crypto.c revision 1.38 1 /* $NetBSD: crypto.c,v 1.38 2011/02/24 19:35:46 drochner Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.38 2011/02/24 19:35:46 drochner Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68
69 #include "opt_ocf.h"
70 #include <opencrypto/cryptodev.h>
71 #include <opencrypto/xform.h> /* XXX for M_XDATA */
72
73 kcondvar_t cryptoret_cv;
74 kmutex_t crypto_mtx;
75
76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
77 #define SWI_CRYPTO 17
78 #define register_swi(lvl, fn) \
79 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
80 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
81 #define setsoftcrypto(x) softint_schedule(x)
82
83 int crypto_ret_q_check(struct cryptop *);
84
85 /*
86 * Crypto drivers register themselves by allocating a slot in the
87 * crypto_drivers table with crypto_get_driverid() and then registering
88 * each algorithm they support with crypto_register() and crypto_kregister().
89 */
90 static struct cryptocap *crypto_drivers;
91 static int crypto_drivers_num;
92 static void *softintr_cookie;
93
94 /*
95 * There are two queues for crypto requests; one for symmetric (e.g.
96 * cipher) operations and one for asymmetric (e.g. MOD) operations.
97 * See below for how synchronization is handled.
98 */
99 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
100 TAILQ_HEAD_INITIALIZER(crp_q);
101 static TAILQ_HEAD(,cryptkop) crp_kq =
102 TAILQ_HEAD_INITIALIZER(crp_kq);
103
104 /*
105 * There are two queues for processing completed crypto requests; one
106 * for the symmetric and one for the asymmetric ops. We only need one
107 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
108 * for how synchronization is handled.
109 */
110 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
111 TAILQ_HEAD_INITIALIZER(crp_ret_q);
112 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
113 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
114
115 /*
116 * XXX these functions are ghastly hacks for when the submission
117 * XXX routines discover a request that was not CBIMM is already
118 * XXX done, and must be yanked from the retq (where _done) put it
119 * XXX as cryptoret won't get the chance. The queue is walked backwards
120 * XXX as the request is generally the last one queued.
121 *
122 * call with the lock held, or else.
123 */
124 int
125 crypto_ret_q_remove(struct cryptop *crp)
126 {
127 struct cryptop * acrp, *next;
128
129 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
130 if (acrp == crp) {
131 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
132 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
133 return 1;
134 }
135 }
136 return 0;
137 }
138
139 int
140 crypto_ret_kq_remove(struct cryptkop *krp)
141 {
142 struct cryptkop * akrp, *next;
143
144 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
145 if (akrp == krp) {
146 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
147 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
148 return 1;
149 }
150 }
151 return 0;
152 }
153
154 /*
155 * Crypto op and desciptor data structures are allocated
156 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
157 */
158 struct pool cryptop_pool;
159 struct pool cryptodesc_pool;
160 struct pool cryptkop_pool;
161
162 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
163 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
164 /*
165 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
166 * access to hardware versus software transforms as below:
167 *
168 * crypto_devallowsoft < 0: Force userlevel requests to use software
169 * transforms, always
170 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
171 * requests for non-accelerated transforms
172 * (handling the latter in software)
173 * crypto_devallowsoft > 0: Allow user requests only for transforms which
174 * are hardware-accelerated.
175 */
176 int crypto_devallowsoft = 1; /* only use hardware crypto */
177
178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
179 {
180 sysctl_createv(clog, 0, NULL, NULL,
181 CTLFLAG_PERMANENT,
182 CTLTYPE_NODE, "kern", NULL,
183 NULL, 0, NULL, 0,
184 CTL_KERN, CTL_EOL);
185 sysctl_createv(clog, 0, NULL, NULL,
186 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
187 CTLTYPE_INT, "usercrypto",
188 SYSCTL_DESCR("Enable/disable user-mode access to "
189 "crypto support"),
190 NULL, 0, &crypto_usercrypto, 0,
191 CTL_KERN, CTL_CREATE, CTL_EOL);
192 sysctl_createv(clog, 0, NULL, NULL,
193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 CTLTYPE_INT, "userasymcrypto",
195 SYSCTL_DESCR("Enable/disable user-mode access to "
196 "asymmetric crypto support"),
197 NULL, 0, &crypto_userasymcrypto, 0,
198 CTL_KERN, CTL_CREATE, CTL_EOL);
199 sysctl_createv(clog, 0, NULL, NULL,
200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 CTLTYPE_INT, "cryptodevallowsoft",
202 SYSCTL_DESCR("Enable/disable use of software "
203 "asymmetric crypto support"),
204 NULL, 0, &crypto_devallowsoft, 0,
205 CTL_KERN, CTL_CREATE, CTL_EOL);
206 }
207
208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
209
210 /*
211 * Synchronization: read carefully, this is non-trivial.
212 *
213 * Crypto requests are submitted via crypto_dispatch. Typically
214 * these come in from network protocols at spl0 (output path) or
215 * spl[,soft]net (input path).
216 *
217 * Requests are typically passed on the driver directly, but they
218 * may also be queued for processing by a software interrupt thread,
219 * cryptointr, that runs at splsoftcrypto. This thread dispatches
220 * the requests to crypto drivers (h/w or s/w) who call crypto_done
221 * when a request is complete. Hardware crypto drivers are assumed
222 * to register their IRQ's as network devices so their interrupt handlers
223 * and subsequent "done callbacks" happen at spl[imp,net].
224 *
225 * Completed crypto ops are queued for a separate kernel thread that
226 * handles the callbacks at spl0. This decoupling insures the crypto
227 * driver interrupt service routine is not delayed while the callback
228 * takes place and that callbacks are delivered after a context switch
229 * (as opposed to a software interrupt that clients must block).
230 *
231 * This scheme is not intended for SMP machines.
232 */
233 static void cryptointr(void); /* swi thread to dispatch ops */
234 static void cryptoret(void); /* kernel thread for callbacks*/
235 static struct lwp *cryptothread;
236 static void crypto_destroy(void);
237 static int crypto_invoke(struct cryptop *crp, int hint);
238 static int crypto_kinvoke(struct cryptkop *krp, int hint);
239
240 static struct cryptostats cryptostats;
241 #ifdef CRYPTO_TIMING
242 static int crypto_timing = 0;
243 #endif
244
245 static int
246 crypto_init0(void)
247 {
248 int error;
249
250 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
251 cv_init(&cryptoret_cv, "crypto_w");
252 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
253 0, "cryptop", NULL, IPL_NET);
254 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
255 0, "cryptodesc", NULL, IPL_NET);
256 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
257 0, "cryptkop", NULL, IPL_NET);
258
259 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
260 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
261 if (crypto_drivers == NULL) {
262 printf("crypto_init: cannot malloc driver table\n");
263 return 0;
264 }
265 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
266
267 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
268 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
269 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
270 if (error) {
271 printf("crypto_init: cannot start cryptoret thread; error %d",
272 error);
273 crypto_destroy();
274 }
275
276 return 0;
277 }
278
279 void
280 crypto_init(void)
281 {
282 static ONCE_DECL(crypto_init_once);
283
284 RUN_ONCE(&crypto_init_once, crypto_init0);
285 }
286
287 static void
288 crypto_destroy(void)
289 {
290 /* XXX no wait to reclaim zones */
291 if (crypto_drivers != NULL)
292 free(crypto_drivers, M_CRYPTO_DATA);
293 unregister_swi(SWI_CRYPTO, cryptointr);
294 }
295
296 /*
297 * Create a new session. Must be called with crypto_mtx held.
298 */
299 int
300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
301 {
302 struct cryptoini *cr;
303 u_int32_t hid, lid;
304 int err = EINVAL;
305
306 KASSERT(mutex_owned(&crypto_mtx));
307
308 if (crypto_drivers == NULL)
309 goto done;
310
311 /*
312 * The algorithm we use here is pretty stupid; just use the
313 * first driver that supports all the algorithms we need.
314 *
315 * XXX We need more smarts here (in real life too, but that's
316 * XXX another story altogether).
317 */
318
319 for (hid = 0; hid < crypto_drivers_num; hid++) {
320 /*
321 * If it's not initialized or has remaining sessions
322 * referencing it, skip.
323 */
324 if (crypto_drivers[hid].cc_newsession == NULL ||
325 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
326 continue;
327
328 /* Hardware required -- ignore software drivers. */
329 if (hard > 0 &&
330 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
331 continue;
332 /* Software required -- ignore hardware drivers. */
333 if (hard < 0 &&
334 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
335 continue;
336
337 /* See if all the algorithms are supported. */
338 for (cr = cri; cr; cr = cr->cri_next)
339 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
340 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
341 break;
342 }
343
344 if (cr == NULL) {
345 /* Ok, all algorithms are supported. */
346
347 /*
348 * Can't do everything in one session.
349 *
350 * XXX Fix this. We need to inject a "virtual" session layer right
351 * XXX about here.
352 */
353
354 /* Call the driver initialization routine. */
355 lid = hid; /* Pass the driver ID. */
356 err = crypto_drivers[hid].cc_newsession(
357 crypto_drivers[hid].cc_arg, &lid, cri);
358 if (err == 0) {
359 (*sid) = hid;
360 (*sid) <<= 32;
361 (*sid) |= (lid & 0xffffffff);
362 crypto_drivers[hid].cc_sessions++;
363 }
364 goto done;
365 /*break;*/
366 }
367 }
368 done:
369 return err;
370 }
371
372 /*
373 * Delete an existing session (or a reserved session on an unregistered
374 * driver). Must be called with crypto_mtx mutex held.
375 */
376 int
377 crypto_freesession(u_int64_t sid)
378 {
379 u_int32_t hid;
380 int err = 0;
381
382 KASSERT(mutex_owned(&crypto_mtx));
383
384 if (crypto_drivers == NULL) {
385 err = EINVAL;
386 goto done;
387 }
388
389 /* Determine two IDs. */
390 hid = CRYPTO_SESID2HID(sid);
391
392 if (hid >= crypto_drivers_num) {
393 err = ENOENT;
394 goto done;
395 }
396
397 if (crypto_drivers[hid].cc_sessions)
398 crypto_drivers[hid].cc_sessions--;
399
400 /* Call the driver cleanup routine, if available. */
401 if (crypto_drivers[hid].cc_freesession) {
402 err = crypto_drivers[hid].cc_freesession(
403 crypto_drivers[hid].cc_arg, sid);
404 }
405 else
406 err = 0;
407
408 /*
409 * If this was the last session of a driver marked as invalid,
410 * make the entry available for reuse.
411 */
412 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
413 crypto_drivers[hid].cc_sessions == 0)
414 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
415
416 done:
417 return err;
418 }
419
420 /*
421 * Return an unused driver id. Used by drivers prior to registering
422 * support for the algorithms they handle.
423 */
424 int32_t
425 crypto_get_driverid(u_int32_t flags)
426 {
427 struct cryptocap *newdrv;
428 int i;
429
430 crypto_init(); /* XXX oh, this is foul! */
431
432 mutex_spin_enter(&crypto_mtx);
433 for (i = 0; i < crypto_drivers_num; i++)
434 if (crypto_drivers[i].cc_process == NULL &&
435 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
436 crypto_drivers[i].cc_sessions == 0)
437 break;
438
439 /* Out of entries, allocate some more. */
440 if (i == crypto_drivers_num) {
441 /* Be careful about wrap-around. */
442 if (2 * crypto_drivers_num <= crypto_drivers_num) {
443 mutex_spin_exit(&crypto_mtx);
444 printf("crypto: driver count wraparound!\n");
445 return -1;
446 }
447
448 newdrv = malloc(2 * crypto_drivers_num *
449 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
450 if (newdrv == NULL) {
451 mutex_spin_exit(&crypto_mtx);
452 printf("crypto: no space to expand driver table!\n");
453 return -1;
454 }
455
456 memcpy(newdrv, crypto_drivers,
457 crypto_drivers_num * sizeof(struct cryptocap));
458
459 crypto_drivers_num *= 2;
460
461 free(crypto_drivers, M_CRYPTO_DATA);
462 crypto_drivers = newdrv;
463 }
464
465 /* NB: state is zero'd on free */
466 crypto_drivers[i].cc_sessions = 1; /* Mark */
467 crypto_drivers[i].cc_flags = flags;
468
469 if (bootverbose)
470 printf("crypto: assign driver %u, flags %u\n", i, flags);
471
472 mutex_spin_exit(&crypto_mtx);
473
474 return i;
475 }
476
477 static struct cryptocap *
478 crypto_checkdriver(u_int32_t hid)
479 {
480 if (crypto_drivers == NULL)
481 return NULL;
482 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
483 }
484
485 /*
486 * Register support for a key-related algorithm. This routine
487 * is called once for each algorithm supported a driver.
488 */
489 int
490 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
491 int (*kprocess)(void *, struct cryptkop *, int),
492 void *karg)
493 {
494 struct cryptocap *cap;
495 int err;
496
497 mutex_spin_enter(&crypto_mtx);
498
499 cap = crypto_checkdriver(driverid);
500 if (cap != NULL &&
501 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
502 /*
503 * XXX Do some performance testing to determine placing.
504 * XXX We probably need an auxiliary data structure that
505 * XXX describes relative performances.
506 */
507
508 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
509 if (bootverbose) {
510 printf("crypto: driver %u registers key alg %u "
511 " flags %u\n",
512 driverid,
513 kalg,
514 flags
515 );
516 }
517
518 if (cap->cc_kprocess == NULL) {
519 cap->cc_karg = karg;
520 cap->cc_kprocess = kprocess;
521 }
522 err = 0;
523 } else
524 err = EINVAL;
525
526 mutex_spin_exit(&crypto_mtx);
527 return err;
528 }
529
530 /*
531 * Register support for a non-key-related algorithm. This routine
532 * is called once for each such algorithm supported by a driver.
533 */
534 int
535 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
536 u_int32_t flags,
537 int (*newses)(void *, u_int32_t*, struct cryptoini*),
538 int (*freeses)(void *, u_int64_t),
539 int (*process)(void *, struct cryptop *, int),
540 void *arg)
541 {
542 struct cryptocap *cap;
543 int err;
544
545 mutex_spin_enter(&crypto_mtx);
546
547 cap = crypto_checkdriver(driverid);
548 /* NB: algorithms are in the range [1..max] */
549 if (cap != NULL &&
550 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
551 /*
552 * XXX Do some performance testing to determine placing.
553 * XXX We probably need an auxiliary data structure that
554 * XXX describes relative performances.
555 */
556
557 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
558 cap->cc_max_op_len[alg] = maxoplen;
559 if (bootverbose) {
560 printf("crypto: driver %u registers alg %u "
561 "flags %u maxoplen %u\n",
562 driverid,
563 alg,
564 flags,
565 maxoplen
566 );
567 }
568
569 if (cap->cc_process == NULL) {
570 cap->cc_arg = arg;
571 cap->cc_newsession = newses;
572 cap->cc_process = process;
573 cap->cc_freesession = freeses;
574 cap->cc_sessions = 0; /* Unmark */
575 }
576 err = 0;
577 } else
578 err = EINVAL;
579
580 mutex_spin_exit(&crypto_mtx);
581 return err;
582 }
583
584 /*
585 * Unregister a crypto driver. If there are pending sessions using it,
586 * leave enough information around so that subsequent calls using those
587 * sessions will correctly detect the driver has been unregistered and
588 * reroute requests.
589 */
590 int
591 crypto_unregister(u_int32_t driverid, int alg)
592 {
593 int i, err;
594 u_int32_t ses;
595 struct cryptocap *cap;
596
597 mutex_spin_enter(&crypto_mtx);
598
599 cap = crypto_checkdriver(driverid);
600 if (cap != NULL &&
601 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
602 cap->cc_alg[alg] != 0) {
603 cap->cc_alg[alg] = 0;
604 cap->cc_max_op_len[alg] = 0;
605
606 /* Was this the last algorithm ? */
607 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
608 if (cap->cc_alg[i] != 0)
609 break;
610
611 if (i == CRYPTO_ALGORITHM_MAX + 1) {
612 ses = cap->cc_sessions;
613 memset(cap, 0, sizeof(struct cryptocap));
614 if (ses != 0) {
615 /*
616 * If there are pending sessions, just mark as invalid.
617 */
618 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
619 cap->cc_sessions = ses;
620 }
621 }
622 err = 0;
623 } else
624 err = EINVAL;
625
626 mutex_spin_exit(&crypto_mtx);
627 return err;
628 }
629
630 /*
631 * Unregister all algorithms associated with a crypto driver.
632 * If there are pending sessions using it, leave enough information
633 * around so that subsequent calls using those sessions will
634 * correctly detect the driver has been unregistered and reroute
635 * requests.
636 *
637 * XXX careful. Don't change this to call crypto_unregister() for each
638 * XXX registered algorithm unless you drop the mutex across the calls;
639 * XXX you can't take it recursively.
640 */
641 int
642 crypto_unregister_all(u_int32_t driverid)
643 {
644 int i, err;
645 u_int32_t ses;
646 struct cryptocap *cap;
647
648 mutex_spin_enter(&crypto_mtx);
649 cap = crypto_checkdriver(driverid);
650 if (cap != NULL) {
651 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
652 cap->cc_alg[i] = 0;
653 cap->cc_max_op_len[i] = 0;
654 }
655 ses = cap->cc_sessions;
656 memset(cap, 0, sizeof(struct cryptocap));
657 if (ses != 0) {
658 /*
659 * If there are pending sessions, just mark as invalid.
660 */
661 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
662 cap->cc_sessions = ses;
663 }
664 err = 0;
665 } else
666 err = EINVAL;
667
668 mutex_spin_exit(&crypto_mtx);
669 return err;
670 }
671
672 /*
673 * Clear blockage on a driver. The what parameter indicates whether
674 * the driver is now ready for cryptop's and/or cryptokop's.
675 */
676 int
677 crypto_unblock(u_int32_t driverid, int what)
678 {
679 struct cryptocap *cap;
680 int needwakeup, err;
681
682 mutex_spin_enter(&crypto_mtx);
683 cap = crypto_checkdriver(driverid);
684 if (cap != NULL) {
685 needwakeup = 0;
686 if (what & CRYPTO_SYMQ) {
687 needwakeup |= cap->cc_qblocked;
688 cap->cc_qblocked = 0;
689 }
690 if (what & CRYPTO_ASYMQ) {
691 needwakeup |= cap->cc_kqblocked;
692 cap->cc_kqblocked = 0;
693 }
694 err = 0;
695 mutex_spin_exit(&crypto_mtx);
696 if (needwakeup)
697 setsoftcrypto(softintr_cookie);
698 } else {
699 err = EINVAL;
700 mutex_spin_exit(&crypto_mtx);
701 }
702
703 return err;
704 }
705
706 /*
707 * Dispatch a crypto request to a driver or queue
708 * it, to be processed by the kernel thread.
709 */
710 int
711 crypto_dispatch(struct cryptop *crp)
712 {
713 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
714 int result;
715
716 mutex_spin_enter(&crypto_mtx);
717 DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n",
718 crp, crp->crp_reqid, crp->crp_desc->crd_alg));
719
720 cryptostats.cs_ops++;
721
722 #ifdef CRYPTO_TIMING
723 if (crypto_timing)
724 nanouptime(&crp->crp_tstamp);
725 #endif
726 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
727 struct cryptocap *cap;
728 /*
729 * Caller marked the request to be processed
730 * immediately; dispatch it directly to the
731 * driver unless the driver is currently blocked.
732 */
733 cap = crypto_checkdriver(hid);
734 if (cap && !cap->cc_qblocked) {
735 mutex_spin_exit(&crypto_mtx);
736 result = crypto_invoke(crp, 0);
737 if (result == ERESTART) {
738 /*
739 * The driver ran out of resources, mark the
740 * driver ``blocked'' for cryptop's and put
741 * the op on the queue.
742 */
743 mutex_spin_enter(&crypto_mtx);
744 crypto_drivers[hid].cc_qblocked = 1;
745 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
746 cryptostats.cs_blocks++;
747 mutex_spin_exit(&crypto_mtx);
748 }
749 goto out_released;
750 } else {
751 /*
752 * The driver is blocked, just queue the op until
753 * it unblocks and the swi thread gets kicked.
754 */
755 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
756 result = 0;
757 }
758 } else {
759 int wasempty = TAILQ_EMPTY(&crp_q);
760 /*
761 * Caller marked the request as ``ok to delay'';
762 * queue it for the swi thread. This is desirable
763 * when the operation is low priority and/or suitable
764 * for batching.
765 */
766 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
767 if (wasempty) {
768 mutex_spin_exit(&crypto_mtx);
769 setsoftcrypto(softintr_cookie);
770 result = 0;
771 goto out_released;
772 }
773
774 result = 0;
775 }
776
777 mutex_spin_exit(&crypto_mtx);
778 out_released:
779 return result;
780 }
781
782 /*
783 * Add an asymetric crypto request to a queue,
784 * to be processed by the kernel thread.
785 */
786 int
787 crypto_kdispatch(struct cryptkop *krp)
788 {
789 struct cryptocap *cap;
790 int result;
791
792 mutex_spin_enter(&crypto_mtx);
793 cryptostats.cs_kops++;
794
795 cap = crypto_checkdriver(krp->krp_hid);
796 if (cap && !cap->cc_kqblocked) {
797 mutex_spin_exit(&crypto_mtx);
798 result = crypto_kinvoke(krp, 0);
799 if (result == ERESTART) {
800 /*
801 * The driver ran out of resources, mark the
802 * driver ``blocked'' for cryptop's and put
803 * the op on the queue.
804 */
805 mutex_spin_enter(&crypto_mtx);
806 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
807 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
808 cryptostats.cs_kblocks++;
809 mutex_spin_exit(&crypto_mtx);
810 }
811 } else {
812 /*
813 * The driver is blocked, just queue the op until
814 * it unblocks and the swi thread gets kicked.
815 */
816 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
817 result = 0;
818 mutex_spin_exit(&crypto_mtx);
819 }
820
821 return result;
822 }
823
824 /*
825 * Dispatch an assymetric crypto request to the appropriate crypto devices.
826 */
827 static int
828 crypto_kinvoke(struct cryptkop *krp, int hint)
829 {
830 u_int32_t hid;
831 int error;
832
833 /* Sanity checks. */
834 if (krp == NULL)
835 return EINVAL;
836 if (krp->krp_callback == NULL) {
837 cv_destroy(&krp->krp_cv);
838 pool_put(&cryptkop_pool, krp);
839 return EINVAL;
840 }
841
842 mutex_spin_enter(&crypto_mtx);
843 for (hid = 0; hid < crypto_drivers_num; hid++) {
844 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
845 crypto_devallowsoft == 0)
846 continue;
847 if (crypto_drivers[hid].cc_kprocess == NULL)
848 continue;
849 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
850 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
851 continue;
852 break;
853 }
854 if (hid < crypto_drivers_num) {
855 int (*process)(void *, struct cryptkop *, int);
856 void *arg;
857
858 process = crypto_drivers[hid].cc_kprocess;
859 arg = crypto_drivers[hid].cc_karg;
860 mutex_spin_exit(&crypto_mtx);
861 krp->krp_hid = hid;
862 error = (*process)(arg, krp, hint);
863 } else {
864 mutex_spin_exit(&crypto_mtx);
865 error = ENODEV;
866 }
867
868 if (error) {
869 krp->krp_status = error;
870 crypto_kdone(krp);
871 }
872 return 0;
873 }
874
875 #ifdef CRYPTO_TIMING
876 static void
877 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
878 {
879 struct timespec now, t;
880
881 nanouptime(&now);
882 t.tv_sec = now.tv_sec - tv->tv_sec;
883 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
884 if (t.tv_nsec < 0) {
885 t.tv_sec--;
886 t.tv_nsec += 1000000000;
887 }
888 timespecadd(&ts->acc, &t, &t);
889 if (timespeccmp(&t, &ts->min, <))
890 ts->min = t;
891 if (timespeccmp(&t, &ts->max, >))
892 ts->max = t;
893 ts->count++;
894
895 *tv = now;
896 }
897 #endif
898
899 /*
900 * Dispatch a crypto request to the appropriate crypto devices.
901 */
902 static int
903 crypto_invoke(struct cryptop *crp, int hint)
904 {
905 u_int32_t hid;
906
907 #ifdef CRYPTO_TIMING
908 if (crypto_timing)
909 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
910 #endif
911 /* Sanity checks. */
912 if (crp == NULL)
913 return EINVAL;
914 if (crp->crp_callback == NULL) {
915 return EINVAL;
916 }
917 if (crp->crp_desc == NULL) {
918 crp->crp_etype = EINVAL;
919 crypto_done(crp);
920 return 0;
921 }
922
923 hid = CRYPTO_SESID2HID(crp->crp_sid);
924
925 mutex_spin_enter(&crypto_mtx);
926 if (hid < crypto_drivers_num) {
927 int (*process)(void *, struct cryptop *, int);
928 void *arg;
929
930 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
931 crypto_freesession(crp->crp_sid);
932 process = crypto_drivers[hid].cc_process;
933 arg = crypto_drivers[hid].cc_arg;
934 mutex_spin_exit(&crypto_mtx);
935
936 /*
937 * Invoke the driver to process the request.
938 */
939 DPRINTF(("calling process for %p\n", crp));
940 return (*process)(arg, crp, hint);
941 } else {
942 struct cryptodesc *crd;
943 u_int64_t nid = 0;
944
945 /*
946 * Driver has unregistered; migrate the session and return
947 * an error to the caller so they'll resubmit the op.
948 */
949 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
950 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
951
952 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
953 crp->crp_sid = nid;
954
955 crp->crp_etype = EAGAIN;
956 mutex_spin_exit(&crypto_mtx);
957
958 crypto_done(crp);
959 return 0;
960 }
961 }
962
963 /*
964 * Release a set of crypto descriptors.
965 */
966 void
967 crypto_freereq(struct cryptop *crp)
968 {
969 struct cryptodesc *crd;
970
971 if (crp == NULL)
972 return;
973 DPRINTF(("crypto_freereq[%u]: crp %p\n",
974 CRYPTO_SESID2LID(crp->crp_sid), crp));
975
976 /* sanity check */
977 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
978 panic("crypto_freereq() freeing crp on RETQ\n");
979 }
980
981 while ((crd = crp->crp_desc) != NULL) {
982 crp->crp_desc = crd->crd_next;
983 pool_put(&cryptodesc_pool, crd);
984 }
985 cv_destroy(&crp->crp_cv);
986 pool_put(&cryptop_pool, crp);
987 }
988
989 /*
990 * Acquire a set of crypto descriptors.
991 */
992 struct cryptop *
993 crypto_getreq(int num)
994 {
995 struct cryptodesc *crd;
996 struct cryptop *crp;
997
998 crp = pool_get(&cryptop_pool, 0);
999 if (crp == NULL) {
1000 return NULL;
1001 }
1002 memset(crp, 0, sizeof(struct cryptop));
1003 cv_init(&crp->crp_cv, "crydev");
1004
1005 while (num--) {
1006 crd = pool_get(&cryptodesc_pool, 0);
1007 if (crd == NULL) {
1008 crypto_freereq(crp);
1009 return NULL;
1010 }
1011
1012 memset(crd, 0, sizeof(struct cryptodesc));
1013 crd->crd_next = crp->crp_desc;
1014 crp->crp_desc = crd;
1015 }
1016
1017 return crp;
1018 }
1019
1020 /*
1021 * Invoke the callback on behalf of the driver.
1022 */
1023 void
1024 crypto_done(struct cryptop *crp)
1025 {
1026 int wasempty;
1027
1028 if (crp->crp_etype != 0)
1029 cryptostats.cs_errs++;
1030 #ifdef CRYPTO_TIMING
1031 if (crypto_timing)
1032 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1033 #endif
1034 DPRINTF(("crypto_done[%u]: crp %p\n",
1035 CRYPTO_SESID2LID(crp->crp_sid), crp));
1036
1037 /*
1038 * Normal case; queue the callback for the thread.
1039 *
1040 * The return queue is manipulated by the swi thread
1041 * and, potentially, by crypto device drivers calling
1042 * back to mark operations completed. Thus we need
1043 * to mask both while manipulating the return queue.
1044 */
1045 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1046 /*
1047 * Do the callback directly. This is ok when the
1048 * callback routine does very little (e.g. the
1049 * /dev/crypto callback method just does a wakeup).
1050 */
1051 mutex_spin_enter(&crypto_mtx);
1052 crp->crp_flags |= CRYPTO_F_DONE;
1053 mutex_spin_exit(&crypto_mtx);
1054
1055 #ifdef CRYPTO_TIMING
1056 if (crypto_timing) {
1057 /*
1058 * NB: We must copy the timestamp before
1059 * doing the callback as the cryptop is
1060 * likely to be reclaimed.
1061 */
1062 struct timespec t = crp->crp_tstamp;
1063 crypto_tstat(&cryptostats.cs_cb, &t);
1064 crp->crp_callback(crp);
1065 crypto_tstat(&cryptostats.cs_finis, &t);
1066 } else
1067 #endif
1068 crp->crp_callback(crp);
1069 } else {
1070 mutex_spin_enter(&crypto_mtx);
1071 crp->crp_flags |= CRYPTO_F_DONE;
1072
1073 if (crp->crp_flags & CRYPTO_F_USER) {
1074 /* the request has completed while
1075 * running in the user context
1076 * so don't queue it - the user
1077 * thread won't sleep when it sees
1078 * the CRYPTO_F_DONE flag.
1079 * This is an optimization to avoid
1080 * unecessary context switches.
1081 */
1082 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1083 CRYPTO_SESID2LID(crp->crp_sid), crp));
1084 } else {
1085 wasempty = TAILQ_EMPTY(&crp_ret_q);
1086 DPRINTF(("crypto_done[%u]: queueing %p\n",
1087 CRYPTO_SESID2LID(crp->crp_sid), crp));
1088 crp->crp_flags |= CRYPTO_F_ONRETQ;
1089 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1090 if (wasempty) {
1091 DPRINTF(("crypto_done[%u]: waking cryptoret, "
1092 "crp %p hit empty queue\n.",
1093 CRYPTO_SESID2LID(crp->crp_sid), crp));
1094 cv_signal(&cryptoret_cv);
1095 }
1096 }
1097 mutex_spin_exit(&crypto_mtx);
1098 }
1099 }
1100
1101 /*
1102 * Invoke the callback on behalf of the driver.
1103 */
1104 void
1105 crypto_kdone(struct cryptkop *krp)
1106 {
1107 int wasempty;
1108
1109 if (krp->krp_status != 0)
1110 cryptostats.cs_kerrs++;
1111
1112 krp->krp_flags |= CRYPTO_F_DONE;
1113
1114 /*
1115 * The return queue is manipulated by the swi thread
1116 * and, potentially, by crypto device drivers calling
1117 * back to mark operations completed. Thus we need
1118 * to mask both while manipulating the return queue.
1119 */
1120 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1121 krp->krp_callback(krp);
1122 } else {
1123 mutex_spin_enter(&crypto_mtx);
1124 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1125 krp->krp_flags |= CRYPTO_F_ONRETQ;
1126 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1127 if (wasempty)
1128 cv_signal(&cryptoret_cv);
1129 mutex_spin_exit(&crypto_mtx);
1130 }
1131 }
1132
1133 int
1134 crypto_getfeat(int *featp)
1135 {
1136 int hid, kalg, feat = 0;
1137
1138 mutex_spin_enter(&crypto_mtx);
1139
1140 if (crypto_userasymcrypto == 0)
1141 goto out;
1142
1143 for (hid = 0; hid < crypto_drivers_num; hid++) {
1144 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1145 crypto_devallowsoft == 0) {
1146 continue;
1147 }
1148 if (crypto_drivers[hid].cc_kprocess == NULL)
1149 continue;
1150 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1151 if ((crypto_drivers[hid].cc_kalg[kalg] &
1152 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1153 feat |= 1 << kalg;
1154 }
1155 out:
1156 mutex_spin_exit(&crypto_mtx);
1157 *featp = feat;
1158 return (0);
1159 }
1160
1161 /*
1162 * Software interrupt thread to dispatch crypto requests.
1163 */
1164 static void
1165 cryptointr(void)
1166 {
1167 struct cryptop *crp, *submit, *cnext;
1168 struct cryptkop *krp, *knext;
1169 struct cryptocap *cap;
1170 int result, hint;
1171
1172 cryptostats.cs_intrs++;
1173 mutex_spin_enter(&crypto_mtx);
1174 do {
1175 /*
1176 * Find the first element in the queue that can be
1177 * processed and look-ahead to see if multiple ops
1178 * are ready for the same driver.
1179 */
1180 submit = NULL;
1181 hint = 0;
1182 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1183 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1184 cap = crypto_checkdriver(hid);
1185 if (cap == NULL || cap->cc_process == NULL) {
1186 /* Op needs to be migrated, process it. */
1187 if (submit == NULL)
1188 submit = crp;
1189 break;
1190 }
1191 if (!cap->cc_qblocked) {
1192 if (submit != NULL) {
1193 /*
1194 * We stop on finding another op,
1195 * regardless whether its for the same
1196 * driver or not. We could keep
1197 * searching the queue but it might be
1198 * better to just use a per-driver
1199 * queue instead.
1200 */
1201 if (CRYPTO_SESID2HID(submit->crp_sid)
1202 == hid)
1203 hint = CRYPTO_HINT_MORE;
1204 break;
1205 } else {
1206 submit = crp;
1207 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1208 break;
1209 /* keep scanning for more are q'd */
1210 }
1211 }
1212 }
1213 if (submit != NULL) {
1214 TAILQ_REMOVE(&crp_q, submit, crp_next);
1215 mutex_spin_exit(&crypto_mtx);
1216 result = crypto_invoke(submit, hint);
1217 /* we must take here as the TAILQ op or kinvoke
1218 may need this mutex below. sigh. */
1219 mutex_spin_enter(&crypto_mtx);
1220 if (result == ERESTART) {
1221 /*
1222 * The driver ran out of resources, mark the
1223 * driver ``blocked'' for cryptop's and put
1224 * the request back in the queue. It would
1225 * best to put the request back where we got
1226 * it but that's hard so for now we put it
1227 * at the front. This should be ok; putting
1228 * it at the end does not work.
1229 */
1230 /* XXX validate sid again? */
1231 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1232 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1233 cryptostats.cs_blocks++;
1234 }
1235 }
1236
1237 /* As above, but for key ops */
1238 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1239 cap = crypto_checkdriver(krp->krp_hid);
1240 if (cap == NULL || cap->cc_kprocess == NULL) {
1241 /* Op needs to be migrated, process it. */
1242 break;
1243 }
1244 if (!cap->cc_kqblocked)
1245 break;
1246 }
1247 if (krp != NULL) {
1248 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1249 mutex_spin_exit(&crypto_mtx);
1250 result = crypto_kinvoke(krp, 0);
1251 /* the next iteration will want the mutex. :-/ */
1252 mutex_spin_enter(&crypto_mtx);
1253 if (result == ERESTART) {
1254 /*
1255 * The driver ran out of resources, mark the
1256 * driver ``blocked'' for cryptkop's and put
1257 * the request back in the queue. It would
1258 * best to put the request back where we got
1259 * it but that's hard so for now we put it
1260 * at the front. This should be ok; putting
1261 * it at the end does not work.
1262 */
1263 /* XXX validate sid again? */
1264 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1265 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1266 cryptostats.cs_kblocks++;
1267 }
1268 }
1269 } while (submit != NULL || krp != NULL);
1270 mutex_spin_exit(&crypto_mtx);
1271 }
1272
1273 /*
1274 * Kernel thread to do callbacks.
1275 */
1276 static void
1277 cryptoret(void)
1278 {
1279 struct cryptop *crp;
1280 struct cryptkop *krp;
1281
1282 mutex_spin_enter(&crypto_mtx);
1283 for (;;) {
1284 crp = TAILQ_FIRST(&crp_ret_q);
1285 if (crp != NULL) {
1286 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1287 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1288 }
1289 krp = TAILQ_FIRST(&crp_ret_kq);
1290 if (krp != NULL) {
1291 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1292 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1293 }
1294
1295 /* drop before calling any callbacks. */
1296 if (crp == NULL && krp == NULL) {
1297 cryptostats.cs_rets++;
1298 cv_wait(&cryptoret_cv, &crypto_mtx);
1299 continue;
1300 }
1301
1302 mutex_spin_exit(&crypto_mtx);
1303
1304 if (crp != NULL) {
1305 #ifdef CRYPTO_TIMING
1306 if (crypto_timing) {
1307 /*
1308 * NB: We must copy the timestamp before
1309 * doing the callback as the cryptop is
1310 * likely to be reclaimed.
1311 */
1312 struct timespec t = crp->crp_tstamp;
1313 crypto_tstat(&cryptostats.cs_cb, &t);
1314 crp->crp_callback(crp);
1315 crypto_tstat(&cryptostats.cs_finis, &t);
1316 } else
1317 #endif
1318 {
1319 crp->crp_callback(crp);
1320 }
1321 }
1322 if (krp != NULL)
1323 krp->krp_callback(krp);
1324
1325 mutex_spin_enter(&crypto_mtx);
1326 }
1327 }
1328