Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.29.4.2
      1 /*	$NetBSD: crypto.c,v 1.29.4.2 2009/05/03 17:24:45 snj Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.29.4.2 2009/05/03 17:24:45 snj Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 
     69 #include "opt_ocf.h"
     70 #include <opencrypto/cryptodev.h>
     71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     72 
     73 kcondvar_t cryptoret_cv;
     74 kmutex_t crypto_mtx;
     75 
     76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     77   #define SWI_CRYPTO 17
     78   #define register_swi(lvl, fn)  \
     79   softint_establish(SOFTINT_NET, (void (*)(void*))fn, NULL)
     80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     81   #define setsoftcrypto(x) softint_schedule(x)
     82 
     83 #define	SESID2HID(sid)	(((sid) >> 32) & 0xffffffff)
     84 
     85 int crypto_ret_q_check(struct cryptop *);
     86 
     87 /*
     88  * Crypto drivers register themselves by allocating a slot in the
     89  * crypto_drivers table with crypto_get_driverid() and then registering
     90  * each algorithm they support with crypto_register() and crypto_kregister().
     91  */
     92 static	struct cryptocap *crypto_drivers;
     93 static	int crypto_drivers_num;
     94 static	void* softintr_cookie;
     95 
     96 /*
     97  * There are two queues for crypto requests; one for symmetric (e.g.
     98  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     99  * See below for how synchronization is handled.
    100  */
    101 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    102 		TAILQ_HEAD_INITIALIZER(crp_q);
    103 static	TAILQ_HEAD(,cryptkop) crp_kq =
    104 		TAILQ_HEAD_INITIALIZER(crp_kq);
    105 
    106 /*
    107  * There are two queues for processing completed crypto requests; one
    108  * for the symmetric and one for the asymmetric ops.  We only need one
    109  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    110  * for how synchronization is handled.
    111  */
    112 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    113 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    114 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    115 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    116 
    117 /*
    118  * XXX these functions are ghastly hacks for when the submission
    119  * XXX routines discover a request that was not CBIMM is already
    120  * XXX done, and must be yanked from the retq (where _done) put it
    121  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    122  * XXX as the request is generally the last one queued.
    123  *
    124  *	 call with the lock held, or else.
    125  */
    126 int
    127 crypto_ret_q_remove(struct cryptop *crp)
    128 {
    129 	struct cryptop * acrp, *next;
    130 
    131 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    132 		if (acrp == crp) {
    133 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    134 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    135 			return 1;
    136 		}
    137 	}
    138 	return 0;
    139 }
    140 
    141 int
    142 crypto_ret_kq_remove(struct cryptkop *krp)
    143 {
    144 	struct cryptkop * akrp, *next;
    145 
    146 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    147 		if (akrp == krp) {
    148 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    149 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    150 			return 1;
    151 		}
    152 	}
    153 	return 0;
    154 }
    155 
    156 /*
    157  * Crypto op and desciptor data structures are allocated
    158  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    159  */
    160 struct pool cryptop_pool;
    161 struct pool cryptodesc_pool;
    162 struct pool cryptkop_pool;
    163 
    164 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    165 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    166 /*
    167  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    168  * access to hardware versus software transforms as below:
    169  *
    170  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    171  *                              transforms, always
    172  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    173  *                              requests for non-accelerated transforms
    174  *                              (handling the latter in software)
    175  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    176  *                               are hardware-accelerated.
    177  */
    178 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    179 
    180 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    181 {
    182 	sysctl_createv(clog, 0, NULL, NULL,
    183 		       CTLFLAG_PERMANENT,
    184 		       CTLTYPE_NODE, "kern", NULL,
    185 		       NULL, 0, NULL, 0,
    186 		       CTL_KERN, CTL_EOL);
    187 	sysctl_createv(clog, 0, NULL, NULL,
    188 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    189 		       CTLTYPE_INT, "usercrypto",
    190 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    191 			   "crypto support"),
    192 		       NULL, 0, &crypto_usercrypto, 0,
    193 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    194 	sysctl_createv(clog, 0, NULL, NULL,
    195 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    196 		       CTLTYPE_INT, "userasymcrypto",
    197 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    198 			   "asymmetric crypto support"),
    199 		       NULL, 0, &crypto_userasymcrypto, 0,
    200 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    201 	sysctl_createv(clog, 0, NULL, NULL,
    202 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    203 		       CTLTYPE_INT, "cryptodevallowsoft",
    204 		       SYSCTL_DESCR("Enable/disable use of software "
    205 			   "asymmetric crypto support"),
    206 		       NULL, 0, &crypto_devallowsoft, 0,
    207 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    208 }
    209 
    210 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    211 
    212 /*
    213  * Synchronization: read carefully, this is non-trivial.
    214  *
    215  * Crypto requests are submitted via crypto_dispatch.  Typically
    216  * these come in from network protocols at spl0 (output path) or
    217  * spl[,soft]net (input path).
    218  *
    219  * Requests are typically passed on the driver directly, but they
    220  * may also be queued for processing by a software interrupt thread,
    221  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    222  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    223  * when a request is complete.  Hardware crypto drivers are assumed
    224  * to register their IRQ's as network devices so their interrupt handlers
    225  * and subsequent "done callbacks" happen at spl[imp,net].
    226  *
    227  * Completed crypto ops are queued for a separate kernel thread that
    228  * handles the callbacks at spl0.  This decoupling insures the crypto
    229  * driver interrupt service routine is not delayed while the callback
    230  * takes place and that callbacks are delivered after a context switch
    231  * (as opposed to a software interrupt that clients must block).
    232  *
    233  * This scheme is not intended for SMP machines.
    234  */
    235 static	void cryptointr(void);		/* swi thread to dispatch ops */
    236 static	void cryptoret(void);		/* kernel thread for callbacks*/
    237 static	struct lwp *cryptothread;
    238 static	void crypto_destroy(void);
    239 static	int crypto_invoke(struct cryptop *crp, int hint);
    240 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    241 
    242 static struct cryptostats cryptostats;
    243 #ifdef CRYPTO_TIMING
    244 static	int crypto_timing = 0;
    245 #endif
    246 
    247 static int
    248 crypto_init0(void)
    249 {
    250 	int error;
    251 
    252 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
    253 	cv_init(&cryptoret_cv, "crypto_wait");
    254 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    255 		  0, "cryptop", NULL, IPL_NET);
    256 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    257 		  0, "cryptodesc", NULL, IPL_NET);
    258 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    259 		  0, "cryptkop", NULL, IPL_NET);
    260 
    261 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    262 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    263 	if (crypto_drivers == NULL) {
    264 		printf("crypto_init: cannot malloc driver table\n");
    265 		return 0;
    266 	}
    267 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    268 
    269 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    270 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    271 	    (void (*)(void*))cryptoret, NULL, &cryptothread, "cryptoret");
    272 	if (error) {
    273 		printf("crypto_init: cannot start cryptoret thread; error %d",
    274 			error);
    275 		crypto_destroy();
    276 	}
    277 
    278 	return 0;
    279 }
    280 
    281 void
    282 crypto_init(void)
    283 {
    284 	static ONCE_DECL(crypto_init_once);
    285 
    286 	RUN_ONCE(&crypto_init_once, crypto_init0);
    287 }
    288 
    289 static void
    290 crypto_destroy(void)
    291 {
    292 	/* XXX no wait to reclaim zones */
    293 	if (crypto_drivers != NULL)
    294 		free(crypto_drivers, M_CRYPTO_DATA);
    295 	unregister_swi(SWI_CRYPTO, cryptointr);
    296 }
    297 
    298 /*
    299  * Create a new session.  Must be called with crypto_mtx held.
    300  */
    301 int
    302 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    303 {
    304 	struct cryptoini *cr;
    305 	u_int32_t hid, lid;
    306 	int err = EINVAL;
    307 
    308 	KASSERT(mutex_owned(&crypto_mtx));
    309 
    310 	if (crypto_drivers == NULL)
    311 		goto done;
    312 
    313 	/*
    314 	 * The algorithm we use here is pretty stupid; just use the
    315 	 * first driver that supports all the algorithms we need.
    316 	 *
    317 	 * XXX We need more smarts here (in real life too, but that's
    318 	 * XXX another story altogether).
    319 	 */
    320 
    321 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    322 		/*
    323 		 * If it's not initialized or has remaining sessions
    324 		 * referencing it, skip.
    325 		 */
    326 		if (crypto_drivers[hid].cc_newsession == NULL ||
    327 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    328 			continue;
    329 
    330 		/* Hardware required -- ignore software drivers. */
    331 		if (hard > 0 &&
    332 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    333 			continue;
    334 		/* Software required -- ignore hardware drivers. */
    335 		if (hard < 0 &&
    336 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    337 			continue;
    338 
    339 		/* See if all the algorithms are supported. */
    340 		for (cr = cri; cr; cr = cr->cri_next)
    341 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    342 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    343 				break;
    344 			}
    345 
    346 		if (cr == NULL) {
    347 			/* Ok, all algorithms are supported. */
    348 
    349 			/*
    350 			 * Can't do everything in one session.
    351 			 *
    352 			 * XXX Fix this. We need to inject a "virtual" session layer right
    353 			 * XXX about here.
    354 			 */
    355 
    356 			/* Call the driver initialization routine. */
    357 			lid = hid;		/* Pass the driver ID. */
    358 			err = crypto_drivers[hid].cc_newsession(
    359 					crypto_drivers[hid].cc_arg, &lid, cri);
    360 			if (err == 0) {
    361 				(*sid) = hid;
    362 				(*sid) <<= 32;
    363 				(*sid) |= (lid & 0xffffffff);
    364 				crypto_drivers[hid].cc_sessions++;
    365 			}
    366 			goto done;
    367 			/*break;*/
    368 		}
    369 	}
    370 done:
    371 	return err;
    372 }
    373 
    374 /*
    375  * Delete an existing session (or a reserved session on an unregistered
    376  * driver).  Must be called with crypto_mtx mutex held.
    377  */
    378 int
    379 crypto_freesession(u_int64_t sid)
    380 {
    381 	u_int32_t hid;
    382 	int err = 0;
    383 
    384 	KASSERT(mutex_owned(&crypto_mtx));
    385 
    386 	if (crypto_drivers == NULL) {
    387 		err = EINVAL;
    388 		goto done;
    389 	}
    390 
    391 	/* Determine two IDs. */
    392 	hid = SESID2HID(sid);
    393 
    394 	if (hid >= crypto_drivers_num) {
    395 		err = ENOENT;
    396 		goto done;
    397 	}
    398 
    399 	if (crypto_drivers[hid].cc_sessions)
    400 		crypto_drivers[hid].cc_sessions--;
    401 
    402 	/* Call the driver cleanup routine, if available. */
    403 	if (crypto_drivers[hid].cc_freesession) {
    404 		err = crypto_drivers[hid].cc_freesession(
    405 				crypto_drivers[hid].cc_arg, sid);
    406 	}
    407 	else
    408 		err = 0;
    409 
    410 	/*
    411 	 * If this was the last session of a driver marked as invalid,
    412 	 * make the entry available for reuse.
    413 	 */
    414 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    415 	    crypto_drivers[hid].cc_sessions == 0)
    416 		bzero(&crypto_drivers[hid], sizeof(struct cryptocap));
    417 
    418 done:
    419 	return err;
    420 }
    421 
    422 /*
    423  * Return an unused driver id.  Used by drivers prior to registering
    424  * support for the algorithms they handle.
    425  */
    426 int32_t
    427 crypto_get_driverid(u_int32_t flags)
    428 {
    429 	struct cryptocap *newdrv;
    430 	int i;
    431 
    432 	crypto_init();		/* XXX oh, this is foul! */
    433 
    434 	mutex_spin_enter(&crypto_mtx);
    435 	for (i = 0; i < crypto_drivers_num; i++)
    436 		if (crypto_drivers[i].cc_process == NULL &&
    437 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    438 		    crypto_drivers[i].cc_sessions == 0)
    439 			break;
    440 
    441 	/* Out of entries, allocate some more. */
    442 	if (i == crypto_drivers_num) {
    443 		/* Be careful about wrap-around. */
    444 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    445 			mutex_spin_exit(&crypto_mtx);
    446 			printf("crypto: driver count wraparound!\n");
    447 			return -1;
    448 		}
    449 
    450 		newdrv = malloc(2 * crypto_drivers_num *
    451 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    452 		if (newdrv == NULL) {
    453 			mutex_spin_exit(&crypto_mtx);
    454 			printf("crypto: no space to expand driver table!\n");
    455 			return -1;
    456 		}
    457 
    458 		bcopy(crypto_drivers, newdrv,
    459 		    crypto_drivers_num * sizeof(struct cryptocap));
    460 
    461 		crypto_drivers_num *= 2;
    462 
    463 		free(crypto_drivers, M_CRYPTO_DATA);
    464 		crypto_drivers = newdrv;
    465 	}
    466 
    467 	/* NB: state is zero'd on free */
    468 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    469 	crypto_drivers[i].cc_flags = flags;
    470 
    471 	if (bootverbose)
    472 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    473 
    474 	mutex_spin_exit(&crypto_mtx);
    475 
    476 	return i;
    477 }
    478 
    479 static struct cryptocap *
    480 crypto_checkdriver(u_int32_t hid)
    481 {
    482 	if (crypto_drivers == NULL)
    483 		return NULL;
    484 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    485 }
    486 
    487 /*
    488  * Register support for a key-related algorithm.  This routine
    489  * is called once for each algorithm supported a driver.
    490  */
    491 int
    492 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    493     int (*kprocess)(void*, struct cryptkop *, int),
    494     void *karg)
    495 {
    496 	struct cryptocap *cap;
    497 	int err;
    498 
    499 	mutex_spin_enter(&crypto_mtx);
    500 
    501 	cap = crypto_checkdriver(driverid);
    502 	if (cap != NULL &&
    503 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    504 		/*
    505 		 * XXX Do some performance testing to determine placing.
    506 		 * XXX We probably need an auxiliary data structure that
    507 		 * XXX describes relative performances.
    508 		 */
    509 
    510 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    511 		if (bootverbose) {
    512 			printf("crypto: driver %u registers key alg %u "
    513 			       " flags %u\n",
    514 				driverid,
    515 				kalg,
    516 				flags
    517 			);
    518 		}
    519 
    520 		if (cap->cc_kprocess == NULL) {
    521 			cap->cc_karg = karg;
    522 			cap->cc_kprocess = kprocess;
    523 		}
    524 		err = 0;
    525 	} else
    526 		err = EINVAL;
    527 
    528 	mutex_spin_exit(&crypto_mtx);
    529 	return err;
    530 }
    531 
    532 /*
    533  * Register support for a non-key-related algorithm.  This routine
    534  * is called once for each such algorithm supported by a driver.
    535  */
    536 int
    537 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    538     u_int32_t flags,
    539     int (*newses)(void*, u_int32_t*, struct cryptoini*),
    540     int (*freeses)(void*, u_int64_t),
    541     int (*process)(void*, struct cryptop *, int),
    542     void *arg)
    543 {
    544 	struct cryptocap *cap;
    545 	int err;
    546 
    547 	mutex_spin_enter(&crypto_mtx);
    548 
    549 	cap = crypto_checkdriver(driverid);
    550 	/* NB: algorithms are in the range [1..max] */
    551 	if (cap != NULL &&
    552 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    553 		/*
    554 		 * XXX Do some performance testing to determine placing.
    555 		 * XXX We probably need an auxiliary data structure that
    556 		 * XXX describes relative performances.
    557 		 */
    558 
    559 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    560 		cap->cc_max_op_len[alg] = maxoplen;
    561 		if (bootverbose) {
    562 			printf("crypto: driver %u registers alg %u "
    563 				"flags %u maxoplen %u\n",
    564 				driverid,
    565 				alg,
    566 				flags,
    567 				maxoplen
    568 			);
    569 		}
    570 
    571 		if (cap->cc_process == NULL) {
    572 			cap->cc_arg = arg;
    573 			cap->cc_newsession = newses;
    574 			cap->cc_process = process;
    575 			cap->cc_freesession = freeses;
    576 			cap->cc_sessions = 0;		/* Unmark */
    577 		}
    578 		err = 0;
    579 	} else
    580 		err = EINVAL;
    581 
    582 	mutex_spin_exit(&crypto_mtx);
    583 	return err;
    584 }
    585 
    586 /*
    587  * Unregister a crypto driver. If there are pending sessions using it,
    588  * leave enough information around so that subsequent calls using those
    589  * sessions will correctly detect the driver has been unregistered and
    590  * reroute requests.
    591  */
    592 int
    593 crypto_unregister(u_int32_t driverid, int alg)
    594 {
    595 	int i, err;
    596 	u_int32_t ses;
    597 	struct cryptocap *cap;
    598 
    599 	mutex_spin_enter(&crypto_mtx);
    600 
    601 	cap = crypto_checkdriver(driverid);
    602 	if (cap != NULL &&
    603 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    604 	    cap->cc_alg[alg] != 0) {
    605 		cap->cc_alg[alg] = 0;
    606 		cap->cc_max_op_len[alg] = 0;
    607 
    608 		/* Was this the last algorithm ? */
    609 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    610 			if (cap->cc_alg[i] != 0)
    611 				break;
    612 
    613 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    614 			ses = cap->cc_sessions;
    615 			bzero(cap, sizeof(struct cryptocap));
    616 			if (ses != 0) {
    617 				/*
    618 				 * If there are pending sessions, just mark as invalid.
    619 				 */
    620 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    621 				cap->cc_sessions = ses;
    622 			}
    623 		}
    624 		err = 0;
    625 	} else
    626 		err = EINVAL;
    627 
    628 	mutex_spin_exit(&crypto_mtx);
    629 	return err;
    630 }
    631 
    632 /*
    633  * Unregister all algorithms associated with a crypto driver.
    634  * If there are pending sessions using it, leave enough information
    635  * around so that subsequent calls using those sessions will
    636  * correctly detect the driver has been unregistered and reroute
    637  * requests.
    638  *
    639  * XXX careful.  Don't change this to call crypto_unregister() for each
    640  * XXX registered algorithm unless you drop the mutex across the calls;
    641  * XXX you can't take it recursively.
    642  */
    643 int
    644 crypto_unregister_all(u_int32_t driverid)
    645 {
    646 	int i, err;
    647 	u_int32_t ses;
    648 	struct cryptocap *cap;
    649 
    650 	mutex_spin_enter(&crypto_mtx);
    651 	cap = crypto_checkdriver(driverid);
    652 	if (cap != NULL) {
    653 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    654 			cap->cc_alg[i] = 0;
    655 			cap->cc_max_op_len[i] = 0;
    656 		}
    657 		ses = cap->cc_sessions;
    658 		bzero(cap, sizeof(struct cryptocap));
    659 		if (ses != 0) {
    660 			/*
    661 			 * If there are pending sessions, just mark as invalid.
    662 			 */
    663 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    664 			cap->cc_sessions = ses;
    665 		}
    666 		err = 0;
    667 	} else
    668 		err = EINVAL;
    669 
    670 	mutex_spin_exit(&crypto_mtx);
    671 	return err;
    672 }
    673 
    674 /*
    675  * Clear blockage on a driver.  The what parameter indicates whether
    676  * the driver is now ready for cryptop's and/or cryptokop's.
    677  */
    678 int
    679 crypto_unblock(u_int32_t driverid, int what)
    680 {
    681 	struct cryptocap *cap;
    682 	int needwakeup, err;
    683 
    684 	mutex_spin_enter(&crypto_mtx);
    685 	cap = crypto_checkdriver(driverid);
    686 	if (cap != NULL) {
    687 		needwakeup = 0;
    688 		if (what & CRYPTO_SYMQ) {
    689 			needwakeup |= cap->cc_qblocked;
    690 			cap->cc_qblocked = 0;
    691 		}
    692 		if (what & CRYPTO_ASYMQ) {
    693 			needwakeup |= cap->cc_kqblocked;
    694 			cap->cc_kqblocked = 0;
    695 		}
    696 		err = 0;
    697 		mutex_spin_exit(&crypto_mtx);
    698 		if (needwakeup)
    699 			setsoftcrypto(softintr_cookie);
    700 	} else {
    701 		err = EINVAL;
    702 		mutex_spin_exit(&crypto_mtx);
    703 	}
    704 
    705 	return err;
    706 }
    707 
    708 /*
    709  * Dispatch a crypto request to a driver or queue
    710  * it, to be processed by the kernel thread.
    711  */
    712 int
    713 crypto_dispatch(struct cryptop *crp)
    714 {
    715 	u_int32_t hid = SESID2HID(crp->crp_sid);
    716 	int result;
    717 
    718 	mutex_spin_enter(&crypto_mtx);
    719 	DPRINTF(("crypto_dispatch: crp %08x, reqid 0x%x, alg %d\n",
    720 			(uint32_t)crp,
    721 			crp->crp_reqid,
    722 			crp->crp_desc->crd_alg));
    723 
    724 	cryptostats.cs_ops++;
    725 
    726 #ifdef CRYPTO_TIMING
    727 	if (crypto_timing)
    728 		nanouptime(&crp->crp_tstamp);
    729 #endif
    730 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    731 		struct cryptocap *cap;
    732 		/*
    733 		 * Caller marked the request to be processed
    734 		 * immediately; dispatch it directly to the
    735 		 * driver unless the driver is currently blocked.
    736 		 */
    737 		cap = crypto_checkdriver(hid);
    738 		if (cap && !cap->cc_qblocked) {
    739 			mutex_spin_exit(&crypto_mtx);
    740 			result = crypto_invoke(crp, 0);
    741 			if (result == ERESTART) {
    742 				/*
    743 				 * The driver ran out of resources, mark the
    744 				 * driver ``blocked'' for cryptop's and put
    745 				 * the op on the queue.
    746 				 */
    747 				mutex_spin_enter(&crypto_mtx);
    748 				crypto_drivers[hid].cc_qblocked = 1;
    749 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    750 				cryptostats.cs_blocks++;
    751 				mutex_spin_exit(&crypto_mtx);
    752 			}
    753 			goto out_released;
    754 		} else {
    755 			/*
    756 			 * The driver is blocked, just queue the op until
    757 			 * it unblocks and the swi thread gets kicked.
    758 			 */
    759 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    760 			result = 0;
    761 		}
    762 	} else {
    763 		int wasempty = TAILQ_EMPTY(&crp_q);
    764 		/*
    765 		 * Caller marked the request as ``ok to delay'';
    766 		 * queue it for the swi thread.  This is desirable
    767 		 * when the operation is low priority and/or suitable
    768 		 * for batching.
    769 		 */
    770 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    771 		if (wasempty) {
    772 			mutex_spin_exit(&crypto_mtx);
    773 			setsoftcrypto(softintr_cookie);
    774 			result = 0;
    775 			goto out_released;
    776 		}
    777 
    778 		result = 0;
    779 	}
    780 
    781 	mutex_spin_exit(&crypto_mtx);
    782 out_released:
    783 	return result;
    784 }
    785 
    786 /*
    787  * Add an asymetric crypto request to a queue,
    788  * to be processed by the kernel thread.
    789  */
    790 int
    791 crypto_kdispatch(struct cryptkop *krp)
    792 {
    793 	struct cryptocap *cap;
    794 	int result;
    795 
    796 	mutex_spin_enter(&crypto_mtx);
    797 	cryptostats.cs_kops++;
    798 
    799 	cap = crypto_checkdriver(krp->krp_hid);
    800 	if (cap && !cap->cc_kqblocked) {
    801 		mutex_spin_exit(&crypto_mtx);
    802 		result = crypto_kinvoke(krp, 0);
    803 		if (result == ERESTART) {
    804 			/*
    805 			 * The driver ran out of resources, mark the
    806 			 * driver ``blocked'' for cryptop's and put
    807 			 * the op on the queue.
    808 			 */
    809 			mutex_spin_enter(&crypto_mtx);
    810 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    811 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    812 			cryptostats.cs_kblocks++;
    813 			mutex_spin_exit(&crypto_mtx);
    814 		}
    815 	} else {
    816 		/*
    817 		 * The driver is blocked, just queue the op until
    818 		 * it unblocks and the swi thread gets kicked.
    819 		 */
    820 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    821 		result = 0;
    822 		mutex_spin_exit(&crypto_mtx);
    823 	}
    824 
    825 	return result;
    826 }
    827 
    828 /*
    829  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    830  */
    831 static int
    832 crypto_kinvoke(struct cryptkop *krp, int hint)
    833 {
    834 	u_int32_t hid;
    835 	int error;
    836 
    837 	/* Sanity checks. */
    838 	if (krp == NULL)
    839 		return EINVAL;
    840 	if (krp->krp_callback == NULL) {
    841 		cv_destroy(&krp->krp_cv);
    842 		pool_put(&cryptkop_pool, krp);
    843 		return EINVAL;
    844 	}
    845 
    846 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    847 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    848 		    crypto_devallowsoft == 0)
    849 			continue;
    850 		if (crypto_drivers[hid].cc_kprocess == NULL)
    851 			continue;
    852 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    853 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    854 			continue;
    855 		break;
    856 	}
    857 	if (hid < crypto_drivers_num) {
    858 		krp->krp_hid = hid;
    859 		error = crypto_drivers[hid].cc_kprocess(
    860 				crypto_drivers[hid].cc_karg, krp, hint);
    861 	} else {
    862 		error = ENODEV;
    863 	}
    864 
    865 	if (error) {
    866 		krp->krp_status = error;
    867 		crypto_kdone(krp);
    868 	}
    869 	return 0;
    870 }
    871 
    872 #ifdef CRYPTO_TIMING
    873 static void
    874 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    875 {
    876 	struct timespec now, t;
    877 
    878 	nanouptime(&now);
    879 	t.tv_sec = now.tv_sec - tv->tv_sec;
    880 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    881 	if (t.tv_nsec < 0) {
    882 		t.tv_sec--;
    883 		t.tv_nsec += 1000000000;
    884 	}
    885 	timespecadd(&ts->acc, &t, &t);
    886 	if (timespeccmp(&t, &ts->min, <))
    887 		ts->min = t;
    888 	if (timespeccmp(&t, &ts->max, >))
    889 		ts->max = t;
    890 	ts->count++;
    891 
    892 	*tv = now;
    893 }
    894 #endif
    895 
    896 /*
    897  * Dispatch a crypto request to the appropriate crypto devices.
    898  */
    899 static int
    900 crypto_invoke(struct cryptop *crp, int hint)
    901 {
    902 	u_int32_t hid;
    903 	int (*process)(void*, struct cryptop *, int);
    904 
    905 #ifdef CRYPTO_TIMING
    906 	if (crypto_timing)
    907 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    908 #endif
    909 	/* Sanity checks. */
    910 	if (crp == NULL)
    911 		return EINVAL;
    912 	if (crp->crp_callback == NULL) {
    913 		return EINVAL;
    914 	}
    915 	if (crp->crp_desc == NULL) {
    916 		crp->crp_etype = EINVAL;
    917 		crypto_done(crp);
    918 		return 0;
    919 	}
    920 
    921 	hid = SESID2HID(crp->crp_sid);
    922 	if (hid < crypto_drivers_num) {
    923 		mutex_spin_enter(&crypto_mtx);
    924 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    925 			crypto_freesession(crp->crp_sid);
    926 		process = crypto_drivers[hid].cc_process;
    927 		mutex_spin_exit(&crypto_mtx);
    928 	} else {
    929 		process = NULL;
    930 	}
    931 
    932 	if (process == NULL) {
    933 		struct cryptodesc *crd;
    934 		u_int64_t nid = 0;
    935 
    936 		/*
    937 		 * Driver has unregistered; migrate the session and return
    938 		 * an error to the caller so they'll resubmit the op.
    939 		 */
    940 		mutex_spin_enter(&crypto_mtx);
    941 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    942 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    943 
    944 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    945 			crp->crp_sid = nid;
    946 
    947 		crp->crp_etype = EAGAIN;
    948 		mutex_spin_exit(&crypto_mtx);
    949 
    950 		crypto_done(crp);
    951 		return 0;
    952 	} else {
    953 		/*
    954 		 * Invoke the driver to process the request.
    955 		 */
    956 		DPRINTF(("calling process for %08x\n", (uint32_t)crp));
    957 		return (*process)(crypto_drivers[hid].cc_arg, crp, hint);
    958 	}
    959 }
    960 
    961 /*
    962  * Release a set of crypto descriptors.
    963  */
    964 void
    965 crypto_freereq(struct cryptop *crp)
    966 {
    967 	struct cryptodesc *crd;
    968 
    969 	if (crp == NULL)
    970 		return;
    971 	DPRINTF(("crypto_freereq[%d]: crp %p\n",
    972 			(uint32_t)crp->crp_sid, crp));
    973 
    974 	/* sanity check */
    975 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
    976 		panic("crypto_freereq() freeing crp on RETQ\n");
    977 	}
    978 
    979 	while ((crd = crp->crp_desc) != NULL) {
    980 		crp->crp_desc = crd->crd_next;
    981 		pool_put(&cryptodesc_pool, crd);
    982 	}
    983 	cv_destroy(&crp->crp_cv);
    984 	pool_put(&cryptop_pool, crp);
    985 }
    986 
    987 /*
    988  * Acquire a set of crypto descriptors.
    989  */
    990 struct cryptop *
    991 crypto_getreq(int num)
    992 {
    993 	struct cryptodesc *crd;
    994 	struct cryptop *crp;
    995 
    996 	crp = pool_get(&cryptop_pool, 0);
    997 	if (crp == NULL) {
    998 		return NULL;
    999 	}
   1000 	bzero(crp, sizeof(struct cryptop));
   1001 	cv_init(&crp->crp_cv, "crydev");
   1002 
   1003 	while (num--) {
   1004 		crd = pool_get(&cryptodesc_pool, 0);
   1005 		if (crd == NULL) {
   1006 			crypto_freereq(crp);
   1007 			return NULL;
   1008 		}
   1009 
   1010 		bzero(crd, sizeof(struct cryptodesc));
   1011 		crd->crd_next = crp->crp_desc;
   1012 		crp->crp_desc = crd;
   1013 	}
   1014 
   1015 	return crp;
   1016 }
   1017 
   1018 /*
   1019  * Invoke the callback on behalf of the driver.
   1020  */
   1021 void
   1022 crypto_done(struct cryptop *crp)
   1023 {
   1024 	int wasempty;
   1025 
   1026 	if (crp->crp_etype != 0)
   1027 		cryptostats.cs_errs++;
   1028 #ifdef CRYPTO_TIMING
   1029 	if (crypto_timing)
   1030 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1031 #endif
   1032 	DPRINTF(("crypto_done[%d]: crp %08x\n",
   1033 			(uint32_t)crp->crp_sid, (uint32_t)crp));
   1034 
   1035 	/*
   1036 	 * Normal case; queue the callback for the thread.
   1037 	 *
   1038 	 * The return queue is manipulated by the swi thread
   1039 	 * and, potentially, by crypto device drivers calling
   1040 	 * back to mark operations completed.  Thus we need
   1041 	 * to mask both while manipulating the return queue.
   1042 	 */
   1043   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1044 		/*
   1045 	 	* Do the callback directly.  This is ok when the
   1046   	 	* callback routine does very little (e.g. the
   1047 	 	* /dev/crypto callback method just does a wakeup).
   1048 	 	*/
   1049 		mutex_spin_enter(&crypto_mtx);
   1050 		crp->crp_flags |= CRYPTO_F_DONE;
   1051 		mutex_spin_exit(&crypto_mtx);
   1052 
   1053 #ifdef CRYPTO_TIMING
   1054 		if (crypto_timing) {
   1055 			/*
   1056 		 	* NB: We must copy the timestamp before
   1057 		 	* doing the callback as the cryptop is
   1058 		 	* likely to be reclaimed.
   1059 		 	*/
   1060 			struct timespec t = crp->crp_tstamp;
   1061 			crypto_tstat(&cryptostats.cs_cb, &t);
   1062 			crp->crp_callback(crp);
   1063 			crypto_tstat(&cryptostats.cs_finis, &t);
   1064 		} else
   1065 #endif
   1066 		crp->crp_callback(crp);
   1067 	} else {
   1068 		mutex_spin_enter(&crypto_mtx);
   1069 		crp->crp_flags |= CRYPTO_F_DONE;
   1070 
   1071 		if (crp->crp_flags & CRYPTO_F_USER) {
   1072 			/* the request has completed while
   1073 			 * running in the user context
   1074 			 * so don't queue it - the user
   1075 			 * thread won't sleep when it sees
   1076 			 * the CRYPTO_F_DONE flag.
   1077 			 * This is an optimization to avoid
   1078 			 * unecessary context switches.
   1079 			 */
   1080 			DPRINTF(("crypto_done[%d]: crp %08x CRYPTO_F_USER\n",
   1081 				(uint32_t)crp->crp_sid, (uint32_t)crp));
   1082 		} else {
   1083 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1084 			DPRINTF(("crypto_done[%d]: queueing %08x\n",
   1085 					(uint32_t)crp->crp_sid, (uint32_t)crp));
   1086 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1087 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1088 			if (wasempty) {
   1089 				DPRINTF(("crypto_done[%d]: waking cryptoret, crp %08x " \
   1090 					"hit empty queue\n.",
   1091 					(uint32_t)crp->crp_sid, (uint32_t)crp));
   1092 				cv_signal(&cryptoret_cv);
   1093 			}
   1094 		}
   1095 		mutex_spin_exit(&crypto_mtx);
   1096 	}
   1097 }
   1098 
   1099 /*
   1100  * Invoke the callback on behalf of the driver.
   1101  */
   1102 void
   1103 crypto_kdone(struct cryptkop *krp)
   1104 {
   1105 	int wasempty;
   1106 
   1107 	if (krp->krp_status != 0)
   1108 		cryptostats.cs_kerrs++;
   1109 
   1110 	krp->krp_flags |= CRYPTO_F_DONE;
   1111 
   1112 	/*
   1113 	 * The return queue is manipulated by the swi thread
   1114 	 * and, potentially, by crypto device drivers calling
   1115 	 * back to mark operations completed.  Thus we need
   1116 	 * to mask both while manipulating the return queue.
   1117 	 */
   1118 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1119 		krp->krp_callback(krp);
   1120 	} else {
   1121 		mutex_spin_enter(&crypto_mtx);
   1122 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1123 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1124 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1125 		if (wasempty)
   1126 			cv_signal(&cryptoret_cv);
   1127 		mutex_spin_exit(&crypto_mtx);
   1128 	}
   1129 }
   1130 
   1131 int
   1132 crypto_getfeat(int *featp)
   1133 {
   1134 	int hid, kalg, feat = 0;
   1135 
   1136 	mutex_spin_enter(&crypto_mtx);
   1137 
   1138 	if (crypto_userasymcrypto == 0)
   1139 		goto out;
   1140 
   1141 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1142 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1143 		    crypto_devallowsoft == 0) {
   1144 			continue;
   1145 		}
   1146 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1147 			continue;
   1148 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1149 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1150 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1151 				feat |=  1 << kalg;
   1152 	}
   1153 out:
   1154 	mutex_spin_exit(&crypto_mtx);
   1155 	*featp = feat;
   1156 	return (0);
   1157 }
   1158 
   1159 /*
   1160  * Software interrupt thread to dispatch crypto requests.
   1161  */
   1162 static void
   1163 cryptointr(void)
   1164 {
   1165 	struct cryptop *crp, *submit, *cnext;
   1166 	struct cryptkop *krp, *knext;
   1167 	struct cryptocap *cap;
   1168 	int result, hint;
   1169 
   1170 	cryptostats.cs_intrs++;
   1171 	mutex_spin_enter(&crypto_mtx);
   1172 	do {
   1173 		/*
   1174 		 * Find the first element in the queue that can be
   1175 		 * processed and look-ahead to see if multiple ops
   1176 		 * are ready for the same driver.
   1177 		 */
   1178 		submit = NULL;
   1179 		hint = 0;
   1180 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1181 			u_int32_t hid = SESID2HID(crp->crp_sid);
   1182 			cap = crypto_checkdriver(hid);
   1183 			if (cap == NULL || cap->cc_process == NULL) {
   1184 				/* Op needs to be migrated, process it. */
   1185 				if (submit == NULL)
   1186 					submit = crp;
   1187 				break;
   1188 			}
   1189 			if (!cap->cc_qblocked) {
   1190 				if (submit != NULL) {
   1191 					/*
   1192 					 * We stop on finding another op,
   1193 					 * regardless whether its for the same
   1194 					 * driver or not.  We could keep
   1195 					 * searching the queue but it might be
   1196 					 * better to just use a per-driver
   1197 					 * queue instead.
   1198 					 */
   1199 					if (SESID2HID(submit->crp_sid) == hid)
   1200 						hint = CRYPTO_HINT_MORE;
   1201 					break;
   1202 				} else {
   1203 					submit = crp;
   1204 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1205 						break;
   1206 					/* keep scanning for more are q'd */
   1207 				}
   1208 			}
   1209 		}
   1210 		if (submit != NULL) {
   1211 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1212 			mutex_spin_exit(&crypto_mtx);
   1213 			result = crypto_invoke(submit, hint);
   1214 			/* we must take here as the TAILQ op or kinvoke
   1215 			   may need this mutex below.  sigh. */
   1216 			mutex_spin_enter(&crypto_mtx);
   1217 			if (result == ERESTART) {
   1218 				/*
   1219 				 * The driver ran out of resources, mark the
   1220 				 * driver ``blocked'' for cryptop's and put
   1221 				 * the request back in the queue.  It would
   1222 				 * best to put the request back where we got
   1223 				 * it but that's hard so for now we put it
   1224 				 * at the front.  This should be ok; putting
   1225 				 * it at the end does not work.
   1226 				 */
   1227 				/* XXX validate sid again? */
   1228 				crypto_drivers[SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1229 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1230 				cryptostats.cs_blocks++;
   1231 			}
   1232 		}
   1233 
   1234 		/* As above, but for key ops */
   1235 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1236 			cap = crypto_checkdriver(krp->krp_hid);
   1237 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1238 				/* Op needs to be migrated, process it. */
   1239 				break;
   1240 			}
   1241 			if (!cap->cc_kqblocked)
   1242 				break;
   1243 		}
   1244 		if (krp != NULL) {
   1245 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1246 			mutex_spin_exit(&crypto_mtx);
   1247 			result = crypto_kinvoke(krp, 0);
   1248 			/* the next iteration will want the mutex. :-/ */
   1249 			mutex_spin_enter(&crypto_mtx);
   1250 			if (result == ERESTART) {
   1251 				/*
   1252 				 * The driver ran out of resources, mark the
   1253 				 * driver ``blocked'' for cryptkop's and put
   1254 				 * the request back in the queue.  It would
   1255 				 * best to put the request back where we got
   1256 				 * it but that's hard so for now we put it
   1257 				 * at the front.  This should be ok; putting
   1258 				 * it at the end does not work.
   1259 				 */
   1260 				/* XXX validate sid again? */
   1261 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1262 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1263 				cryptostats.cs_kblocks++;
   1264 			}
   1265 		}
   1266 	} while (submit != NULL || krp != NULL);
   1267 	mutex_spin_exit(&crypto_mtx);
   1268 }
   1269 
   1270 /*
   1271  * Kernel thread to do callbacks.
   1272  */
   1273 static void
   1274 cryptoret(void)
   1275 {
   1276 	struct cryptop *crp;
   1277 	struct cryptkop *krp;
   1278 
   1279 	mutex_spin_enter(&crypto_mtx);
   1280 	for (;;) {
   1281 		crp = TAILQ_FIRST(&crp_ret_q);
   1282 		if (crp != NULL) {
   1283 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1284 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1285 		}
   1286 		krp = TAILQ_FIRST(&crp_ret_kq);
   1287 		if (krp != NULL) {
   1288 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1289 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1290 		}
   1291 
   1292 		/* drop before calling any callbacks. */
   1293 		if (crp == NULL && krp == NULL) {
   1294 			cryptostats.cs_rets++;
   1295 			cv_wait(&cryptoret_cv, &crypto_mtx);
   1296 			continue;
   1297 		}
   1298 
   1299 		mutex_spin_exit(&crypto_mtx);
   1300 
   1301 		if (crp != NULL) {
   1302 #ifdef CRYPTO_TIMING
   1303 			if (crypto_timing) {
   1304 				/*
   1305 				 * NB: We must copy the timestamp before
   1306 				 * doing the callback as the cryptop is
   1307 				 * likely to be reclaimed.
   1308 				 */
   1309 				struct timespec t = crp->crp_tstamp;
   1310 				crypto_tstat(&cryptostats.cs_cb, &t);
   1311 				crp->crp_callback(crp);
   1312 				crypto_tstat(&cryptostats.cs_finis, &t);
   1313 			} else
   1314 #endif
   1315 			{
   1316 				crp->crp_callback(crp);
   1317 			}
   1318 		}
   1319 		if (krp != NULL)
   1320 			krp->krp_callback(krp);
   1321 
   1322 		mutex_spin_enter(&crypto_mtx);
   1323 	}
   1324 }
   1325