crypto.c revision 1.25 1 /* $NetBSD: crypto.c,v 1.25 2008/02/05 01:43:22 tls Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
7 *
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
11 *
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
13 *
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
18 *
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.25 2008/02/05 01:43:22 tls Exp $");
28
29 #include <sys/param.h>
30 #include <sys/reboot.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/proc.h>
34 #include <sys/pool.h>
35 #include <sys/kthread.h>
36 #include <sys/once.h>
37 #include <sys/sysctl.h>
38 #include <sys/intr.h>
39
40 #include "opt_ocf.h"
41 #include <opencrypto/cryptodev.h>
42 #include <opencrypto/xform.h> /* XXX for M_XDATA */
43
44 kcondvar_t cryptoret_cv;
45 kmutex_t crypto_mtx;
46
47 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
48 #define SWI_CRYPTO 17
49 #define register_swi(lvl, fn) \
50 softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
51 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
52 #define setsoftcrypto(x) softint_schedule(x)
53
54 #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff)
55
56 /*
57 * Crypto drivers register themselves by allocating a slot in the
58 * crypto_drivers table with crypto_get_driverid() and then registering
59 * each algorithm they support with crypto_register() and crypto_kregister().
60 */
61 static struct cryptocap *crypto_drivers;
62 static int crypto_drivers_num;
63 static void* softintr_cookie;
64
65 /*
66 * There are two queues for crypto requests; one for symmetric (e.g.
67 * cipher) operations and one for asymmetric (e.g. MOD) operations.
68 * See below for how synchronization is handled.
69 */
70 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
71 TAILQ_HEAD_INITIALIZER(crp_q);
72 static TAILQ_HEAD(,cryptkop) crp_kq =
73 TAILQ_HEAD_INITIALIZER(crp_kq);
74
75 /*
76 * There are two queues for processing completed crypto requests; one
77 * for the symmetric and one for the asymmetric ops. We only need one
78 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
79 * for how synchronization is handled.
80 */
81 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
82 TAILQ_HEAD_INITIALIZER(crp_ret_q);
83 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
84 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
85
86 /*
87 * XXX these functions are ghastly hacks for when the submission
88 * XXX routines discover a request that was not CBIMM is already
89 * XXX done, and must be yanked from the retq (where _done) put it
90 * XXX as cryptoret won't get the chance. The queue is walked backwards
91 * XXX as the request is generally the last one queued.
92 *
93 * call with the lock held, or else.
94 */
95 int
96 crypto_ret_q_remove(struct cryptop *crp)
97 {
98 struct cryptop * acrp;
99
100 TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
101 if (acrp == crp) {
102 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
103 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
104 return 1;
105 }
106 }
107 return 0;
108 }
109
110 int
111 crypto_ret_kq_remove(struct cryptkop *krp)
112 {
113 struct cryptkop * akrp;
114
115 TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
116 if (akrp == krp) {
117 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
118 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
119 return 1;
120 }
121 }
122 return 0;
123 }
124
125 /*
126 * Crypto op and desciptor data structures are allocated
127 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
128 */
129 struct pool cryptop_pool;
130 struct pool cryptodesc_pool;
131 struct pool cryptkop_pool;
132
133 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
134 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
135 /*
136 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
137 * access to hardware versus software transforms as below:
138 *
139 * crypto_devallowsoft < 0: Force userlevel requests to use software
140 * transforms, always
141 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
142 * requests for non-accelerated transforms
143 * (handling the latter in software)
144 * crypto_devallowsoft > 0: Allow user requests only for transforms which
145 * are hardware-accelerated.
146 */
147 int crypto_devallowsoft = 1; /* only use hardware crypto */
148
149 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
150 {
151 sysctl_createv(clog, 0, NULL, NULL,
152 CTLFLAG_PERMANENT,
153 CTLTYPE_NODE, "kern", NULL,
154 NULL, 0, NULL, 0,
155 CTL_KERN, CTL_EOL);
156 sysctl_createv(clog, 0, NULL, NULL,
157 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
158 CTLTYPE_INT, "usercrypto",
159 SYSCTL_DESCR("Enable/disable user-mode access to "
160 "crypto support"),
161 NULL, 0, &crypto_usercrypto, 0,
162 CTL_KERN, CTL_CREATE, CTL_EOL);
163 sysctl_createv(clog, 0, NULL, NULL,
164 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
165 CTLTYPE_INT, "userasymcrypto",
166 SYSCTL_DESCR("Enable/disable user-mode access to "
167 "asymmetric crypto support"),
168 NULL, 0, &crypto_userasymcrypto, 0,
169 CTL_KERN, CTL_CREATE, CTL_EOL);
170 sysctl_createv(clog, 0, NULL, NULL,
171 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
172 CTLTYPE_INT, "cryptodevallowsoft",
173 SYSCTL_DESCR("Enable/disable use of software "
174 "asymmetric crypto support"),
175 NULL, 0, &crypto_devallowsoft, 0,
176 CTL_KERN, CTL_CREATE, CTL_EOL);
177 }
178
179 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
180
181 /*
182 * Synchronization: read carefully, this is non-trivial.
183 *
184 * Crypto requests are submitted via crypto_dispatch. Typically
185 * these come in from network protocols at spl0 (output path) or
186 * spl[,soft]net (input path).
187 *
188 * Requests are typically passed on the driver directly, but they
189 * may also be queued for processing by a software interrupt thread,
190 * cryptointr, that runs at splsoftcrypto. This thread dispatches
191 * the requests to crypto drivers (h/w or s/w) who call crypto_done
192 * when a request is complete. Hardware crypto drivers are assumed
193 * to register their IRQ's as network devices so their interrupt handlers
194 * and subsequent "done callbacks" happen at spl[imp,net].
195 *
196 * Completed crypto ops are queued for a separate kernel thread that
197 * handles the callbacks at spl0. This decoupling insures the crypto
198 * driver interrupt service routine is not delayed while the callback
199 * takes place and that callbacks are delivered after a context switch
200 * (as opposed to a software interrupt that clients must block).
201 *
202 * This scheme is not intended for SMP machines.
203 */
204 static void cryptointr(void); /* swi thread to dispatch ops */
205 static void cryptoret(void); /* kernel thread for callbacks*/
206 static struct lwp *cryptothread;
207 static void crypto_destroy(void);
208 static int crypto_invoke(struct cryptop *crp, int hint);
209 static int crypto_kinvoke(struct cryptkop *krp, int hint);
210
211 static struct cryptostats cryptostats;
212 #ifdef CRYPTO_TIMING
213 static int crypto_timing = 0;
214 #endif
215
216 static int
217 crypto_init0(void)
218 {
219 int error;
220
221 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
222 cv_init(&cryptoret_cv, "crypto_wait");
223 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
224 0, "cryptop", NULL, IPL_NET);
225 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
226 0, "cryptodesc", NULL, IPL_NET);
227 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
228 0, "cryptkop", NULL, IPL_NET);
229
230 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
231 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
232 if (crypto_drivers == NULL) {
233 printf("crypto_init: cannot malloc driver table\n");
234 return 0;
235 }
236 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
237
238 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
239 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
240 (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
241 if (error) {
242 printf("crypto_init: cannot start cryptoret thread; error %d",
243 error);
244 crypto_destroy();
245 }
246
247 return 0;
248 }
249
250 void
251 crypto_init(void)
252 {
253 static ONCE_DECL(crypto_init_once);
254
255 RUN_ONCE(&crypto_init_once, crypto_init0);
256 }
257
258 static void
259 crypto_destroy(void)
260 {
261 /* XXX no wait to reclaim zones */
262 if (crypto_drivers != NULL)
263 free(crypto_drivers, M_CRYPTO_DATA);
264 unregister_swi(SWI_CRYPTO, cryptointr);
265 }
266
267 /*
268 * Create a new session. Must be called with crypto_mtx held.
269 */
270 int
271 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
272 {
273 struct cryptoini *cr;
274 u_int32_t hid, lid;
275 int err = EINVAL;
276
277 KASSERT(mutex_owned(&crypto_mtx));
278
279 if (crypto_drivers == NULL)
280 goto done;
281
282 /*
283 * The algorithm we use here is pretty stupid; just use the
284 * first driver that supports all the algorithms we need.
285 *
286 * XXX We need more smarts here (in real life too, but that's
287 * XXX another story altogether).
288 */
289
290 for (hid = 0; hid < crypto_drivers_num; hid++) {
291 /*
292 * If it's not initialized or has remaining sessions
293 * referencing it, skip.
294 */
295 if (crypto_drivers[hid].cc_newsession == NULL ||
296 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
297 continue;
298
299 /* Hardware required -- ignore software drivers. */
300 if (hard > 0 &&
301 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
302 continue;
303 /* Software required -- ignore hardware drivers. */
304 if (hard < 0 &&
305 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
306 continue;
307
308 /* See if all the algorithms are supported. */
309 for (cr = cri; cr; cr = cr->cri_next)
310 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
311 break;
312
313 if (cr == NULL) {
314 /* Ok, all algorithms are supported. */
315
316 /*
317 * Can't do everything in one session.
318 *
319 * XXX Fix this. We need to inject a "virtual" session layer right
320 * XXX about here.
321 */
322
323 /* Call the driver initialization routine. */
324 lid = hid; /* Pass the driver ID. */
325 err = crypto_drivers[hid].cc_newsession(
326 crypto_drivers[hid].cc_arg, &lid, cri);
327 if (err == 0) {
328 (*sid) = hid;
329 (*sid) <<= 32;
330 (*sid) |= (lid & 0xffffffff);
331 crypto_drivers[hid].cc_sessions++;
332 }
333 goto done;
334 /*break;*/
335 }
336 }
337 done:
338 return err;
339 }
340
341 /*
342 * Delete an existing session (or a reserved session on an unregistered
343 * driver). Must be called with crypto_mtx mutex held.
344 */
345 int
346 crypto_freesession(u_int64_t sid)
347 {
348 u_int32_t hid;
349 int err = 0;
350
351 KASSERT(mutex_owned(&crypto_mtx));
352
353 if (crypto_drivers == NULL) {
354 err = EINVAL;
355 goto done;
356 }
357
358 /* Determine two IDs. */
359 hid = SESID2HID(sid);
360
361 if (hid >= crypto_drivers_num) {
362 err = ENOENT;
363 goto done;
364 }
365
366 if (crypto_drivers[hid].cc_sessions)
367 crypto_drivers[hid].cc_sessions--;
368
369 /* Call the driver cleanup routine, if available. */
370 if (crypto_drivers[hid].cc_freesession) {
371 err = crypto_drivers[hid].cc_freesession(
372 crypto_drivers[hid].cc_arg, sid);
373 }
374 else
375 err = 0;
376
377 /*
378 * If this was the last session of a driver marked as invalid,
379 * make the entry available for reuse.
380 */
381 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
382 crypto_drivers[hid].cc_sessions == 0)
383 bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
384
385 done:
386 return err;
387 }
388
389 /*
390 * Return an unused driver id. Used by drivers prior to registering
391 * support for the algorithms they handle.
392 */
393 int32_t
394 crypto_get_driverid(u_int32_t flags)
395 {
396 struct cryptocap *newdrv;
397 int i;
398
399 crypto_init(); /* XXX oh, this is foul! */
400
401 mutex_spin_enter(&crypto_mtx);
402 for (i = 0; i < crypto_drivers_num; i++)
403 if (crypto_drivers[i].cc_process == NULL &&
404 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
405 crypto_drivers[i].cc_sessions == 0)
406 break;
407
408 /* Out of entries, allocate some more. */
409 if (i == crypto_drivers_num) {
410 /* Be careful about wrap-around. */
411 if (2 * crypto_drivers_num <= crypto_drivers_num) {
412 mutex_spin_exit(&crypto_mtx);
413 printf("crypto: driver count wraparound!\n");
414 return -1;
415 }
416
417 newdrv = malloc(2 * crypto_drivers_num *
418 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
419 if (newdrv == NULL) {
420 mutex_spin_exit(&crypto_mtx);
421 printf("crypto: no space to expand driver table!\n");
422 return -1;
423 }
424
425 bcopy(crypto_drivers, newdrv,
426 crypto_drivers_num * sizeof(struct cryptocap));
427
428 crypto_drivers_num *= 2;
429
430 free(crypto_drivers, M_CRYPTO_DATA);
431 crypto_drivers = newdrv;
432 }
433
434 /* NB: state is zero'd on free */
435 crypto_drivers[i].cc_sessions = 1; /* Mark */
436 crypto_drivers[i].cc_flags = flags;
437
438 if (bootverbose)
439 printf("crypto: assign driver %u, flags %u\n", i, flags);
440
441 mutex_spin_exit(&crypto_mtx);
442
443 return i;
444 }
445
446 static struct cryptocap *
447 crypto_checkdriver(u_int32_t hid)
448 {
449 if (crypto_drivers == NULL)
450 return NULL;
451 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
452 }
453
454 /*
455 * Register support for a key-related algorithm. This routine
456 * is called once for each algorithm supported a driver.
457 */
458 int
459 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
460 int (*kprocess)(void*, struct cryptkop *, int),
461 void *karg)
462 {
463 struct cryptocap *cap;
464 int err;
465
466 mutex_spin_enter(&crypto_mtx);
467
468 cap = crypto_checkdriver(driverid);
469 if (cap != NULL &&
470 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
471 /*
472 * XXX Do some performance testing to determine placing.
473 * XXX We probably need an auxiliary data structure that
474 * XXX describes relative performances.
475 */
476
477 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
478 if (bootverbose) {
479 printf("crypto: driver %u registers key alg %u "
480 " flags %u\n",
481 driverid,
482 kalg,
483 flags
484 );
485 }
486
487 if (cap->cc_kprocess == NULL) {
488 cap->cc_karg = karg;
489 cap->cc_kprocess = kprocess;
490 }
491 err = 0;
492 } else
493 err = EINVAL;
494
495 mutex_spin_exit(&crypto_mtx);
496 return err;
497 }
498
499 /*
500 * Register support for a non-key-related algorithm. This routine
501 * is called once for each such algorithm supported by a driver.
502 */
503 int
504 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
505 u_int32_t flags,
506 int (*newses)(void*, u_int32_t*, struct cryptoini*),
507 int (*freeses)(void*, u_int64_t),
508 int (*process)(void*, struct cryptop *, int),
509 void *arg)
510 {
511 struct cryptocap *cap;
512 int err;
513
514 mutex_spin_enter(&crypto_mtx);
515
516 cap = crypto_checkdriver(driverid);
517 /* NB: algorithms are in the range [1..max] */
518 if (cap != NULL &&
519 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
520 /*
521 * XXX Do some performance testing to determine placing.
522 * XXX We probably need an auxiliary data structure that
523 * XXX describes relative performances.
524 */
525
526 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
527 cap->cc_max_op_len[alg] = maxoplen;
528 if (bootverbose) {
529 printf("crypto: driver %u registers alg %u "
530 "flags %u maxoplen %u\n",
531 driverid,
532 alg,
533 flags,
534 maxoplen
535 );
536 }
537
538 if (cap->cc_process == NULL) {
539 cap->cc_arg = arg;
540 cap->cc_newsession = newses;
541 cap->cc_process = process;
542 cap->cc_freesession = freeses;
543 cap->cc_sessions = 0; /* Unmark */
544 }
545 err = 0;
546 } else
547 err = EINVAL;
548
549 mutex_spin_exit(&crypto_mtx);
550 return err;
551 }
552
553 /*
554 * Unregister a crypto driver. If there are pending sessions using it,
555 * leave enough information around so that subsequent calls using those
556 * sessions will correctly detect the driver has been unregistered and
557 * reroute requests.
558 */
559 int
560 crypto_unregister(u_int32_t driverid, int alg)
561 {
562 int i, err;
563 u_int32_t ses;
564 struct cryptocap *cap;
565
566 mutex_spin_enter(&crypto_mtx);
567
568 cap = crypto_checkdriver(driverid);
569 if (cap != NULL &&
570 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
571 cap->cc_alg[alg] != 0) {
572 cap->cc_alg[alg] = 0;
573 cap->cc_max_op_len[alg] = 0;
574
575 /* Was this the last algorithm ? */
576 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
577 if (cap->cc_alg[i] != 0)
578 break;
579
580 if (i == CRYPTO_ALGORITHM_MAX + 1) {
581 ses = cap->cc_sessions;
582 bzero(cap, sizeof(struct cryptocap));
583 if (ses != 0) {
584 /*
585 * If there are pending sessions, just mark as invalid.
586 */
587 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
588 cap->cc_sessions = ses;
589 }
590 }
591 err = 0;
592 } else
593 err = EINVAL;
594
595 mutex_spin_exit(&crypto_mtx);
596 return err;
597 }
598
599 /*
600 * Unregister all algorithms associated with a crypto driver.
601 * If there are pending sessions using it, leave enough information
602 * around so that subsequent calls using those sessions will
603 * correctly detect the driver has been unregistered and reroute
604 * requests.
605 *
606 * XXX careful. Don't change this to call crypto_unregister() for each
607 * XXX registered algorithm unless you drop the mutex across the calls;
608 * XXX you can't take it recursively.
609 */
610 int
611 crypto_unregister_all(u_int32_t driverid)
612 {
613 int i, err;
614 u_int32_t ses;
615 struct cryptocap *cap;
616
617 mutex_spin_enter(&crypto_mtx);
618 cap = crypto_checkdriver(driverid);
619 if (cap != NULL) {
620 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
621 cap->cc_alg[i] = 0;
622 cap->cc_max_op_len[i] = 0;
623 }
624 ses = cap->cc_sessions;
625 bzero(cap, sizeof(struct cryptocap));
626 if (ses != 0) {
627 /*
628 * If there are pending sessions, just mark as invalid.
629 */
630 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
631 cap->cc_sessions = ses;
632 }
633 err = 0;
634 } else
635 err = EINVAL;
636
637 mutex_spin_exit(&crypto_mtx);
638 return err;
639 }
640
641 /*
642 * Clear blockage on a driver. The what parameter indicates whether
643 * the driver is now ready for cryptop's and/or cryptokop's.
644 */
645 int
646 crypto_unblock(u_int32_t driverid, int what)
647 {
648 struct cryptocap *cap;
649 int needwakeup, err;
650
651 mutex_spin_enter(&crypto_mtx);
652 cap = crypto_checkdriver(driverid);
653 if (cap != NULL) {
654 needwakeup = 0;
655 if (what & CRYPTO_SYMQ) {
656 needwakeup |= cap->cc_qblocked;
657 cap->cc_qblocked = 0;
658 }
659 if (what & CRYPTO_ASYMQ) {
660 needwakeup |= cap->cc_kqblocked;
661 cap->cc_kqblocked = 0;
662 }
663 err = 0;
664 mutex_spin_exit(&crypto_mtx);
665 if (needwakeup)
666 setsoftcrypto(softintr_cookie);
667 } else {
668 err = EINVAL;
669 mutex_spin_exit(&crypto_mtx);
670 }
671
672 return err;
673 }
674
675 /*
676 * Dispatch a crypto request to a driver or queue
677 * it, to be processed by the kernel thread.
678 */
679 int
680 crypto_dispatch(struct cryptop *crp)
681 {
682 u_int32_t hid = SESID2HID(crp->crp_sid);
683 int result;
684
685 mutex_spin_enter(&crypto_mtx);
686
687 cryptostats.cs_ops++;
688
689 #ifdef CRYPTO_TIMING
690 if (crypto_timing)
691 nanouptime(&crp->crp_tstamp);
692 #endif
693 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
694 struct cryptocap *cap;
695 /*
696 * Caller marked the request to be processed
697 * immediately; dispatch it directly to the
698 * driver unless the driver is currently blocked.
699 */
700 cap = crypto_checkdriver(hid);
701 if (cap && !cap->cc_qblocked) {
702 mutex_spin_exit(&crypto_mtx);
703 result = crypto_invoke(crp, 0);
704 if (result == ERESTART) {
705 /*
706 * The driver ran out of resources, mark the
707 * driver ``blocked'' for cryptop's and put
708 * the op on the queue.
709 */
710 mutex_spin_enter(&crypto_mtx);
711 crypto_drivers[hid].cc_qblocked = 1;
712 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
713 cryptostats.cs_blocks++;
714 mutex_spin_exit(&crypto_mtx);
715 }
716 goto out_released;
717 } else {
718 /*
719 * The driver is blocked, just queue the op until
720 * it unblocks and the swi thread gets kicked.
721 */
722 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
723 result = 0;
724 }
725 } else {
726 int wasempty = TAILQ_EMPTY(&crp_q);
727 /*
728 * Caller marked the request as ``ok to delay'';
729 * queue it for the swi thread. This is desirable
730 * when the operation is low priority and/or suitable
731 * for batching.
732 */
733 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
734 if (wasempty) {
735 mutex_spin_exit(&crypto_mtx);
736 setsoftcrypto(softintr_cookie);
737 result = 0;
738 goto out_released;
739 }
740
741 result = 0;
742 }
743
744 mutex_spin_exit(&crypto_mtx);
745 out_released:
746 return result;
747 }
748
749 /*
750 * Add an asymetric crypto request to a queue,
751 * to be processed by the kernel thread.
752 */
753 int
754 crypto_kdispatch(struct cryptkop *krp)
755 {
756 struct cryptocap *cap;
757 int result;
758
759 mutex_spin_enter(&crypto_mtx);
760 cryptostats.cs_kops++;
761
762 cap = crypto_checkdriver(krp->krp_hid);
763 if (cap && !cap->cc_kqblocked) {
764 mutex_spin_exit(&crypto_mtx);
765 result = crypto_kinvoke(krp, 0);
766 if (result == ERESTART) {
767 /*
768 * The driver ran out of resources, mark the
769 * driver ``blocked'' for cryptop's and put
770 * the op on the queue.
771 */
772 mutex_spin_enter(&crypto_mtx);
773 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
774 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
775 cryptostats.cs_kblocks++;
776 mutex_spin_exit(&crypto_mtx);
777 }
778 } else {
779 /*
780 * The driver is blocked, just queue the op until
781 * it unblocks and the swi thread gets kicked.
782 */
783 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
784 result = 0;
785 mutex_spin_exit(&crypto_mtx);
786 }
787
788 return result;
789 }
790
791 /*
792 * Dispatch an assymetric crypto request to the appropriate crypto devices.
793 */
794 static int
795 crypto_kinvoke(struct cryptkop *krp, int hint)
796 {
797 u_int32_t hid;
798 int error;
799
800 /* Sanity checks. */
801 if (krp == NULL)
802 return EINVAL;
803 if (krp->krp_callback == NULL) {
804 pool_put(&cryptkop_pool, krp);
805 return EINVAL;
806 }
807
808 for (hid = 0; hid < crypto_drivers_num; hid++) {
809 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
810 crypto_devallowsoft == 0)
811 continue;
812 if (crypto_drivers[hid].cc_kprocess == NULL)
813 continue;
814 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
815 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
816 continue;
817 break;
818 }
819 if (hid < crypto_drivers_num) {
820 krp->krp_hid = hid;
821 error = crypto_drivers[hid].cc_kprocess(
822 crypto_drivers[hid].cc_karg, krp, hint);
823 } else {
824 error = ENODEV;
825 }
826
827 if (error) {
828 krp->krp_status = error;
829 crypto_kdone(krp);
830 }
831 return 0;
832 }
833
834 #ifdef CRYPTO_TIMING
835 static void
836 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
837 {
838 struct timespec now, t;
839
840 nanouptime(&now);
841 t.tv_sec = now.tv_sec - tv->tv_sec;
842 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
843 if (t.tv_nsec < 0) {
844 t.tv_sec--;
845 t.tv_nsec += 1000000000;
846 }
847 timespecadd(&ts->acc, &t, &t);
848 if (timespeccmp(&t, &ts->min, <))
849 ts->min = t;
850 if (timespeccmp(&t, &ts->max, >))
851 ts->max = t;
852 ts->count++;
853
854 *tv = now;
855 }
856 #endif
857
858 /*
859 * Dispatch a crypto request to the appropriate crypto devices.
860 */
861 static int
862 crypto_invoke(struct cryptop *crp, int hint)
863 {
864 u_int32_t hid;
865 int (*process)(void*, struct cryptop *, int);
866
867 #ifdef CRYPTO_TIMING
868 if (crypto_timing)
869 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
870 #endif
871 /* Sanity checks. */
872 if (crp == NULL)
873 return EINVAL;
874 if (crp->crp_callback == NULL) {
875 crypto_freereq(crp);
876 return EINVAL;
877 }
878 if (crp->crp_desc == NULL) {
879 crp->crp_etype = EINVAL;
880 crypto_done(crp);
881 return 0;
882 }
883
884 hid = SESID2HID(crp->crp_sid);
885 if (hid < crypto_drivers_num) {
886 mutex_enter(&crypto_mtx);
887 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
888 crypto_freesession(crp->crp_sid);
889 process = crypto_drivers[hid].cc_process;
890 mutex_exit(&crypto_mtx);
891 } else {
892 process = NULL;
893 }
894
895 if (process == NULL) {
896 struct cryptodesc *crd;
897 u_int64_t nid = 0;
898
899 /*
900 * Driver has unregistered; migrate the session and return
901 * an error to the caller so they'll resubmit the op.
902 */
903 mutex_enter(&crypto_mtx);
904 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
905 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
906
907 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
908 crp->crp_sid = nid;
909
910 crp->crp_etype = EAGAIN;
911 mutex_exit(&crypto_mtx);
912
913 crypto_done(crp);
914 return 0;
915 } else {
916 /*
917 * Invoke the driver to process the request.
918 */
919 DPRINTF(("calling process for %08x\n", (uint32_t)crp));
920 return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
921 }
922 }
923
924 /*
925 * Release a set of crypto descriptors.
926 */
927 void
928 crypto_freereq(struct cryptop *crp)
929 {
930 struct cryptodesc *crd;
931
932 if (crp == NULL)
933 return;
934
935 while ((crd = crp->crp_desc) != NULL) {
936 crp->crp_desc = crd->crd_next;
937 pool_put(&cryptodesc_pool, crd);
938 }
939 pool_put(&cryptop_pool, crp);
940 }
941
942 /*
943 * Acquire a set of crypto descriptors.
944 */
945 struct cryptop *
946 crypto_getreq(int num)
947 {
948 struct cryptodesc *crd;
949 struct cryptop *crp;
950
951 crp = pool_get(&cryptop_pool, 0);
952 if (crp == NULL) {
953 return NULL;
954 }
955 bzero(crp, sizeof(struct cryptop));
956 cv_init(&crp->crp_cv, "crydev");
957
958 while (num--) {
959 crd = pool_get(&cryptodesc_pool, 0);
960 if (crd == NULL) {
961 crypto_freereq(crp);
962 return NULL;
963 }
964
965 bzero(crd, sizeof(struct cryptodesc));
966 crd->crd_next = crp->crp_desc;
967 crp->crp_desc = crd;
968 }
969
970 return crp;
971 }
972
973 /*
974 * Invoke the callback on behalf of the driver.
975 */
976 void
977 crypto_done(struct cryptop *crp)
978 {
979 int wasempty;
980
981 if (crp->crp_etype != 0)
982 cryptostats.cs_errs++;
983 #ifdef CRYPTO_TIMING
984 if (crypto_timing)
985 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
986 #endif
987 /*
988 * Normal case; queue the callback for the thread.
989 *
990 * The return queue is manipulated by the swi thread
991 * and, potentially, by crypto device drivers calling
992 * back to mark operations completed. Thus we need
993 * to mask both while manipulating the return queue.
994 */
995 mutex_spin_enter(&crypto_mtx);
996 wasempty = TAILQ_EMPTY(&crp_ret_q);
997 DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
998 crp->crp_flags |= CRYPTO_F_ONRETQ|CRYPTO_F_DONE;
999 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1000 if (wasempty) {
1001 DPRINTF(("crypto_done: waking cryptoret, %08x " \
1002 "hit empty queue\n.", (uint32_t)crp));
1003 cv_signal(&cryptoret_cv);
1004 }
1005 mutex_spin_exit(&crypto_mtx);
1006 }
1007
1008 /*
1009 * Invoke the callback on behalf of the driver.
1010 */
1011 void
1012 crypto_kdone(struct cryptkop *krp)
1013 {
1014 int wasempty;
1015
1016 if (krp->krp_status != 0)
1017 cryptostats.cs_kerrs++;
1018 /*
1019 * The return queue is manipulated by the swi thread
1020 * and, potentially, by crypto device drivers calling
1021 * back to mark operations completed. Thus we need
1022 * to mask both while manipulating the return queue.
1023 */
1024 mutex_spin_enter(&crypto_mtx);
1025 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1026 krp->krp_flags |= CRYPTO_F_ONRETQ|CRYPTO_F_DONE;
1027 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1028 if (wasempty)
1029 cv_signal(&cryptoret_cv);
1030 mutex_spin_exit(&crypto_mtx);
1031 }
1032
1033 int
1034 crypto_getfeat(int *featp)
1035 {
1036 int hid, kalg, feat = 0;
1037
1038 mutex_spin_enter(&crypto_mtx);
1039
1040 if (crypto_userasymcrypto == 0)
1041 goto out;
1042
1043 for (hid = 0; hid < crypto_drivers_num; hid++) {
1044 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1045 crypto_devallowsoft == 0) {
1046 continue;
1047 }
1048 if (crypto_drivers[hid].cc_kprocess == NULL)
1049 continue;
1050 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1051 if ((crypto_drivers[hid].cc_kalg[kalg] &
1052 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1053 feat |= 1 << kalg;
1054 }
1055 out:
1056 mutex_spin_exit(&crypto_mtx);
1057 *featp = feat;
1058 return (0);
1059 }
1060
1061 /*
1062 * Software interrupt thread to dispatch crypto requests.
1063 */
1064 static void
1065 cryptointr(void)
1066 {
1067 struct cryptop *crp, *submit;
1068 struct cryptkop *krp;
1069 struct cryptocap *cap;
1070 int result, hint;
1071
1072 printf("crypto softint\n");
1073 cryptostats.cs_intrs++;
1074 mutex_spin_enter(&crypto_mtx);
1075 do {
1076 /*
1077 * Find the first element in the queue that can be
1078 * processed and look-ahead to see if multiple ops
1079 * are ready for the same driver.
1080 */
1081 submit = NULL;
1082 hint = 0;
1083 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1084 u_int32_t hid = SESID2HID(crp->crp_sid);
1085 cap = crypto_checkdriver(hid);
1086 if (cap == NULL || cap->cc_process == NULL) {
1087 /* Op needs to be migrated, process it. */
1088 if (submit == NULL)
1089 submit = crp;
1090 break;
1091 }
1092 if (!cap->cc_qblocked) {
1093 if (submit != NULL) {
1094 /*
1095 * We stop on finding another op,
1096 * regardless whether its for the same
1097 * driver or not. We could keep
1098 * searching the queue but it might be
1099 * better to just use a per-driver
1100 * queue instead.
1101 */
1102 if (SESID2HID(submit->crp_sid) == hid)
1103 hint = CRYPTO_HINT_MORE;
1104 break;
1105 } else {
1106 submit = crp;
1107 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1108 break;
1109 /* keep scanning for more are q'd */
1110 }
1111 }
1112 }
1113 if (submit != NULL) {
1114 TAILQ_REMOVE(&crp_q, submit, crp_next);
1115 mutex_spin_exit(&crypto_mtx);
1116 result = crypto_invoke(submit, hint);
1117 /* we must take here as the TAILQ op or kinvoke
1118 may need this mutex below. sigh. */
1119 mutex_spin_enter(&crypto_mtx);
1120 if (result == ERESTART) {
1121 /*
1122 * The driver ran out of resources, mark the
1123 * driver ``blocked'' for cryptop's and put
1124 * the request back in the queue. It would
1125 * best to put the request back where we got
1126 * it but that's hard so for now we put it
1127 * at the front. This should be ok; putting
1128 * it at the end does not work.
1129 */
1130 /* XXX validate sid again? */
1131 crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1132 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1133 cryptostats.cs_blocks++;
1134 }
1135 }
1136
1137 /* As above, but for key ops */
1138 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1139 cap = crypto_checkdriver(krp->krp_hid);
1140 if (cap == NULL || cap->cc_kprocess == NULL) {
1141 /* Op needs to be migrated, process it. */
1142 break;
1143 }
1144 if (!cap->cc_kqblocked)
1145 break;
1146 }
1147 if (krp != NULL) {
1148 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1149 mutex_spin_exit(&crypto_mtx);
1150 result = crypto_kinvoke(krp, 0);
1151 /* the next iteration will want the mutex. :-/ */
1152 mutex_spin_enter(&crypto_mtx);
1153 if (result == ERESTART) {
1154 /*
1155 * The driver ran out of resources, mark the
1156 * driver ``blocked'' for cryptkop's and put
1157 * the request back in the queue. It would
1158 * best to put the request back where we got
1159 * it but that's hard so for now we put it
1160 * at the front. This should be ok; putting
1161 * it at the end does not work.
1162 */
1163 /* XXX validate sid again? */
1164 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1165 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1166 cryptostats.cs_kblocks++;
1167 }
1168 }
1169 } while (submit != NULL || krp != NULL);
1170 mutex_spin_exit(&crypto_mtx);
1171 }
1172
1173 /*
1174 * Kernel thread to do callbacks.
1175 */
1176 static void
1177 cryptoret(void)
1178 {
1179 struct cryptop *crp;
1180 struct cryptkop *krp;
1181
1182 for (;;) {
1183 mutex_spin_enter(&crypto_mtx);
1184
1185 crp = TAILQ_FIRST(&crp_ret_q);
1186 if (crp != NULL) {
1187 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1188 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1189 }
1190 krp = TAILQ_FIRST(&crp_ret_kq);
1191 if (krp != NULL) {
1192 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1193 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1194 }
1195
1196 /* drop before calling any callbacks. */
1197 mutex_spin_exit(&crypto_mtx);
1198 if (crp != NULL || krp != NULL) {
1199 if (crp != NULL) {
1200 #ifdef CRYPTO_TIMING
1201 if (crypto_timing) {
1202 /*
1203 * NB: We must copy the timestamp before
1204 * doing the callback as the cryptop is
1205 * likely to be reclaimed.
1206 */
1207 struct timespec t = crp->crp_tstamp;
1208 crypto_tstat(&cryptostats.cs_cb, &t);
1209 crp->crp_callback(crp);
1210 crypto_tstat(&cryptostats.cs_finis, &t);
1211 } else
1212 #endif
1213 {
1214 crp->crp_callback(crp);
1215 }
1216 }
1217 if (krp != NULL)
1218 krp->krp_callback(krp);
1219 } else {
1220 mutex_spin_enter(&crypto_mtx);
1221 cv_wait(&cryptoret_cv, &crypto_mtx);
1222 mutex_spin_exit(&crypto_mtx);
1223 cryptostats.cs_rets++;
1224 }
1225 }
1226 }
1227