Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.38
      1 /*	$NetBSD: crypto.c,v 1.38 2011/02/24 19:35:46 drochner Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.38 2011/02/24 19:35:46 drochner Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 
     69 #include "opt_ocf.h"
     70 #include <opencrypto/cryptodev.h>
     71 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     72 
     73 kcondvar_t cryptoret_cv;
     74 kmutex_t crypto_mtx;
     75 
     76 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     77   #define SWI_CRYPTO 17
     78   #define register_swi(lvl, fn)  \
     79   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     80   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     81   #define setsoftcrypto(x) softint_schedule(x)
     82 
     83 int crypto_ret_q_check(struct cryptop *);
     84 
     85 /*
     86  * Crypto drivers register themselves by allocating a slot in the
     87  * crypto_drivers table with crypto_get_driverid() and then registering
     88  * each algorithm they support with crypto_register() and crypto_kregister().
     89  */
     90 static	struct cryptocap *crypto_drivers;
     91 static	int crypto_drivers_num;
     92 static	void *softintr_cookie;
     93 
     94 /*
     95  * There are two queues for crypto requests; one for symmetric (e.g.
     96  * cipher) operations and one for asymmetric (e.g. MOD) operations.
     97  * See below for how synchronization is handled.
     98  */
     99 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    100 		TAILQ_HEAD_INITIALIZER(crp_q);
    101 static	TAILQ_HEAD(,cryptkop) crp_kq =
    102 		TAILQ_HEAD_INITIALIZER(crp_kq);
    103 
    104 /*
    105  * There are two queues for processing completed crypto requests; one
    106  * for the symmetric and one for the asymmetric ops.  We only need one
    107  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    108  * for how synchronization is handled.
    109  */
    110 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    111 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    112 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    113 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    114 
    115 /*
    116  * XXX these functions are ghastly hacks for when the submission
    117  * XXX routines discover a request that was not CBIMM is already
    118  * XXX done, and must be yanked from the retq (where _done) put it
    119  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    120  * XXX as the request is generally the last one queued.
    121  *
    122  *	 call with the lock held, or else.
    123  */
    124 int
    125 crypto_ret_q_remove(struct cryptop *crp)
    126 {
    127 	struct cryptop * acrp, *next;
    128 
    129 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    130 		if (acrp == crp) {
    131 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    132 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    133 			return 1;
    134 		}
    135 	}
    136 	return 0;
    137 }
    138 
    139 int
    140 crypto_ret_kq_remove(struct cryptkop *krp)
    141 {
    142 	struct cryptkop * akrp, *next;
    143 
    144 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    145 		if (akrp == krp) {
    146 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    147 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    148 			return 1;
    149 		}
    150 	}
    151 	return 0;
    152 }
    153 
    154 /*
    155  * Crypto op and desciptor data structures are allocated
    156  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    157  */
    158 struct pool cryptop_pool;
    159 struct pool cryptodesc_pool;
    160 struct pool cryptkop_pool;
    161 
    162 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    163 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    164 /*
    165  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    166  * access to hardware versus software transforms as below:
    167  *
    168  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    169  *                              transforms, always
    170  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    171  *                              requests for non-accelerated transforms
    172  *                              (handling the latter in software)
    173  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    174  *                               are hardware-accelerated.
    175  */
    176 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    177 
    178 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    179 {
    180 	sysctl_createv(clog, 0, NULL, NULL,
    181 		       CTLFLAG_PERMANENT,
    182 		       CTLTYPE_NODE, "kern", NULL,
    183 		       NULL, 0, NULL, 0,
    184 		       CTL_KERN, CTL_EOL);
    185 	sysctl_createv(clog, 0, NULL, NULL,
    186 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    187 		       CTLTYPE_INT, "usercrypto",
    188 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    189 			   "crypto support"),
    190 		       NULL, 0, &crypto_usercrypto, 0,
    191 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    192 	sysctl_createv(clog, 0, NULL, NULL,
    193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    194 		       CTLTYPE_INT, "userasymcrypto",
    195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    196 			   "asymmetric crypto support"),
    197 		       NULL, 0, &crypto_userasymcrypto, 0,
    198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    199 	sysctl_createv(clog, 0, NULL, NULL,
    200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    201 		       CTLTYPE_INT, "cryptodevallowsoft",
    202 		       SYSCTL_DESCR("Enable/disable use of software "
    203 			   "asymmetric crypto support"),
    204 		       NULL, 0, &crypto_devallowsoft, 0,
    205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    206 }
    207 
    208 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    209 
    210 /*
    211  * Synchronization: read carefully, this is non-trivial.
    212  *
    213  * Crypto requests are submitted via crypto_dispatch.  Typically
    214  * these come in from network protocols at spl0 (output path) or
    215  * spl[,soft]net (input path).
    216  *
    217  * Requests are typically passed on the driver directly, but they
    218  * may also be queued for processing by a software interrupt thread,
    219  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    220  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    221  * when a request is complete.  Hardware crypto drivers are assumed
    222  * to register their IRQ's as network devices so their interrupt handlers
    223  * and subsequent "done callbacks" happen at spl[imp,net].
    224  *
    225  * Completed crypto ops are queued for a separate kernel thread that
    226  * handles the callbacks at spl0.  This decoupling insures the crypto
    227  * driver interrupt service routine is not delayed while the callback
    228  * takes place and that callbacks are delivered after a context switch
    229  * (as opposed to a software interrupt that clients must block).
    230  *
    231  * This scheme is not intended for SMP machines.
    232  */
    233 static	void cryptointr(void);		/* swi thread to dispatch ops */
    234 static	void cryptoret(void);		/* kernel thread for callbacks*/
    235 static	struct lwp *cryptothread;
    236 static	void crypto_destroy(void);
    237 static	int crypto_invoke(struct cryptop *crp, int hint);
    238 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    239 
    240 static struct cryptostats cryptostats;
    241 #ifdef CRYPTO_TIMING
    242 static	int crypto_timing = 0;
    243 #endif
    244 
    245 static int
    246 crypto_init0(void)
    247 {
    248 	int error;
    249 
    250 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NET);
    251 	cv_init(&cryptoret_cv, "crypto_w");
    252 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    253 		  0, "cryptop", NULL, IPL_NET);
    254 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    255 		  0, "cryptodesc", NULL, IPL_NET);
    256 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    257 		  0, "cryptkop", NULL, IPL_NET);
    258 
    259 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    260 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    261 	if (crypto_drivers == NULL) {
    262 		printf("crypto_init: cannot malloc driver table\n");
    263 		return 0;
    264 	}
    265 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    266 
    267 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    268 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    269 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    270 	if (error) {
    271 		printf("crypto_init: cannot start cryptoret thread; error %d",
    272 			error);
    273 		crypto_destroy();
    274 	}
    275 
    276 	return 0;
    277 }
    278 
    279 void
    280 crypto_init(void)
    281 {
    282 	static ONCE_DECL(crypto_init_once);
    283 
    284 	RUN_ONCE(&crypto_init_once, crypto_init0);
    285 }
    286 
    287 static void
    288 crypto_destroy(void)
    289 {
    290 	/* XXX no wait to reclaim zones */
    291 	if (crypto_drivers != NULL)
    292 		free(crypto_drivers, M_CRYPTO_DATA);
    293 	unregister_swi(SWI_CRYPTO, cryptointr);
    294 }
    295 
    296 /*
    297  * Create a new session.  Must be called with crypto_mtx held.
    298  */
    299 int
    300 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    301 {
    302 	struct cryptoini *cr;
    303 	u_int32_t hid, lid;
    304 	int err = EINVAL;
    305 
    306 	KASSERT(mutex_owned(&crypto_mtx));
    307 
    308 	if (crypto_drivers == NULL)
    309 		goto done;
    310 
    311 	/*
    312 	 * The algorithm we use here is pretty stupid; just use the
    313 	 * first driver that supports all the algorithms we need.
    314 	 *
    315 	 * XXX We need more smarts here (in real life too, but that's
    316 	 * XXX another story altogether).
    317 	 */
    318 
    319 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    320 		/*
    321 		 * If it's not initialized or has remaining sessions
    322 		 * referencing it, skip.
    323 		 */
    324 		if (crypto_drivers[hid].cc_newsession == NULL ||
    325 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    326 			continue;
    327 
    328 		/* Hardware required -- ignore software drivers. */
    329 		if (hard > 0 &&
    330 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    331 			continue;
    332 		/* Software required -- ignore hardware drivers. */
    333 		if (hard < 0 &&
    334 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    335 			continue;
    336 
    337 		/* See if all the algorithms are supported. */
    338 		for (cr = cri; cr; cr = cr->cri_next)
    339 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    340 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    341 				break;
    342 			}
    343 
    344 		if (cr == NULL) {
    345 			/* Ok, all algorithms are supported. */
    346 
    347 			/*
    348 			 * Can't do everything in one session.
    349 			 *
    350 			 * XXX Fix this. We need to inject a "virtual" session layer right
    351 			 * XXX about here.
    352 			 */
    353 
    354 			/* Call the driver initialization routine. */
    355 			lid = hid;		/* Pass the driver ID. */
    356 			err = crypto_drivers[hid].cc_newsession(
    357 					crypto_drivers[hid].cc_arg, &lid, cri);
    358 			if (err == 0) {
    359 				(*sid) = hid;
    360 				(*sid) <<= 32;
    361 				(*sid) |= (lid & 0xffffffff);
    362 				crypto_drivers[hid].cc_sessions++;
    363 			}
    364 			goto done;
    365 			/*break;*/
    366 		}
    367 	}
    368 done:
    369 	return err;
    370 }
    371 
    372 /*
    373  * Delete an existing session (or a reserved session on an unregistered
    374  * driver).  Must be called with crypto_mtx mutex held.
    375  */
    376 int
    377 crypto_freesession(u_int64_t sid)
    378 {
    379 	u_int32_t hid;
    380 	int err = 0;
    381 
    382 	KASSERT(mutex_owned(&crypto_mtx));
    383 
    384 	if (crypto_drivers == NULL) {
    385 		err = EINVAL;
    386 		goto done;
    387 	}
    388 
    389 	/* Determine two IDs. */
    390 	hid = CRYPTO_SESID2HID(sid);
    391 
    392 	if (hid >= crypto_drivers_num) {
    393 		err = ENOENT;
    394 		goto done;
    395 	}
    396 
    397 	if (crypto_drivers[hid].cc_sessions)
    398 		crypto_drivers[hid].cc_sessions--;
    399 
    400 	/* Call the driver cleanup routine, if available. */
    401 	if (crypto_drivers[hid].cc_freesession) {
    402 		err = crypto_drivers[hid].cc_freesession(
    403 				crypto_drivers[hid].cc_arg, sid);
    404 	}
    405 	else
    406 		err = 0;
    407 
    408 	/*
    409 	 * If this was the last session of a driver marked as invalid,
    410 	 * make the entry available for reuse.
    411 	 */
    412 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    413 	    crypto_drivers[hid].cc_sessions == 0)
    414 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    415 
    416 done:
    417 	return err;
    418 }
    419 
    420 /*
    421  * Return an unused driver id.  Used by drivers prior to registering
    422  * support for the algorithms they handle.
    423  */
    424 int32_t
    425 crypto_get_driverid(u_int32_t flags)
    426 {
    427 	struct cryptocap *newdrv;
    428 	int i;
    429 
    430 	crypto_init();		/* XXX oh, this is foul! */
    431 
    432 	mutex_spin_enter(&crypto_mtx);
    433 	for (i = 0; i < crypto_drivers_num; i++)
    434 		if (crypto_drivers[i].cc_process == NULL &&
    435 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    436 		    crypto_drivers[i].cc_sessions == 0)
    437 			break;
    438 
    439 	/* Out of entries, allocate some more. */
    440 	if (i == crypto_drivers_num) {
    441 		/* Be careful about wrap-around. */
    442 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    443 			mutex_spin_exit(&crypto_mtx);
    444 			printf("crypto: driver count wraparound!\n");
    445 			return -1;
    446 		}
    447 
    448 		newdrv = malloc(2 * crypto_drivers_num *
    449 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    450 		if (newdrv == NULL) {
    451 			mutex_spin_exit(&crypto_mtx);
    452 			printf("crypto: no space to expand driver table!\n");
    453 			return -1;
    454 		}
    455 
    456 		memcpy(newdrv, crypto_drivers,
    457 		    crypto_drivers_num * sizeof(struct cryptocap));
    458 
    459 		crypto_drivers_num *= 2;
    460 
    461 		free(crypto_drivers, M_CRYPTO_DATA);
    462 		crypto_drivers = newdrv;
    463 	}
    464 
    465 	/* NB: state is zero'd on free */
    466 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    467 	crypto_drivers[i].cc_flags = flags;
    468 
    469 	if (bootverbose)
    470 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    471 
    472 	mutex_spin_exit(&crypto_mtx);
    473 
    474 	return i;
    475 }
    476 
    477 static struct cryptocap *
    478 crypto_checkdriver(u_int32_t hid)
    479 {
    480 	if (crypto_drivers == NULL)
    481 		return NULL;
    482 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    483 }
    484 
    485 /*
    486  * Register support for a key-related algorithm.  This routine
    487  * is called once for each algorithm supported a driver.
    488  */
    489 int
    490 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    491     int (*kprocess)(void *, struct cryptkop *, int),
    492     void *karg)
    493 {
    494 	struct cryptocap *cap;
    495 	int err;
    496 
    497 	mutex_spin_enter(&crypto_mtx);
    498 
    499 	cap = crypto_checkdriver(driverid);
    500 	if (cap != NULL &&
    501 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    502 		/*
    503 		 * XXX Do some performance testing to determine placing.
    504 		 * XXX We probably need an auxiliary data structure that
    505 		 * XXX describes relative performances.
    506 		 */
    507 
    508 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    509 		if (bootverbose) {
    510 			printf("crypto: driver %u registers key alg %u "
    511 			       " flags %u\n",
    512 				driverid,
    513 				kalg,
    514 				flags
    515 			);
    516 		}
    517 
    518 		if (cap->cc_kprocess == NULL) {
    519 			cap->cc_karg = karg;
    520 			cap->cc_kprocess = kprocess;
    521 		}
    522 		err = 0;
    523 	} else
    524 		err = EINVAL;
    525 
    526 	mutex_spin_exit(&crypto_mtx);
    527 	return err;
    528 }
    529 
    530 /*
    531  * Register support for a non-key-related algorithm.  This routine
    532  * is called once for each such algorithm supported by a driver.
    533  */
    534 int
    535 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    536     u_int32_t flags,
    537     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    538     int (*freeses)(void *, u_int64_t),
    539     int (*process)(void *, struct cryptop *, int),
    540     void *arg)
    541 {
    542 	struct cryptocap *cap;
    543 	int err;
    544 
    545 	mutex_spin_enter(&crypto_mtx);
    546 
    547 	cap = crypto_checkdriver(driverid);
    548 	/* NB: algorithms are in the range [1..max] */
    549 	if (cap != NULL &&
    550 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    551 		/*
    552 		 * XXX Do some performance testing to determine placing.
    553 		 * XXX We probably need an auxiliary data structure that
    554 		 * XXX describes relative performances.
    555 		 */
    556 
    557 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    558 		cap->cc_max_op_len[alg] = maxoplen;
    559 		if (bootverbose) {
    560 			printf("crypto: driver %u registers alg %u "
    561 				"flags %u maxoplen %u\n",
    562 				driverid,
    563 				alg,
    564 				flags,
    565 				maxoplen
    566 			);
    567 		}
    568 
    569 		if (cap->cc_process == NULL) {
    570 			cap->cc_arg = arg;
    571 			cap->cc_newsession = newses;
    572 			cap->cc_process = process;
    573 			cap->cc_freesession = freeses;
    574 			cap->cc_sessions = 0;		/* Unmark */
    575 		}
    576 		err = 0;
    577 	} else
    578 		err = EINVAL;
    579 
    580 	mutex_spin_exit(&crypto_mtx);
    581 	return err;
    582 }
    583 
    584 /*
    585  * Unregister a crypto driver. If there are pending sessions using it,
    586  * leave enough information around so that subsequent calls using those
    587  * sessions will correctly detect the driver has been unregistered and
    588  * reroute requests.
    589  */
    590 int
    591 crypto_unregister(u_int32_t driverid, int alg)
    592 {
    593 	int i, err;
    594 	u_int32_t ses;
    595 	struct cryptocap *cap;
    596 
    597 	mutex_spin_enter(&crypto_mtx);
    598 
    599 	cap = crypto_checkdriver(driverid);
    600 	if (cap != NULL &&
    601 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    602 	    cap->cc_alg[alg] != 0) {
    603 		cap->cc_alg[alg] = 0;
    604 		cap->cc_max_op_len[alg] = 0;
    605 
    606 		/* Was this the last algorithm ? */
    607 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    608 			if (cap->cc_alg[i] != 0)
    609 				break;
    610 
    611 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    612 			ses = cap->cc_sessions;
    613 			memset(cap, 0, sizeof(struct cryptocap));
    614 			if (ses != 0) {
    615 				/*
    616 				 * If there are pending sessions, just mark as invalid.
    617 				 */
    618 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    619 				cap->cc_sessions = ses;
    620 			}
    621 		}
    622 		err = 0;
    623 	} else
    624 		err = EINVAL;
    625 
    626 	mutex_spin_exit(&crypto_mtx);
    627 	return err;
    628 }
    629 
    630 /*
    631  * Unregister all algorithms associated with a crypto driver.
    632  * If there are pending sessions using it, leave enough information
    633  * around so that subsequent calls using those sessions will
    634  * correctly detect the driver has been unregistered and reroute
    635  * requests.
    636  *
    637  * XXX careful.  Don't change this to call crypto_unregister() for each
    638  * XXX registered algorithm unless you drop the mutex across the calls;
    639  * XXX you can't take it recursively.
    640  */
    641 int
    642 crypto_unregister_all(u_int32_t driverid)
    643 {
    644 	int i, err;
    645 	u_int32_t ses;
    646 	struct cryptocap *cap;
    647 
    648 	mutex_spin_enter(&crypto_mtx);
    649 	cap = crypto_checkdriver(driverid);
    650 	if (cap != NULL) {
    651 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    652 			cap->cc_alg[i] = 0;
    653 			cap->cc_max_op_len[i] = 0;
    654 		}
    655 		ses = cap->cc_sessions;
    656 		memset(cap, 0, sizeof(struct cryptocap));
    657 		if (ses != 0) {
    658 			/*
    659 			 * If there are pending sessions, just mark as invalid.
    660 			 */
    661 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    662 			cap->cc_sessions = ses;
    663 		}
    664 		err = 0;
    665 	} else
    666 		err = EINVAL;
    667 
    668 	mutex_spin_exit(&crypto_mtx);
    669 	return err;
    670 }
    671 
    672 /*
    673  * Clear blockage on a driver.  The what parameter indicates whether
    674  * the driver is now ready for cryptop's and/or cryptokop's.
    675  */
    676 int
    677 crypto_unblock(u_int32_t driverid, int what)
    678 {
    679 	struct cryptocap *cap;
    680 	int needwakeup, err;
    681 
    682 	mutex_spin_enter(&crypto_mtx);
    683 	cap = crypto_checkdriver(driverid);
    684 	if (cap != NULL) {
    685 		needwakeup = 0;
    686 		if (what & CRYPTO_SYMQ) {
    687 			needwakeup |= cap->cc_qblocked;
    688 			cap->cc_qblocked = 0;
    689 		}
    690 		if (what & CRYPTO_ASYMQ) {
    691 			needwakeup |= cap->cc_kqblocked;
    692 			cap->cc_kqblocked = 0;
    693 		}
    694 		err = 0;
    695 		mutex_spin_exit(&crypto_mtx);
    696 		if (needwakeup)
    697 			setsoftcrypto(softintr_cookie);
    698 	} else {
    699 		err = EINVAL;
    700 		mutex_spin_exit(&crypto_mtx);
    701 	}
    702 
    703 	return err;
    704 }
    705 
    706 /*
    707  * Dispatch a crypto request to a driver or queue
    708  * it, to be processed by the kernel thread.
    709  */
    710 int
    711 crypto_dispatch(struct cryptop *crp)
    712 {
    713 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
    714 	int result;
    715 
    716 	mutex_spin_enter(&crypto_mtx);
    717 	DPRINTF(("crypto_dispatch: crp %p, reqid 0x%x, alg %d\n",
    718 		crp, crp->crp_reqid, crp->crp_desc->crd_alg));
    719 
    720 	cryptostats.cs_ops++;
    721 
    722 #ifdef CRYPTO_TIMING
    723 	if (crypto_timing)
    724 		nanouptime(&crp->crp_tstamp);
    725 #endif
    726 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    727 		struct cryptocap *cap;
    728 		/*
    729 		 * Caller marked the request to be processed
    730 		 * immediately; dispatch it directly to the
    731 		 * driver unless the driver is currently blocked.
    732 		 */
    733 		cap = crypto_checkdriver(hid);
    734 		if (cap && !cap->cc_qblocked) {
    735 			mutex_spin_exit(&crypto_mtx);
    736 			result = crypto_invoke(crp, 0);
    737 			if (result == ERESTART) {
    738 				/*
    739 				 * The driver ran out of resources, mark the
    740 				 * driver ``blocked'' for cryptop's and put
    741 				 * the op on the queue.
    742 				 */
    743 				mutex_spin_enter(&crypto_mtx);
    744 				crypto_drivers[hid].cc_qblocked = 1;
    745 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    746 				cryptostats.cs_blocks++;
    747 				mutex_spin_exit(&crypto_mtx);
    748 			}
    749 			goto out_released;
    750 		} else {
    751 			/*
    752 			 * The driver is blocked, just queue the op until
    753 			 * it unblocks and the swi thread gets kicked.
    754 			 */
    755 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    756 			result = 0;
    757 		}
    758 	} else {
    759 		int wasempty = TAILQ_EMPTY(&crp_q);
    760 		/*
    761 		 * Caller marked the request as ``ok to delay'';
    762 		 * queue it for the swi thread.  This is desirable
    763 		 * when the operation is low priority and/or suitable
    764 		 * for batching.
    765 		 */
    766 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    767 		if (wasempty) {
    768 			mutex_spin_exit(&crypto_mtx);
    769 			setsoftcrypto(softintr_cookie);
    770 			result = 0;
    771 			goto out_released;
    772 		}
    773 
    774 		result = 0;
    775 	}
    776 
    777 	mutex_spin_exit(&crypto_mtx);
    778 out_released:
    779 	return result;
    780 }
    781 
    782 /*
    783  * Add an asymetric crypto request to a queue,
    784  * to be processed by the kernel thread.
    785  */
    786 int
    787 crypto_kdispatch(struct cryptkop *krp)
    788 {
    789 	struct cryptocap *cap;
    790 	int result;
    791 
    792 	mutex_spin_enter(&crypto_mtx);
    793 	cryptostats.cs_kops++;
    794 
    795 	cap = crypto_checkdriver(krp->krp_hid);
    796 	if (cap && !cap->cc_kqblocked) {
    797 		mutex_spin_exit(&crypto_mtx);
    798 		result = crypto_kinvoke(krp, 0);
    799 		if (result == ERESTART) {
    800 			/*
    801 			 * The driver ran out of resources, mark the
    802 			 * driver ``blocked'' for cryptop's and put
    803 			 * the op on the queue.
    804 			 */
    805 			mutex_spin_enter(&crypto_mtx);
    806 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    807 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    808 			cryptostats.cs_kblocks++;
    809 			mutex_spin_exit(&crypto_mtx);
    810 		}
    811 	} else {
    812 		/*
    813 		 * The driver is blocked, just queue the op until
    814 		 * it unblocks and the swi thread gets kicked.
    815 		 */
    816 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    817 		result = 0;
    818 		mutex_spin_exit(&crypto_mtx);
    819 	}
    820 
    821 	return result;
    822 }
    823 
    824 /*
    825  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    826  */
    827 static int
    828 crypto_kinvoke(struct cryptkop *krp, int hint)
    829 {
    830 	u_int32_t hid;
    831 	int error;
    832 
    833 	/* Sanity checks. */
    834 	if (krp == NULL)
    835 		return EINVAL;
    836 	if (krp->krp_callback == NULL) {
    837 		cv_destroy(&krp->krp_cv);
    838 		pool_put(&cryptkop_pool, krp);
    839 		return EINVAL;
    840 	}
    841 
    842 	mutex_spin_enter(&crypto_mtx);
    843 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    844 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    845 		    crypto_devallowsoft == 0)
    846 			continue;
    847 		if (crypto_drivers[hid].cc_kprocess == NULL)
    848 			continue;
    849 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    850 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    851 			continue;
    852 		break;
    853 	}
    854 	if (hid < crypto_drivers_num) {
    855 		int (*process)(void *, struct cryptkop *, int);
    856 		void *arg;
    857 
    858 		process = crypto_drivers[hid].cc_kprocess;
    859 		arg = crypto_drivers[hid].cc_karg;
    860 		mutex_spin_exit(&crypto_mtx);
    861 		krp->krp_hid = hid;
    862 		error = (*process)(arg, krp, hint);
    863 	} else {
    864 		mutex_spin_exit(&crypto_mtx);
    865 		error = ENODEV;
    866 	}
    867 
    868 	if (error) {
    869 		krp->krp_status = error;
    870 		crypto_kdone(krp);
    871 	}
    872 	return 0;
    873 }
    874 
    875 #ifdef CRYPTO_TIMING
    876 static void
    877 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    878 {
    879 	struct timespec now, t;
    880 
    881 	nanouptime(&now);
    882 	t.tv_sec = now.tv_sec - tv->tv_sec;
    883 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    884 	if (t.tv_nsec < 0) {
    885 		t.tv_sec--;
    886 		t.tv_nsec += 1000000000;
    887 	}
    888 	timespecadd(&ts->acc, &t, &t);
    889 	if (timespeccmp(&t, &ts->min, <))
    890 		ts->min = t;
    891 	if (timespeccmp(&t, &ts->max, >))
    892 		ts->max = t;
    893 	ts->count++;
    894 
    895 	*tv = now;
    896 }
    897 #endif
    898 
    899 /*
    900  * Dispatch a crypto request to the appropriate crypto devices.
    901  */
    902 static int
    903 crypto_invoke(struct cryptop *crp, int hint)
    904 {
    905 	u_int32_t hid;
    906 
    907 #ifdef CRYPTO_TIMING
    908 	if (crypto_timing)
    909 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    910 #endif
    911 	/* Sanity checks. */
    912 	if (crp == NULL)
    913 		return EINVAL;
    914 	if (crp->crp_callback == NULL) {
    915 		return EINVAL;
    916 	}
    917 	if (crp->crp_desc == NULL) {
    918 		crp->crp_etype = EINVAL;
    919 		crypto_done(crp);
    920 		return 0;
    921 	}
    922 
    923 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    924 
    925 	mutex_spin_enter(&crypto_mtx);
    926 	if (hid < crypto_drivers_num) {
    927 		int (*process)(void *, struct cryptop *, int);
    928 		void *arg;
    929 
    930 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    931 			crypto_freesession(crp->crp_sid);
    932 		process = crypto_drivers[hid].cc_process;
    933 		arg = crypto_drivers[hid].cc_arg;
    934 		mutex_spin_exit(&crypto_mtx);
    935 
    936 		/*
    937 		 * Invoke the driver to process the request.
    938 		 */
    939 		DPRINTF(("calling process for %p\n", crp));
    940 		return (*process)(arg, crp, hint);
    941 	} else {
    942 		struct cryptodesc *crd;
    943 		u_int64_t nid = 0;
    944 
    945 		/*
    946 		 * Driver has unregistered; migrate the session and return
    947 		 * an error to the caller so they'll resubmit the op.
    948 		 */
    949 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    950 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    951 
    952 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    953 			crp->crp_sid = nid;
    954 
    955 		crp->crp_etype = EAGAIN;
    956 		mutex_spin_exit(&crypto_mtx);
    957 
    958 		crypto_done(crp);
    959 		return 0;
    960 	}
    961 }
    962 
    963 /*
    964  * Release a set of crypto descriptors.
    965  */
    966 void
    967 crypto_freereq(struct cryptop *crp)
    968 {
    969 	struct cryptodesc *crd;
    970 
    971 	if (crp == NULL)
    972 		return;
    973 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
    974 		CRYPTO_SESID2LID(crp->crp_sid), crp));
    975 
    976 	/* sanity check */
    977 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
    978 		panic("crypto_freereq() freeing crp on RETQ\n");
    979 	}
    980 
    981 	while ((crd = crp->crp_desc) != NULL) {
    982 		crp->crp_desc = crd->crd_next;
    983 		pool_put(&cryptodesc_pool, crd);
    984 	}
    985 	cv_destroy(&crp->crp_cv);
    986 	pool_put(&cryptop_pool, crp);
    987 }
    988 
    989 /*
    990  * Acquire a set of crypto descriptors.
    991  */
    992 struct cryptop *
    993 crypto_getreq(int num)
    994 {
    995 	struct cryptodesc *crd;
    996 	struct cryptop *crp;
    997 
    998 	crp = pool_get(&cryptop_pool, 0);
    999 	if (crp == NULL) {
   1000 		return NULL;
   1001 	}
   1002 	memset(crp, 0, sizeof(struct cryptop));
   1003 	cv_init(&crp->crp_cv, "crydev");
   1004 
   1005 	while (num--) {
   1006 		crd = pool_get(&cryptodesc_pool, 0);
   1007 		if (crd == NULL) {
   1008 			crypto_freereq(crp);
   1009 			return NULL;
   1010 		}
   1011 
   1012 		memset(crd, 0, sizeof(struct cryptodesc));
   1013 		crd->crd_next = crp->crp_desc;
   1014 		crp->crp_desc = crd;
   1015 	}
   1016 
   1017 	return crp;
   1018 }
   1019 
   1020 /*
   1021  * Invoke the callback on behalf of the driver.
   1022  */
   1023 void
   1024 crypto_done(struct cryptop *crp)
   1025 {
   1026 	int wasempty;
   1027 
   1028 	if (crp->crp_etype != 0)
   1029 		cryptostats.cs_errs++;
   1030 #ifdef CRYPTO_TIMING
   1031 	if (crypto_timing)
   1032 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1033 #endif
   1034 	DPRINTF(("crypto_done[%u]: crp %p\n",
   1035 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1036 
   1037 	/*
   1038 	 * Normal case; queue the callback for the thread.
   1039 	 *
   1040 	 * The return queue is manipulated by the swi thread
   1041 	 * and, potentially, by crypto device drivers calling
   1042 	 * back to mark operations completed.  Thus we need
   1043 	 * to mask both while manipulating the return queue.
   1044 	 */
   1045   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1046 		/*
   1047 	 	* Do the callback directly.  This is ok when the
   1048   	 	* callback routine does very little (e.g. the
   1049 	 	* /dev/crypto callback method just does a wakeup).
   1050 	 	*/
   1051 		mutex_spin_enter(&crypto_mtx);
   1052 		crp->crp_flags |= CRYPTO_F_DONE;
   1053 		mutex_spin_exit(&crypto_mtx);
   1054 
   1055 #ifdef CRYPTO_TIMING
   1056 		if (crypto_timing) {
   1057 			/*
   1058 		 	* NB: We must copy the timestamp before
   1059 		 	* doing the callback as the cryptop is
   1060 		 	* likely to be reclaimed.
   1061 		 	*/
   1062 			struct timespec t = crp->crp_tstamp;
   1063 			crypto_tstat(&cryptostats.cs_cb, &t);
   1064 			crp->crp_callback(crp);
   1065 			crypto_tstat(&cryptostats.cs_finis, &t);
   1066 		} else
   1067 #endif
   1068 		crp->crp_callback(crp);
   1069 	} else {
   1070 		mutex_spin_enter(&crypto_mtx);
   1071 		crp->crp_flags |= CRYPTO_F_DONE;
   1072 
   1073 		if (crp->crp_flags & CRYPTO_F_USER) {
   1074 			/* the request has completed while
   1075 			 * running in the user context
   1076 			 * so don't queue it - the user
   1077 			 * thread won't sleep when it sees
   1078 			 * the CRYPTO_F_DONE flag.
   1079 			 * This is an optimization to avoid
   1080 			 * unecessary context switches.
   1081 			 */
   1082 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
   1083 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1084 		} else {
   1085 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1086 			DPRINTF(("crypto_done[%u]: queueing %p\n",
   1087 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1088 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1089 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1090 			if (wasempty) {
   1091 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
   1092 					"crp %p hit empty queue\n.",
   1093 					CRYPTO_SESID2LID(crp->crp_sid), crp));
   1094 				cv_signal(&cryptoret_cv);
   1095 			}
   1096 		}
   1097 		mutex_spin_exit(&crypto_mtx);
   1098 	}
   1099 }
   1100 
   1101 /*
   1102  * Invoke the callback on behalf of the driver.
   1103  */
   1104 void
   1105 crypto_kdone(struct cryptkop *krp)
   1106 {
   1107 	int wasempty;
   1108 
   1109 	if (krp->krp_status != 0)
   1110 		cryptostats.cs_kerrs++;
   1111 
   1112 	krp->krp_flags |= CRYPTO_F_DONE;
   1113 
   1114 	/*
   1115 	 * The return queue is manipulated by the swi thread
   1116 	 * and, potentially, by crypto device drivers calling
   1117 	 * back to mark operations completed.  Thus we need
   1118 	 * to mask both while manipulating the return queue.
   1119 	 */
   1120 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1121 		krp->krp_callback(krp);
   1122 	} else {
   1123 		mutex_spin_enter(&crypto_mtx);
   1124 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1125 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1126 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1127 		if (wasempty)
   1128 			cv_signal(&cryptoret_cv);
   1129 		mutex_spin_exit(&crypto_mtx);
   1130 	}
   1131 }
   1132 
   1133 int
   1134 crypto_getfeat(int *featp)
   1135 {
   1136 	int hid, kalg, feat = 0;
   1137 
   1138 	mutex_spin_enter(&crypto_mtx);
   1139 
   1140 	if (crypto_userasymcrypto == 0)
   1141 		goto out;
   1142 
   1143 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1144 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1145 		    crypto_devallowsoft == 0) {
   1146 			continue;
   1147 		}
   1148 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1149 			continue;
   1150 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1151 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1152 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1153 				feat |=  1 << kalg;
   1154 	}
   1155 out:
   1156 	mutex_spin_exit(&crypto_mtx);
   1157 	*featp = feat;
   1158 	return (0);
   1159 }
   1160 
   1161 /*
   1162  * Software interrupt thread to dispatch crypto requests.
   1163  */
   1164 static void
   1165 cryptointr(void)
   1166 {
   1167 	struct cryptop *crp, *submit, *cnext;
   1168 	struct cryptkop *krp, *knext;
   1169 	struct cryptocap *cap;
   1170 	int result, hint;
   1171 
   1172 	cryptostats.cs_intrs++;
   1173 	mutex_spin_enter(&crypto_mtx);
   1174 	do {
   1175 		/*
   1176 		 * Find the first element in the queue that can be
   1177 		 * processed and look-ahead to see if multiple ops
   1178 		 * are ready for the same driver.
   1179 		 */
   1180 		submit = NULL;
   1181 		hint = 0;
   1182 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1183 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1184 			cap = crypto_checkdriver(hid);
   1185 			if (cap == NULL || cap->cc_process == NULL) {
   1186 				/* Op needs to be migrated, process it. */
   1187 				if (submit == NULL)
   1188 					submit = crp;
   1189 				break;
   1190 			}
   1191 			if (!cap->cc_qblocked) {
   1192 				if (submit != NULL) {
   1193 					/*
   1194 					 * We stop on finding another op,
   1195 					 * regardless whether its for the same
   1196 					 * driver or not.  We could keep
   1197 					 * searching the queue but it might be
   1198 					 * better to just use a per-driver
   1199 					 * queue instead.
   1200 					 */
   1201 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1202 					    == hid)
   1203 						hint = CRYPTO_HINT_MORE;
   1204 					break;
   1205 				} else {
   1206 					submit = crp;
   1207 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1208 						break;
   1209 					/* keep scanning for more are q'd */
   1210 				}
   1211 			}
   1212 		}
   1213 		if (submit != NULL) {
   1214 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1215 			mutex_spin_exit(&crypto_mtx);
   1216 			result = crypto_invoke(submit, hint);
   1217 			/* we must take here as the TAILQ op or kinvoke
   1218 			   may need this mutex below.  sigh. */
   1219 			mutex_spin_enter(&crypto_mtx);
   1220 			if (result == ERESTART) {
   1221 				/*
   1222 				 * The driver ran out of resources, mark the
   1223 				 * driver ``blocked'' for cryptop's and put
   1224 				 * the request back in the queue.  It would
   1225 				 * best to put the request back where we got
   1226 				 * it but that's hard so for now we put it
   1227 				 * at the front.  This should be ok; putting
   1228 				 * it at the end does not work.
   1229 				 */
   1230 				/* XXX validate sid again? */
   1231 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1232 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1233 				cryptostats.cs_blocks++;
   1234 			}
   1235 		}
   1236 
   1237 		/* As above, but for key ops */
   1238 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1239 			cap = crypto_checkdriver(krp->krp_hid);
   1240 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1241 				/* Op needs to be migrated, process it. */
   1242 				break;
   1243 			}
   1244 			if (!cap->cc_kqblocked)
   1245 				break;
   1246 		}
   1247 		if (krp != NULL) {
   1248 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1249 			mutex_spin_exit(&crypto_mtx);
   1250 			result = crypto_kinvoke(krp, 0);
   1251 			/* the next iteration will want the mutex. :-/ */
   1252 			mutex_spin_enter(&crypto_mtx);
   1253 			if (result == ERESTART) {
   1254 				/*
   1255 				 * The driver ran out of resources, mark the
   1256 				 * driver ``blocked'' for cryptkop's and put
   1257 				 * the request back in the queue.  It would
   1258 				 * best to put the request back where we got
   1259 				 * it but that's hard so for now we put it
   1260 				 * at the front.  This should be ok; putting
   1261 				 * it at the end does not work.
   1262 				 */
   1263 				/* XXX validate sid again? */
   1264 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1265 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1266 				cryptostats.cs_kblocks++;
   1267 			}
   1268 		}
   1269 	} while (submit != NULL || krp != NULL);
   1270 	mutex_spin_exit(&crypto_mtx);
   1271 }
   1272 
   1273 /*
   1274  * Kernel thread to do callbacks.
   1275  */
   1276 static void
   1277 cryptoret(void)
   1278 {
   1279 	struct cryptop *crp;
   1280 	struct cryptkop *krp;
   1281 
   1282 	mutex_spin_enter(&crypto_mtx);
   1283 	for (;;) {
   1284 		crp = TAILQ_FIRST(&crp_ret_q);
   1285 		if (crp != NULL) {
   1286 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1287 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1288 		}
   1289 		krp = TAILQ_FIRST(&crp_ret_kq);
   1290 		if (krp != NULL) {
   1291 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1292 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1293 		}
   1294 
   1295 		/* drop before calling any callbacks. */
   1296 		if (crp == NULL && krp == NULL) {
   1297 			cryptostats.cs_rets++;
   1298 			cv_wait(&cryptoret_cv, &crypto_mtx);
   1299 			continue;
   1300 		}
   1301 
   1302 		mutex_spin_exit(&crypto_mtx);
   1303 
   1304 		if (crp != NULL) {
   1305 #ifdef CRYPTO_TIMING
   1306 			if (crypto_timing) {
   1307 				/*
   1308 				 * NB: We must copy the timestamp before
   1309 				 * doing the callback as the cryptop is
   1310 				 * likely to be reclaimed.
   1311 				 */
   1312 				struct timespec t = crp->crp_tstamp;
   1313 				crypto_tstat(&cryptostats.cs_cb, &t);
   1314 				crp->crp_callback(crp);
   1315 				crypto_tstat(&cryptostats.cs_finis, &t);
   1316 			} else
   1317 #endif
   1318 			{
   1319 				crp->crp_callback(crp);
   1320 			}
   1321 		}
   1322 		if (krp != NULL)
   1323 			krp->krp_callback(krp);
   1324 
   1325 		mutex_spin_enter(&crypto_mtx);
   1326 	}
   1327 }
   1328