crypto.c revision 1.127 1 /* $NetBSD: crypto.c,v 1.127 2022/05/22 11:40:03 riastradh Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.127 2022/05/22 11:40:03 riastradh Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/proc.h>
62 #include <sys/pool.h>
63 #include <sys/kthread.h>
64 #include <sys/once.h>
65 #include <sys/sysctl.h>
66 #include <sys/intr.h>
67 #include <sys/errno.h>
68 #include <sys/module.h>
69 #include <sys/xcall.h>
70 #include <sys/device.h>
71 #include <sys/cpu.h>
72 #include <sys/percpu.h>
73 #include <sys/kmem.h>
74
75 #if defined(_KERNEL_OPT)
76 #include "opt_ocf.h"
77 #endif
78
79 #include <opencrypto/cryptodev.h>
80 #include <opencrypto/xform.h> /* XXX for M_XDATA */
81
82 /*
83 * Crypto drivers register themselves by allocating a slot in the
84 * crypto_drivers table with crypto_get_driverid() and then registering
85 * each algorithm they support with crypto_register() and crypto_kregister().
86 */
87 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
88 static struct {
89 kmutex_t mtx;
90 int num;
91 struct cryptocap *list;
92 } crypto_drv __cacheline_aligned;
93 #define crypto_drv_mtx (crypto_drv.mtx)
94 #define crypto_drivers_num (crypto_drv.num)
95 #define crypto_drivers (crypto_drv.list)
96
97 static void *crypto_q_si;
98 static void *crypto_ret_si;
99
100 /*
101 * There are two queues for crypto requests; one for symmetric (e.g.
102 * cipher) operations and one for asymmetric (e.g. MOD) operations.
103 * See below for how synchronization is handled.
104 */
105 TAILQ_HEAD(crypto_crp_q, cryptop);
106 TAILQ_HEAD(crypto_crp_kq, cryptkop);
107 struct crypto_crp_qs {
108 struct crypto_crp_q *crp_q;
109 struct crypto_crp_kq *crp_kq;
110 };
111 static percpu_t *crypto_crp_qs_percpu;
112
113 static inline struct crypto_crp_qs *
114 crypto_get_crp_qs(int *s)
115 {
116
117 KASSERT(s != NULL);
118
119 *s = splsoftnet();
120 return percpu_getref(crypto_crp_qs_percpu);
121 }
122
123 static inline void
124 crypto_put_crp_qs(int *s)
125 {
126
127 KASSERT(s != NULL);
128
129 percpu_putref(crypto_crp_qs_percpu);
130 splx(*s);
131 }
132
133 static void
134 crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
135 {
136 struct crypto_crp_qs *qs_pc = p;
137 bool *isempty = arg;
138
139 if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
140 *isempty = true;
141 }
142
143 static void
144 crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
145 {
146 struct crypto_crp_qs *qs = p;
147
148 qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
149 qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);
150
151 TAILQ_INIT(qs->crp_q);
152 TAILQ_INIT(qs->crp_kq);
153 }
154
155 /*
156 * There are two queues for processing completed crypto requests; one
157 * for the symmetric and one for the asymmetric ops. We only need one
158 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
159 * for how synchronization is handled.
160 */
161 TAILQ_HEAD(crypto_crp_ret_q, cryptop);
162 TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
163 struct crypto_crp_ret_qs {
164 kmutex_t crp_ret_q_mtx;
165 bool crp_ret_q_exit_flag;
166
167 struct crypto_crp_ret_q crp_ret_q;
168 int crp_ret_q_len;
169 int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
170 int crp_ret_q_drops;
171
172 struct crypto_crp_ret_kq crp_ret_kq;
173 int crp_ret_kq_len;
174 int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
175 int crp_ret_kq_drops;
176 };
177 struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;
178
179
180 static inline struct crypto_crp_ret_qs *
181 crypto_get_crp_ret_qs(struct cpu_info *ci)
182 {
183 u_int cpuid;
184 struct crypto_crp_ret_qs *qs;
185
186 KASSERT(ci != NULL);
187
188 cpuid = cpu_index(ci);
189 qs = crypto_crp_ret_qs_list[cpuid];
190 mutex_enter(&qs->crp_ret_q_mtx);
191 return qs;
192 }
193
194 static inline void
195 crypto_put_crp_ret_qs(struct cpu_info *ci)
196 {
197 u_int cpuid;
198 struct crypto_crp_ret_qs *qs;
199
200 KASSERT(ci != NULL);
201
202 cpuid = cpu_index(ci);
203 qs = crypto_crp_ret_qs_list[cpuid];
204 mutex_exit(&qs->crp_ret_q_mtx);
205 }
206
207 #ifndef CRYPTO_RET_Q_MAXLEN
208 #define CRYPTO_RET_Q_MAXLEN 0
209 #endif
210 #ifndef CRYPTO_RET_KQ_MAXLEN
211 #define CRYPTO_RET_KQ_MAXLEN 0
212 #endif
213
214 static int
215 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
216 {
217 int error, len = 0;
218 struct sysctlnode node = *rnode;
219
220 for (int i = 0; i < ncpu; i++) {
221 struct crypto_crp_ret_qs *qs;
222 struct cpu_info *ci = cpu_lookup(i);
223
224 qs = crypto_get_crp_ret_qs(ci);
225 len += qs->crp_ret_q_len;
226 crypto_put_crp_ret_qs(ci);
227 }
228
229 node.sysctl_data = &len;
230 error = sysctl_lookup(SYSCTLFN_CALL(&node));
231 if (error || newp == NULL)
232 return error;
233
234 return 0;
235 }
236
237 static int
238 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
239 {
240 int error, drops = 0;
241 struct sysctlnode node = *rnode;
242
243 for (int i = 0; i < ncpu; i++) {
244 struct crypto_crp_ret_qs *qs;
245 struct cpu_info *ci = cpu_lookup(i);
246
247 qs = crypto_get_crp_ret_qs(ci);
248 drops += qs->crp_ret_q_drops;
249 crypto_put_crp_ret_qs(ci);
250 }
251
252 node.sysctl_data = &drops;
253 error = sysctl_lookup(SYSCTLFN_CALL(&node));
254 if (error || newp == NULL)
255 return error;
256
257 return 0;
258 }
259
260 static int
261 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
262 {
263 int error, maxlen;
264 struct crypto_crp_ret_qs *qs;
265 struct sysctlnode node = *rnode;
266
267 /* each crp_ret_kq_maxlen is the same. */
268 qs = crypto_get_crp_ret_qs(curcpu());
269 maxlen = qs->crp_ret_q_maxlen;
270 crypto_put_crp_ret_qs(curcpu());
271
272 node.sysctl_data = &maxlen;
273 error = sysctl_lookup(SYSCTLFN_CALL(&node));
274 if (error || newp == NULL)
275 return error;
276
277 for (int i = 0; i < ncpu; i++) {
278 struct cpu_info *ci = cpu_lookup(i);
279
280 qs = crypto_get_crp_ret_qs(ci);
281 qs->crp_ret_q_maxlen = maxlen;
282 crypto_put_crp_ret_qs(ci);
283 }
284
285 return 0;
286 }
287
288 static int
289 sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
290 {
291 int error, len = 0;
292 struct sysctlnode node = *rnode;
293
294 for (int i = 0; i < ncpu; i++) {
295 struct crypto_crp_ret_qs *qs;
296 struct cpu_info *ci = cpu_lookup(i);
297
298 qs = crypto_get_crp_ret_qs(ci);
299 len += qs->crp_ret_kq_len;
300 crypto_put_crp_ret_qs(ci);
301 }
302
303 node.sysctl_data = &len;
304 error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 if (error || newp == NULL)
306 return error;
307
308 return 0;
309 }
310
311 static int
312 sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
313 {
314 int error, drops = 0;
315 struct sysctlnode node = *rnode;
316
317 for (int i = 0; i < ncpu; i++) {
318 struct crypto_crp_ret_qs *qs;
319 struct cpu_info *ci = cpu_lookup(i);
320
321 qs = crypto_get_crp_ret_qs(ci);
322 drops += qs->crp_ret_kq_drops;
323 crypto_put_crp_ret_qs(ci);
324 }
325
326 node.sysctl_data = &drops;
327 error = sysctl_lookup(SYSCTLFN_CALL(&node));
328 if (error || newp == NULL)
329 return error;
330
331 return 0;
332 }
333
334 static int
335 sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
336 {
337 int error, maxlen;
338 struct crypto_crp_ret_qs *qs;
339 struct sysctlnode node = *rnode;
340
341 /* each crp_ret_kq_maxlen is the same. */
342 qs = crypto_get_crp_ret_qs(curcpu());
343 maxlen = qs->crp_ret_kq_maxlen;
344 crypto_put_crp_ret_qs(curcpu());
345
346 node.sysctl_data = &maxlen;
347 error = sysctl_lookup(SYSCTLFN_CALL(&node));
348 if (error || newp == NULL)
349 return error;
350
351 for (int i = 0; i < ncpu; i++) {
352 struct cpu_info *ci = cpu_lookup(i);
353
354 qs = crypto_get_crp_ret_qs(ci);
355 qs->crp_ret_kq_maxlen = maxlen;
356 crypto_put_crp_ret_qs(ci);
357 }
358
359 return 0;
360 }
361
362 /*
363 * Crypto op and descriptor data structures are allocated
364 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
365 */
366 static pool_cache_t cryptop_cache;
367 static pool_cache_t cryptodesc_cache;
368 static pool_cache_t cryptkop_cache;
369
370 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
371 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
372 /*
373 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
374 * access to hardware versus software transforms as below:
375 *
376 * crypto_devallowsoft < 0: Force userlevel requests to use software
377 * transforms, always
378 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
379 * requests for non-accelerated transforms
380 * (handling the latter in software)
381 * crypto_devallowsoft > 0: Allow user requests only for transforms which
382 * are hardware-accelerated.
383 */
384 int crypto_devallowsoft = 1; /* only use hardware crypto */
385
386 static void
387 sysctl_opencrypto_setup(struct sysctllog **clog)
388 {
389 const struct sysctlnode *ocnode;
390 const struct sysctlnode *retqnode, *retkqnode;
391
392 sysctl_createv(clog, 0, NULL, NULL,
393 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
394 CTLTYPE_INT, "usercrypto",
395 SYSCTL_DESCR("Enable/disable user-mode access to "
396 "crypto support"),
397 NULL, 0, &crypto_usercrypto, 0,
398 CTL_KERN, CTL_CREATE, CTL_EOL);
399 sysctl_createv(clog, 0, NULL, NULL,
400 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
401 CTLTYPE_INT, "userasymcrypto",
402 SYSCTL_DESCR("Enable/disable user-mode access to "
403 "asymmetric crypto support"),
404 NULL, 0, &crypto_userasymcrypto, 0,
405 CTL_KERN, CTL_CREATE, CTL_EOL);
406 sysctl_createv(clog, 0, NULL, NULL,
407 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
408 CTLTYPE_INT, "cryptodevallowsoft",
409 SYSCTL_DESCR("Enable/disable use of software "
410 "asymmetric crypto support"),
411 NULL, 0, &crypto_devallowsoft, 0,
412 CTL_KERN, CTL_CREATE, CTL_EOL);
413
414 sysctl_createv(clog, 0, NULL, &ocnode,
415 CTLFLAG_PERMANENT,
416 CTLTYPE_NODE, "opencrypto",
417 SYSCTL_DESCR("opencrypto related entries"),
418 NULL, 0, NULL, 0,
419 CTL_CREATE, CTL_EOL);
420
421 sysctl_createv(clog, 0, &ocnode, &retqnode,
422 CTLFLAG_PERMANENT,
423 CTLTYPE_NODE, "crypto_ret_q",
424 SYSCTL_DESCR("crypto_ret_q related entries"),
425 NULL, 0, NULL, 0,
426 CTL_CREATE, CTL_EOL);
427 sysctl_createv(clog, 0, &retqnode, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
429 CTLTYPE_INT, "len",
430 SYSCTL_DESCR("Current queue length"),
431 sysctl_opencrypto_q_len, 0,
432 NULL, 0,
433 CTL_CREATE, CTL_EOL);
434 sysctl_createv(clog, 0, &retqnode, NULL,
435 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
436 CTLTYPE_INT, "drops",
437 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
438 sysctl_opencrypto_q_drops, 0,
439 NULL, 0,
440 CTL_CREATE, CTL_EOL);
441 sysctl_createv(clog, 0, &retqnode, NULL,
442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
443 CTLTYPE_INT, "maxlen",
444 SYSCTL_DESCR("Maximum allowed queue length"),
445 sysctl_opencrypto_q_maxlen, 0,
446 NULL, 0,
447 CTL_CREATE, CTL_EOL);
448
449
450 sysctl_createv(clog, 0, &ocnode, &retkqnode,
451 CTLFLAG_PERMANENT,
452 CTLTYPE_NODE, "crypto_ret_kq",
453 SYSCTL_DESCR("crypto_ret_kq related entries"),
454 NULL, 0, NULL, 0,
455 CTL_CREATE, CTL_EOL);
456 sysctl_createv(clog, 0, &retkqnode, NULL,
457 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
458 CTLTYPE_INT, "len",
459 SYSCTL_DESCR("Current queue length"),
460 sysctl_opencrypto_kq_len, 0,
461 NULL, 0,
462 CTL_CREATE, CTL_EOL);
463 sysctl_createv(clog, 0, &retkqnode, NULL,
464 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
465 CTLTYPE_INT, "drops",
466 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
467 sysctl_opencrypto_kq_drops, 0,
468 NULL, 0,
469 CTL_CREATE, CTL_EOL);
470 sysctl_createv(clog, 0, &retkqnode, NULL,
471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
472 CTLTYPE_INT, "maxlen",
473 SYSCTL_DESCR("Maximum allowed queue length"),
474 sysctl_opencrypto_kq_maxlen, 0,
475 NULL, 0,
476 CTL_CREATE, CTL_EOL);
477 }
478
479 /*
480 * Synchronization: read carefully, this is non-trivial.
481 *
482 * Crypto requests are submitted via crypto_dispatch. Typically
483 * these come in from network protocols at spl0 (output path) or
484 * spl[,soft]net (input path).
485 *
486 * Requests are typically passed on the driver directly, but they
487 * may also be queued for processing by a software interrupt thread,
488 * cryptointr, that runs at splsoftcrypto. This thread dispatches
489 * the requests to crypto drivers (h/w or s/w) who call crypto_done
490 * when a request is complete. Hardware crypto drivers are assumed
491 * to register their IRQ's as network devices so their interrupt handlers
492 * and subsequent "done callbacks" happen at spl[imp,net].
493 *
494 * Completed crypto ops are queued for a separate kernel thread that
495 * handles the callbacks at spl0. This decoupling insures the crypto
496 * driver interrupt service routine is not delayed while the callback
497 * takes place and that callbacks are delivered after a context switch
498 * (as opposed to a software interrupt that clients must block).
499 *
500 * This scheme is not intended for SMP machines.
501 */
502 static void cryptointr(void *); /* swi thread to dispatch ops */
503 static void cryptoret_softint(void *); /* kernel thread for callbacks*/
504 static int crypto_destroy(bool);
505 static int crypto_invoke(struct cryptop *crp, int hint);
506 static int crypto_kinvoke(struct cryptkop *krp, int hint);
507
508 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
509 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
510 static struct cryptocap *crypto_checkdriver(u_int32_t);
511 static void crypto_driver_lock(struct cryptocap *);
512 static void crypto_driver_unlock(struct cryptocap *);
513 static void crypto_driver_clear(struct cryptocap *);
514
515 static int crypto_init_finalize(device_t);
516
517 static struct cryptostats cryptostats;
518 #ifdef CRYPTO_TIMING
519 static int crypto_timing = 0;
520 #endif
521
522 static struct sysctllog *sysctl_opencrypto_clog;
523
524 static void
525 crypto_crp_ret_qs_init(void)
526 {
527 int i;
528
529 crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
530 KM_SLEEP);
531
532 for (i = 0; i < ncpu; i++) {
533 struct crypto_crp_ret_qs *qs;
534
535 qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
536 mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
537 qs->crp_ret_q_exit_flag = false;
538
539 TAILQ_INIT(&qs->crp_ret_q);
540 qs->crp_ret_q_len = 0;
541 qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
542 qs->crp_ret_q_drops = 0;
543
544 TAILQ_INIT(&qs->crp_ret_kq);
545 qs->crp_ret_kq_len = 0;
546 qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
547 qs->crp_ret_kq_drops = 0;
548
549 crypto_crp_ret_qs_list[i] = qs;
550 }
551 }
552
553 static int
554 crypto_init0(void)
555 {
556
557 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
558 cryptop_cache = pool_cache_init(sizeof(struct cryptop),
559 coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
560 cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
561 coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
562 cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
563 coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);
564
565 crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
566 crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);
567
568 crypto_crp_ret_qs_init();
569
570 crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
571 sizeof(struct cryptocap), KM_SLEEP);
572 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
573
574 crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
575 if (crypto_q_si == NULL) {
576 printf("crypto_init: cannot establish request queue handler\n");
577 return crypto_destroy(false);
578 }
579
580 /*
581 * Some encryption devices (such as mvcesa) are attached before
582 * ipi_sysinit(). That causes an assertion in ipi_register() as
583 * crypto_ret_si softint uses SOFTINT_RCPU.
584 */
585 if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
586 printf("crypto_init: cannot register crypto_init_finalize\n");
587 return crypto_destroy(false);
588 }
589
590 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
591
592 return 0;
593 }
594
595 static int
596 crypto_init_finalize(device_t self __unused)
597 {
598
599 crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
600 &cryptoret_softint, NULL);
601 KASSERT(crypto_ret_si != NULL);
602
603 return 0;
604 }
605
606 int
607 crypto_init(void)
608 {
609 static ONCE_DECL(crypto_init_once);
610
611 return RUN_ONCE(&crypto_init_once, crypto_init0);
612 }
613
614 static int
615 crypto_destroy(bool exit_kthread)
616 {
617 int i;
618
619 if (exit_kthread) {
620 struct cryptocap *cap = NULL;
621 bool is_busy = false;
622
623 /* if we have any in-progress requests, don't unload */
624 percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
625 &is_busy);
626 if (is_busy)
627 return EBUSY;
628 /* FIXME:
629 * prohibit enqueue to crp_q and crp_kq after here.
630 */
631
632 mutex_enter(&crypto_drv_mtx);
633 for (i = 0; i < crypto_drivers_num; i++) {
634 cap = crypto_checkdriver(i);
635 if (cap == NULL)
636 continue;
637 if (cap->cc_sessions != 0) {
638 mutex_exit(&crypto_drv_mtx);
639 return EBUSY;
640 }
641 }
642 mutex_exit(&crypto_drv_mtx);
643 /* FIXME:
644 * prohibit touch crypto_drivers[] and each element after here.
645 */
646
647 /* Ensure cryptoret_softint() is never scheduled again. */
648 for (i = 0; i < ncpu; i++) {
649 struct crypto_crp_ret_qs *qs;
650 struct cpu_info *ci = cpu_lookup(i);
651
652 qs = crypto_get_crp_ret_qs(ci);
653 qs->crp_ret_q_exit_flag = true;
654 crypto_put_crp_ret_qs(ci);
655 }
656 }
657
658 if (sysctl_opencrypto_clog != NULL)
659 sysctl_teardown(&sysctl_opencrypto_clog);
660
661 if (crypto_ret_si != NULL)
662 softint_disestablish(crypto_ret_si);
663
664 if (crypto_q_si != NULL)
665 softint_disestablish(crypto_q_si);
666
667 mutex_enter(&crypto_drv_mtx);
668 if (crypto_drivers != NULL)
669 kmem_free(crypto_drivers,
670 crypto_drivers_num * sizeof(struct cryptocap));
671 mutex_exit(&crypto_drv_mtx);
672
673 percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));
674
675 pool_cache_destroy(cryptop_cache);
676 pool_cache_destroy(cryptodesc_cache);
677 pool_cache_destroy(cryptkop_cache);
678
679 mutex_destroy(&crypto_drv_mtx);
680
681 return 0;
682 }
683
684 static bool
685 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
686 {
687 struct cryptoini *cr;
688
689 for (cr = cri; cr; cr = cr->cri_next)
690 if (cap->cc_alg[cr->cri_alg] == 0) {
691 DPRINTF("alg %d not supported\n", cr->cri_alg);
692 return false;
693 }
694
695 return true;
696 }
697
698 #define CRYPTO_ACCEPT_HARDWARE 0x1
699 #define CRYPTO_ACCEPT_SOFTWARE 0x2
700 /*
701 * The algorithm we use here is pretty stupid; just use the
702 * first driver that supports all the algorithms we need.
703 * If there are multiple drivers we choose the driver with
704 * the fewest active sessions. We prefer hardware-backed
705 * drivers to software ones.
706 *
707 * XXX We need more smarts here (in real life too, but that's
708 * XXX another story altogether).
709 */
710 static struct cryptocap *
711 crypto_select_driver_lock(struct cryptoini *cri, int hard)
712 {
713 u_int32_t hid;
714 int accept;
715 struct cryptocap *cap, *best;
716 int error = 0;
717
718 best = NULL;
719 /*
720 * hard == 0 can use both hardware and software drivers.
721 * We use hardware drivers prior to software drivers, so search
722 * hardware drivers at first time.
723 */
724 if (hard >= 0)
725 accept = CRYPTO_ACCEPT_HARDWARE;
726 else
727 accept = CRYPTO_ACCEPT_SOFTWARE;
728 again:
729 for (hid = 0; hid < crypto_drivers_num; hid++) {
730 cap = crypto_checkdriver(hid);
731 if (cap == NULL)
732 continue;
733
734 crypto_driver_lock(cap);
735
736 /*
737 * If it's not initialized or has remaining sessions
738 * referencing it, skip.
739 */
740 if (cap->cc_newsession == NULL ||
741 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
742 crypto_driver_unlock(cap);
743 continue;
744 }
745
746 /* Hardware required -- ignore software drivers. */
747 if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
748 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
749 crypto_driver_unlock(cap);
750 continue;
751 }
752 /* Software required -- ignore hardware drivers. */
753 if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
754 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
755 crypto_driver_unlock(cap);
756 continue;
757 }
758
759 /* See if all the algorithms are supported. */
760 if (crypto_driver_suitable(cap, cri)) {
761 if (best == NULL) {
762 /* keep holding crypto_driver_lock(cap) */
763 best = cap;
764 continue;
765 } else if (cap->cc_sessions < best->cc_sessions) {
766 crypto_driver_unlock(best);
767 /* keep holding crypto_driver_lock(cap) */
768 best = cap;
769 continue;
770 }
771 }
772
773 crypto_driver_unlock(cap);
774 }
775 if (best == NULL && hard == 0
776 && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
777 accept = CRYPTO_ACCEPT_SOFTWARE;
778 goto again;
779 }
780
781 if (best == NULL && hard == 0 && error == 0) {
782 mutex_exit(&crypto_drv_mtx);
783 error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
784 mutex_enter(&crypto_drv_mtx);
785 if (error == 0) {
786 error = EINVAL;
787 goto again;
788 }
789 }
790
791 return best;
792 }
793
794 /*
795 * Create a new session.
796 */
797 int
798 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
799 {
800 struct cryptocap *cap;
801 int err = EINVAL;
802
803 /*
804 * On failure, leave *sid initialized to a sentinel value that
805 * crypto_freesession will ignore. This is the same as what
806 * you get from zero-initialized memory -- some callers (I'm
807 * looking at you, netipsec!) have paths that lead from
808 * zero-initialized memory into crypto_freesession without any
809 * crypto_newsession.
810 */
811 *sid = 0;
812
813 mutex_enter(&crypto_drv_mtx);
814
815 cap = crypto_select_driver_lock(cri, hard);
816 if (cap != NULL) {
817 u_int32_t hid, lid;
818
819 hid = cap - crypto_drivers;
820 KASSERT(hid < 0xffffff);
821 /*
822 * Can't do everything in one session.
823 *
824 * XXX Fix this. We need to inject a "virtual" session layer right
825 * XXX about here.
826 */
827
828 /* Call the driver initialization routine. */
829 lid = hid; /* Pass the driver ID. */
830 crypto_driver_unlock(cap);
831 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
832 crypto_driver_lock(cap);
833 if (err == 0) {
834 (*sid) = hid + 1;
835 (*sid) <<= 32;
836 (*sid) |= (lid & 0xffffffff);
837 KASSERT(*sid != 0);
838 cap->cc_sessions++;
839 } else {
840 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
841 hid, err);
842 }
843 crypto_driver_unlock(cap);
844 }
845
846 mutex_exit(&crypto_drv_mtx);
847
848 return err;
849 }
850
851 /*
852 * Delete an existing session (or a reserved session on an unregistered
853 * driver).
854 */
855 void
856 crypto_freesession(u_int64_t sid)
857 {
858 struct cryptocap *cap;
859
860 /*
861 * crypto_newsession never returns 0 as a sid (by virtue of
862 * never returning 0 as a hid, which is part of the sid).
863 * However, some callers assume that freeing zero is safe.
864 * Previously this relied on all drivers to agree that freeing
865 * invalid sids is a no-op, but that's a terrible API contract
866 * that we're getting rid of.
867 */
868 if (sid == 0)
869 return;
870
871 /* Determine two IDs. */
872 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
873 if (cap == NULL) /* XXX should assert; need to audit callers */
874 return;
875
876 if (cap->cc_sessions)
877 (cap->cc_sessions)--;
878
879 /* Call the driver cleanup routine, if available. */
880 if (cap->cc_freesession)
881 cap->cc_freesession(cap->cc_arg, sid);
882
883 /*
884 * If this was the last session of a driver marked as invalid,
885 * make the entry available for reuse.
886 */
887 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
888 crypto_driver_clear(cap);
889
890 crypto_driver_unlock(cap);
891 }
892
893 static bool
894 crypto_checkdriver_initialized(const struct cryptocap *cap)
895 {
896
897 return cap->cc_process != NULL ||
898 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
899 cap->cc_sessions != 0;
900 }
901
902 /*
903 * Return an unused driver id. Used by drivers prior to registering
904 * support for the algorithms they handle.
905 */
906 int32_t
907 crypto_get_driverid(u_int32_t flags)
908 {
909 struct cryptocap *newdrv;
910 struct cryptocap *cap = NULL;
911 int i;
912
913 (void)crypto_init(); /* XXX oh, this is foul! */
914
915 mutex_enter(&crypto_drv_mtx);
916 for (i = 0; i < crypto_drivers_num; i++) {
917 cap = crypto_checkdriver_uninit(i);
918 if (cap == NULL || crypto_checkdriver_initialized(cap))
919 continue;
920 break;
921 }
922
923 /* Out of entries, allocate some more. */
924 if (cap == NULL) {
925 /* Be careful about wrap-around. */
926 if (2 * crypto_drivers_num <= crypto_drivers_num) {
927 mutex_exit(&crypto_drv_mtx);
928 printf("crypto: driver count wraparound!\n");
929 return -1;
930 }
931
932 newdrv = kmem_zalloc(2 * crypto_drivers_num *
933 sizeof(struct cryptocap), KM_SLEEP);
934 memcpy(newdrv, crypto_drivers,
935 crypto_drivers_num * sizeof(struct cryptocap));
936 kmem_free(crypto_drivers,
937 crypto_drivers_num * sizeof(struct cryptocap));
938
939 crypto_drivers_num *= 2;
940 crypto_drivers = newdrv;
941
942 cap = crypto_checkdriver_uninit(i);
943 KASSERT(cap != NULL);
944 }
945
946 /* NB: state is zero'd on free */
947 cap->cc_sessions = 1; /* Mark */
948 cap->cc_flags = flags;
949 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
950
951 if (bootverbose)
952 printf("crypto: assign driver %u, flags %u\n", i, flags);
953
954 mutex_exit(&crypto_drv_mtx);
955
956 return i;
957 }
958
959 static struct cryptocap *
960 crypto_checkdriver_lock(u_int32_t hid)
961 {
962 struct cryptocap *cap;
963
964 KASSERT(crypto_drivers != NULL);
965
966 if (hid >= crypto_drivers_num)
967 return NULL;
968
969 cap = &crypto_drivers[hid];
970 mutex_enter(&cap->cc_lock);
971 return cap;
972 }
973
974 /*
975 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
976 * situations
977 * - crypto_drivers[] may not be allocated
978 * - crypto_drivers[hid] may not be initialized
979 */
980 static struct cryptocap *
981 crypto_checkdriver_uninit(u_int32_t hid)
982 {
983
984 KASSERT(mutex_owned(&crypto_drv_mtx));
985
986 if (crypto_drivers == NULL)
987 return NULL;
988
989 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
990 }
991
992 /*
993 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
994 * situations
995 * - crypto_drivers[] may not be allocated
996 * - crypto_drivers[hid] may not be initialized
997 */
998 static struct cryptocap *
999 crypto_checkdriver(u_int32_t hid)
1000 {
1001
1002 KASSERT(mutex_owned(&crypto_drv_mtx));
1003
1004 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
1005 return NULL;
1006
1007 struct cryptocap *cap = &crypto_drivers[hid];
1008 return crypto_checkdriver_initialized(cap) ? cap : NULL;
1009 }
1010
1011 static inline void
1012 crypto_driver_lock(struct cryptocap *cap)
1013 {
1014
1015 KASSERT(cap != NULL);
1016
1017 mutex_enter(&cap->cc_lock);
1018 }
1019
1020 static inline void
1021 crypto_driver_unlock(struct cryptocap *cap)
1022 {
1023
1024 KASSERT(cap != NULL);
1025
1026 mutex_exit(&cap->cc_lock);
1027 }
1028
1029 static void
1030 crypto_driver_clear(struct cryptocap *cap)
1031 {
1032
1033 if (cap == NULL)
1034 return;
1035
1036 KASSERT(mutex_owned(&cap->cc_lock));
1037
1038 cap->cc_sessions = 0;
1039 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
1040 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
1041 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
1042 cap->cc_flags = 0;
1043 cap->cc_qblocked = 0;
1044 cap->cc_kqblocked = 0;
1045
1046 cap->cc_arg = NULL;
1047 cap->cc_newsession = NULL;
1048 cap->cc_process = NULL;
1049 cap->cc_freesession = NULL;
1050 cap->cc_kprocess = NULL;
1051 }
1052
1053 /*
1054 * Register support for a key-related algorithm. This routine
1055 * is called once for each algorithm supported a driver.
1056 */
1057 int
1058 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
1059 int (*kprocess)(void *, struct cryptkop *, int),
1060 void *karg)
1061 {
1062 struct cryptocap *cap;
1063 int err;
1064
1065 mutex_enter(&crypto_drv_mtx);
1066
1067 cap = crypto_checkdriver_lock(driverid);
1068 if (cap != NULL &&
1069 (CRK_ALGORITHM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1070 /*
1071 * XXX Do some performance testing to determine placing.
1072 * XXX We probably need an auxiliary data structure that
1073 * XXX describes relative performances.
1074 */
1075
1076 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1077 if (bootverbose) {
1078 printf("crypto: driver %u registers key alg %u "
1079 " flags %u\n",
1080 driverid,
1081 kalg,
1082 flags
1083 );
1084 }
1085
1086 if (cap->cc_kprocess == NULL) {
1087 cap->cc_karg = karg;
1088 cap->cc_kprocess = kprocess;
1089 }
1090 err = 0;
1091 } else
1092 err = EINVAL;
1093
1094 mutex_exit(&crypto_drv_mtx);
1095 return err;
1096 }
1097
1098 /*
1099 * Register support for a non-key-related algorithm. This routine
1100 * is called once for each such algorithm supported by a driver.
1101 */
1102 int
1103 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
1104 u_int32_t flags,
1105 int (*newses)(void *, u_int32_t*, struct cryptoini*),
1106 void (*freeses)(void *, u_int64_t),
1107 int (*process)(void *, struct cryptop *, int),
1108 void *arg)
1109 {
1110 struct cryptocap *cap;
1111 int err;
1112
1113 cap = crypto_checkdriver_lock(driverid);
1114 if (cap == NULL)
1115 return EINVAL;
1116
1117 /* NB: algorithms are in the range [1..max] */
1118 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
1119 /*
1120 * XXX Do some performance testing to determine placing.
1121 * XXX We probably need an auxiliary data structure that
1122 * XXX describes relative performances.
1123 */
1124
1125 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1126 cap->cc_max_op_len[alg] = maxoplen;
1127 if (bootverbose) {
1128 printf("crypto: driver %u registers alg %u "
1129 "flags %u maxoplen %u\n",
1130 driverid,
1131 alg,
1132 flags,
1133 maxoplen
1134 );
1135 }
1136
1137 if (cap->cc_process == NULL) {
1138 cap->cc_arg = arg;
1139 cap->cc_newsession = newses;
1140 cap->cc_process = process;
1141 cap->cc_freesession = freeses;
1142 cap->cc_sessions = 0; /* Unmark */
1143 }
1144 err = 0;
1145 } else
1146 err = EINVAL;
1147
1148 crypto_driver_unlock(cap);
1149
1150 return err;
1151 }
1152
1153 static int
1154 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
1155 {
1156 int i;
1157 u_int32_t ses;
1158 bool lastalg = true;
1159
1160 KASSERT(cap != NULL);
1161 KASSERT(mutex_owned(&cap->cc_lock));
1162
1163 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
1164 return EINVAL;
1165
1166 if (!all && cap->cc_alg[alg] == 0)
1167 return EINVAL;
1168
1169 cap->cc_alg[alg] = 0;
1170 cap->cc_max_op_len[alg] = 0;
1171
1172 if (all) {
1173 if (alg != CRYPTO_ALGORITHM_MAX)
1174 lastalg = false;
1175 } else {
1176 /* Was this the last algorithm ? */
1177 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
1178 if (cap->cc_alg[i] != 0) {
1179 lastalg = false;
1180 break;
1181 }
1182 }
1183 if (lastalg) {
1184 ses = cap->cc_sessions;
1185 crypto_driver_clear(cap);
1186 if (ses != 0) {
1187 /*
1188 * If there are pending sessions, just mark as invalid.
1189 */
1190 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1191 cap->cc_sessions = ses;
1192 }
1193 }
1194
1195 return 0;
1196 }
1197
1198 /*
1199 * Unregister a crypto driver. If there are pending sessions using it,
1200 * leave enough information around so that subsequent calls using those
1201 * sessions will correctly detect the driver has been unregistered and
1202 * reroute requests.
1203 */
1204 int
1205 crypto_unregister(u_int32_t driverid, int alg)
1206 {
1207 int err;
1208 struct cryptocap *cap;
1209
1210 cap = crypto_checkdriver_lock(driverid);
1211 err = crypto_unregister_locked(cap, alg, false);
1212 crypto_driver_unlock(cap);
1213
1214 return err;
1215 }
1216
1217 /*
1218 * Unregister all algorithms associated with a crypto driver.
1219 * If there are pending sessions using it, leave enough information
1220 * around so that subsequent calls using those sessions will
1221 * correctly detect the driver has been unregistered and reroute
1222 * requests.
1223 */
1224 int
1225 crypto_unregister_all(u_int32_t driverid)
1226 {
1227 int err, i;
1228 struct cryptocap *cap;
1229
1230 cap = crypto_checkdriver_lock(driverid);
1231 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
1232 err = crypto_unregister_locked(cap, i, true);
1233 if (err)
1234 break;
1235 }
1236 crypto_driver_unlock(cap);
1237
1238 return err;
1239 }
1240
1241 /*
1242 * Clear blockage on a driver. The what parameter indicates whether
1243 * the driver is now ready for cryptop's and/or cryptokop's.
1244 */
1245 int
1246 crypto_unblock(u_int32_t driverid, int what)
1247 {
1248 struct cryptocap *cap;
1249 int needwakeup = 0;
1250
1251 cap = crypto_checkdriver_lock(driverid);
1252 if (cap == NULL)
1253 return EINVAL;
1254
1255 if (what & CRYPTO_SYMQ) {
1256 needwakeup |= cap->cc_qblocked;
1257 cap->cc_qblocked = 0;
1258 }
1259 if (what & CRYPTO_ASYMQ) {
1260 needwakeup |= cap->cc_kqblocked;
1261 cap->cc_kqblocked = 0;
1262 }
1263 crypto_driver_unlock(cap);
1264 if (needwakeup) {
1265 kpreempt_disable();
1266 softint_schedule(crypto_q_si);
1267 kpreempt_enable();
1268 }
1269
1270 return 0;
1271 }
1272
1273 /*
1274 * Dispatch a crypto request to a driver or queue
1275 * it, to be processed by the kernel thread.
1276 */
1277 int
1278 crypto_dispatch(struct cryptop *crp)
1279 {
1280 int result, s;
1281 struct cryptocap *cap;
1282 struct crypto_crp_qs *crp_qs;
1283 struct crypto_crp_q *crp_q;
1284
1285 KASSERT(crp != NULL);
1286 KASSERT(crp->crp_callback != NULL);
1287 KASSERT(crp->crp_desc != NULL);
1288 KASSERT(crp->crp_buf != NULL);
1289 KASSERT(!cpu_intr_p());
1290
1291 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1292
1293 cryptostats.cs_ops++;
1294
1295 #ifdef CRYPTO_TIMING
1296 if (crypto_timing)
1297 nanouptime(&crp->crp_tstamp);
1298 #endif
1299
1300 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1301 int wasempty;
1302 /*
1303 * Caller marked the request as ``ok to delay'';
1304 * queue it for the swi thread. This is desirable
1305 * when the operation is low priority and/or suitable
1306 * for batching.
1307 *
1308 * don't care list order in batch job.
1309 */
1310 crp_qs = crypto_get_crp_qs(&s);
1311 crp_q = crp_qs->crp_q;
1312 wasempty = TAILQ_EMPTY(crp_q);
1313 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1314 crypto_put_crp_qs(&s);
1315 crp_q = NULL;
1316 if (wasempty) {
1317 kpreempt_disable();
1318 softint_schedule(crypto_q_si);
1319 kpreempt_enable();
1320 }
1321
1322 return 0;
1323 }
1324
1325 crp_qs = crypto_get_crp_qs(&s);
1326 crp_q = crp_qs->crp_q;
1327 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1328 /*
1329 * TODO:
1330 * If we can ensure the driver has been valid until the driver is
1331 * done crypto_unregister(), this migrate operation is not required.
1332 */
1333 if (cap == NULL) {
1334 /*
1335 * The driver must be detached, so this request will migrate
1336 * to other drivers in cryptointr() later.
1337 */
1338 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1339 result = 0;
1340 goto out;
1341 }
1342
1343 if (cap->cc_qblocked != 0) {
1344 crypto_driver_unlock(cap);
1345 /*
1346 * The driver is blocked, just queue the op until
1347 * it unblocks and the swi thread gets kicked.
1348 */
1349 TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
1350 result = 0;
1351 goto out;
1352 }
1353
1354 /*
1355 * Caller marked the request to be processed
1356 * immediately; dispatch it directly to the
1357 * driver unless the driver is currently blocked.
1358 */
1359 crypto_driver_unlock(cap);
1360 result = crypto_invoke(crp, 0);
1361 if (result == ERESTART) {
1362 /*
1363 * The driver ran out of resources, mark the
1364 * driver ``blocked'' for cryptop's and put
1365 * the op on the queue.
1366 */
1367 crypto_driver_lock(cap);
1368 cap->cc_qblocked = 1;
1369 crypto_driver_unlock(cap);
1370 TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
1371 cryptostats.cs_blocks++;
1372
1373 /*
1374 * The crp is enqueued to crp_q, that is,
1375 * no error occurs. So, this function should
1376 * not return error.
1377 */
1378 result = 0;
1379 }
1380
1381 out:
1382 crypto_put_crp_qs(&s);
1383 return result;
1384 }
1385
1386 /*
1387 * Add an asymmetric crypto request to a queue,
1388 * to be processed by the kernel thread.
1389 */
1390 int
1391 crypto_kdispatch(struct cryptkop *krp)
1392 {
1393 int result, s;
1394 struct cryptocap *cap;
1395 struct crypto_crp_qs *crp_qs;
1396 struct crypto_crp_kq *crp_kq;
1397
1398 KASSERT(krp != NULL);
1399 KASSERT(krp->krp_callback != NULL);
1400 KASSERT(!cpu_intr_p());
1401
1402 cryptostats.cs_kops++;
1403
1404 crp_qs = crypto_get_crp_qs(&s);
1405 crp_kq = crp_qs->crp_kq;
1406 cap = crypto_checkdriver_lock(krp->krp_hid);
1407 /*
1408 * TODO:
1409 * If we can ensure the driver has been valid until the driver is
1410 * done crypto_unregister(), this migrate operation is not required.
1411 */
1412 if (cap == NULL) {
1413 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1414 result = 0;
1415 goto out;
1416 }
1417
1418 if (cap->cc_kqblocked != 0) {
1419 crypto_driver_unlock(cap);
1420 /*
1421 * The driver is blocked, just queue the op until
1422 * it unblocks and the swi thread gets kicked.
1423 */
1424 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1425 result = 0;
1426 goto out;
1427 }
1428
1429 crypto_driver_unlock(cap);
1430 result = crypto_kinvoke(krp, 0);
1431 if (result == ERESTART) {
1432 /*
1433 * The driver ran out of resources, mark the
1434 * driver ``blocked'' for cryptop's and put
1435 * the op on the queue.
1436 */
1437 crypto_driver_lock(cap);
1438 cap->cc_kqblocked = 1;
1439 crypto_driver_unlock(cap);
1440 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1441 cryptostats.cs_kblocks++;
1442
1443 /*
1444 * The krp is enqueued to crp_kq, that is,
1445 * no error occurs. So, this function should
1446 * not return error.
1447 */
1448 result = 0;
1449 }
1450
1451 out:
1452 crypto_put_crp_qs(&s);
1453 return result;
1454 }
1455
1456 /*
1457 * Dispatch an asymmetric crypto request to the appropriate crypto devices.
1458 */
1459 static int
1460 crypto_kinvoke(struct cryptkop *krp, int hint)
1461 {
1462 struct cryptocap *cap = NULL;
1463 u_int32_t hid;
1464 int error;
1465
1466 KASSERT(krp != NULL);
1467 KASSERT(krp->krp_callback != NULL);
1468 KASSERT(!cpu_intr_p());
1469
1470 mutex_enter(&crypto_drv_mtx);
1471 for (hid = 0; hid < crypto_drivers_num; hid++) {
1472 cap = crypto_checkdriver(hid);
1473 if (cap == NULL)
1474 continue;
1475 crypto_driver_lock(cap);
1476 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1477 crypto_devallowsoft == 0) {
1478 crypto_driver_unlock(cap);
1479 continue;
1480 }
1481 if (cap->cc_kprocess == NULL) {
1482 crypto_driver_unlock(cap);
1483 continue;
1484 }
1485 if ((cap->cc_kalg[krp->krp_op] &
1486 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1487 crypto_driver_unlock(cap);
1488 continue;
1489 }
1490 break;
1491 }
1492 mutex_exit(&crypto_drv_mtx);
1493 if (cap != NULL) {
1494 int (*process)(void *, struct cryptkop *, int);
1495 void *arg;
1496
1497 process = cap->cc_kprocess;
1498 arg = cap->cc_karg;
1499 krp->krp_hid = hid;
1500 krp->reqcpu = curcpu();
1501 crypto_driver_unlock(cap);
1502 error = (*process)(arg, krp, hint);
1503 } else {
1504 error = ENODEV;
1505 }
1506
1507 if (error) {
1508 krp->krp_status = error;
1509 crypto_kdone(krp);
1510 }
1511 return 0;
1512 }
1513
1514 #ifdef CRYPTO_TIMING
1515 static void
1516 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1517 {
1518 struct timespec now, t;
1519
1520 nanouptime(&now);
1521 t.tv_sec = now.tv_sec - tv->tv_sec;
1522 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1523 if (t.tv_nsec < 0) {
1524 t.tv_sec--;
1525 t.tv_nsec += 1000000000;
1526 }
1527 timespecadd(&ts->acc, &t, &t);
1528 if (timespeccmp(&t, &ts->min, <))
1529 ts->min = t;
1530 if (timespeccmp(&t, &ts->max, >))
1531 ts->max = t;
1532 ts->count++;
1533
1534 *tv = now;
1535 }
1536 #endif
1537
1538 /*
1539 * Dispatch a crypto request to the appropriate crypto devices.
1540 */
1541 static int
1542 crypto_invoke(struct cryptop *crp, int hint)
1543 {
1544 struct cryptocap *cap;
1545
1546 KASSERT(crp != NULL);
1547 KASSERT(crp->crp_callback != NULL);
1548 KASSERT(crp->crp_desc != NULL);
1549 KASSERT(!cpu_intr_p());
1550
1551 #ifdef CRYPTO_TIMING
1552 if (crypto_timing)
1553 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1554 #endif
1555
1556 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1557 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1558 int (*process)(void *, struct cryptop *, int);
1559 void *arg;
1560
1561 process = cap->cc_process;
1562 arg = cap->cc_arg;
1563 crp->reqcpu = curcpu();
1564
1565 /*
1566 * Invoke the driver to process the request.
1567 */
1568 DPRINTF("calling process for %p\n", crp);
1569 crypto_driver_unlock(cap);
1570 return (*process)(arg, crp, hint);
1571 } else {
1572 if (cap != NULL) {
1573 crypto_driver_unlock(cap);
1574 crypto_freesession(crp->crp_sid);
1575 }
1576 crp->crp_etype = ENODEV;
1577 crypto_done(crp);
1578 return 0;
1579 }
1580 }
1581
1582 /*
1583 * Release a set of crypto descriptors.
1584 */
1585 void
1586 crypto_freereq(struct cryptop *crp)
1587 {
1588 struct cryptodesc *crd;
1589
1590 if (crp == NULL)
1591 return;
1592 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1593
1594 /* sanity check */
1595 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1596 panic("crypto_freereq() freeing crp on RETQ\n");
1597 }
1598
1599 while ((crd = crp->crp_desc) != NULL) {
1600 crp->crp_desc = crd->crd_next;
1601 pool_cache_put(cryptodesc_cache, crd);
1602 }
1603 pool_cache_put(cryptop_cache, crp);
1604 }
1605
1606 /*
1607 * Acquire a set of crypto descriptors.
1608 */
1609 struct cryptop *
1610 crypto_getreq(int num)
1611 {
1612 struct cryptodesc *crd;
1613 struct cryptop *crp;
1614 struct crypto_crp_ret_qs *qs;
1615
1616 KASSERT(num > 0);
1617
1618 /*
1619 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1620 * by error callback.
1621 */
1622 qs = crypto_get_crp_ret_qs(curcpu());
1623 if (qs->crp_ret_q_maxlen > 0
1624 && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
1625 qs->crp_ret_q_drops++;
1626 crypto_put_crp_ret_qs(curcpu());
1627 return NULL;
1628 }
1629 crypto_put_crp_ret_qs(curcpu());
1630
1631 crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
1632 if (crp == NULL) {
1633 return NULL;
1634 }
1635 memset(crp, 0, sizeof(struct cryptop));
1636
1637 while (num--) {
1638 crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
1639 if (crd == NULL) {
1640 crypto_freereq(crp);
1641 return NULL;
1642 }
1643
1644 memset(crd, 0, sizeof(struct cryptodesc));
1645 crd->crd_next = crp->crp_desc;
1646 crp->crp_desc = crd;
1647 }
1648
1649 return crp;
1650 }
1651
1652 /*
1653 * Release a set of asymmetric crypto descriptors.
1654 * Currently, support one descriptor only.
1655 */
1656 void
1657 crypto_kfreereq(struct cryptkop *krp)
1658 {
1659
1660 if (krp == NULL)
1661 return;
1662
1663 DPRINTF("krp %p\n", krp);
1664
1665 /* sanity check */
1666 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1667 panic("crypto_kfreereq() freeing krp on RETQ\n");
1668 }
1669
1670 pool_cache_put(cryptkop_cache, krp);
1671 }
1672
1673 /*
1674 * Acquire a set of asymmetric crypto descriptors.
1675 * Currently, support one descriptor only.
1676 */
1677 struct cryptkop *
1678 crypto_kgetreq(int num __diagused, int prflags)
1679 {
1680 struct cryptkop *krp;
1681 struct crypto_crp_ret_qs *qs;
1682
1683 KASSERTMSG(num == 1, "num=%d not supported", num);
1684
1685 /*
1686 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1687 * overflow by error callback.
1688 */
1689 qs = crypto_get_crp_ret_qs(curcpu());
1690 if (qs->crp_ret_kq_maxlen > 0
1691 && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
1692 qs->crp_ret_kq_drops++;
1693 crypto_put_crp_ret_qs(curcpu());
1694 return NULL;
1695 }
1696 crypto_put_crp_ret_qs(curcpu());
1697
1698 krp = pool_cache_get(cryptkop_cache, prflags);
1699 if (krp == NULL) {
1700 return NULL;
1701 }
1702 memset(krp, 0, sizeof(struct cryptkop));
1703
1704 return krp;
1705 }
1706
1707 /*
1708 * Invoke the callback on behalf of the driver.
1709 */
1710 void
1711 crypto_done(struct cryptop *crp)
1712 {
1713 int wasempty;
1714 struct crypto_crp_ret_qs *qs;
1715 struct crypto_crp_ret_q *crp_ret_q;
1716
1717 KASSERT(crp != NULL);
1718
1719 if (crp->crp_etype != 0)
1720 cryptostats.cs_errs++;
1721 #ifdef CRYPTO_TIMING
1722 if (crypto_timing)
1723 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1724 #endif
1725 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1726
1727 qs = crypto_get_crp_ret_qs(crp->reqcpu);
1728 crp_ret_q = &qs->crp_ret_q;
1729 wasempty = TAILQ_EMPTY(crp_ret_q);
1730 DPRINTF("lid[%u]: queueing %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1731 crp->crp_flags |= CRYPTO_F_ONRETQ;
1732 TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
1733 qs->crp_ret_q_len++;
1734 if (wasempty && !qs->crp_ret_q_exit_flag) {
1735 DPRINTF("lid[%u]: waking cryptoret, crp %p hit empty queue\n.",
1736 CRYPTO_SESID2LID(crp->crp_sid), crp);
1737 softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
1738 }
1739 crypto_put_crp_ret_qs(crp->reqcpu);
1740 }
1741
1742 /*
1743 * Invoke the callback on behalf of the driver.
1744 */
1745 void
1746 crypto_kdone(struct cryptkop *krp)
1747 {
1748 int wasempty;
1749 struct crypto_crp_ret_qs *qs;
1750 struct crypto_crp_ret_kq *crp_ret_kq;
1751
1752 KASSERT(krp != NULL);
1753
1754 if (krp->krp_status != 0)
1755 cryptostats.cs_kerrs++;
1756
1757 qs = crypto_get_crp_ret_qs(krp->reqcpu);
1758 crp_ret_kq = &qs->crp_ret_kq;
1759
1760 wasempty = TAILQ_EMPTY(crp_ret_kq);
1761 krp->krp_flags |= CRYPTO_F_ONRETQ;
1762 TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
1763 qs->crp_ret_kq_len++;
1764 if (wasempty && !qs->crp_ret_q_exit_flag)
1765 softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
1766 crypto_put_crp_ret_qs(krp->reqcpu);
1767 }
1768
1769 int
1770 crypto_getfeat(int *featp)
1771 {
1772
1773 if (crypto_userasymcrypto == 0) {
1774 *featp = 0;
1775 return 0;
1776 }
1777
1778 mutex_enter(&crypto_drv_mtx);
1779
1780 int feat = 0;
1781 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1782 struct cryptocap *cap;
1783 cap = crypto_checkdriver(hid);
1784 if (cap == NULL)
1785 continue;
1786
1787 crypto_driver_lock(cap);
1788
1789 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1790 crypto_devallowsoft == 0)
1791 goto unlock;
1792
1793 if (cap->cc_kprocess == NULL)
1794 goto unlock;
1795
1796 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1797 if ((cap->cc_kalg[kalg] &
1798 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1799 feat |= 1 << kalg;
1800
1801 unlock: crypto_driver_unlock(cap);
1802 }
1803
1804 mutex_exit(&crypto_drv_mtx);
1805 *featp = feat;
1806 return (0);
1807 }
1808
1809 /*
1810 * Software interrupt thread to dispatch crypto requests.
1811 */
1812 static void
1813 cryptointr(void *arg __unused)
1814 {
1815 struct cryptop *crp, *submit, *cnext;
1816 struct cryptkop *krp, *knext;
1817 struct cryptocap *cap;
1818 struct crypto_crp_qs *crp_qs;
1819 struct crypto_crp_q *crp_q;
1820 struct crypto_crp_kq *crp_kq;
1821 int result, hint, s;
1822
1823 cryptostats.cs_intrs++;
1824 crp_qs = crypto_get_crp_qs(&s);
1825 crp_q = crp_qs->crp_q;
1826 crp_kq = crp_qs->crp_kq;
1827 do {
1828 /*
1829 * Find the first element in the queue that can be
1830 * processed and look-ahead to see if multiple ops
1831 * are ready for the same driver.
1832 */
1833 submit = NULL;
1834 hint = 0;
1835 TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
1836 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1837 cap = crypto_checkdriver_lock(hid);
1838 if (cap == NULL || cap->cc_process == NULL) {
1839 if (cap != NULL)
1840 crypto_driver_unlock(cap);
1841 /* Op needs to be migrated, process it. */
1842 submit = crp;
1843 break;
1844 }
1845
1846 /*
1847 * skip blocked crp regardless of CRYPTO_F_BATCH
1848 */
1849 if (cap->cc_qblocked != 0) {
1850 crypto_driver_unlock(cap);
1851 continue;
1852 }
1853 crypto_driver_unlock(cap);
1854
1855 /*
1856 * skip batch crp until the end of crp_q
1857 */
1858 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1859 if (submit == NULL) {
1860 submit = crp;
1861 } else {
1862 if (CRYPTO_SESID2HID(submit->crp_sid)
1863 == hid)
1864 hint = CRYPTO_HINT_MORE;
1865 }
1866
1867 continue;
1868 }
1869
1870 /*
1871 * found first crp which is neither blocked nor batch.
1872 */
1873 submit = crp;
1874 /*
1875 * batch crp can be processed much later, so clear hint.
1876 */
1877 hint = 0;
1878 break;
1879 }
1880 if (submit != NULL) {
1881 TAILQ_REMOVE(crp_q, submit, crp_next);
1882 result = crypto_invoke(submit, hint);
1883 /* we must take here as the TAILQ op or kinvoke
1884 may need this mutex below. sigh. */
1885 if (result == ERESTART) {
1886 /*
1887 * The driver ran out of resources, mark the
1888 * driver ``blocked'' for cryptop's and put
1889 * the request back in the queue. It would
1890 * best to put the request back where we got
1891 * it but that's hard so for now we put it
1892 * at the front. This should be ok; putting
1893 * it at the end does not work.
1894 */
1895 /* validate sid again */
1896 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1897 if (cap == NULL) {
1898 /* migrate again, sigh... */
1899 TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
1900 } else {
1901 cap->cc_qblocked = 1;
1902 crypto_driver_unlock(cap);
1903 TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
1904 cryptostats.cs_blocks++;
1905 }
1906 }
1907 }
1908
1909 /* As above, but for key ops */
1910 TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
1911 cap = crypto_checkdriver_lock(krp->krp_hid);
1912 if (cap == NULL || cap->cc_kprocess == NULL) {
1913 if (cap != NULL)
1914 crypto_driver_unlock(cap);
1915 /* Op needs to be migrated, process it. */
1916 break;
1917 }
1918 if (!cap->cc_kqblocked) {
1919 crypto_driver_unlock(cap);
1920 break;
1921 }
1922 crypto_driver_unlock(cap);
1923 }
1924 if (krp != NULL) {
1925 TAILQ_REMOVE(crp_kq, krp, krp_next);
1926 result = crypto_kinvoke(krp, 0);
1927 /* the next iteration will want the mutex. :-/ */
1928 if (result == ERESTART) {
1929 /*
1930 * The driver ran out of resources, mark the
1931 * driver ``blocked'' for cryptkop's and put
1932 * the request back in the queue. It would
1933 * best to put the request back where we got
1934 * it but that's hard so for now we put it
1935 * at the front. This should be ok; putting
1936 * it at the end does not work.
1937 */
1938 /* validate sid again */
1939 cap = crypto_checkdriver_lock(krp->krp_hid);
1940 if (cap == NULL) {
1941 /* migrate again, sigh... */
1942 TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
1943 } else {
1944 cap->cc_kqblocked = 1;
1945 crypto_driver_unlock(cap);
1946 TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
1947 cryptostats.cs_kblocks++;
1948 }
1949 }
1950 }
1951 } while (submit != NULL || krp != NULL);
1952 crypto_put_crp_qs(&s);
1953 }
1954
1955 /*
1956 * softint handler to do callbacks.
1957 */
1958 static void
1959 cryptoret_softint(void *arg __unused)
1960 {
1961 struct crypto_crp_ret_qs *qs;
1962 struct crypto_crp_ret_q *crp_ret_q;
1963 struct crypto_crp_ret_kq *crp_ret_kq;
1964
1965 qs = crypto_get_crp_ret_qs(curcpu());
1966 crp_ret_q = &qs->crp_ret_q;
1967 crp_ret_kq = &qs->crp_ret_kq;
1968 for (;;) {
1969 struct cryptop *crp;
1970 struct cryptkop *krp;
1971
1972 crp = TAILQ_FIRST(crp_ret_q);
1973 if (crp != NULL) {
1974 TAILQ_REMOVE(crp_ret_q, crp, crp_next);
1975 qs->crp_ret_q_len--;
1976 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1977 }
1978 krp = TAILQ_FIRST(crp_ret_kq);
1979 if (krp != NULL) {
1980 TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
1981 qs->crp_ret_q_len--;
1982 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1983 }
1984
1985 /* drop before calling any callbacks. */
1986 if (crp == NULL && krp == NULL)
1987 break;
1988
1989 mutex_spin_exit(&qs->crp_ret_q_mtx);
1990 if (crp != NULL) {
1991 #ifdef CRYPTO_TIMING
1992 if (crypto_timing) {
1993 /*
1994 * NB: We must copy the timestamp before
1995 * doing the callback as the cryptop is
1996 * likely to be reclaimed.
1997 */
1998 struct timespec t = crp->crp_tstamp;
1999 crypto_tstat(&cryptostats.cs_cb, &t);
2000 crp->crp_callback(crp);
2001 crypto_tstat(&cryptostats.cs_finis, &t);
2002 } else
2003 #endif
2004 {
2005 crp->crp_callback(crp);
2006 }
2007 }
2008 if (krp != NULL)
2009 krp->krp_callback(krp);
2010
2011 mutex_spin_enter(&qs->crp_ret_q_mtx);
2012 }
2013 crypto_put_crp_ret_qs(curcpu());
2014 }
2015
2016 /* NetBSD module interface */
2017
2018 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
2019
2020 static int
2021 opencrypto_modcmd(modcmd_t cmd, void *opaque)
2022 {
2023 int error = 0;
2024
2025 switch (cmd) {
2026 case MODULE_CMD_INIT:
2027 #ifdef _MODULE
2028 error = crypto_init();
2029 #endif
2030 break;
2031 case MODULE_CMD_FINI:
2032 #ifdef _MODULE
2033 error = crypto_destroy(true);
2034 #endif
2035 break;
2036 default:
2037 error = ENOTTY;
2038 }
2039 return error;
2040 }
2041