crypto.c revision 1.29 1 /* $NetBSD: crypto.c,v 1.29 2008/08/03 10:18:12 degroote Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.29 2008/08/03 10:18:12 degroote Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h> /* XXX for M_XDATA */
72
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
75
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77 #define SWI_CRYPTO 17
78 #define register_swi(lvl, fn) \
79 softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
80 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
81 #define setsoftcrypto(x) softint_schedule(x)
82
83 #define SESID2HID(sid) (((sid) >> 32) & 0xffffffff)
84
85 /*
86 * Crypto drivers register themselves by allocating a slot in the
87 * crypto_drivers table with crypto_get_driverid() and then registering
88 * each algorithm they support with crypto_register() and crypto_kregister().
89 */
90 static struct cryptocap *crypto_drivers;
91 static int crypto_drivers_num;
92 static void* softintr_cookie;
93
94 /*
95 * There are two queues for crypto requests; one for symmetric (e.g.
96 * cipher) operations and one for asymmetric (e.g. MOD) operations.
97 * See below for how synchronization is handled.
98 */
99 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
100 TAILQ_HEAD_INITIALIZER(crp_q);
101 static TAILQ_HEAD(,cryptkop) crp_kq =
102 TAILQ_HEAD_INITIALIZER(crp_kq);
103
104 /*
105 * There are two queues for processing completed crypto requests; one
106 * for the symmetric and one for the asymmetric ops. We only need one
107 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
108 * for how synchronization is handled.
109 */
110 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
111 TAILQ_HEAD_INITIALIZER(crp_ret_q);
112 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
113 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
114
115 /*
116 * XXX these functions are ghastly hacks for when the submission
117 * XXX routines discover a request that was not CBIMM is already
118 * XXX done, and must be yanked from the retq (where _done) put it
119 * XXX as cryptoret won't get the chance. The queue is walked backwards
120 * XXX as the request is generally the last one queued.
121 *
122 * call with the lock held, or else.
123 */
124 int
125 crypto_ret_q_remove(struct cryptop *crp)
126 {
127 struct cryptop * acrp;
128
129 TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
130 if (acrp == crp) {
131 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
132 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
133 return 1;
134 }
135 }
136 return 0;
137 }
138
139 int
140 crypto_ret_kq_remove(struct cryptkop *krp)
141 {
142 struct cryptkop * akrp;
143
144 TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
145 if (akrp == krp) {
146 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
147 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
148 return 1;
149 }
150 }
151 return 0;
152 }
153
154 /*
155 * Crypto op and desciptor data structures are allocated
156 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
157 */
158 struct pool cryptop_pool;
159 struct pool cryptodesc_pool;
160 struct pool cryptkop_pool;
161
162 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
163 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
164 /*
165 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
166 * access to hardware versus software transforms as below:
167 *
168 * crypto_devallowsoft < 0: Force userlevel requests to use software
169 * transforms, always
170 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
171 * requests for non-accelerated transforms
172 * (handling the latter in software)
173 * crypto_devallowsoft > 0: Allow user requests only for transforms which
174 * are hardware-accelerated.
175 */
176 int crypto_devallowsoft = 1; /* only use hardware crypto */
177
178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
179 {
180 sysctl_createv(clog, 0, NULL, NULL,
181 CTLFLAG_PERMANENT,
182 CTLTYPE_NODE, "kern", NULL,
183 NULL, 0, NULL, 0,
184 CTL_KERN, CTL_EOL);
185 sysctl_createv(clog, 0, NULL, NULL,
186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 CTLTYPE_INT, "usercrypto",
188 SYSCTL_DESCR("Enable/disable user-mode access to "
189 "crypto support"),
190 NULL, 0, &crypto_usercrypto, 0,
191 CTL_KERN, CTL_CREATE, CTL_EOL);
192 sysctl_createv(clog, 0, NULL, NULL,
193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 CTLTYPE_INT, "userasymcrypto",
195 SYSCTL_DESCR("Enable/disable user-mode access to "
196 "asymmetric crypto support"),
197 NULL, 0, &crypto_userasymcrypto, 0,
198 CTL_KERN, CTL_CREATE, CTL_EOL);
199 sysctl_createv(clog, 0, NULL, NULL,
200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 CTLTYPE_INT, "cryptodevallowsoft",
202 SYSCTL_DESCR("Enable/disable use of software "
203 "asymmetric crypto support"),
204 NULL, 0, &crypto_devallowsoft, 0,
205 CTL_KERN, CTL_CREATE, CTL_EOL);
206 }
207
208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
209
210 /*
211 * Synchronization: read carefully, this is non-trivial.
212 *
213 * Crypto requests are submitted via crypto_dispatch. Typically
214 * these come in from network protocols at spl0 (output path) or
215 * spl[,soft]net (input path).
216 *
217 * Requests are typically passed on the driver directly, but they
218 * may also be queued for processing by a software interrupt thread,
219 * cryptointr, that runs at splsoftcrypto. This thread dispatches
220 * the requests to crypto drivers (h/w or s/w) who call crypto_done
221 * when a request is complete. Hardware crypto drivers are assumed
222 * to register their IRQ's as network devices so their interrupt handlers
223 * and subsequent "done callbacks" happen at spl[imp,net].
224 *
225 * Completed crypto ops are queued for a separate kernel thread that
226 * handles the callbacks at spl0. This decoupling insures the crypto
227 * driver interrupt service routine is not delayed while the callback
228 * takes place and that callbacks are delivered after a context switch
229 * (as opposed to a software interrupt that clients must block).
230 *
231 * This scheme is not intended for SMP machines.
232 */
233 static void cryptointr(void); /* swi thread to dispatch ops */
234 static void cryptoret(void); /* kernel thread for callbacks*/
235 static struct lwp *cryptothread;
236 static void crypto_destroy(void);
237 static int crypto_invoke(struct cryptop *crp, int hint);
238 static int crypto_kinvoke(struct cryptkop *krp, int hint);
239
240 static struct cryptostats cryptostats;
241 #ifdef CRYPTO_TIMING
242 static int crypto_timing = 0;
243 #endif
244
245 static int
246 crypto_init0(void)
247 {
248 int error;
249
250 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
251 cv_init(&cryptoret_cv, "crypto_wait");
252 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
253 0, "cryptop", NULL, IPL_NET);
254 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
255 0, "cryptodesc", NULL, IPL_NET);
256 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
257 0, "cryptkop", NULL, IPL_NET);
258
259 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
260 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
261 if (crypto_drivers == NULL) {
262 printf("crypto_init: cannot malloc driver table\n");
263 return 0;
264 }
265 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
266
267 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
268 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
269 (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
270 if (error) {
271 printf("crypto_init: cannot start cryptoret thread; error %d",
272 error);
273 crypto_destroy();
274 }
275
276 return 0;
277 }
278
279 void
280 crypto_init(void)
281 {
282 static ONCE_DECL(crypto_init_once);
283
284 RUN_ONCE(&crypto_init_once, crypto_init0);
285 }
286
287 static void
288 crypto_destroy(void)
289 {
290 /* XXX no wait to reclaim zones */
291 if (crypto_drivers != NULL)
292 free(crypto_drivers, M_CRYPTO_DATA);
293 unregister_swi(SWI_CRYPTO, cryptointr);
294 }
295
296 /*
297 * Create a new session. Must be called with crypto_mtx held.
298 */
299 int
300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
301 {
302 struct cryptoini *cr;
303 u_int32_t hid, lid;
304 int err = EINVAL;
305
306 KASSERT(mutex_owned(&crypto_mtx));
307
308 if (crypto_drivers == NULL)
309 goto done;
310
311 /*
312 * The algorithm we use here is pretty stupid; just use the
313 * first driver that supports all the algorithms we need.
314 *
315 * XXX We need more smarts here (in real life too, but that's
316 * XXX another story altogether).
317 */
318
319 for (hid = 0; hid < crypto_drivers_num; hid++) {
320 /*
321 * If it's not initialized or has remaining sessions
322 * referencing it, skip.
323 */
324 if (crypto_drivers[hid].cc_newsession == NULL ||
325 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
326 continue;
327
328 /* Hardware required -- ignore software drivers. */
329 if (hard > 0 &&
330 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
331 continue;
332 /* Software required -- ignore hardware drivers. */
333 if (hard < 0 &&
334 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
335 continue;
336
337 /* See if all the algorithms are supported. */
338 for (cr = cri; cr; cr = cr->cri_next)
339 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
340 break;
341
342 if (cr == NULL) {
343 /* Ok, all algorithms are supported. */
344
345 /*
346 * Can't do everything in one session.
347 *
348 * XXX Fix this. We need to inject a "virtual" session layer right
349 * XXX about here.
350 */
351
352 /* Call the driver initialization routine. */
353 lid = hid; /* Pass the driver ID. */
354 err = crypto_drivers[hid].cc_newsession(
355 crypto_drivers[hid].cc_arg, &lid, cri);
356 if (err == 0) {
357 (*sid) = hid;
358 (*sid) <<= 32;
359 (*sid) |= (lid & 0xffffffff);
360 crypto_drivers[hid].cc_sessions++;
361 }
362 goto done;
363 /*break;*/
364 }
365 }
366 done:
367 return err;
368 }
369
370 /*
371 * Delete an existing session (or a reserved session on an unregistered
372 * driver). Must be called with crypto_mtx mutex held.
373 */
374 int
375 crypto_freesession(u_int64_t sid)
376 {
377 u_int32_t hid;
378 int err = 0;
379
380 KASSERT(mutex_owned(&crypto_mtx));
381
382 if (crypto_drivers == NULL) {
383 err = EINVAL;
384 goto done;
385 }
386
387 /* Determine two IDs. */
388 hid = SESID2HID(sid);
389
390 if (hid >= crypto_drivers_num) {
391 err = ENOENT;
392 goto done;
393 }
394
395 if (crypto_drivers[hid].cc_sessions)
396 crypto_drivers[hid].cc_sessions--;
397
398 /* Call the driver cleanup routine, if available. */
399 if (crypto_drivers[hid].cc_freesession) {
400 err = crypto_drivers[hid].cc_freesession(
401 crypto_drivers[hid].cc_arg, sid);
402 }
403 else
404 err = 0;
405
406 /*
407 * If this was the last session of a driver marked as invalid,
408 * make the entry available for reuse.
409 */
410 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
411 crypto_drivers[hid].cc_sessions == 0)
412 bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
413
414 done:
415 return err;
416 }
417
418 /*
419 * Return an unused driver id. Used by drivers prior to registering
420 * support for the algorithms they handle.
421 */
422 int32_t
423 crypto_get_driverid(u_int32_t flags)
424 {
425 struct cryptocap *newdrv;
426 int i;
427
428 crypto_init(); /* XXX oh, this is foul! */
429
430 mutex_spin_enter(&crypto_mtx);
431 for (i = 0; i < crypto_drivers_num; i++)
432 if (crypto_drivers[i].cc_process == NULL &&
433 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
434 crypto_drivers[i].cc_sessions == 0)
435 break;
436
437 /* Out of entries, allocate some more. */
438 if (i == crypto_drivers_num) {
439 /* Be careful about wrap-around. */
440 if (2 * crypto_drivers_num <= crypto_drivers_num) {
441 mutex_spin_exit(&crypto_mtx);
442 printf("crypto: driver count wraparound!\n");
443 return -1;
444 }
445
446 newdrv = malloc(2 * crypto_drivers_num *
447 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
448 if (newdrv == NULL) {
449 mutex_spin_exit(&crypto_mtx);
450 printf("crypto: no space to expand driver table!\n");
451 return -1;
452 }
453
454 bcopy(crypto_drivers, newdrv,
455 crypto_drivers_num * sizeof(struct cryptocap));
456
457 crypto_drivers_num *= 2;
458
459 free(crypto_drivers, M_CRYPTO_DATA);
460 crypto_drivers = newdrv;
461 }
462
463 /* NB: state is zero'd on free */
464 crypto_drivers[i].cc_sessions = 1; /* Mark */
465 crypto_drivers[i].cc_flags = flags;
466
467 if (bootverbose)
468 printf("crypto: assign driver %u, flags %u\n", i, flags);
469
470 mutex_spin_exit(&crypto_mtx);
471
472 return i;
473 }
474
475 static struct cryptocap *
476 crypto_checkdriver(u_int32_t hid)
477 {
478 if (crypto_drivers == NULL)
479 return NULL;
480 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
481 }
482
483 /*
484 * Register support for a key-related algorithm. This routine
485 * is called once for each algorithm supported a driver.
486 */
487 int
488 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
489 int (*kprocess)(void*, struct cryptkop *, int),
490 void *karg)
491 {
492 struct cryptocap *cap;
493 int err;
494
495 mutex_spin_enter(&crypto_mtx);
496
497 cap = crypto_checkdriver(driverid);
498 if (cap != NULL &&
499 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
500 /*
501 * XXX Do some performance testing to determine placing.
502 * XXX We probably need an auxiliary data structure that
503 * XXX describes relative performances.
504 */
505
506 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
507 if (bootverbose) {
508 printf("crypto: driver %u registers key alg %u "
509 " flags %u\n",
510 driverid,
511 kalg,
512 flags
513 );
514 }
515
516 if (cap->cc_kprocess == NULL) {
517 cap->cc_karg = karg;
518 cap->cc_kprocess = kprocess;
519 }
520 err = 0;
521 } else
522 err = EINVAL;
523
524 mutex_spin_exit(&crypto_mtx);
525 return err;
526 }
527
528 /*
529 * Register support for a non-key-related algorithm. This routine
530 * is called once for each such algorithm supported by a driver.
531 */
532 int
533 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
534 u_int32_t flags,
535 int (*newses)(void*, u_int32_t*, struct cryptoini*),
536 int (*freeses)(void*, u_int64_t),
537 int (*process)(void*, struct cryptop *, int),
538 void *arg)
539 {
540 struct cryptocap *cap;
541 int err;
542
543 mutex_spin_enter(&crypto_mtx);
544
545 cap = crypto_checkdriver(driverid);
546 /* NB: algorithms are in the range [1..max] */
547 if (cap != NULL &&
548 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
549 /*
550 * XXX Do some performance testing to determine placing.
551 * XXX We probably need an auxiliary data structure that
552 * XXX describes relative performances.
553 */
554
555 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
556 cap->cc_max_op_len[alg] = maxoplen;
557 if (bootverbose) {
558 printf("crypto: driver %u registers alg %u "
559 "flags %u maxoplen %u\n",
560 driverid,
561 alg,
562 flags,
563 maxoplen
564 );
565 }
566
567 if (cap->cc_process == NULL) {
568 cap->cc_arg = arg;
569 cap->cc_newsession = newses;
570 cap->cc_process = process;
571 cap->cc_freesession = freeses;
572 cap->cc_sessions = 0; /* Unmark */
573 }
574 err = 0;
575 } else
576 err = EINVAL;
577
578 mutex_spin_exit(&crypto_mtx);
579 return err;
580 }
581
582 /*
583 * Unregister a crypto driver. If there are pending sessions using it,
584 * leave enough information around so that subsequent calls using those
585 * sessions will correctly detect the driver has been unregistered and
586 * reroute requests.
587 */
588 int
589 crypto_unregister(u_int32_t driverid, int alg)
590 {
591 int i, err;
592 u_int32_t ses;
593 struct cryptocap *cap;
594
595 mutex_spin_enter(&crypto_mtx);
596
597 cap = crypto_checkdriver(driverid);
598 if (cap != NULL &&
599 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
600 cap->cc_alg[alg] != 0) {
601 cap->cc_alg[alg] = 0;
602 cap->cc_max_op_len[alg] = 0;
603
604 /* Was this the last algorithm ? */
605 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
606 if (cap->cc_alg[i] != 0)
607 break;
608
609 if (i == CRYPTO_ALGORITHM_MAX + 1) {
610 ses = cap->cc_sessions;
611 bzero(cap, sizeof(struct cryptocap));
612 if (ses != 0) {
613 /*
614 * If there are pending sessions, just mark as invalid.
615 */
616 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
617 cap->cc_sessions = ses;
618 }
619 }
620 err = 0;
621 } else
622 err = EINVAL;
623
624 mutex_spin_exit(&crypto_mtx);
625 return err;
626 }
627
628 /*
629 * Unregister all algorithms associated with a crypto driver.
630 * If there are pending sessions using it, leave enough information
631 * around so that subsequent calls using those sessions will
632 * correctly detect the driver has been unregistered and reroute
633 * requests.
634 *
635 * XXX careful. Don't change this to call crypto_unregister() for each
636 * XXX registered algorithm unless you drop the mutex across the calls;
637 * XXX you can't take it recursively.
638 */
639 int
640 crypto_unregister_all(u_int32_t driverid)
641 {
642 int i, err;
643 u_int32_t ses;
644 struct cryptocap *cap;
645
646 mutex_spin_enter(&crypto_mtx);
647 cap = crypto_checkdriver(driverid);
648 if (cap != NULL) {
649 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
650 cap->cc_alg[i] = 0;
651 cap->cc_max_op_len[i] = 0;
652 }
653 ses = cap->cc_sessions;
654 bzero(cap, sizeof(struct cryptocap));
655 if (ses != 0) {
656 /*
657 * If there are pending sessions, just mark as invalid.
658 */
659 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
660 cap->cc_sessions = ses;
661 }
662 err = 0;
663 } else
664 err = EINVAL;
665
666 mutex_spin_exit(&crypto_mtx);
667 return err;
668 }
669
670 /*
671 * Clear blockage on a driver. The what parameter indicates whether
672 * the driver is now ready for cryptop's and/or cryptokop's.
673 */
674 int
675 crypto_unblock(u_int32_t driverid, int what)
676 {
677 struct cryptocap *cap;
678 int needwakeup, err;
679
680 mutex_spin_enter(&crypto_mtx);
681 cap = crypto_checkdriver(driverid);
682 if (cap != NULL) {
683 needwakeup = 0;
684 if (what & CRYPTO_SYMQ) {
685 needwakeup |= cap->cc_qblocked;
686 cap->cc_qblocked = 0;
687 }
688 if (what & CRYPTO_ASYMQ) {
689 needwakeup |= cap->cc_kqblocked;
690 cap->cc_kqblocked = 0;
691 }
692 err = 0;
693 mutex_spin_exit(&crypto_mtx);
694 if (needwakeup)
695 setsoftcrypto(softintr_cookie);
696 } else {
697 err = EINVAL;
698 mutex_spin_exit(&crypto_mtx);
699 }
700
701 return err;
702 }
703
704 /*
705 * Dispatch a crypto request to a driver or queue
706 * it, to be processed by the kernel thread.
707 */
708 int
709 crypto_dispatch(struct cryptop *crp)
710 {
711 u_int32_t hid = SESID2HID(crp->crp_sid);
712 int result;
713
714 mutex_spin_enter(&crypto_mtx);
715
716 cryptostats.cs_ops++;
717
718 #ifdef CRYPTO_TIMING
719 if (crypto_timing)
720 nanouptime(&crp->crp_tstamp);
721 #endif
722 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
723 struct cryptocap *cap;
724 /*
725 * Caller marked the request to be processed
726 * immediately; dispatch it directly to the
727 * driver unless the driver is currently blocked.
728 */
729 cap = crypto_checkdriver(hid);
730 if (cap && !cap->cc_qblocked) {
731 mutex_spin_exit(&crypto_mtx);
732 result = crypto_invoke(crp, 0);
733 if (result == ERESTART) {
734 /*
735 * The driver ran out of resources, mark the
736 * driver ``blocked'' for cryptop's and put
737 * the op on the queue.
738 */
739 mutex_spin_enter(&crypto_mtx);
740 crypto_drivers[hid].cc_qblocked = 1;
741 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
742 cryptostats.cs_blocks++;
743 mutex_spin_exit(&crypto_mtx);
744 }
745 goto out_released;
746 } else {
747 /*
748 * The driver is blocked, just queue the op until
749 * it unblocks and the swi thread gets kicked.
750 */
751 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
752 result = 0;
753 }
754 } else {
755 int wasempty = TAILQ_EMPTY(&crp_q);
756 /*
757 * Caller marked the request as ``ok to delay'';
758 * queue it for the swi thread. This is desirable
759 * when the operation is low priority and/or suitable
760 * for batching.
761 */
762 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
763 if (wasempty) {
764 mutex_spin_exit(&crypto_mtx);
765 setsoftcrypto(softintr_cookie);
766 result = 0;
767 goto out_released;
768 }
769
770 result = 0;
771 }
772
773 mutex_spin_exit(&crypto_mtx);
774 out_released:
775 return result;
776 }
777
778 /*
779 * Add an asymetric crypto request to a queue,
780 * to be processed by the kernel thread.
781 */
782 int
783 crypto_kdispatch(struct cryptkop *krp)
784 {
785 struct cryptocap *cap;
786 int result;
787
788 mutex_spin_enter(&crypto_mtx);
789 cryptostats.cs_kops++;
790
791 cap = crypto_checkdriver(krp->krp_hid);
792 if (cap && !cap->cc_kqblocked) {
793 mutex_spin_exit(&crypto_mtx);
794 result = crypto_kinvoke(krp, 0);
795 if (result == ERESTART) {
796 /*
797 * The driver ran out of resources, mark the
798 * driver ``blocked'' for cryptop's and put
799 * the op on the queue.
800 */
801 mutex_spin_enter(&crypto_mtx);
802 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
803 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
804 cryptostats.cs_kblocks++;
805 mutex_spin_exit(&crypto_mtx);
806 }
807 } else {
808 /*
809 * The driver is blocked, just queue the op until
810 * it unblocks and the swi thread gets kicked.
811 */
812 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
813 result = 0;
814 mutex_spin_exit(&crypto_mtx);
815 }
816
817 return result;
818 }
819
820 /*
821 * Dispatch an assymetric crypto request to the appropriate crypto devices.
822 */
823 static int
824 crypto_kinvoke(struct cryptkop *krp, int hint)
825 {
826 u_int32_t hid;
827 int error;
828
829 /* Sanity checks. */
830 if (krp == NULL)
831 return EINVAL;
832 if (krp->krp_callback == NULL) {
833 pool_put(&cryptkop_pool, krp);
834 return EINVAL;
835 }
836
837 for (hid = 0; hid < crypto_drivers_num; hid++) {
838 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
839 crypto_devallowsoft == 0)
840 continue;
841 if (crypto_drivers[hid].cc_kprocess == NULL)
842 continue;
843 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
844 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
845 continue;
846 break;
847 }
848 if (hid < crypto_drivers_num) {
849 krp->krp_hid = hid;
850 error = crypto_drivers[hid].cc_kprocess(
851 crypto_drivers[hid].cc_karg, krp, hint);
852 } else {
853 error = ENODEV;
854 }
855
856 if (error) {
857 krp->krp_status = error;
858 crypto_kdone(krp);
859 }
860 return 0;
861 }
862
863 #ifdef CRYPTO_TIMING
864 static void
865 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
866 {
867 struct timespec now, t;
868
869 nanouptime(&now);
870 t.tv_sec = now.tv_sec - tv->tv_sec;
871 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
872 if (t.tv_nsec < 0) {
873 t.tv_sec--;
874 t.tv_nsec += 1000000000;
875 }
876 timespecadd(&ts->acc, &t, &t);
877 if (timespeccmp(&t, &ts->min, <))
878 ts->min = t;
879 if (timespeccmp(&t, &ts->max, >))
880 ts->max = t;
881 ts->count++;
882
883 *tv = now;
884 }
885 #endif
886
887 /*
888 * Dispatch a crypto request to the appropriate crypto devices.
889 */
890 static int
891 crypto_invoke(struct cryptop *crp, int hint)
892 {
893 u_int32_t hid;
894 int (*process)(void*, struct cryptop *, int);
895
896 #ifdef CRYPTO_TIMING
897 if (crypto_timing)
898 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
899 #endif
900 /* Sanity checks. */
901 if (crp == NULL)
902 return EINVAL;
903 if (crp->crp_callback == NULL) {
904 crypto_freereq(crp);
905 return EINVAL;
906 }
907 if (crp->crp_desc == NULL) {
908 crp->crp_etype = EINVAL;
909 crypto_done(crp);
910 return 0;
911 }
912
913 hid = SESID2HID(crp->crp_sid);
914 if (hid < crypto_drivers_num) {
915 mutex_enter(&crypto_mtx);
916 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
917 crypto_freesession(crp->crp_sid);
918 process = crypto_drivers[hid].cc_process;
919 mutex_exit(&crypto_mtx);
920 } else {
921 process = NULL;
922 }
923
924 if (process == NULL) {
925 struct cryptodesc *crd;
926 u_int64_t nid = 0;
927
928 /*
929 * Driver has unregistered; migrate the session and return
930 * an error to the caller so they'll resubmit the op.
931 */
932 mutex_enter(&crypto_mtx);
933 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
934 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
935
936 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
937 crp->crp_sid = nid;
938
939 crp->crp_etype = EAGAIN;
940 mutex_exit(&crypto_mtx);
941
942 crypto_done(crp);
943 return 0;
944 } else {
945 /*
946 * Invoke the driver to process the request.
947 */
948 DPRINTF(("calling process for %08x\n", (uint32_t)crp));
949 return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
950 }
951 }
952
953 /*
954 * Release a set of crypto descriptors.
955 */
956 void
957 crypto_freereq(struct cryptop *crp)
958 {
959 struct cryptodesc *crd;
960
961 if (crp == NULL)
962 return;
963
964 while ((crd = crp->crp_desc) != NULL) {
965 crp->crp_desc = crd->crd_next;
966 pool_put(&cryptodesc_pool, crd);
967 }
968 cv_destroy(&crp->crp_cv);
969 pool_put(&cryptop_pool, crp);
970 }
971
972 /*
973 * Acquire a set of crypto descriptors.
974 */
975 struct cryptop *
976 crypto_getreq(int num)
977 {
978 struct cryptodesc *crd;
979 struct cryptop *crp;
980
981 crp = pool_get(&cryptop_pool, 0);
982 if (crp == NULL) {
983 return NULL;
984 }
985 bzero(crp, sizeof(struct cryptop));
986 cv_init(&crp->crp_cv, "crydev");
987
988 while (num--) {
989 crd = pool_get(&cryptodesc_pool, 0);
990 if (crd == NULL) {
991 crypto_freereq(crp);
992 return NULL;
993 }
994
995 bzero(crd, sizeof(struct cryptodesc));
996 crd->crd_next = crp->crp_desc;
997 crp->crp_desc = crd;
998 }
999
1000 return crp;
1001 }
1002
1003 /*
1004 * Invoke the callback on behalf of the driver.
1005 */
1006 void
1007 crypto_done(struct cryptop *crp)
1008 {
1009 int wasempty;
1010
1011 if (crp->crp_etype != 0)
1012 cryptostats.cs_errs++;
1013 #ifdef CRYPTO_TIMING
1014 if (crypto_timing)
1015 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1016 #endif
1017
1018 crp->crp_flags |= CRYPTO_F_DONE;
1019
1020 /*
1021 * Normal case; queue the callback for the thread.
1022 *
1023 * The return queue is manipulated by the swi thread
1024 * and, potentially, by crypto device drivers calling
1025 * back to mark operations completed. Thus we need
1026 * to mask both while manipulating the return queue.
1027 */
1028 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1029 /*
1030 * Do the callback directly. This is ok when the
1031 * callback routine does very little (e.g. the
1032 * /dev/crypto callback method just does a wakeup).
1033 */
1034 #ifdef CRYPTO_TIMING
1035 if (crypto_timing) {
1036 /*
1037 * NB: We must copy the timestamp before
1038 * doing the callback as the cryptop is
1039 * likely to be reclaimed.
1040 */
1041 struct timespec t = crp->crp_tstamp;
1042 crypto_tstat(&cryptostats.cs_cb, &t);
1043 crp->crp_callback(crp);
1044 crypto_tstat(&cryptostats.cs_finis, &t);
1045 } else
1046 #endif
1047 crp->crp_callback(crp);
1048 } else {
1049 mutex_spin_enter(&crypto_mtx);
1050 wasempty = TAILQ_EMPTY(&crp_ret_q);
1051 DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
1052 crp->crp_flags |= CRYPTO_F_ONRETQ;
1053 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1054 if (wasempty) {
1055 DPRINTF(("crypto_done: waking cryptoret, %08x " \
1056 "hit empty queue\n.", (uint32_t)crp));
1057 cv_signal(&cryptoret_cv);
1058 }
1059 mutex_spin_exit(&crypto_mtx);
1060 }
1061 }
1062
1063 /*
1064 * Invoke the callback on behalf of the driver.
1065 */
1066 void
1067 crypto_kdone(struct cryptkop *krp)
1068 {
1069 int wasempty;
1070
1071 if (krp->krp_status != 0)
1072 cryptostats.cs_kerrs++;
1073
1074 krp->krp_flags |= CRYPTO_F_DONE;
1075
1076 /*
1077 * The return queue is manipulated by the swi thread
1078 * and, potentially, by crypto device drivers calling
1079 * back to mark operations completed. Thus we need
1080 * to mask both while manipulating the return queue.
1081 */
1082 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1083 krp->krp_callback(krp);
1084 } else {
1085 mutex_spin_enter(&crypto_mtx);
1086 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1087 krp->krp_flags |= CRYPTO_F_ONRETQ;
1088 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1089 if (wasempty)
1090 cv_signal(&cryptoret_cv);
1091 mutex_spin_exit(&crypto_mtx);
1092 }
1093 }
1094
1095 int
1096 crypto_getfeat(int *featp)
1097 {
1098 int hid, kalg, feat = 0;
1099
1100 mutex_spin_enter(&crypto_mtx);
1101
1102 if (crypto_userasymcrypto == 0)
1103 goto out;
1104
1105 for (hid = 0; hid < crypto_drivers_num; hid++) {
1106 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1107 crypto_devallowsoft == 0) {
1108 continue;
1109 }
1110 if (crypto_drivers[hid].cc_kprocess == NULL)
1111 continue;
1112 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1113 if ((crypto_drivers[hid].cc_kalg[kalg] &
1114 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1115 feat |= 1 << kalg;
1116 }
1117 out:
1118 mutex_spin_exit(&crypto_mtx);
1119 *featp = feat;
1120 return (0);
1121 }
1122
1123 /*
1124 * Software interrupt thread to dispatch crypto requests.
1125 */
1126 static void
1127 cryptointr(void)
1128 {
1129 struct cryptop *crp, *submit;
1130 struct cryptkop *krp;
1131 struct cryptocap *cap;
1132 int result, hint;
1133
1134 printf("crypto softint\n");
1135 cryptostats.cs_intrs++;
1136 mutex_spin_enter(&crypto_mtx);
1137 do {
1138 /*
1139 * Find the first element in the queue that can be
1140 * processed and look-ahead to see if multiple ops
1141 * are ready for the same driver.
1142 */
1143 submit = NULL;
1144 hint = 0;
1145 TAILQ_FOREACH(crp, &crp_q, crp_next) {
1146 u_int32_t hid = SESID2HID(crp->crp_sid);
1147 cap = crypto_checkdriver(hid);
1148 if (cap == NULL || cap->cc_process == NULL) {
1149 /* Op needs to be migrated, process it. */
1150 if (submit == NULL)
1151 submit = crp;
1152 break;
1153 }
1154 if (!cap->cc_qblocked) {
1155 if (submit != NULL) {
1156 /*
1157 * We stop on finding another op,
1158 * regardless whether its for the same
1159 * driver or not. We could keep
1160 * searching the queue but it might be
1161 * better to just use a per-driver
1162 * queue instead.
1163 */
1164 if (SESID2HID(submit->crp_sid) == hid)
1165 hint = CRYPTO_HINT_MORE;
1166 break;
1167 } else {
1168 submit = crp;
1169 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1170 break;
1171 /* keep scanning for more are q'd */
1172 }
1173 }
1174 }
1175 if (submit != NULL) {
1176 TAILQ_REMOVE(&crp_q, submit, crp_next);
1177 mutex_spin_exit(&crypto_mtx);
1178 result = crypto_invoke(submit, hint);
1179 /* we must take here as the TAILQ op or kinvoke
1180 may need this mutex below. sigh. */
1181 mutex_spin_enter(&crypto_mtx);
1182 if (result == ERESTART) {
1183 /*
1184 * The driver ran out of resources, mark the
1185 * driver ``blocked'' for cryptop's and put
1186 * the request back in the queue. It would
1187 * best to put the request back where we got
1188 * it but that's hard so for now we put it
1189 * at the front. This should be ok; putting
1190 * it at the end does not work.
1191 */
1192 /* XXX validate sid again? */
1193 crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1194 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1195 cryptostats.cs_blocks++;
1196 }
1197 }
1198
1199 /* As above, but for key ops */
1200 TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1201 cap = crypto_checkdriver(krp->krp_hid);
1202 if (cap == NULL || cap->cc_kprocess == NULL) {
1203 /* Op needs to be migrated, process it. */
1204 break;
1205 }
1206 if (!cap->cc_kqblocked)
1207 break;
1208 }
1209 if (krp != NULL) {
1210 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1211 mutex_spin_exit(&crypto_mtx);
1212 result = crypto_kinvoke(krp, 0);
1213 /* the next iteration will want the mutex. :-/ */
1214 mutex_spin_enter(&crypto_mtx);
1215 if (result == ERESTART) {
1216 /*
1217 * The driver ran out of resources, mark the
1218 * driver ``blocked'' for cryptkop's and put
1219 * the request back in the queue. It would
1220 * best to put the request back where we got
1221 * it but that's hard so for now we put it
1222 * at the front. This should be ok; putting
1223 * it at the end does not work.
1224 */
1225 /* XXX validate sid again? */
1226 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1227 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1228 cryptostats.cs_kblocks++;
1229 }
1230 }
1231 } while (submit != NULL || krp != NULL);
1232 mutex_spin_exit(&crypto_mtx);
1233 }
1234
1235 /*
1236 * Kernel thread to do callbacks.
1237 */
1238 static void
1239 cryptoret(void)
1240 {
1241 struct cryptop *crp;
1242 struct cryptkop *krp;
1243
1244 mutex_spin_enter(&crypto_mtx);
1245 for (;;) {
1246 crp = TAILQ_FIRST(&crp_ret_q);
1247 if (crp != NULL) {
1248 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1249 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1250 }
1251 krp = TAILQ_FIRST(&crp_ret_kq);
1252 if (krp != NULL) {
1253 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1254 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1255 }
1256
1257 /* drop before calling any callbacks. */
1258 if (crp == NULL && krp == NULL) {
1259 cryptostats.cs_rets++;
1260 cv_wait(&cryptoret_cv, &crypto_mtx);
1261 continue;
1262 }
1263
1264 mutex_spin_exit(&crypto_mtx);
1265
1266 if (crp != NULL) {
1267 #ifdef CRYPTO_TIMING
1268 if (crypto_timing) {
1269 /*
1270 * NB: We must copy the timestamp before
1271 * doing the callback as the cryptop is
1272 * likely to be reclaimed.
1273 */
1274 struct timespec t = crp->crp_tstamp;
1275 crypto_tstat(&cryptostats.cs_cb, &t);
1276 crp->crp_callback(crp);
1277 crypto_tstat(&cryptostats.cs_finis, &t);
1278 } else
1279 #endif
1280 {
1281 crp->crp_callback(crp);
1282 }
1283 }
1284 if (krp != NULL)
1285 krp->krp_callback(krp);
1286
1287 mutex_spin_enter(&crypto_mtx);
1288 }
1289 }
1290