Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.29
      1 /*	$NetBSD: crypto.c,v 1.29 2008/08/03 10:18:12 degroote Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.29 2008/08/03 10:18:12 degroote Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 
     69 #include "opt_ocf.h"
     70 #include <opencrypto/cryptodev.h>
     71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     72 
     73 kcondvar_t cryptoret_cv;
     74 kmutex_t crypto_mtx;
     75 
     76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     77   #define SWI_CRYPTO 17
     78   #define register_swi(lvl, fn)  \
     79   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
     80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     81   #define setsoftcrypto(x) softint_schedule(x)
     82 
     83 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
     84 
     85 /*
     86  * Crypto drivers register themselves by allocating a slot in the
     87  * crypto_drivers table with crypto_get_driverid() and then registering
     88  * each algorithm they support with crypto_register() and crypto_kregister().
     89  */
     90 static	struct cryptocap *crypto_drivers;
     91 static	int crypto_drivers_num;
     92 static	void* softintr_cookie;
     93 
     94 /*
     95  * There are two queues for crypto requests; one for symmetric (e.g.
     96  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     97  * See below for how synchronization is handled.
     98  */
     99 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    100 		TAILQ_HEAD_INITIALIZER(crp_q);
    101 static	TAILQ_HEAD(,cryptkop) crp_kq =
    102 		TAILQ_HEAD_INITIALIZER(crp_kq);
    103 
    104 /*
    105  * There are two queues for processing completed crypto requests; one
    106  * for the symmetric and one for the asymmetric ops.  We only need one
    107  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    108  * for how synchronization is handled.
    109  */
    110 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    111 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    112 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    113 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    114 
    115 /*
    116  * XXX these functions are ghastly hacks for when the submission
    117  * XXX routines discover a request that was not CBIMM is already
    118  * XXX done, and must be yanked from the retq (where _done) put it
    119  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    120  * XXX as the request is generally the last one queued.
    121  *
    122  *	 call with the lock held, or else.
    123  */
    124 int
    125 crypto_ret_q_remove(struct cryptop *crp)
    126 {
    127 	struct cryptop * acrp;
    128 
    129 	TAILQ_FOREACH_REVERSE(acrp, &crp_ret_q, crprethead, crp_next) {
    130 		if (acrp == crp) {
    131 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    132 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    133 			return 1;
    134 		}
    135 	}
    136 	return 0;
    137 }
    138 
    139 int
    140 crypto_ret_kq_remove(struct cryptkop *krp)
    141 {
    142 	struct cryptkop * akrp;
    143 
    144 	TAILQ_FOREACH_REVERSE(akrp, &crp_ret_kq, krprethead, krp_next) {
    145 		if (akrp == krp) {
    146 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    147 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    148 			return 1;
    149 		}
    150 	}
    151 	return 0;
    152 }
    153 
    154 /*
    155  * Crypto op and desciptor data structures are allocated
    156  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    157  */
    158 struct pool cryptop_pool;
    159 struct pool cryptodesc_pool;
    160 struct pool cryptkop_pool;
    161 
    162 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    163 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    164 /*
    165  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    166  * access to hardware versus software transforms as below:
    167  *
    168  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    169  *                              transforms, always
    170  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    171  *                              requests for non-accelerated transforms
    172  *                              (handling the latter in software)
    173  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    174  *                               are hardware-accelerated.
    175  */
    176 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    177 
    178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    179 {
    180 	sysctl_createv(clog, 0, NULL, NULL,
    181 		       CTLFLAG_PERMANENT,
    182 		       CTLTYPE_NODE, "kern", NULL,
    183 		       NULL, 0, NULL, 0,
    184 		       CTL_KERN, CTL_EOL);
    185 	sysctl_createv(clog, 0, NULL, NULL,
    186 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    187 		       CTLTYPE_INT, "usercrypto",
    188 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    189 			   "crypto support"),
    190 		       NULL, 0, &crypto_usercrypto, 0,
    191 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    192 	sysctl_createv(clog, 0, NULL, NULL,
    193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    194 		       CTLTYPE_INT, "userasymcrypto",
    195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    196 			   "asymmetric crypto support"),
    197 		       NULL, 0, &crypto_userasymcrypto, 0,
    198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    199 	sysctl_createv(clog, 0, NULL, NULL,
    200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    201 		       CTLTYPE_INT, "cryptodevallowsoft",
    202 		       SYSCTL_DESCR("Enable/disable use of software "
    203 			   "asymmetric crypto support"),
    204 		       NULL, 0, &crypto_devallowsoft, 0,
    205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    206 }
    207 
    208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    209 
    210 /*
    211  * Synchronization: read carefully, this is non-trivial.
    212  *
    213  * Crypto requests are submitted via crypto_dispatch.  Typically
    214  * these come in from network protocols at spl0 (output path) or
    215  * spl[,soft]net (input path).
    216  *
    217  * Requests are typically passed on the driver directly, but they
    218  * may also be queued for processing by a software interrupt thread,
    219  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    220  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    221  * when a request is complete.  Hardware crypto drivers are assumed
    222  * to register their IRQ's as network devices so their interrupt handlers
    223  * and subsequent "done callbacks" happen at spl[imp,net].
    224  *
    225  * Completed crypto ops are queued for a separate kernel thread that
    226  * handles the callbacks at spl0.  This decoupling insures the crypto
    227  * driver interrupt service routine is not delayed while the callback
    228  * takes place and that callbacks are delivered after a context switch
    229  * (as opposed to a software interrupt that clients must block).
    230  *
    231  * This scheme is not intended for SMP machines.
    232  */
    233 static	void cryptointr(void);		/* swi thread to dispatch ops */
    234 static	void cryptoret(void);		/* kernel thread for callbacks*/
    235 static	struct lwp *cryptothread;
    236 static	void crypto_destroy(void);
    237 static	int crypto_invoke(struct cryptop *crp, int hint);
    238 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    239 
    240 static struct cryptostats cryptostats;
    241 #ifdef CRYPTO_TIMING
    242 static	int crypto_timing = 0;
    243 #endif
    244 
    245 static int
    246 crypto_init0(void)
    247 {
    248 	int error;
    249 
    250 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
    251 	cv_init(&cryptoret_cv, "crypto_wait");
    252 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    253 		  0, "cryptop", NULL, IPL_NET);
    254 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    255 		  0, "cryptodesc", NULL, IPL_NET);
    256 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    257 		  0, "cryptkop", NULL, IPL_NET);
    258 
    259 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    260 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    261 	if (crypto_drivers == NULL) {
    262 		printf("crypto_init: cannot malloc driver table\n");
    263 		return 0;
    264 	}
    265 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    266 
    267 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    268 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    269 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
    270 	if (error) {
    271 		printf("crypto_init: cannot start cryptoret thread; error %d",
    272 			error);
    273 		crypto_destroy();
    274 	}
    275 
    276 	return 0;
    277 }
    278 
    279 void
    280 crypto_init(void)
    281 {
    282 	static ONCE_DECL(crypto_init_once);
    283 
    284 	RUN_ONCE(&crypto_init_once, crypto_init0);
    285 }
    286 
    287 static void
    288 crypto_destroy(void)
    289 {
    290 	/* XXX no wait to reclaim zones */
    291 	if (crypto_drivers != NULL)
    292 		free(crypto_drivers, M_CRYPTO_DATA);
    293 	unregister_swi(SWI_CRYPTO, cryptointr);
    294 }
    295 
    296 /*
    297  * Create a new session.  Must be called with crypto_mtx held.
    298  */
    299 int
    300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    301 {
    302 	struct cryptoini *cr;
    303 	u_int32_t hid, lid;
    304 	int err = EINVAL;
    305 
    306 	KASSERT(mutex_owned(&crypto_mtx));
    307 
    308 	if (crypto_drivers == NULL)
    309 		goto done;
    310 
    311 	/*
    312 	 * The algorithm we use here is pretty stupid; just use the
    313 	 * first driver that supports all the algorithms we need.
    314 	 *
    315 	 * XXX We need more smarts here (in real life too, but that's
    316 	 * XXX another story altogether).
    317 	 */
    318 
    319 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    320 		/*
    321 		 * If it's not initialized or has remaining sessions
    322 		 * referencing it, skip.
    323 		 */
    324 		if (crypto_drivers[hid].cc_newsession == NULL ||
    325 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    326 			continue;
    327 
    328 		/* Hardware required -- ignore software drivers. */
    329 		if (hard > 0 &&
    330 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    331 			continue;
    332 		/* Software required -- ignore hardware drivers. */
    333 		if (hard < 0 &&
    334 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    335 			continue;
    336 
    337 		/* See if all the algorithms are supported. */
    338 		for (cr = cri; cr; cr = cr->cri_next)
    339 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0)
    340 				break;
    341 
    342 		if (cr == NULL) {
    343 			/* Ok, all algorithms are supported. */
    344 
    345 			/*
    346 			 * Can't do everything in one session.
    347 			 *
    348 			 * XXX Fix this. We need to inject a "virtual" session layer right
    349 			 * XXX about here.
    350 			 */
    351 
    352 			/* Call the driver initialization routine. */
    353 			lid = hid;		/* Pass the driver ID. */
    354 			err = crypto_drivers[hid].cc_newsession(
    355 					crypto_drivers[hid].cc_arg, &lid, cri);
    356 			if (err == 0) {
    357 				(*sid) = hid;
    358 				(*sid) <<= 32;
    359 				(*sid) |= (lid & 0xffffffff);
    360 				crypto_drivers[hid].cc_sessions++;
    361 			}
    362 			goto done;
    363 			/*break;*/
    364 		}
    365 	}
    366 done:
    367 	return err;
    368 }
    369 
    370 /*
    371  * Delete an existing session (or a reserved session on an unregistered
    372  * driver).  Must be called with crypto_mtx mutex held.
    373  */
    374 int
    375 crypto_freesession(u_int64_t sid)
    376 {
    377 	u_int32_t hid;
    378 	int err = 0;
    379 
    380 	KASSERT(mutex_owned(&crypto_mtx));
    381 
    382 	if (crypto_drivers == NULL) {
    383 		err = EINVAL;
    384 		goto done;
    385 	}
    386 
    387 	/* Determine two IDs. */
    388 	hid = SESID2HID(sid);
    389 
    390 	if (hid >= crypto_drivers_num) {
    391 		err = ENOENT;
    392 		goto done;
    393 	}
    394 
    395 	if (crypto_drivers[hid].cc_sessions)
    396 		crypto_drivers[hid].cc_sessions--;
    397 
    398 	/* Call the driver cleanup routine, if available. */
    399 	if (crypto_drivers[hid].cc_freesession) {
    400 		err = crypto_drivers[hid].cc_freesession(
    401 				crypto_drivers[hid].cc_arg, sid);
    402 	}
    403 	else
    404 		err = 0;
    405 
    406 	/*
    407 	 * If this was the last session of a driver marked as invalid,
    408 	 * make the entry available for reuse.
    409 	 */
    410 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    411 	    crypto_drivers[hid].cc_sessions == 0)
    412 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
    413 
    414 done:
    415 	return err;
    416 }
    417 
    418 /*
    419  * Return an unused driver id.  Used by drivers prior to registering
    420  * support for the algorithms they handle.
    421  */
    422 int32_t
    423 crypto_get_driverid(u_int32_t flags)
    424 {
    425 	struct cryptocap *newdrv;
    426 	int i;
    427 
    428 	crypto_init();		/* XXX oh, this is foul! */
    429 
    430 	mutex_spin_enter(&crypto_mtx);
    431 	for (i = 0; i < crypto_drivers_num; i++)
    432 		if (crypto_drivers[i].cc_process == NULL &&
    433 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    434 		    crypto_drivers[i].cc_sessions == 0)
    435 			break;
    436 
    437 	/* Out of entries, allocate some more. */
    438 	if (i == crypto_drivers_num) {
    439 		/* Be careful about wrap-around. */
    440 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    441 			mutex_spin_exit(&crypto_mtx);
    442 			printf("crypto: driver count wraparound!\n");
    443 			return -1;
    444 		}
    445 
    446 		newdrv = malloc(2 * crypto_drivers_num *
    447 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    448 		if (newdrv == NULL) {
    449 			mutex_spin_exit(&crypto_mtx);
    450 			printf("crypto: no space to expand driver table!\n");
    451 			return -1;
    452 		}
    453 
    454 		bcopy(crypto_drivers, newdrv,
    455 		    crypto_drivers_num * sizeof(struct cryptocap));
    456 
    457 		crypto_drivers_num *= 2;
    458 
    459 		free(crypto_drivers, M_CRYPTO_DATA);
    460 		crypto_drivers = newdrv;
    461 	}
    462 
    463 	/* NB: state is zero'd on free */
    464 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    465 	crypto_drivers[i].cc_flags = flags;
    466 
    467 	if (bootverbose)
    468 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    469 
    470 	mutex_spin_exit(&crypto_mtx);
    471 
    472 	return i;
    473 }
    474 
    475 static struct cryptocap *
    476 crypto_checkdriver(u_int32_t hid)
    477 {
    478 	if (crypto_drivers == NULL)
    479 		return NULL;
    480 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    481 }
    482 
    483 /*
    484  * Register support for a key-related algorithm.  This routine
    485  * is called once for each algorithm supported a driver.
    486  */
    487 int
    488 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    489     int (*kprocess)(void*, struct cryptkop *, int),
    490     void *karg)
    491 {
    492 	struct cryptocap *cap;
    493 	int err;
    494 
    495 	mutex_spin_enter(&crypto_mtx);
    496 
    497 	cap = crypto_checkdriver(driverid);
    498 	if (cap != NULL &&
    499 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    500 		/*
    501 		 * XXX Do some performance testing to determine placing.
    502 		 * XXX We probably need an auxiliary data structure that
    503 		 * XXX describes relative performances.
    504 		 */
    505 
    506 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    507 		if (bootverbose) {
    508 			printf("crypto: driver %u registers key alg %u "
    509 			       " flags %u\n",
    510 				driverid,
    511 				kalg,
    512 				flags
    513 			);
    514 		}
    515 
    516 		if (cap->cc_kprocess == NULL) {
    517 			cap->cc_karg = karg;
    518 			cap->cc_kprocess = kprocess;
    519 		}
    520 		err = 0;
    521 	} else
    522 		err = EINVAL;
    523 
    524 	mutex_spin_exit(&crypto_mtx);
    525 	return err;
    526 }
    527 
    528 /*
    529  * Register support for a non-key-related algorithm.  This routine
    530  * is called once for each such algorithm supported by a driver.
    531  */
    532 int
    533 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    534     u_int32_t flags,
    535     int (*newses)(void*, u_int32_t*, struct cryptoini*),
    536     int (*freeses)(void*, u_int64_t),
    537     int (*process)(void*, struct cryptop *, int),
    538     void *arg)
    539 {
    540 	struct cryptocap *cap;
    541 	int err;
    542 
    543 	mutex_spin_enter(&crypto_mtx);
    544 
    545 	cap = crypto_checkdriver(driverid);
    546 	/* NB: algorithms are in the range [1..max] */
    547 	if (cap != NULL &&
    548 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    549 		/*
    550 		 * XXX Do some performance testing to determine placing.
    551 		 * XXX We probably need an auxiliary data structure that
    552 		 * XXX describes relative performances.
    553 		 */
    554 
    555 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    556 		cap->cc_max_op_len[alg] = maxoplen;
    557 		if (bootverbose) {
    558 			printf("crypto: driver %u registers alg %u "
    559 				"flags %u maxoplen %u\n",
    560 				driverid,
    561 				alg,
    562 				flags,
    563 				maxoplen
    564 			);
    565 		}
    566 
    567 		if (cap->cc_process == NULL) {
    568 			cap->cc_arg = arg;
    569 			cap->cc_newsession = newses;
    570 			cap->cc_process = process;
    571 			cap->cc_freesession = freeses;
    572 			cap->cc_sessions = 0;		/* Unmark */
    573 		}
    574 		err = 0;
    575 	} else
    576 		err = EINVAL;
    577 
    578 	mutex_spin_exit(&crypto_mtx);
    579 	return err;
    580 }
    581 
    582 /*
    583  * Unregister a crypto driver. If there are pending sessions using it,
    584  * leave enough information around so that subsequent calls using those
    585  * sessions will correctly detect the driver has been unregistered and
    586  * reroute requests.
    587  */
    588 int
    589 crypto_unregister(u_int32_t driverid, int alg)
    590 {
    591 	int i, err;
    592 	u_int32_t ses;
    593 	struct cryptocap *cap;
    594 
    595 	mutex_spin_enter(&crypto_mtx);
    596 
    597 	cap = crypto_checkdriver(driverid);
    598 	if (cap != NULL &&
    599 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    600 	    cap->cc_alg[alg] != 0) {
    601 		cap->cc_alg[alg] = 0;
    602 		cap->cc_max_op_len[alg] = 0;
    603 
    604 		/* Was this the last algorithm ? */
    605 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    606 			if (cap->cc_alg[i] != 0)
    607 				break;
    608 
    609 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    610 			ses = cap->cc_sessions;
    611 			bzero(cap, sizeof(struct cryptocap));
    612 			if (ses != 0) {
    613 				/*
    614 				 * If there are pending sessions, just mark as invalid.
    615 				 */
    616 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    617 				cap->cc_sessions = ses;
    618 			}
    619 		}
    620 		err = 0;
    621 	} else
    622 		err = EINVAL;
    623 
    624 	mutex_spin_exit(&crypto_mtx);
    625 	return err;
    626 }
    627 
    628 /*
    629  * Unregister all algorithms associated with a crypto driver.
    630  * If there are pending sessions using it, leave enough information
    631  * around so that subsequent calls using those sessions will
    632  * correctly detect the driver has been unregistered and reroute
    633  * requests.
    634  *
    635  * XXX careful.  Don't change this to call crypto_unregister() for each
    636  * XXX registered algorithm unless you drop the mutex across the calls;
    637  * XXX you can't take it recursively.
    638  */
    639 int
    640 crypto_unregister_all(u_int32_t driverid)
    641 {
    642 	int i, err;
    643 	u_int32_t ses;
    644 	struct cryptocap *cap;
    645 
    646 	mutex_spin_enter(&crypto_mtx);
    647 	cap = crypto_checkdriver(driverid);
    648 	if (cap != NULL) {
    649 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    650 			cap->cc_alg[i] = 0;
    651 			cap->cc_max_op_len[i] = 0;
    652 		}
    653 		ses = cap->cc_sessions;
    654 		bzero(cap, sizeof(struct cryptocap));
    655 		if (ses != 0) {
    656 			/*
    657 			 * If there are pending sessions, just mark as invalid.
    658 			 */
    659 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    660 			cap->cc_sessions = ses;
    661 		}
    662 		err = 0;
    663 	} else
    664 		err = EINVAL;
    665 
    666 	mutex_spin_exit(&crypto_mtx);
    667 	return err;
    668 }
    669 
    670 /*
    671  * Clear blockage on a driver.  The what parameter indicates whether
    672  * the driver is now ready for cryptop's and/or cryptokop's.
    673  */
    674 int
    675 crypto_unblock(u_int32_t driverid, int what)
    676 {
    677 	struct cryptocap *cap;
    678 	int needwakeup, err;
    679 
    680 	mutex_spin_enter(&crypto_mtx);
    681 	cap = crypto_checkdriver(driverid);
    682 	if (cap != NULL) {
    683 		needwakeup = 0;
    684 		if (what & CRYPTO_SYMQ) {
    685 			needwakeup |= cap->cc_qblocked;
    686 			cap->cc_qblocked = 0;
    687 		}
    688 		if (what & CRYPTO_ASYMQ) {
    689 			needwakeup |= cap->cc_kqblocked;
    690 			cap->cc_kqblocked = 0;
    691 		}
    692 		err = 0;
    693 		mutex_spin_exit(&crypto_mtx);
    694 		if (needwakeup)
    695 			setsoftcrypto(softintr_cookie);
    696 	} else {
    697 		err = EINVAL;
    698 		mutex_spin_exit(&crypto_mtx);
    699 	}
    700 
    701 	return err;
    702 }
    703 
    704 /*
    705  * Dispatch a crypto request to a driver or queue
    706  * it, to be processed by the kernel thread.
    707  */
    708 int
    709 crypto_dispatch(struct cryptop *crp)
    710 {
    711 	u_int32_t hid = SESID2HID(crp->crp_sid);
    712 	int result;
    713 
    714 	mutex_spin_enter(&crypto_mtx);
    715 
    716 	cryptostats.cs_ops++;
    717 
    718 #ifdef CRYPTO_TIMING
    719 	if (crypto_timing)
    720 		nanouptime(&crp->crp_tstamp);
    721 #endif
    722 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    723 		struct cryptocap *cap;
    724 		/*
    725 		 * Caller marked the request to be processed
    726 		 * immediately; dispatch it directly to the
    727 		 * driver unless the driver is currently blocked.
    728 		 */
    729 		cap = crypto_checkdriver(hid);
    730 		if (cap && !cap->cc_qblocked) {
    731 			mutex_spin_exit(&crypto_mtx);
    732 			result = crypto_invoke(crp, 0);
    733 			if (result == ERESTART) {
    734 				/*
    735 				 * The driver ran out of resources, mark the
    736 				 * driver ``blocked'' for cryptop's and put
    737 				 * the op on the queue.
    738 				 */
    739 				mutex_spin_enter(&crypto_mtx);
    740 				crypto_drivers[hid].cc_qblocked = 1;
    741 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    742 				cryptostats.cs_blocks++;
    743 				mutex_spin_exit(&crypto_mtx);
    744 			}
    745 			goto out_released;
    746 		} else {
    747 			/*
    748 			 * The driver is blocked, just queue the op until
    749 			 * it unblocks and the swi thread gets kicked.
    750 			 */
    751 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    752 			result = 0;
    753 		}
    754 	} else {
    755 		int wasempty = TAILQ_EMPTY(&crp_q);
    756 		/*
    757 		 * Caller marked the request as ``ok to delay'';
    758 		 * queue it for the swi thread.  This is desirable
    759 		 * when the operation is low priority and/or suitable
    760 		 * for batching.
    761 		 */
    762 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    763 		if (wasempty) {
    764 			mutex_spin_exit(&crypto_mtx);
    765 			setsoftcrypto(softintr_cookie);
    766 			result = 0;
    767 			goto out_released;
    768 		}
    769 
    770 		result = 0;
    771 	}
    772 
    773 	mutex_spin_exit(&crypto_mtx);
    774 out_released:
    775 	return result;
    776 }
    777 
    778 /*
    779  * Add an asymetric crypto request to a queue,
    780  * to be processed by the kernel thread.
    781  */
    782 int
    783 crypto_kdispatch(struct cryptkop *krp)
    784 {
    785 	struct cryptocap *cap;
    786 	int result;
    787 
    788 	mutex_spin_enter(&crypto_mtx);
    789 	cryptostats.cs_kops++;
    790 
    791 	cap = crypto_checkdriver(krp->krp_hid);
    792 	if (cap && !cap->cc_kqblocked) {
    793 		mutex_spin_exit(&crypto_mtx);
    794 		result = crypto_kinvoke(krp, 0);
    795 		if (result == ERESTART) {
    796 			/*
    797 			 * The driver ran out of resources, mark the
    798 			 * driver ``blocked'' for cryptop's and put
    799 			 * the op on the queue.
    800 			 */
    801 			mutex_spin_enter(&crypto_mtx);
    802 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    803 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    804 			cryptostats.cs_kblocks++;
    805 			mutex_spin_exit(&crypto_mtx);
    806 		}
    807 	} else {
    808 		/*
    809 		 * The driver is blocked, just queue the op until
    810 		 * it unblocks and the swi thread gets kicked.
    811 		 */
    812 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    813 		result = 0;
    814 		mutex_spin_exit(&crypto_mtx);
    815 	}
    816 
    817 	return result;
    818 }
    819 
    820 /*
    821  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    822  */
    823 static int
    824 crypto_kinvoke(struct cryptkop *krp, int hint)
    825 {
    826 	u_int32_t hid;
    827 	int error;
    828 
    829 	/* Sanity checks. */
    830 	if (krp == NULL)
    831 		return EINVAL;
    832 	if (krp->krp_callback == NULL) {
    833 		pool_put(&cryptkop_pool, krp);
    834 		return EINVAL;
    835 	}
    836 
    837 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    838 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    839 		    crypto_devallowsoft == 0)
    840 			continue;
    841 		if (crypto_drivers[hid].cc_kprocess == NULL)
    842 			continue;
    843 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    844 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    845 			continue;
    846 		break;
    847 	}
    848 	if (hid < crypto_drivers_num) {
    849 		krp->krp_hid = hid;
    850 		error = crypto_drivers[hid].cc_kprocess(
    851 				crypto_drivers[hid].cc_karg, krp, hint);
    852 	} else {
    853 		error = ENODEV;
    854 	}
    855 
    856 	if (error) {
    857 		krp->krp_status = error;
    858 		crypto_kdone(krp);
    859 	}
    860 	return 0;
    861 }
    862 
    863 #ifdef CRYPTO_TIMING
    864 static void
    865 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    866 {
    867 	struct timespec now, t;
    868 
    869 	nanouptime(&now);
    870 	t.tv_sec = now.tv_sec - tv->tv_sec;
    871 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    872 	if (t.tv_nsec < 0) {
    873 		t.tv_sec--;
    874 		t.tv_nsec += 1000000000;
    875 	}
    876 	timespecadd(&ts->acc, &t, &t);
    877 	if (timespeccmp(&t, &ts->min, <))
    878 		ts->min = t;
    879 	if (timespeccmp(&t, &ts->max, >))
    880 		ts->max = t;
    881 	ts->count++;
    882 
    883 	*tv = now;
    884 }
    885 #endif
    886 
    887 /*
    888  * Dispatch a crypto request to the appropriate crypto devices.
    889  */
    890 static int
    891 crypto_invoke(struct cryptop *crp, int hint)
    892 {
    893 	u_int32_t hid;
    894 	int (*process)(void*, struct cryptop *, int);
    895 
    896 #ifdef CRYPTO_TIMING
    897 	if (crypto_timing)
    898 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    899 #endif
    900 	/* Sanity checks. */
    901 	if (crp == NULL)
    902 		return EINVAL;
    903 	if (crp->crp_callback == NULL) {
    904 		crypto_freereq(crp);
    905 		return EINVAL;
    906 	}
    907 	if (crp->crp_desc == NULL) {
    908 		crp->crp_etype = EINVAL;
    909 		crypto_done(crp);
    910 		return 0;
    911 	}
    912 
    913 	hid = SESID2HID(crp->crp_sid);
    914 	if (hid < crypto_drivers_num) {
    915 		mutex_enter(&crypto_mtx);
    916 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    917 			crypto_freesession(crp->crp_sid);
    918 		process = crypto_drivers[hid].cc_process;
    919 		mutex_exit(&crypto_mtx);
    920 	} else {
    921 		process = NULL;
    922 	}
    923 
    924 	if (process == NULL) {
    925 		struct cryptodesc *crd;
    926 		u_int64_t nid = 0;
    927 
    928 		/*
    929 		 * Driver has unregistered; migrate the session and return
    930 		 * an error to the caller so they'll resubmit the op.
    931 		 */
    932 		mutex_enter(&crypto_mtx);
    933 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    934 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    935 
    936 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    937 			crp->crp_sid = nid;
    938 
    939 		crp->crp_etype = EAGAIN;
    940 		mutex_exit(&crypto_mtx);
    941 
    942 		crypto_done(crp);
    943 		return 0;
    944 	} else {
    945 		/*
    946 		 * Invoke the driver to process the request.
    947 		 */
    948 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
    949 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
    950 	}
    951 }
    952 
    953 /*
    954  * Release a set of crypto descriptors.
    955  */
    956 void
    957 crypto_freereq(struct cryptop *crp)
    958 {
    959 	struct cryptodesc *crd;
    960 
    961 	if (crp == NULL)
    962 		return;
    963 
    964 	while ((crd = crp->crp_desc) != NULL) {
    965 		crp->crp_desc = crd->crd_next;
    966 		pool_put(&cryptodesc_pool, crd);
    967 	}
    968 	cv_destroy(&crp->crp_cv);
    969 	pool_put(&cryptop_pool, crp);
    970 }
    971 
    972 /*
    973  * Acquire a set of crypto descriptors.
    974  */
    975 struct cryptop *
    976 crypto_getreq(int num)
    977 {
    978 	struct cryptodesc *crd;
    979 	struct cryptop *crp;
    980 
    981 	crp = pool_get(&cryptop_pool, 0);
    982 	if (crp == NULL) {
    983 		return NULL;
    984 	}
    985 	bzero(crp, sizeof(struct cryptop));
    986 	cv_init(&crp->crp_cv, "crydev");
    987 
    988 	while (num--) {
    989 		crd = pool_get(&cryptodesc_pool, 0);
    990 		if (crd == NULL) {
    991 			crypto_freereq(crp);
    992 			return NULL;
    993 		}
    994 
    995 		bzero(crd, sizeof(struct cryptodesc));
    996 		crd->crd_next = crp->crp_desc;
    997 		crp->crp_desc = crd;
    998 	}
    999 
   1000 	return crp;
   1001 }
   1002 
   1003 /*
   1004  * Invoke the callback on behalf of the driver.
   1005  */
   1006 void
   1007 crypto_done(struct cryptop *crp)
   1008 {
   1009 	int wasempty;
   1010 
   1011 	if (crp->crp_etype != 0)
   1012 		cryptostats.cs_errs++;
   1013 #ifdef CRYPTO_TIMING
   1014 	if (crypto_timing)
   1015 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1016 #endif
   1017 
   1018 	crp->crp_flags |= CRYPTO_F_DONE;
   1019 
   1020 	/*
   1021 	 * Normal case; queue the callback for the thread.
   1022 	 *
   1023 	 * The return queue is manipulated by the swi thread
   1024 	 * and, potentially, by crypto device drivers calling
   1025 	 * back to mark operations completed.  Thus we need
   1026 	 * to mask both while manipulating the return queue.
   1027 	 */
   1028   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1029 		/*
   1030 	 	* Do the callback directly.  This is ok when the
   1031   	 	* callback routine does very little (e.g. the
   1032 	 	* /dev/crypto callback method just does a wakeup).
   1033 	 	*/
   1034 #ifdef CRYPTO_TIMING
   1035 		if (crypto_timing) {
   1036 			/*
   1037 		 	* NB: We must copy the timestamp before
   1038 		 	* doing the callback as the cryptop is
   1039 		 	* likely to be reclaimed.
   1040 		 	*/
   1041 			struct timespec t = crp->crp_tstamp;
   1042 			crypto_tstat(&cryptostats.cs_cb, &t);
   1043 			crp->crp_callback(crp);
   1044 			crypto_tstat(&cryptostats.cs_finis, &t);
   1045 		} else
   1046 #endif
   1047 		crp->crp_callback(crp);
   1048 	} else {
   1049 		mutex_spin_enter(&crypto_mtx);
   1050 		wasempty = TAILQ_EMPTY(&crp_ret_q);
   1051 		DPRINTF(("crypto_done: queueing %08x\n", (uint32_t)crp));
   1052 		crp->crp_flags |= CRYPTO_F_ONRETQ;
   1053 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1054 		if (wasempty) {
   1055 			DPRINTF(("crypto_done: waking cryptoret, %08x " \
   1056 				"hit empty queue\n.", (uint32_t)crp));
   1057 			cv_signal(&cryptoret_cv);
   1058 		}
   1059 		mutex_spin_exit(&crypto_mtx);
   1060 	}
   1061 }
   1062 
   1063 /*
   1064  * Invoke the callback on behalf of the driver.
   1065  */
   1066 void
   1067 crypto_kdone(struct cryptkop *krp)
   1068 {
   1069 	int wasempty;
   1070 
   1071 	if (krp->krp_status != 0)
   1072 		cryptostats.cs_kerrs++;
   1073 
   1074 	krp->krp_flags |= CRYPTO_F_DONE;
   1075 
   1076 	/*
   1077 	 * The return queue is manipulated by the swi thread
   1078 	 * and, potentially, by crypto device drivers calling
   1079 	 * back to mark operations completed.  Thus we need
   1080 	 * to mask both while manipulating the return queue.
   1081 	 */
   1082 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1083 		krp->krp_callback(krp);
   1084 	} else {
   1085 		mutex_spin_enter(&crypto_mtx);
   1086 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1087 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1088 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1089 		if (wasempty)
   1090 			cv_signal(&cryptoret_cv);
   1091 		mutex_spin_exit(&crypto_mtx);
   1092 	}
   1093 }
   1094 
   1095 int
   1096 crypto_getfeat(int *featp)
   1097 {
   1098 	int hid, kalg, feat = 0;
   1099 
   1100 	mutex_spin_enter(&crypto_mtx);
   1101 
   1102 	if (crypto_userasymcrypto == 0)
   1103 		goto out;
   1104 
   1105 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1106 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1107 		    crypto_devallowsoft == 0) {
   1108 			continue;
   1109 		}
   1110 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1111 			continue;
   1112 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1113 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1114 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1115 				feat |=  1 << kalg;
   1116 	}
   1117 out:
   1118 	mutex_spin_exit(&crypto_mtx);
   1119 	*featp = feat;
   1120 	return (0);
   1121 }
   1122 
   1123 /*
   1124  * Software interrupt thread to dispatch crypto requests.
   1125  */
   1126 static void
   1127 cryptointr(void)
   1128 {
   1129 	struct cryptop *crp, *submit;
   1130 	struct cryptkop *krp;
   1131 	struct cryptocap *cap;
   1132 	int result, hint;
   1133 
   1134 	printf("crypto softint\n");
   1135 	cryptostats.cs_intrs++;
   1136 	mutex_spin_enter(&crypto_mtx);
   1137 	do {
   1138 		/*
   1139 		 * Find the first element in the queue that can be
   1140 		 * processed and look-ahead to see if multiple ops
   1141 		 * are ready for the same driver.
   1142 		 */
   1143 		submit = NULL;
   1144 		hint = 0;
   1145 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
   1146 			u_int32_t hid = SESID2HID(crp->crp_sid);
   1147 			cap = crypto_checkdriver(hid);
   1148 			if (cap == NULL || cap->cc_process == NULL) {
   1149 				/* Op needs to be migrated, process it. */
   1150 				if (submit == NULL)
   1151 					submit = crp;
   1152 				break;
   1153 			}
   1154 			if (!cap->cc_qblocked) {
   1155 				if (submit != NULL) {
   1156 					/*
   1157 					 * We stop on finding another op,
   1158 					 * regardless whether its for the same
   1159 					 * driver or not.  We could keep
   1160 					 * searching the queue but it might be
   1161 					 * better to just use a per-driver
   1162 					 * queue instead.
   1163 					 */
   1164 					if (SESID2HID(submit->crp_sid) == hid)
   1165 						hint = CRYPTO_HINT_MORE;
   1166 					break;
   1167 				} else {
   1168 					submit = crp;
   1169 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1170 						break;
   1171 					/* keep scanning for more are q'd */
   1172 				}
   1173 			}
   1174 		}
   1175 		if (submit != NULL) {
   1176 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1177 			mutex_spin_exit(&crypto_mtx);
   1178 			result = crypto_invoke(submit, hint);
   1179 			/* we must take here as the TAILQ op or kinvoke
   1180 			   may need this mutex below.  sigh. */
   1181 			mutex_spin_enter(&crypto_mtx);
   1182 			if (result == ERESTART) {
   1183 				/*
   1184 				 * The driver ran out of resources, mark the
   1185 				 * driver ``blocked'' for cryptop's and put
   1186 				 * the request back in the queue.  It would
   1187 				 * best to put the request back where we got
   1188 				 * it but that's hard so for now we put it
   1189 				 * at the front.  This should be ok; putting
   1190 				 * it at the end does not work.
   1191 				 */
   1192 				/* XXX validate sid again? */
   1193 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1194 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1195 				cryptostats.cs_blocks++;
   1196 			}
   1197 		}
   1198 
   1199 		/* As above, but for key ops */
   1200 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
   1201 			cap = crypto_checkdriver(krp->krp_hid);
   1202 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1203 				/* Op needs to be migrated, process it. */
   1204 				break;
   1205 			}
   1206 			if (!cap->cc_kqblocked)
   1207 				break;
   1208 		}
   1209 		if (krp != NULL) {
   1210 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1211 			mutex_spin_exit(&crypto_mtx);
   1212 			result = crypto_kinvoke(krp, 0);
   1213 			/* the next iteration will want the mutex. :-/ */
   1214 			mutex_spin_enter(&crypto_mtx);
   1215 			if (result == ERESTART) {
   1216 				/*
   1217 				 * The driver ran out of resources, mark the
   1218 				 * driver ``blocked'' for cryptkop's and put
   1219 				 * the request back in the queue.  It would
   1220 				 * best to put the request back where we got
   1221 				 * it but that's hard so for now we put it
   1222 				 * at the front.  This should be ok; putting
   1223 				 * it at the end does not work.
   1224 				 */
   1225 				/* XXX validate sid again? */
   1226 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1227 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1228 				cryptostats.cs_kblocks++;
   1229 			}
   1230 		}
   1231 	} while (submit != NULL || krp != NULL);
   1232 	mutex_spin_exit(&crypto_mtx);
   1233 }
   1234 
   1235 /*
   1236  * Kernel thread to do callbacks.
   1237  */
   1238 static void
   1239 cryptoret(void)
   1240 {
   1241 	struct cryptop *crp;
   1242 	struct cryptkop *krp;
   1243 
   1244 	mutex_spin_enter(&crypto_mtx);
   1245 	for (;;) {
   1246 		crp = TAILQ_FIRST(&crp_ret_q);
   1247 		if (crp != NULL) {
   1248 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1249 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1250 		}
   1251 		krp = TAILQ_FIRST(&crp_ret_kq);
   1252 		if (krp != NULL) {
   1253 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1254 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1255 		}
   1256 
   1257 		/* drop before calling any callbacks. */
   1258 		if (crp == NULL && krp == NULL) {
   1259 			cryptostats.cs_rets++;
   1260 			cv_wait(&cryptoret_cv, &crypto_mtx);
   1261 			continue;
   1262 		}
   1263 
   1264 		mutex_spin_exit(&crypto_mtx);
   1265 
   1266 		if (crp != NULL) {
   1267 #ifdef CRYPTO_TIMING
   1268 			if (crypto_timing) {
   1269 				/*
   1270 				 * NB: We must copy the timestamp before
   1271 				 * doing the callback as the cryptop is
   1272 				 * likely to be reclaimed.
   1273 				 */
   1274 				struct timespec t = crp->crp_tstamp;
   1275 				crypto_tstat(&cryptostats.cs_cb, &t);
   1276 				crp->crp_callback(crp);
   1277 				crypto_tstat(&cryptostats.cs_finis, &t);
   1278 			} else
   1279 #endif
   1280 			{
   1281 				crp->crp_callback(crp);
   1282 			}
   1283 		}
   1284 		if (krp != NULL)
   1285 			krp->krp_callback(krp);
   1286 
   1287 		mutex_spin_enter(&crypto_mtx);
   1288 	}
   1289 }
   1290