reqcpu);
   1773 	crp_ret_kq = &qs->crp_ret_kq;
   1774 
   1775 	wasempty = TAILQ_EMPTY(crp_ret_kq);
   1776 	krp->krp_flags |= CRYPTO_F_ONRETQ;
   1777 	TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
   1778 	qs->crp_ret_kq_len++;
   1779 	if (wasempty && !qs->crp_ret_q_exit_flag)
   1780 		softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
   1781 	crypto_put_crp_ret_qs(krp->reqcpu);
   1782 }
   1783 
   1784 int
   1785 crypto_getfeat(int *featp)
   1786 {
   1787 
   1788 	if (crypto_userasymcrypto == 0) {
   1789 		*featp = 0;
   1790 		return 0;
   1791 	}
   1792 
   1793 	mutex_enter(&crypto_drv_mtx);
   1794 
   1795 	int feat = 0;
   1796 	for (int hid = 0; hid < crypto_drivers_num; hid++) {
   1797 		struct cryptocap *cap;
   1798 		cap = crypto_checkdriver(hid);
   1799 		if (cap == NULL)
   1800 			continue;
   1801 
   1802 		crypto_driver_lock(cap);
   1803 
   1804 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1805 		    crypto_devallowsoft == 0)
   1806 			goto unlock;
   1807 
   1808 		if (cap->cc_kprocess == NULL)
   1809 			goto unlock;
   1810 
   1811 		for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1812 			if ((cap->cc_kalg[kalg] &
   1813 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1814 				feat |=  1 << kalg;
   1815 
   1816 unlock:		crypto_driver_unlock(cap);
   1817 	}
   1818 
   1819 	mutex_exit(&crypto_drv_mtx);
   1820 	*featp = feat;
   1821 	return (0);
   1822 }
   1823 
   1824 /*
   1825  * Software interrupt thread to dispatch crypto requests.
   1826  */
   1827 static void
   1828 cryptointr(void *arg __unused)
   1829 {
   1830 	struct cryptop *crp, *submit, *cnext;
   1831 	struct cryptkop *krp, *knext;
   1832 	struct cryptocap *cap;
   1833 	struct crypto_crp_qs *crp_qs;
   1834 	struct crypto_crp_q *crp_q;
   1835 	struct crypto_crp_kq *crp_kq;
   1836 	int result, hint, s;
   1837 
   1838 	cryptostats.cs_intrs++;
   1839 	crp_qs = crypto_get_crp_qs(&s);
   1840 	crp_q = crp_qs->crp_q;
   1841 	crp_kq = crp_qs->crp_kq;
   1842 	do {
   1843 		/*
   1844 		 * Find the first element in the queue that can be
   1845 		 * processed and look-ahead to see if multiple ops
   1846 		 * are ready for the same driver.
   1847 		 */
   1848 		submit = NULL;
   1849 		hint = 0;
   1850 		TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
   1851 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1852 			cap = crypto_checkdriver_lock(hid);
   1853 			if (cap == NULL || cap->cc_process == NULL) {
   1854 				if (cap != NULL)
   1855 					crypto_driver_unlock(cap);
   1856 				/* Op needs to be migrated, process it. */
   1857 				submit = crp;
   1858 				break;
   1859 			}
   1860 
   1861 			/*
   1862 			 * skip blocked crp regardless of CRYPTO_F_BATCH
   1863 			 */
   1864 			if (cap->cc_qblocked != 0) {
   1865 				crypto_driver_unlock(cap);
   1866 				continue;
   1867 			}
   1868 			crypto_driver_unlock(cap);
   1869 
   1870 			/*
   1871 			 * skip batch crp until the end of crp_q
   1872 			 */
   1873 			if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1874 				if (submit == NULL) {
   1875 					submit = crp;
   1876 				} else {
   1877 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1878 					    == hid)
   1879 						hint = CRYPTO_HINT_MORE;
   1880 				}
   1881 
   1882 				continue;
   1883 			}
   1884 
   1885 			/*
   1886 			 * found first crp which is neither blocked nor batch.
   1887 			 */
   1888 			submit = crp;
   1889 			/*
   1890 			 * batch crp can be processed much later, so clear hint.
   1891 			 */
   1892 			hint = 0;
   1893 			break;
   1894 		}
   1895 		if (submit != NULL) {
   1896 			TAILQ_REMOVE(crp_q, submit, crp_next);
   1897 			result = crypto_invoke(submit, hint);
   1898 			/* we must take here as the TAILQ op or kinvoke
   1899 			   may need this mutex below.  sigh. */
   1900 			if (result == ERESTART) {
   1901 				/*
   1902 				 * The driver ran out of resources, mark the
   1903 				 * driver ``blocked'' for cryptop's and put
   1904 				 * the request back in the queue.  It would
   1905 				 * best to put the request back where we got
   1906 				 * it but that's hard so for now we put it
   1907 				 * at the front.  This should be ok; putting
   1908 				 * it at the end does not work.
   1909 				 */
   1910 				/* validate sid again */
   1911 				cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
   1912 				if (cap == NULL) {
   1913 					/* migrate again, sigh... */
   1914 					TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
   1915 				} else {
   1916 					cap->cc_qblocked = 1;
   1917 					crypto_driver_unlock(cap);
   1918 					TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
   1919 					cryptostats.cs_blocks++;
   1920 				}
   1921 			}
   1922 		}
   1923 
   1924 		/* As above, but for key ops */
   1925 		TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
   1926 			cap = crypto_checkdriver_lock(krp->krp_hid);
   1927 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1928 				if (cap != NULL)
   1929 					crypto_driver_unlock(cap);
   1930 				/* Op needs to be migrated, process it. */
   1931 				break;
   1932 			}
   1933 			if (!cap->cc_kqblocked) {
   1934 				crypto_driver_unlock(cap);
   1935 				break;
   1936 			}
   1937 			crypto_driver_unlock(cap);
   1938 		}
   1939 		if (krp != NULL) {
   1940 			TAILQ_REMOVE(crp_kq, krp, krp_next);
   1941 			result = crypto_kinvoke(krp, 0);
   1942 			/* the next iteration will want the mutex. :-/ */
   1943 			if (result == ERESTART) {
   1944 				/*
   1945 				 * The driver ran out of resources, mark the
   1946 				 * driver ``blocked'' for cryptkop's and put
   1947 				 * the request back in the queue.  It would
   1948 				 * best to put the request back where we got
   1949 				 * it but that's hard so for now we put it
   1950 				 * at the front.  This should be ok; putting
   1951 				 * it at the end does not work.
   1952 				 */
   1953 				/* validate sid again */
   1954 				cap = crypto_checkdriver_lock(krp->krp_hid);
   1955 				if (cap == NULL) {
   1956 					/* migrate again, sigh... */
   1957 					TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
   1958 				} else {
   1959 					cap->cc_kqblocked = 1;
   1960 					crypto_driver_unlock(cap);
   1961 					TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
   1962 					cryptostats.cs_kblocks++;
   1963 				}
   1964 			}
   1965 		}
   1966 	} while (submit != NULL || krp != NULL);
   1967 	crypto_put_crp_qs(&s);
   1968 }
   1969 
   1970 /*
   1971  * softint handler to do callbacks.
   1972  */
   1973 static void
   1974 cryptoret_softint(void *arg __unused)
   1975 {
   1976 	struct crypto_crp_ret_qs *qs;
   1977 	struct crypto_crp_ret_q *crp_ret_q;
   1978 	struct crypto_crp_ret_kq *crp_ret_kq;
   1979 
   1980 	qs = crypto_get_crp_ret_qs(curcpu());
   1981 	crp_ret_q = &qs->crp_ret_q;
   1982 	crp_ret_kq = &qs->crp_ret_kq;
   1983 	for (;;) {
   1984 		struct cryptop *crp;
   1985 		struct cryptkop *krp;
   1986 
   1987 		crp = TAILQ_FIRST(crp_ret_q);
   1988 		if (crp != NULL) {
   1989 			TAILQ_REMOVE(crp_ret_q, crp, crp_next);
   1990 			qs->crp_ret_q_len--;
   1991 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1992 		}
   1993 		krp = TAILQ_FIRST(crp_ret_kq);
   1994 		if (krp != NULL) {
   1995 			TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
   1996 			qs->crp_ret_q_len--;
   1997 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1998 		}
   1999 
   2000 		/* drop before calling any callbacks. */
   2001 		if (crp == NULL && krp == NULL)
   2002 			break;
   2003 
   2004 		mutex_spin_exit(&qs->crp_ret_q_mtx);
   2005 		if (crp != NULL) {
   2006 #ifdef CRYPTO_TIMING
   2007 			if (crypto_timing) {
   2008 				/*
   2009 				 * NB: We must copy the timestamp before
   2010 				 * doing the callback as the cryptop is
   2011 				 * likely to be reclaimed.
   2012 				 */
   2013 				struct timespec t = crp->crp_tstamp;
   2014 				crypto_tstat(&cryptostats.cs_cb, &t);
   2015 				crp->crp_callback(crp);
   2016 				crypto_tstat(&cryptostats.cs_finis, &t);
   2017 			} else
   2018 #endif
   2019 			{
   2020 				crp->crp_callback(crp);
   2021 			}
   2022 		}
   2023 		if (krp != NULL)
   2024 			krp->krp_callback(krp);
   2025 
   2026 		mutex_spin_enter(&qs->crp_ret_q_mtx);
   2027 	}
   2028 	crypto_put_crp_ret_qs(curcpu());
   2029 }
   2030 
   2031 /* NetBSD module interface */
   2032 
   2033 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   2034 
   2035 static int
   2036 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   2037 {
   2038 	int error = 0;
   2039 
   2040 	switch (cmd) {
   2041 	case MODULE_CMD_INIT:
   2042 #ifdef _MODULE
   2043 		error = crypto_init();
   2044 #endif
   2045 		break;
   2046 	case MODULE_CMD_FINI:
   2047 #ifdef _MODULE
   2048 		error = crypto_destroy(true);
   2049 #endif
   2050 		break;
   2051 	default:
   2052 		error = ENOTTY;
   2053 	}
   2054 	return error;
   2055 }
   2056