crypto.c revision 1.43 1 /* $NetBSD: crypto.c,v 1.43 2014/01/13 21:15:36 pgoyette Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.43 2014/01/13 21:15:36 pgoyette Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 kmutex_t crypto_q_mtx;
79 kmutex_t crypto_ret_q_mtx;
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 #define SWI_CRYPTO 17
85 #define register_swi(lvl, fn) \
86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 #define setsoftcrypto(x) softint_schedule(x)
89
90 int crypto_ret_q_check(struct cryptop *);
91
92 /*
93 * Crypto drivers register themselves by allocating a slot in the
94 * crypto_drivers table with crypto_get_driverid() and then registering
95 * each algorithm they support with crypto_register() and crypto_kregister().
96 */
97 static struct cryptocap *crypto_drivers;
98 static int crypto_drivers_num;
99 static void *softintr_cookie;
100
101 /*
102 * There are two queues for crypto requests; one for symmetric (e.g.
103 * cipher) operations and one for asymmetric (e.g. MOD) operations.
104 * See below for how synchronization is handled.
105 */
106 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
107 TAILQ_HEAD_INITIALIZER(crp_q);
108 static TAILQ_HEAD(,cryptkop) crp_kq =
109 TAILQ_HEAD_INITIALIZER(crp_kq);
110
111 /*
112 * There are two queues for processing completed crypto requests; one
113 * for the symmetric and one for the asymmetric ops. We only need one
114 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
115 * for how synchronization is handled.
116 */
117 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
118 TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121
122 /*
123 * XXX these functions are ghastly hacks for when the submission
124 * XXX routines discover a request that was not CBIMM is already
125 * XXX done, and must be yanked from the retq (where _done) put it
126 * XXX as cryptoret won't get the chance. The queue is walked backwards
127 * XXX as the request is generally the last one queued.
128 *
129 * call with the lock held, or else.
130 */
131 int
132 crypto_ret_q_remove(struct cryptop *crp)
133 {
134 struct cryptop * acrp, *next;
135
136 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
137 if (acrp == crp) {
138 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 return 1;
141 }
142 }
143 return 0;
144 }
145
146 int
147 crypto_ret_kq_remove(struct cryptkop *krp)
148 {
149 struct cryptkop * akrp, *next;
150
151 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
152 if (akrp == krp) {
153 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 return 1;
156 }
157 }
158 return 0;
159 }
160
161 /*
162 * Crypto op and desciptor data structures are allocated
163 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164 */
165 struct pool cryptop_pool;
166 struct pool cryptodesc_pool;
167 struct pool cryptkop_pool;
168
169 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
170 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
171 /*
172 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173 * access to hardware versus software transforms as below:
174 *
175 * crypto_devallowsoft < 0: Force userlevel requests to use software
176 * transforms, always
177 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
178 * requests for non-accelerated transforms
179 * (handling the latter in software)
180 * crypto_devallowsoft > 0: Allow user requests only for transforms which
181 * are hardware-accelerated.
182 */
183 int crypto_devallowsoft = 1; /* only use hardware crypto */
184
185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 {
187 sysctl_createv(clog, 0, NULL, NULL,
188 CTLFLAG_PERMANENT,
189 CTLTYPE_NODE, "kern", NULL,
190 NULL, 0, NULL, 0,
191 CTL_KERN, CTL_EOL);
192 sysctl_createv(clog, 0, NULL, NULL,
193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 CTLTYPE_INT, "usercrypto",
195 SYSCTL_DESCR("Enable/disable user-mode access to "
196 "crypto support"),
197 NULL, 0, &crypto_usercrypto, 0,
198 CTL_KERN, CTL_CREATE, CTL_EOL);
199 sysctl_createv(clog, 0, NULL, NULL,
200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 CTLTYPE_INT, "userasymcrypto",
202 SYSCTL_DESCR("Enable/disable user-mode access to "
203 "asymmetric crypto support"),
204 NULL, 0, &crypto_userasymcrypto, 0,
205 CTL_KERN, CTL_CREATE, CTL_EOL);
206 sysctl_createv(clog, 0, NULL, NULL,
207 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 CTLTYPE_INT, "cryptodevallowsoft",
209 SYSCTL_DESCR("Enable/disable use of software "
210 "asymmetric crypto support"),
211 NULL, 0, &crypto_devallowsoft, 0,
212 CTL_KERN, CTL_CREATE, CTL_EOL);
213 }
214
215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216
217 /*
218 * Synchronization: read carefully, this is non-trivial.
219 *
220 * Crypto requests are submitted via crypto_dispatch. Typically
221 * these come in from network protocols at spl0 (output path) or
222 * spl[,soft]net (input path).
223 *
224 * Requests are typically passed on the driver directly, but they
225 * may also be queued for processing by a software interrupt thread,
226 * cryptointr, that runs at splsoftcrypto. This thread dispatches
227 * the requests to crypto drivers (h/w or s/w) who call crypto_done
228 * when a request is complete. Hardware crypto drivers are assumed
229 * to register their IRQ's as network devices so their interrupt handlers
230 * and subsequent "done callbacks" happen at spl[imp,net].
231 *
232 * Completed crypto ops are queued for a separate kernel thread that
233 * handles the callbacks at spl0. This decoupling insures the crypto
234 * driver interrupt service routine is not delayed while the callback
235 * takes place and that callbacks are delivered after a context switch
236 * (as opposed to a software interrupt that clients must block).
237 *
238 * This scheme is not intended for SMP machines.
239 */
240 static void cryptointr(void); /* swi thread to dispatch ops */
241 static void cryptoret(void); /* kernel thread for callbacks*/
242 static struct lwp *cryptothread;
243 static void crypto_destroy(void);
244 static int crypto_invoke(struct cryptop *crp, int hint);
245 static int crypto_kinvoke(struct cryptkop *krp, int hint);
246
247 static struct cryptostats cryptostats;
248 #ifdef CRYPTO_TIMING
249 static int crypto_timing = 0;
250 #endif
251
252 static int
253 crypto_init0(void)
254 {
255 int error;
256
257 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
258 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
259 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 cv_init(&cryptoret_cv, "crypto_w");
261 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
262 0, "cryptop", NULL, IPL_NET);
263 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
264 0, "cryptodesc", NULL, IPL_NET);
265 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
266 0, "cryptkop", NULL, IPL_NET);
267
268 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
269 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
270 if (crypto_drivers == NULL) {
271 printf("crypto_init: cannot malloc driver table\n");
272 return 0;
273 }
274 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
275
276 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
277 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
278 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
279 if (error) {
280 printf("crypto_init: cannot start cryptoret thread; error %d",
281 error);
282 crypto_destroy();
283 }
284
285 return 0;
286 }
287
288 void
289 crypto_init(void)
290 {
291 static ONCE_DECL(crypto_init_once);
292
293 RUN_ONCE(&crypto_init_once, crypto_init0);
294 }
295
296 static void
297 crypto_destroy(void)
298 {
299 /* XXX no wait to reclaim zones */
300 if (crypto_drivers != NULL)
301 free(crypto_drivers, M_CRYPTO_DATA);
302 unregister_swi(SWI_CRYPTO, cryptointr);
303 }
304
305 /*
306 * Create a new session. Must be called with crypto_mtx held.
307 */
308 int
309 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
310 {
311 struct cryptoini *cr;
312 u_int32_t hid, lid;
313 int err = EINVAL;
314
315 mutex_enter(&crypto_mtx);
316
317 if (crypto_drivers == NULL)
318 goto done;
319
320 /*
321 * The algorithm we use here is pretty stupid; just use the
322 * first driver that supports all the algorithms we need.
323 *
324 * XXX We need more smarts here (in real life too, but that's
325 * XXX another story altogether).
326 */
327
328 for (hid = 0; hid < crypto_drivers_num; hid++) {
329 /*
330 * If it's not initialized or has remaining sessions
331 * referencing it, skip.
332 */
333 if (crypto_drivers[hid].cc_newsession == NULL ||
334 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
335 continue;
336
337 /* Hardware required -- ignore software drivers. */
338 if (hard > 0 &&
339 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
340 continue;
341 /* Software required -- ignore hardware drivers. */
342 if (hard < 0 &&
343 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
344 continue;
345
346 /* See if all the algorithms are supported. */
347 for (cr = cri; cr; cr = cr->cri_next)
348 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
349 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
350 break;
351 }
352
353 if (cr == NULL) {
354 /* Ok, all algorithms are supported. */
355
356 /*
357 * Can't do everything in one session.
358 *
359 * XXX Fix this. We need to inject a "virtual" session layer right
360 * XXX about here.
361 */
362
363 /* Call the driver initialization routine. */
364 lid = hid; /* Pass the driver ID. */
365 err = crypto_drivers[hid].cc_newsession(
366 crypto_drivers[hid].cc_arg, &lid, cri);
367 if (err == 0) {
368 (*sid) = hid;
369 (*sid) <<= 32;
370 (*sid) |= (lid & 0xffffffff);
371 crypto_drivers[hid].cc_sessions++;
372 }
373 goto done;
374 /*break;*/
375 }
376 }
377 done:
378 mutex_exit(&crypto_mtx);
379 return err;
380 }
381
382 /*
383 * Delete an existing session (or a reserved session on an unregistered
384 * driver). Must be called with crypto_mtx mutex held.
385 */
386 int
387 crypto_freesession(u_int64_t sid)
388 {
389 u_int32_t hid;
390 int err = 0;
391
392 mutex_enter(&crypto_mtx);
393
394 if (crypto_drivers == NULL) {
395 err = EINVAL;
396 goto done;
397 }
398
399 /* Determine two IDs. */
400 hid = CRYPTO_SESID2HID(sid);
401
402 if (hid >= crypto_drivers_num) {
403 err = ENOENT;
404 goto done;
405 }
406
407 if (crypto_drivers[hid].cc_sessions)
408 crypto_drivers[hid].cc_sessions--;
409
410 /* Call the driver cleanup routine, if available. */
411 if (crypto_drivers[hid].cc_freesession) {
412 err = crypto_drivers[hid].cc_freesession(
413 crypto_drivers[hid].cc_arg, sid);
414 }
415 else
416 err = 0;
417
418 /*
419 * If this was the last session of a driver marked as invalid,
420 * make the entry available for reuse.
421 */
422 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
423 crypto_drivers[hid].cc_sessions == 0)
424 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
425
426 done:
427 mutex_exit(&crypto_mtx);
428 return err;
429 }
430
431 /*
432 * Return an unused driver id. Used by drivers prior to registering
433 * support for the algorithms they handle.
434 */
435 int32_t
436 crypto_get_driverid(u_int32_t flags)
437 {
438 struct cryptocap *newdrv;
439 int i;
440
441 crypto_init(); /* XXX oh, this is foul! */
442
443 mutex_enter(&crypto_mtx);
444 for (i = 0; i < crypto_drivers_num; i++)
445 if (crypto_drivers[i].cc_process == NULL &&
446 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
447 crypto_drivers[i].cc_sessions == 0)
448 break;
449
450 /* Out of entries, allocate some more. */
451 if (i == crypto_drivers_num) {
452 /* Be careful about wrap-around. */
453 if (2 * crypto_drivers_num <= crypto_drivers_num) {
454 mutex_exit(&crypto_mtx);
455 printf("crypto: driver count wraparound!\n");
456 return -1;
457 }
458
459 newdrv = malloc(2 * crypto_drivers_num *
460 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
461 if (newdrv == NULL) {
462 mutex_exit(&crypto_mtx);
463 printf("crypto: no space to expand driver table!\n");
464 return -1;
465 }
466
467 memcpy(newdrv, crypto_drivers,
468 crypto_drivers_num * sizeof(struct cryptocap));
469
470 crypto_drivers_num *= 2;
471
472 free(crypto_drivers, M_CRYPTO_DATA);
473 crypto_drivers = newdrv;
474 }
475
476 /* NB: state is zero'd on free */
477 crypto_drivers[i].cc_sessions = 1; /* Mark */
478 crypto_drivers[i].cc_flags = flags;
479
480 if (bootverbose)
481 printf("crypto: assign driver %u, flags %u\n", i, flags);
482
483 mutex_exit(&crypto_mtx);
484
485 return i;
486 }
487
488 static struct cryptocap *
489 crypto_checkdriver(u_int32_t hid)
490 {
491 if (crypto_drivers == NULL)
492 return NULL;
493 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
494 }
495
496 /*
497 * Register support for a key-related algorithm. This routine
498 * is called once for each algorithm supported a driver.
499 */
500 int
501 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
502 int (*kprocess)(void *, struct cryptkop *, int),
503 void *karg)
504 {
505 struct cryptocap *cap;
506 int err;
507
508 mutex_enter(&crypto_mtx);
509
510 cap = crypto_checkdriver(driverid);
511 if (cap != NULL &&
512 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
513 /*
514 * XXX Do some performance testing to determine placing.
515 * XXX We probably need an auxiliary data structure that
516 * XXX describes relative performances.
517 */
518
519 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
520 if (bootverbose) {
521 printf("crypto: driver %u registers key alg %u "
522 " flags %u\n",
523 driverid,
524 kalg,
525 flags
526 );
527 }
528
529 if (cap->cc_kprocess == NULL) {
530 cap->cc_karg = karg;
531 cap->cc_kprocess = kprocess;
532 }
533 err = 0;
534 } else
535 err = EINVAL;
536
537 mutex_exit(&crypto_mtx);
538 return err;
539 }
540
541 /*
542 * Register support for a non-key-related algorithm. This routine
543 * is called once for each such algorithm supported by a driver.
544 */
545 int
546 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
547 u_int32_t flags,
548 int (*newses)(void *, u_int32_t*, struct cryptoini*),
549 int (*freeses)(void *, u_int64_t),
550 int (*process)(void *, struct cryptop *, int),
551 void *arg)
552 {
553 struct cryptocap *cap;
554 int err;
555
556 mutex_enter(&crypto_mtx);
557
558 cap = crypto_checkdriver(driverid);
559 /* NB: algorithms are in the range [1..max] */
560 if (cap != NULL &&
561 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
562 /*
563 * XXX Do some performance testing to determine placing.
564 * XXX We probably need an auxiliary data structure that
565 * XXX describes relative performances.
566 */
567
568 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
569 cap->cc_max_op_len[alg] = maxoplen;
570 if (bootverbose) {
571 printf("crypto: driver %u registers alg %u "
572 "flags %u maxoplen %u\n",
573 driverid,
574 alg,
575 flags,
576 maxoplen
577 );
578 }
579
580 if (cap->cc_process == NULL) {
581 cap->cc_arg = arg;
582 cap->cc_newsession = newses;
583 cap->cc_process = process;
584 cap->cc_freesession = freeses;
585 cap->cc_sessions = 0; /* Unmark */
586 }
587 err = 0;
588 } else
589 err = EINVAL;
590
591 mutex_exit(&crypto_mtx);
592 return err;
593 }
594
595 /*
596 * Unregister a crypto driver. If there are pending sessions using it,
597 * leave enough information around so that subsequent calls using those
598 * sessions will correctly detect the driver has been unregistered and
599 * reroute requests.
600 */
601 int
602 crypto_unregister(u_int32_t driverid, int alg)
603 {
604 int i, err;
605 u_int32_t ses;
606 struct cryptocap *cap;
607
608 mutex_enter(&crypto_mtx);
609
610 cap = crypto_checkdriver(driverid);
611 if (cap != NULL &&
612 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
613 cap->cc_alg[alg] != 0) {
614 cap->cc_alg[alg] = 0;
615 cap->cc_max_op_len[alg] = 0;
616
617 /* Was this the last algorithm ? */
618 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
619 if (cap->cc_alg[i] != 0)
620 break;
621
622 if (i == CRYPTO_ALGORITHM_MAX + 1) {
623 ses = cap->cc_sessions;
624 memset(cap, 0, sizeof(struct cryptocap));
625 if (ses != 0) {
626 /*
627 * If there are pending sessions, just mark as invalid.
628 */
629 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
630 cap->cc_sessions = ses;
631 }
632 }
633 err = 0;
634 } else
635 err = EINVAL;
636
637 mutex_exit(&crypto_mtx);
638 return err;
639 }
640
641 /*
642 * Unregister all algorithms associated with a crypto driver.
643 * If there are pending sessions using it, leave enough information
644 * around so that subsequent calls using those sessions will
645 * correctly detect the driver has been unregistered and reroute
646 * requests.
647 *
648 * XXX careful. Don't change this to call crypto_unregister() for each
649 * XXX registered algorithm unless you drop the mutex across the calls;
650 * XXX you can't take it recursively.
651 */
652 int
653 crypto_unregister_all(u_int32_t driverid)
654 {
655 int i, err;
656 u_int32_t ses;
657 struct cryptocap *cap;
658
659 mutex_enter(&crypto_mtx);
660 cap = crypto_checkdriver(driverid);
661 if (cap != NULL) {
662 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
663 cap->cc_alg[i] = 0;
664 cap->cc_max_op_len[i] = 0;
665 }
666 ses = cap->cc_sessions;
667 memset(cap, 0, sizeof(struct cryptocap));
668 if (ses != 0) {
669 /*
670 * If there are pending sessions, just mark as invalid.
671 */
672 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
673 cap->cc_sessions = ses;
674 }
675 err = 0;
676 } else
677 err = EINVAL;
678
679 mutex_exit(&crypto_mtx);
680 return err;
681 }
682
683 /*
684 * Clear blockage on a driver. The what parameter indicates whether
685 * the driver is now ready for cryptop's and/or cryptokop's.
686 */
687 int
688 crypto_unblock(u_int32_t driverid, int what)
689 {
690 struct cryptocap *cap;
691 int needwakeup, err;
692
693 mutex_spin_enter(&crypto_q_mtx);
694 cap = crypto_checkdriver(driverid);
695 if (cap != NULL) {
696 needwakeup = 0;
697 if (what & CRYPTO_SYMQ) {
698 needwakeup |= cap->cc_qblocked;
699 cap->cc_qblocked = 0;
700 }
701 if (what & CRYPTO_ASYMQ) {
702 needwakeup |= cap->cc_kqblocked;
703 cap->cc_kqblocked = 0;
704 }
705 err = 0;
706 if (needwakeup)
707 setsoftcrypto(softintr_cookie);
708 mutex_spin_exit(&crypto_q_mtx);
709 } else {
710 err = EINVAL;
711 mutex_spin_exit(&crypto_q_mtx);
712 }
713
714 return err;
715 }
716
717 /*
718 * Dispatch a crypto request to a driver or queue
719 * it, to be processed by the kernel thread.
720 */
721 int
722 crypto_dispatch(struct cryptop *crp)
723 {
724 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
725 int result;
726
727 mutex_spin_enter(&crypto_q_mtx);
728 DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
729 crp, crp->crp_desc->crd_alg));
730
731 cryptostats.cs_ops++;
732
733 #ifdef CRYPTO_TIMING
734 if (crypto_timing)
735 nanouptime(&crp->crp_tstamp);
736 #endif
737 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
738 struct cryptocap *cap;
739 /*
740 * Caller marked the request to be processed
741 * immediately; dispatch it directly to the
742 * driver unless the driver is currently blocked.
743 */
744 cap = crypto_checkdriver(hid);
745 if (cap && !cap->cc_qblocked) {
746 mutex_spin_exit(&crypto_q_mtx);
747 result = crypto_invoke(crp, 0);
748 if (result == ERESTART) {
749 /*
750 * The driver ran out of resources, mark the
751 * driver ``blocked'' for cryptop's and put
752 * the op on the queue.
753 */
754 mutex_spin_enter(&crypto_q_mtx);
755 crypto_drivers[hid].cc_qblocked = 1;
756 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
757 cryptostats.cs_blocks++;
758 mutex_spin_exit(&crypto_q_mtx);
759 }
760 goto out_released;
761 } else {
762 /*
763 * The driver is blocked, just queue the op until
764 * it unblocks and the swi thread gets kicked.
765 */
766 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
767 result = 0;
768 }
769 } else {
770 int wasempty = TAILQ_EMPTY(&crp_q);
771 /*
772 * Caller marked the request as ``ok to delay'';
773 * queue it for the swi thread. This is desirable
774 * when the operation is low priority and/or suitable
775 * for batching.
776 */
777 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
778 if (wasempty) {
779 setsoftcrypto(softintr_cookie);
780 mutex_spin_exit(&crypto_q_mtx);
781 result = 0;
782 goto out_released;
783 }
784
785 result = 0;
786 }
787
788 mutex_spin_exit(&crypto_q_mtx);
789 out_released:
790 return result;
791 }
792
793 /*
794 * Add an asymetric crypto request to a queue,
795 * to be processed by the kernel thread.
796 */
797 int
798 crypto_kdispatch(struct cryptkop *krp)
799 {
800 struct cryptocap *cap;
801 int result;
802
803 mutex_spin_enter(&crypto_q_mtx);
804 cryptostats.cs_kops++;
805
806 cap = crypto_checkdriver(krp->krp_hid);
807 if (cap && !cap->cc_kqblocked) {
808 mutex_spin_exit(&crypto_q_mtx);
809 result = crypto_kinvoke(krp, 0);
810 if (result == ERESTART) {
811 /*
812 * The driver ran out of resources, mark the
813 * driver ``blocked'' for cryptop's and put
814 * the op on the queue.
815 */
816 mutex_spin_enter(&crypto_q_mtx);
817 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
818 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
819 cryptostats.cs_kblocks++;
820 mutex_spin_exit(&crypto_q_mtx);
821 }
822 } else {
823 /*
824 * The driver is blocked, just queue the op until
825 * it unblocks and the swi thread gets kicked.
826 */
827 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
828 result = 0;
829 mutex_spin_exit(&crypto_q_mtx);
830 }
831
832 return result;
833 }
834
835 /*
836 * Dispatch an assymetric crypto request to the appropriate crypto devices.
837 */
838 static int
839 crypto_kinvoke(struct cryptkop *krp, int hint)
840 {
841 u_int32_t hid;
842 int error;
843
844 /* Sanity checks. */
845 if (krp == NULL)
846 return EINVAL;
847 if (krp->krp_callback == NULL) {
848 cv_destroy(&krp->krp_cv);
849 pool_put(&cryptkop_pool, krp);
850 return EINVAL;
851 }
852
853 mutex_enter(&crypto_mtx);
854 for (hid = 0; hid < crypto_drivers_num; hid++) {
855 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
856 crypto_devallowsoft == 0)
857 continue;
858 if (crypto_drivers[hid].cc_kprocess == NULL)
859 continue;
860 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
861 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
862 continue;
863 break;
864 }
865 if (hid < crypto_drivers_num) {
866 int (*process)(void *, struct cryptkop *, int);
867 void *arg;
868
869 process = crypto_drivers[hid].cc_kprocess;
870 arg = crypto_drivers[hid].cc_karg;
871 mutex_exit(&crypto_mtx);
872 krp->krp_hid = hid;
873 error = (*process)(arg, krp, hint);
874 } else {
875 mutex_exit(&crypto_mtx);
876 error = ENODEV;
877 }
878
879 if (error) {
880 krp->krp_status = error;
881 crypto_kdone(krp);
882 }
883 return 0;
884 }
885
886 #ifdef CRYPTO_TIMING
887 static void
888 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
889 {
890 struct timespec now, t;
891
892 nanouptime(&now);
893 t.tv_sec = now.tv_sec - tv->tv_sec;
894 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
895 if (t.tv_nsec < 0) {
896 t.tv_sec--;
897 t.tv_nsec += 1000000000;
898 }
899 timespecadd(&ts->acc, &t, &t);
900 if (timespeccmp(&t, &ts->min, <))
901 ts->min = t;
902 if (timespeccmp(&t, &ts->max, >))
903 ts->max = t;
904 ts->count++;
905
906 *tv = now;
907 }
908 #endif
909
910 /*
911 * Dispatch a crypto request to the appropriate crypto devices.
912 */
913 static int
914 crypto_invoke(struct cryptop *crp, int hint)
915 {
916 u_int32_t hid;
917
918 #ifdef CRYPTO_TIMING
919 if (crypto_timing)
920 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
921 #endif
922 /* Sanity checks. */
923 if (crp == NULL)
924 return EINVAL;
925 if (crp->crp_callback == NULL) {
926 return EINVAL;
927 }
928 if (crp->crp_desc == NULL) {
929 crp->crp_etype = EINVAL;
930 crypto_done(crp);
931 return 0;
932 }
933
934 hid = CRYPTO_SESID2HID(crp->crp_sid);
935
936 if (hid < crypto_drivers_num) {
937 int (*process)(void *, struct cryptop *, int);
938 void *arg;
939
940 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
941 mutex_exit(&crypto_mtx);
942 crypto_freesession(crp->crp_sid);
943 mutex_enter(&crypto_mtx);
944 }
945 process = crypto_drivers[hid].cc_process;
946 arg = crypto_drivers[hid].cc_arg;
947
948 /*
949 * Invoke the driver to process the request.
950 */
951 DPRINTF(("calling process for %p\n", crp));
952 return (*process)(arg, crp, hint);
953 } else {
954 struct cryptodesc *crd;
955 u_int64_t nid = 0;
956
957 /*
958 * Driver has unregistered; migrate the session and return
959 * an error to the caller so they'll resubmit the op.
960 */
961 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
962 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
963
964 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
965 crp->crp_sid = nid;
966
967 crp->crp_etype = EAGAIN;
968
969 crypto_done(crp);
970 return 0;
971 }
972 }
973
974 /*
975 * Release a set of crypto descriptors.
976 */
977 void
978 crypto_freereq(struct cryptop *crp)
979 {
980 struct cryptodesc *crd;
981
982 if (crp == NULL)
983 return;
984 DPRINTF(("crypto_freereq[%u]: crp %p\n",
985 CRYPTO_SESID2LID(crp->crp_sid), crp));
986
987 /* sanity check */
988 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
989 panic("crypto_freereq() freeing crp on RETQ\n");
990 }
991
992 while ((crd = crp->crp_desc) != NULL) {
993 crp->crp_desc = crd->crd_next;
994 pool_put(&cryptodesc_pool, crd);
995 }
996 pool_put(&cryptop_pool, crp);
997 }
998
999 /*
1000 * Acquire a set of crypto descriptors.
1001 */
1002 struct cryptop *
1003 crypto_getreq(int num)
1004 {
1005 struct cryptodesc *crd;
1006 struct cryptop *crp;
1007
1008 crp = pool_get(&cryptop_pool, 0);
1009 if (crp == NULL) {
1010 return NULL;
1011 }
1012 memset(crp, 0, sizeof(struct cryptop));
1013
1014 while (num--) {
1015 crd = pool_get(&cryptodesc_pool, 0);
1016 if (crd == NULL) {
1017 crypto_freereq(crp);
1018 return NULL;
1019 }
1020
1021 memset(crd, 0, sizeof(struct cryptodesc));
1022 crd->crd_next = crp->crp_desc;
1023 crp->crp_desc = crd;
1024 }
1025
1026 return crp;
1027 }
1028
1029 /*
1030 * Invoke the callback on behalf of the driver.
1031 */
1032 void
1033 crypto_done(struct cryptop *crp)
1034 {
1035 int wasempty;
1036
1037 if (crp->crp_etype != 0)
1038 cryptostats.cs_errs++;
1039 #ifdef CRYPTO_TIMING
1040 if (crypto_timing)
1041 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1042 #endif
1043 DPRINTF(("crypto_done[%u]: crp %p\n",
1044 CRYPTO_SESID2LID(crp->crp_sid), crp));
1045
1046 /*
1047 * Normal case; queue the callback for the thread.
1048 *
1049 * The return queue is manipulated by the swi thread
1050 * and, potentially, by crypto device drivers calling
1051 * back to mark operations completed. Thus we need
1052 * to mask both while manipulating the return queue.
1053 */
1054 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1055 /*
1056 * Do the callback directly. This is ok when the
1057 * callback routine does very little (e.g. the
1058 * /dev/crypto callback method just does a wakeup).
1059 */
1060 mutex_spin_enter(&crypto_ret_q_mtx);
1061 crp->crp_flags |= CRYPTO_F_DONE;
1062 mutex_spin_exit(&crypto_ret_q_mtx);
1063
1064 #ifdef CRYPTO_TIMING
1065 if (crypto_timing) {
1066 /*
1067 * NB: We must copy the timestamp before
1068 * doing the callback as the cryptop is
1069 * likely to be reclaimed.
1070 */
1071 struct timespec t = crp->crp_tstamp;
1072 crypto_tstat(&cryptostats.cs_cb, &t);
1073 crp->crp_callback(crp);
1074 crypto_tstat(&cryptostats.cs_finis, &t);
1075 } else
1076 #endif
1077 crp->crp_callback(crp);
1078 } else {
1079 mutex_spin_enter(&crypto_ret_q_mtx);
1080 crp->crp_flags |= CRYPTO_F_DONE;
1081
1082 if (crp->crp_flags & CRYPTO_F_USER) {
1083 /* the request has completed while
1084 * running in the user context
1085 * so don't queue it - the user
1086 * thread won't sleep when it sees
1087 * the CRYPTO_F_DONE flag.
1088 * This is an optimization to avoid
1089 * unecessary context switches.
1090 */
1091 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1092 CRYPTO_SESID2LID(crp->crp_sid), crp));
1093 } else {
1094 wasempty = TAILQ_EMPTY(&crp_ret_q);
1095 DPRINTF(("crypto_done[%u]: queueing %p\n",
1096 CRYPTO_SESID2LID(crp->crp_sid), crp));
1097 crp->crp_flags |= CRYPTO_F_ONRETQ;
1098 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1099 if (wasempty) {
1100 DPRINTF(("crypto_done[%u]: waking cryptoret, "
1101 "crp %p hit empty queue\n.",
1102 CRYPTO_SESID2LID(crp->crp_sid), crp));
1103 cv_signal(&cryptoret_cv);
1104 }
1105 }
1106 mutex_spin_exit(&crypto_ret_q_mtx);
1107 }
1108 }
1109
1110 /*
1111 * Invoke the callback on behalf of the driver.
1112 */
1113 void
1114 crypto_kdone(struct cryptkop *krp)
1115 {
1116 int wasempty;
1117
1118 if (krp->krp_status != 0)
1119 cryptostats.cs_kerrs++;
1120
1121 krp->krp_flags |= CRYPTO_F_DONE;
1122
1123 /*
1124 * The return queue is manipulated by the swi thread
1125 * and, potentially, by crypto device drivers calling
1126 * back to mark operations completed. Thus we need
1127 * to mask both while manipulating the return queue.
1128 */
1129 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1130 krp->krp_callback(krp);
1131 } else {
1132 mutex_spin_enter(&crypto_ret_q_mtx);
1133 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1134 krp->krp_flags |= CRYPTO_F_ONRETQ;
1135 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1136 if (wasempty)
1137 cv_signal(&cryptoret_cv);
1138 mutex_spin_exit(&crypto_ret_q_mtx);
1139 }
1140 }
1141
1142 int
1143 crypto_getfeat(int *featp)
1144 {
1145 int hid, kalg, feat = 0;
1146
1147 mutex_enter(&crypto_mtx);
1148
1149 if (crypto_userasymcrypto == 0)
1150 goto out;
1151
1152 for (hid = 0; hid < crypto_drivers_num; hid++) {
1153 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1154 crypto_devallowsoft == 0) {
1155 continue;
1156 }
1157 if (crypto_drivers[hid].cc_kprocess == NULL)
1158 continue;
1159 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1160 if ((crypto_drivers[hid].cc_kalg[kalg] &
1161 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1162 feat |= 1 << kalg;
1163 }
1164 out:
1165 mutex_exit(&crypto_mtx);
1166 *featp = feat;
1167 return (0);
1168 }
1169
1170 /*
1171 * Software interrupt thread to dispatch crypto requests.
1172 */
1173 static void
1174 cryptointr(void)
1175 {
1176 struct cryptop *crp, *submit, *cnext;
1177 struct cryptkop *krp, *knext;
1178 struct cryptocap *cap;
1179 int result, hint;
1180
1181 cryptostats.cs_intrs++;
1182 mutex_spin_enter(&crypto_q_mtx);
1183 do {
1184 /*
1185 * Find the first element in the queue that can be
1186 * processed and look-ahead to see if multiple ops
1187 * are ready for the same driver.
1188 */
1189 submit = NULL;
1190 hint = 0;
1191 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1192 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1193 cap = crypto_checkdriver(hid);
1194 if (cap == NULL || cap->cc_process == NULL) {
1195 /* Op needs to be migrated, process it. */
1196 if (submit == NULL)
1197 submit = crp;
1198 break;
1199 }
1200 if (!cap->cc_qblocked) {
1201 if (submit != NULL) {
1202 /*
1203 * We stop on finding another op,
1204 * regardless whether its for the same
1205 * driver or not. We could keep
1206 * searching the queue but it might be
1207 * better to just use a per-driver
1208 * queue instead.
1209 */
1210 if (CRYPTO_SESID2HID(submit->crp_sid)
1211 == hid)
1212 hint = CRYPTO_HINT_MORE;
1213 break;
1214 } else {
1215 submit = crp;
1216 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1217 break;
1218 /* keep scanning for more are q'd */
1219 }
1220 }
1221 }
1222 if (submit != NULL) {
1223 TAILQ_REMOVE(&crp_q, submit, crp_next);
1224 mutex_spin_exit(&crypto_q_mtx);
1225 result = crypto_invoke(submit, hint);
1226 /* we must take here as the TAILQ op or kinvoke
1227 may need this mutex below. sigh. */
1228 mutex_spin_enter(&crypto_q_mtx);
1229 if (result == ERESTART) {
1230 /*
1231 * The driver ran out of resources, mark the
1232 * driver ``blocked'' for cryptop's and put
1233 * the request back in the queue. It would
1234 * best to put the request back where we got
1235 * it but that's hard so for now we put it
1236 * at the front. This should be ok; putting
1237 * it at the end does not work.
1238 */
1239 /* XXX validate sid again? */
1240 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1241 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1242 cryptostats.cs_blocks++;
1243 }
1244 }
1245
1246 /* As above, but for key ops */
1247 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1248 cap = crypto_checkdriver(krp->krp_hid);
1249 if (cap == NULL || cap->cc_kprocess == NULL) {
1250 /* Op needs to be migrated, process it. */
1251 break;
1252 }
1253 if (!cap->cc_kqblocked)
1254 break;
1255 }
1256 if (krp != NULL) {
1257 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1258 mutex_spin_exit(&crypto_q_mtx);
1259 result = crypto_kinvoke(krp, 0);
1260 /* the next iteration will want the mutex. :-/ */
1261 mutex_spin_enter(&crypto_q_mtx);
1262 if (result == ERESTART) {
1263 /*
1264 * The driver ran out of resources, mark the
1265 * driver ``blocked'' for cryptkop's and put
1266 * the request back in the queue. It would
1267 * best to put the request back where we got
1268 * it but that's hard so for now we put it
1269 * at the front. This should be ok; putting
1270 * it at the end does not work.
1271 */
1272 /* XXX validate sid again? */
1273 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1274 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1275 cryptostats.cs_kblocks++;
1276 }
1277 }
1278 } while (submit != NULL || krp != NULL);
1279 mutex_spin_exit(&crypto_q_mtx);
1280 }
1281
1282 /*
1283 * Kernel thread to do callbacks.
1284 */
1285 static void
1286 cryptoret(void)
1287 {
1288 struct cryptop *crp;
1289 struct cryptkop *krp;
1290
1291 mutex_spin_enter(&crypto_ret_q_mtx);
1292 for (;;) {
1293 crp = TAILQ_FIRST(&crp_ret_q);
1294 if (crp != NULL) {
1295 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1296 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1297 }
1298 krp = TAILQ_FIRST(&crp_ret_kq);
1299 if (krp != NULL) {
1300 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1301 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1302 }
1303
1304 /* drop before calling any callbacks. */
1305 if (crp == NULL && krp == NULL) {
1306 cryptostats.cs_rets++;
1307 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1308 continue;
1309 }
1310
1311 mutex_spin_exit(&crypto_ret_q_mtx);
1312
1313 if (crp != NULL) {
1314 #ifdef CRYPTO_TIMING
1315 if (crypto_timing) {
1316 /*
1317 * NB: We must copy the timestamp before
1318 * doing the callback as the cryptop is
1319 * likely to be reclaimed.
1320 */
1321 struct timespec t = crp->crp_tstamp;
1322 crypto_tstat(&cryptostats.cs_cb, &t);
1323 crp->crp_callback(crp);
1324 crypto_tstat(&cryptostats.cs_finis, &t);
1325 } else
1326 #endif
1327 {
1328 crp->crp_callback(crp);
1329 }
1330 }
1331 if (krp != NULL)
1332 krp->krp_callback(krp);
1333
1334 mutex_spin_enter(&crypto_ret_q_mtx);
1335 }
1336 }
1337
1338 /* NetBSD module interface */
1339
1340 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1341
1342 static int
1343 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1344 {
1345 #ifdef _MODULE
1346 static struct sysctllog *sysctl_opencrypto_clog;
1347 #endif
1348
1349 switch (cmd) {
1350 case MODULE_CMD_INIT:
1351 #ifdef _MODULE
1352 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
1353 #endif
1354 return 0;
1355 case MODULE_CMD_FINI:
1356 #ifdef _MODULE
1357 sysctl_teardown(&sysctl_opencrypto_clog);
1358 #endif
1359 return 0;
1360 default:
1361 return ENOTTY;
1362 }
1363 }
1364