crypto.c revision 1.44 1 /* $NetBSD: crypto.c,v 1.44 2014/01/14 14:16:47 pgoyette Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.44 2014/01/14 14:16:47 pgoyette Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 kmutex_t crypto_q_mtx;
79 kmutex_t crypto_ret_q_mtx;
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 #define SWI_CRYPTO 17
85 #define register_swi(lvl, fn) \
86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 #define setsoftcrypto(x) softint_schedule(x)
89
90 int crypto_ret_q_check(struct cryptop *);
91
92 /*
93 * Crypto drivers register themselves by allocating a slot in the
94 * crypto_drivers table with crypto_get_driverid() and then registering
95 * each algorithm they support with crypto_register() and crypto_kregister().
96 */
97 static struct cryptocap *crypto_drivers;
98 static int crypto_drivers_num;
99 static void *softintr_cookie;
100
101 /*
102 * There are two queues for crypto requests; one for symmetric (e.g.
103 * cipher) operations and one for asymmetric (e.g. MOD) operations.
104 * See below for how synchronization is handled.
105 */
106 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
107 TAILQ_HEAD_INITIALIZER(crp_q);
108 static TAILQ_HEAD(,cryptkop) crp_kq =
109 TAILQ_HEAD_INITIALIZER(crp_kq);
110
111 /*
112 * There are two queues for processing completed crypto requests; one
113 * for the symmetric and one for the asymmetric ops. We only need one
114 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
115 * for how synchronization is handled.
116 */
117 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
118 TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121
122 /*
123 * XXX these functions are ghastly hacks for when the submission
124 * XXX routines discover a request that was not CBIMM is already
125 * XXX done, and must be yanked from the retq (where _done) put it
126 * XXX as cryptoret won't get the chance. The queue is walked backwards
127 * XXX as the request is generally the last one queued.
128 *
129 * call with the lock held, or else.
130 */
131 int
132 crypto_ret_q_remove(struct cryptop *crp)
133 {
134 struct cryptop * acrp, *next;
135
136 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
137 if (acrp == crp) {
138 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 return 1;
141 }
142 }
143 return 0;
144 }
145
146 int
147 crypto_ret_kq_remove(struct cryptkop *krp)
148 {
149 struct cryptkop * akrp, *next;
150
151 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
152 if (akrp == krp) {
153 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 return 1;
156 }
157 }
158 return 0;
159 }
160
161 /*
162 * Crypto op and desciptor data structures are allocated
163 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164 */
165 struct pool cryptop_pool;
166 struct pool cryptodesc_pool;
167 struct pool cryptkop_pool;
168
169 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
170 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
171 /*
172 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173 * access to hardware versus software transforms as below:
174 *
175 * crypto_devallowsoft < 0: Force userlevel requests to use software
176 * transforms, always
177 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
178 * requests for non-accelerated transforms
179 * (handling the latter in software)
180 * crypto_devallowsoft > 0: Allow user requests only for transforms which
181 * are hardware-accelerated.
182 */
183 int crypto_devallowsoft = 1; /* only use hardware crypto */
184
185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 {
187 sysctl_createv(clog, 0, NULL, NULL,
188 CTLFLAG_PERMANENT,
189 CTLTYPE_NODE, "kern", NULL,
190 NULL, 0, NULL, 0,
191 CTL_KERN, CTL_EOL);
192 sysctl_createv(clog, 0, NULL, NULL,
193 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
194 CTLTYPE_INT, "usercrypto",
195 SYSCTL_DESCR("Enable/disable user-mode access to "
196 "crypto support"),
197 NULL, 0, &crypto_usercrypto, 0,
198 CTL_KERN, CTL_CREATE, CTL_EOL);
199 sysctl_createv(clog, 0, NULL, NULL,
200 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
201 CTLTYPE_INT, "userasymcrypto",
202 SYSCTL_DESCR("Enable/disable user-mode access to "
203 "asymmetric crypto support"),
204 NULL, 0, &crypto_userasymcrypto, 0,
205 CTL_KERN, CTL_CREATE, CTL_EOL);
206 sysctl_createv(clog, 0, NULL, NULL,
207 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
208 CTLTYPE_INT, "cryptodevallowsoft",
209 SYSCTL_DESCR("Enable/disable use of software "
210 "asymmetric crypto support"),
211 NULL, 0, &crypto_devallowsoft, 0,
212 CTL_KERN, CTL_CREATE, CTL_EOL);
213 }
214
215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
216
217 /*
218 * Synchronization: read carefully, this is non-trivial.
219 *
220 * Crypto requests are submitted via crypto_dispatch. Typically
221 * these come in from network protocols at spl0 (output path) or
222 * spl[,soft]net (input path).
223 *
224 * Requests are typically passed on the driver directly, but they
225 * may also be queued for processing by a software interrupt thread,
226 * cryptointr, that runs at splsoftcrypto. This thread dispatches
227 * the requests to crypto drivers (h/w or s/w) who call crypto_done
228 * when a request is complete. Hardware crypto drivers are assumed
229 * to register their IRQ's as network devices so their interrupt handlers
230 * and subsequent "done callbacks" happen at spl[imp,net].
231 *
232 * Completed crypto ops are queued for a separate kernel thread that
233 * handles the callbacks at spl0. This decoupling insures the crypto
234 * driver interrupt service routine is not delayed while the callback
235 * takes place and that callbacks are delivered after a context switch
236 * (as opposed to a software interrupt that clients must block).
237 *
238 * This scheme is not intended for SMP machines.
239 */
240 static void cryptointr(void); /* swi thread to dispatch ops */
241 static void cryptoret(void); /* kernel thread for callbacks*/
242 static struct lwp *cryptothread;
243 static void crypto_destroy(void);
244 static int crypto_invoke(struct cryptop *crp, int hint);
245 static int crypto_kinvoke(struct cryptkop *krp, int hint);
246
247 static struct cryptostats cryptostats;
248 #ifdef CRYPTO_TIMING
249 static int crypto_timing = 0;
250 #endif
251
252 #ifdef _MODULE
253 static struct sysctllog *sysctl_opencrypto_clog;
254 #endif
255
256 static int
257 crypto_init0(void)
258 {
259 int error;
260
261 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
262 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
263 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
264 cv_init(&cryptoret_cv, "crypto_w");
265 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
266 0, "cryptop", NULL, IPL_NET);
267 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
268 0, "cryptodesc", NULL, IPL_NET);
269 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
270 0, "cryptkop", NULL, IPL_NET);
271
272 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
273 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
274 if (crypto_drivers == NULL) {
275 printf("crypto_init: cannot malloc driver table\n");
276 return 0;
277 }
278 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
279
280 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
281 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
282 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
283 if (error) {
284 printf("crypto_init: cannot start cryptoret thread; error %d",
285 error);
286 crypto_destroy();
287 }
288
289 #ifdef _MODULE
290 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
291 #endif
292 return 0;
293 }
294
295 void
296 crypto_init(void)
297 {
298 static ONCE_DECL(crypto_init_once);
299
300 RUN_ONCE(&crypto_init_once, crypto_init0);
301 }
302
303 static void
304 crypto_destroy(void)
305 {
306 /* XXX no wait to reclaim zones */
307 if (crypto_drivers != NULL)
308 free(crypto_drivers, M_CRYPTO_DATA);
309 unregister_swi(SWI_CRYPTO, cryptointr);
310 }
311
312 /*
313 * Create a new session. Must be called with crypto_mtx held.
314 */
315 int
316 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
317 {
318 struct cryptoini *cr;
319 u_int32_t hid, lid;
320 int err = EINVAL;
321
322 mutex_enter(&crypto_mtx);
323
324 if (crypto_drivers == NULL)
325 goto done;
326
327 /*
328 * The algorithm we use here is pretty stupid; just use the
329 * first driver that supports all the algorithms we need.
330 *
331 * XXX We need more smarts here (in real life too, but that's
332 * XXX another story altogether).
333 */
334
335 for (hid = 0; hid < crypto_drivers_num; hid++) {
336 /*
337 * If it's not initialized or has remaining sessions
338 * referencing it, skip.
339 */
340 if (crypto_drivers[hid].cc_newsession == NULL ||
341 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
342 continue;
343
344 /* Hardware required -- ignore software drivers. */
345 if (hard > 0 &&
346 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
347 continue;
348 /* Software required -- ignore hardware drivers. */
349 if (hard < 0 &&
350 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
351 continue;
352
353 /* See if all the algorithms are supported. */
354 for (cr = cri; cr; cr = cr->cri_next)
355 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
356 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
357 break;
358 }
359
360 if (cr == NULL) {
361 /* Ok, all algorithms are supported. */
362
363 /*
364 * Can't do everything in one session.
365 *
366 * XXX Fix this. We need to inject a "virtual" session layer right
367 * XXX about here.
368 */
369
370 /* Call the driver initialization routine. */
371 lid = hid; /* Pass the driver ID. */
372 err = crypto_drivers[hid].cc_newsession(
373 crypto_drivers[hid].cc_arg, &lid, cri);
374 if (err == 0) {
375 (*sid) = hid;
376 (*sid) <<= 32;
377 (*sid) |= (lid & 0xffffffff);
378 crypto_drivers[hid].cc_sessions++;
379 }
380 goto done;
381 /*break;*/
382 }
383 }
384 done:
385 mutex_exit(&crypto_mtx);
386 return err;
387 }
388
389 /*
390 * Delete an existing session (or a reserved session on an unregistered
391 * driver). Must be called with crypto_mtx mutex held.
392 */
393 int
394 crypto_freesession(u_int64_t sid)
395 {
396 u_int32_t hid;
397 int err = 0;
398
399 mutex_enter(&crypto_mtx);
400
401 if (crypto_drivers == NULL) {
402 err = EINVAL;
403 goto done;
404 }
405
406 /* Determine two IDs. */
407 hid = CRYPTO_SESID2HID(sid);
408
409 if (hid >= crypto_drivers_num) {
410 err = ENOENT;
411 goto done;
412 }
413
414 if (crypto_drivers[hid].cc_sessions)
415 crypto_drivers[hid].cc_sessions--;
416
417 /* Call the driver cleanup routine, if available. */
418 if (crypto_drivers[hid].cc_freesession) {
419 err = crypto_drivers[hid].cc_freesession(
420 crypto_drivers[hid].cc_arg, sid);
421 }
422 else
423 err = 0;
424
425 /*
426 * If this was the last session of a driver marked as invalid,
427 * make the entry available for reuse.
428 */
429 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
430 crypto_drivers[hid].cc_sessions == 0)
431 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
432
433 done:
434 mutex_exit(&crypto_mtx);
435 return err;
436 }
437
438 /*
439 * Return an unused driver id. Used by drivers prior to registering
440 * support for the algorithms they handle.
441 */
442 int32_t
443 crypto_get_driverid(u_int32_t flags)
444 {
445 struct cryptocap *newdrv;
446 int i;
447
448 crypto_init(); /* XXX oh, this is foul! */
449
450 mutex_enter(&crypto_mtx);
451 for (i = 0; i < crypto_drivers_num; i++)
452 if (crypto_drivers[i].cc_process == NULL &&
453 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
454 crypto_drivers[i].cc_sessions == 0)
455 break;
456
457 /* Out of entries, allocate some more. */
458 if (i == crypto_drivers_num) {
459 /* Be careful about wrap-around. */
460 if (2 * crypto_drivers_num <= crypto_drivers_num) {
461 mutex_exit(&crypto_mtx);
462 printf("crypto: driver count wraparound!\n");
463 return -1;
464 }
465
466 newdrv = malloc(2 * crypto_drivers_num *
467 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
468 if (newdrv == NULL) {
469 mutex_exit(&crypto_mtx);
470 printf("crypto: no space to expand driver table!\n");
471 return -1;
472 }
473
474 memcpy(newdrv, crypto_drivers,
475 crypto_drivers_num * sizeof(struct cryptocap));
476
477 crypto_drivers_num *= 2;
478
479 free(crypto_drivers, M_CRYPTO_DATA);
480 crypto_drivers = newdrv;
481 }
482
483 /* NB: state is zero'd on free */
484 crypto_drivers[i].cc_sessions = 1; /* Mark */
485 crypto_drivers[i].cc_flags = flags;
486
487 if (bootverbose)
488 printf("crypto: assign driver %u, flags %u\n", i, flags);
489
490 mutex_exit(&crypto_mtx);
491
492 return i;
493 }
494
495 static struct cryptocap *
496 crypto_checkdriver(u_int32_t hid)
497 {
498 if (crypto_drivers == NULL)
499 return NULL;
500 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
501 }
502
503 /*
504 * Register support for a key-related algorithm. This routine
505 * is called once for each algorithm supported a driver.
506 */
507 int
508 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
509 int (*kprocess)(void *, struct cryptkop *, int),
510 void *karg)
511 {
512 struct cryptocap *cap;
513 int err;
514
515 mutex_enter(&crypto_mtx);
516
517 cap = crypto_checkdriver(driverid);
518 if (cap != NULL &&
519 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
520 /*
521 * XXX Do some performance testing to determine placing.
522 * XXX We probably need an auxiliary data structure that
523 * XXX describes relative performances.
524 */
525
526 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
527 if (bootverbose) {
528 printf("crypto: driver %u registers key alg %u "
529 " flags %u\n",
530 driverid,
531 kalg,
532 flags
533 );
534 }
535
536 if (cap->cc_kprocess == NULL) {
537 cap->cc_karg = karg;
538 cap->cc_kprocess = kprocess;
539 }
540 err = 0;
541 } else
542 err = EINVAL;
543
544 mutex_exit(&crypto_mtx);
545 return err;
546 }
547
548 /*
549 * Register support for a non-key-related algorithm. This routine
550 * is called once for each such algorithm supported by a driver.
551 */
552 int
553 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
554 u_int32_t flags,
555 int (*newses)(void *, u_int32_t*, struct cryptoini*),
556 int (*freeses)(void *, u_int64_t),
557 int (*process)(void *, struct cryptop *, int),
558 void *arg)
559 {
560 struct cryptocap *cap;
561 int err;
562
563 mutex_enter(&crypto_mtx);
564
565 cap = crypto_checkdriver(driverid);
566 /* NB: algorithms are in the range [1..max] */
567 if (cap != NULL &&
568 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
569 /*
570 * XXX Do some performance testing to determine placing.
571 * XXX We probably need an auxiliary data structure that
572 * XXX describes relative performances.
573 */
574
575 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
576 cap->cc_max_op_len[alg] = maxoplen;
577 if (bootverbose) {
578 printf("crypto: driver %u registers alg %u "
579 "flags %u maxoplen %u\n",
580 driverid,
581 alg,
582 flags,
583 maxoplen
584 );
585 }
586
587 if (cap->cc_process == NULL) {
588 cap->cc_arg = arg;
589 cap->cc_newsession = newses;
590 cap->cc_process = process;
591 cap->cc_freesession = freeses;
592 cap->cc_sessions = 0; /* Unmark */
593 }
594 err = 0;
595 } else
596 err = EINVAL;
597
598 mutex_exit(&crypto_mtx);
599 return err;
600 }
601
602 /*
603 * Unregister a crypto driver. If there are pending sessions using it,
604 * leave enough information around so that subsequent calls using those
605 * sessions will correctly detect the driver has been unregistered and
606 * reroute requests.
607 */
608 int
609 crypto_unregister(u_int32_t driverid, int alg)
610 {
611 int i, err;
612 u_int32_t ses;
613 struct cryptocap *cap;
614
615 mutex_enter(&crypto_mtx);
616
617 cap = crypto_checkdriver(driverid);
618 if (cap != NULL &&
619 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
620 cap->cc_alg[alg] != 0) {
621 cap->cc_alg[alg] = 0;
622 cap->cc_max_op_len[alg] = 0;
623
624 /* Was this the last algorithm ? */
625 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
626 if (cap->cc_alg[i] != 0)
627 break;
628
629 if (i == CRYPTO_ALGORITHM_MAX + 1) {
630 ses = cap->cc_sessions;
631 memset(cap, 0, sizeof(struct cryptocap));
632 if (ses != 0) {
633 /*
634 * If there are pending sessions, just mark as invalid.
635 */
636 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
637 cap->cc_sessions = ses;
638 }
639 }
640 err = 0;
641 } else
642 err = EINVAL;
643
644 mutex_exit(&crypto_mtx);
645 return err;
646 }
647
648 /*
649 * Unregister all algorithms associated with a crypto driver.
650 * If there are pending sessions using it, leave enough information
651 * around so that subsequent calls using those sessions will
652 * correctly detect the driver has been unregistered and reroute
653 * requests.
654 *
655 * XXX careful. Don't change this to call crypto_unregister() for each
656 * XXX registered algorithm unless you drop the mutex across the calls;
657 * XXX you can't take it recursively.
658 */
659 int
660 crypto_unregister_all(u_int32_t driverid)
661 {
662 int i, err;
663 u_int32_t ses;
664 struct cryptocap *cap;
665
666 mutex_enter(&crypto_mtx);
667 cap = crypto_checkdriver(driverid);
668 if (cap != NULL) {
669 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
670 cap->cc_alg[i] = 0;
671 cap->cc_max_op_len[i] = 0;
672 }
673 ses = cap->cc_sessions;
674 memset(cap, 0, sizeof(struct cryptocap));
675 if (ses != 0) {
676 /*
677 * If there are pending sessions, just mark as invalid.
678 */
679 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
680 cap->cc_sessions = ses;
681 }
682 err = 0;
683 } else
684 err = EINVAL;
685
686 mutex_exit(&crypto_mtx);
687 return err;
688 }
689
690 /*
691 * Clear blockage on a driver. The what parameter indicates whether
692 * the driver is now ready for cryptop's and/or cryptokop's.
693 */
694 int
695 crypto_unblock(u_int32_t driverid, int what)
696 {
697 struct cryptocap *cap;
698 int needwakeup, err;
699
700 mutex_spin_enter(&crypto_q_mtx);
701 cap = crypto_checkdriver(driverid);
702 if (cap != NULL) {
703 needwakeup = 0;
704 if (what & CRYPTO_SYMQ) {
705 needwakeup |= cap->cc_qblocked;
706 cap->cc_qblocked = 0;
707 }
708 if (what & CRYPTO_ASYMQ) {
709 needwakeup |= cap->cc_kqblocked;
710 cap->cc_kqblocked = 0;
711 }
712 err = 0;
713 if (needwakeup)
714 setsoftcrypto(softintr_cookie);
715 mutex_spin_exit(&crypto_q_mtx);
716 } else {
717 err = EINVAL;
718 mutex_spin_exit(&crypto_q_mtx);
719 }
720
721 return err;
722 }
723
724 /*
725 * Dispatch a crypto request to a driver or queue
726 * it, to be processed by the kernel thread.
727 */
728 int
729 crypto_dispatch(struct cryptop *crp)
730 {
731 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
732 int result;
733
734 mutex_spin_enter(&crypto_q_mtx);
735 DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
736 crp, crp->crp_desc->crd_alg));
737
738 cryptostats.cs_ops++;
739
740 #ifdef CRYPTO_TIMING
741 if (crypto_timing)
742 nanouptime(&crp->crp_tstamp);
743 #endif
744 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
745 struct cryptocap *cap;
746 /*
747 * Caller marked the request to be processed
748 * immediately; dispatch it directly to the
749 * driver unless the driver is currently blocked.
750 */
751 cap = crypto_checkdriver(hid);
752 if (cap && !cap->cc_qblocked) {
753 mutex_spin_exit(&crypto_q_mtx);
754 result = crypto_invoke(crp, 0);
755 if (result == ERESTART) {
756 /*
757 * The driver ran out of resources, mark the
758 * driver ``blocked'' for cryptop's and put
759 * the op on the queue.
760 */
761 mutex_spin_enter(&crypto_q_mtx);
762 crypto_drivers[hid].cc_qblocked = 1;
763 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
764 cryptostats.cs_blocks++;
765 mutex_spin_exit(&crypto_q_mtx);
766 }
767 goto out_released;
768 } else {
769 /*
770 * The driver is blocked, just queue the op until
771 * it unblocks and the swi thread gets kicked.
772 */
773 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
774 result = 0;
775 }
776 } else {
777 int wasempty = TAILQ_EMPTY(&crp_q);
778 /*
779 * Caller marked the request as ``ok to delay'';
780 * queue it for the swi thread. This is desirable
781 * when the operation is low priority and/or suitable
782 * for batching.
783 */
784 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
785 if (wasempty) {
786 setsoftcrypto(softintr_cookie);
787 mutex_spin_exit(&crypto_q_mtx);
788 result = 0;
789 goto out_released;
790 }
791
792 result = 0;
793 }
794
795 mutex_spin_exit(&crypto_q_mtx);
796 out_released:
797 return result;
798 }
799
800 /*
801 * Add an asymetric crypto request to a queue,
802 * to be processed by the kernel thread.
803 */
804 int
805 crypto_kdispatch(struct cryptkop *krp)
806 {
807 struct cryptocap *cap;
808 int result;
809
810 mutex_spin_enter(&crypto_q_mtx);
811 cryptostats.cs_kops++;
812
813 cap = crypto_checkdriver(krp->krp_hid);
814 if (cap && !cap->cc_kqblocked) {
815 mutex_spin_exit(&crypto_q_mtx);
816 result = crypto_kinvoke(krp, 0);
817 if (result == ERESTART) {
818 /*
819 * The driver ran out of resources, mark the
820 * driver ``blocked'' for cryptop's and put
821 * the op on the queue.
822 */
823 mutex_spin_enter(&crypto_q_mtx);
824 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
825 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
826 cryptostats.cs_kblocks++;
827 mutex_spin_exit(&crypto_q_mtx);
828 }
829 } else {
830 /*
831 * The driver is blocked, just queue the op until
832 * it unblocks and the swi thread gets kicked.
833 */
834 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
835 result = 0;
836 mutex_spin_exit(&crypto_q_mtx);
837 }
838
839 return result;
840 }
841
842 /*
843 * Dispatch an assymetric crypto request to the appropriate crypto devices.
844 */
845 static int
846 crypto_kinvoke(struct cryptkop *krp, int hint)
847 {
848 u_int32_t hid;
849 int error;
850
851 /* Sanity checks. */
852 if (krp == NULL)
853 return EINVAL;
854 if (krp->krp_callback == NULL) {
855 cv_destroy(&krp->krp_cv);
856 pool_put(&cryptkop_pool, krp);
857 return EINVAL;
858 }
859
860 mutex_enter(&crypto_mtx);
861 for (hid = 0; hid < crypto_drivers_num; hid++) {
862 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
863 crypto_devallowsoft == 0)
864 continue;
865 if (crypto_drivers[hid].cc_kprocess == NULL)
866 continue;
867 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
868 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
869 continue;
870 break;
871 }
872 if (hid < crypto_drivers_num) {
873 int (*process)(void *, struct cryptkop *, int);
874 void *arg;
875
876 process = crypto_drivers[hid].cc_kprocess;
877 arg = crypto_drivers[hid].cc_karg;
878 mutex_exit(&crypto_mtx);
879 krp->krp_hid = hid;
880 error = (*process)(arg, krp, hint);
881 } else {
882 mutex_exit(&crypto_mtx);
883 error = ENODEV;
884 }
885
886 if (error) {
887 krp->krp_status = error;
888 crypto_kdone(krp);
889 }
890 return 0;
891 }
892
893 #ifdef CRYPTO_TIMING
894 static void
895 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
896 {
897 struct timespec now, t;
898
899 nanouptime(&now);
900 t.tv_sec = now.tv_sec - tv->tv_sec;
901 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
902 if (t.tv_nsec < 0) {
903 t.tv_sec--;
904 t.tv_nsec += 1000000000;
905 }
906 timespecadd(&ts->acc, &t, &t);
907 if (timespeccmp(&t, &ts->min, <))
908 ts->min = t;
909 if (timespeccmp(&t, &ts->max, >))
910 ts->max = t;
911 ts->count++;
912
913 *tv = now;
914 }
915 #endif
916
917 /*
918 * Dispatch a crypto request to the appropriate crypto devices.
919 */
920 static int
921 crypto_invoke(struct cryptop *crp, int hint)
922 {
923 u_int32_t hid;
924
925 #ifdef CRYPTO_TIMING
926 if (crypto_timing)
927 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
928 #endif
929 /* Sanity checks. */
930 if (crp == NULL)
931 return EINVAL;
932 if (crp->crp_callback == NULL) {
933 return EINVAL;
934 }
935 if (crp->crp_desc == NULL) {
936 crp->crp_etype = EINVAL;
937 crypto_done(crp);
938 return 0;
939 }
940
941 hid = CRYPTO_SESID2HID(crp->crp_sid);
942
943 if (hid < crypto_drivers_num) {
944 int (*process)(void *, struct cryptop *, int);
945 void *arg;
946
947 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
948 mutex_exit(&crypto_mtx);
949 crypto_freesession(crp->crp_sid);
950 mutex_enter(&crypto_mtx);
951 }
952 process = crypto_drivers[hid].cc_process;
953 arg = crypto_drivers[hid].cc_arg;
954
955 /*
956 * Invoke the driver to process the request.
957 */
958 DPRINTF(("calling process for %p\n", crp));
959 return (*process)(arg, crp, hint);
960 } else {
961 struct cryptodesc *crd;
962 u_int64_t nid = 0;
963
964 /*
965 * Driver has unregistered; migrate the session and return
966 * an error to the caller so they'll resubmit the op.
967 */
968 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
969 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
970
971 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
972 crp->crp_sid = nid;
973
974 crp->crp_etype = EAGAIN;
975
976 crypto_done(crp);
977 return 0;
978 }
979 }
980
981 /*
982 * Release a set of crypto descriptors.
983 */
984 void
985 crypto_freereq(struct cryptop *crp)
986 {
987 struct cryptodesc *crd;
988
989 if (crp == NULL)
990 return;
991 DPRINTF(("crypto_freereq[%u]: crp %p\n",
992 CRYPTO_SESID2LID(crp->crp_sid), crp));
993
994 /* sanity check */
995 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
996 panic("crypto_freereq() freeing crp on RETQ\n");
997 }
998
999 while ((crd = crp->crp_desc) != NULL) {
1000 crp->crp_desc = crd->crd_next;
1001 pool_put(&cryptodesc_pool, crd);
1002 }
1003 pool_put(&cryptop_pool, crp);
1004 }
1005
1006 /*
1007 * Acquire a set of crypto descriptors.
1008 */
1009 struct cryptop *
1010 crypto_getreq(int num)
1011 {
1012 struct cryptodesc *crd;
1013 struct cryptop *crp;
1014
1015 crp = pool_get(&cryptop_pool, 0);
1016 if (crp == NULL) {
1017 return NULL;
1018 }
1019 memset(crp, 0, sizeof(struct cryptop));
1020
1021 while (num--) {
1022 crd = pool_get(&cryptodesc_pool, 0);
1023 if (crd == NULL) {
1024 crypto_freereq(crp);
1025 return NULL;
1026 }
1027
1028 memset(crd, 0, sizeof(struct cryptodesc));
1029 crd->crd_next = crp->crp_desc;
1030 crp->crp_desc = crd;
1031 }
1032
1033 return crp;
1034 }
1035
1036 /*
1037 * Invoke the callback on behalf of the driver.
1038 */
1039 void
1040 crypto_done(struct cryptop *crp)
1041 {
1042 int wasempty;
1043
1044 if (crp->crp_etype != 0)
1045 cryptostats.cs_errs++;
1046 #ifdef CRYPTO_TIMING
1047 if (crypto_timing)
1048 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1049 #endif
1050 DPRINTF(("crypto_done[%u]: crp %p\n",
1051 CRYPTO_SESID2LID(crp->crp_sid), crp));
1052
1053 /*
1054 * Normal case; queue the callback for the thread.
1055 *
1056 * The return queue is manipulated by the swi thread
1057 * and, potentially, by crypto device drivers calling
1058 * back to mark operations completed. Thus we need
1059 * to mask both while manipulating the return queue.
1060 */
1061 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1062 /*
1063 * Do the callback directly. This is ok when the
1064 * callback routine does very little (e.g. the
1065 * /dev/crypto callback method just does a wakeup).
1066 */
1067 mutex_spin_enter(&crypto_ret_q_mtx);
1068 crp->crp_flags |= CRYPTO_F_DONE;
1069 mutex_spin_exit(&crypto_ret_q_mtx);
1070
1071 #ifdef CRYPTO_TIMING
1072 if (crypto_timing) {
1073 /*
1074 * NB: We must copy the timestamp before
1075 * doing the callback as the cryptop is
1076 * likely to be reclaimed.
1077 */
1078 struct timespec t = crp->crp_tstamp;
1079 crypto_tstat(&cryptostats.cs_cb, &t);
1080 crp->crp_callback(crp);
1081 crypto_tstat(&cryptostats.cs_finis, &t);
1082 } else
1083 #endif
1084 crp->crp_callback(crp);
1085 } else {
1086 mutex_spin_enter(&crypto_ret_q_mtx);
1087 crp->crp_flags |= CRYPTO_F_DONE;
1088
1089 if (crp->crp_flags & CRYPTO_F_USER) {
1090 /* the request has completed while
1091 * running in the user context
1092 * so don't queue it - the user
1093 * thread won't sleep when it sees
1094 * the CRYPTO_F_DONE flag.
1095 * This is an optimization to avoid
1096 * unecessary context switches.
1097 */
1098 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1099 CRYPTO_SESID2LID(crp->crp_sid), crp));
1100 } else {
1101 wasempty = TAILQ_EMPTY(&crp_ret_q);
1102 DPRINTF(("crypto_done[%u]: queueing %p\n",
1103 CRYPTO_SESID2LID(crp->crp_sid), crp));
1104 crp->crp_flags |= CRYPTO_F_ONRETQ;
1105 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1106 if (wasempty) {
1107 DPRINTF(("crypto_done[%u]: waking cryptoret, "
1108 "crp %p hit empty queue\n.",
1109 CRYPTO_SESID2LID(crp->crp_sid), crp));
1110 cv_signal(&cryptoret_cv);
1111 }
1112 }
1113 mutex_spin_exit(&crypto_ret_q_mtx);
1114 }
1115 }
1116
1117 /*
1118 * Invoke the callback on behalf of the driver.
1119 */
1120 void
1121 crypto_kdone(struct cryptkop *krp)
1122 {
1123 int wasempty;
1124
1125 if (krp->krp_status != 0)
1126 cryptostats.cs_kerrs++;
1127
1128 krp->krp_flags |= CRYPTO_F_DONE;
1129
1130 /*
1131 * The return queue is manipulated by the swi thread
1132 * and, potentially, by crypto device drivers calling
1133 * back to mark operations completed. Thus we need
1134 * to mask both while manipulating the return queue.
1135 */
1136 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1137 krp->krp_callback(krp);
1138 } else {
1139 mutex_spin_enter(&crypto_ret_q_mtx);
1140 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1141 krp->krp_flags |= CRYPTO_F_ONRETQ;
1142 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1143 if (wasempty)
1144 cv_signal(&cryptoret_cv);
1145 mutex_spin_exit(&crypto_ret_q_mtx);
1146 }
1147 }
1148
1149 int
1150 crypto_getfeat(int *featp)
1151 {
1152 int hid, kalg, feat = 0;
1153
1154 mutex_enter(&crypto_mtx);
1155
1156 if (crypto_userasymcrypto == 0)
1157 goto out;
1158
1159 for (hid = 0; hid < crypto_drivers_num; hid++) {
1160 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1161 crypto_devallowsoft == 0) {
1162 continue;
1163 }
1164 if (crypto_drivers[hid].cc_kprocess == NULL)
1165 continue;
1166 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1167 if ((crypto_drivers[hid].cc_kalg[kalg] &
1168 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1169 feat |= 1 << kalg;
1170 }
1171 out:
1172 mutex_exit(&crypto_mtx);
1173 *featp = feat;
1174 return (0);
1175 }
1176
1177 /*
1178 * Software interrupt thread to dispatch crypto requests.
1179 */
1180 static void
1181 cryptointr(void)
1182 {
1183 struct cryptop *crp, *submit, *cnext;
1184 struct cryptkop *krp, *knext;
1185 struct cryptocap *cap;
1186 int result, hint;
1187
1188 cryptostats.cs_intrs++;
1189 mutex_spin_enter(&crypto_q_mtx);
1190 do {
1191 /*
1192 * Find the first element in the queue that can be
1193 * processed and look-ahead to see if multiple ops
1194 * are ready for the same driver.
1195 */
1196 submit = NULL;
1197 hint = 0;
1198 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1199 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1200 cap = crypto_checkdriver(hid);
1201 if (cap == NULL || cap->cc_process == NULL) {
1202 /* Op needs to be migrated, process it. */
1203 if (submit == NULL)
1204 submit = crp;
1205 break;
1206 }
1207 if (!cap->cc_qblocked) {
1208 if (submit != NULL) {
1209 /*
1210 * We stop on finding another op,
1211 * regardless whether its for the same
1212 * driver or not. We could keep
1213 * searching the queue but it might be
1214 * better to just use a per-driver
1215 * queue instead.
1216 */
1217 if (CRYPTO_SESID2HID(submit->crp_sid)
1218 == hid)
1219 hint = CRYPTO_HINT_MORE;
1220 break;
1221 } else {
1222 submit = crp;
1223 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1224 break;
1225 /* keep scanning for more are q'd */
1226 }
1227 }
1228 }
1229 if (submit != NULL) {
1230 TAILQ_REMOVE(&crp_q, submit, crp_next);
1231 mutex_spin_exit(&crypto_q_mtx);
1232 result = crypto_invoke(submit, hint);
1233 /* we must take here as the TAILQ op or kinvoke
1234 may need this mutex below. sigh. */
1235 mutex_spin_enter(&crypto_q_mtx);
1236 if (result == ERESTART) {
1237 /*
1238 * The driver ran out of resources, mark the
1239 * driver ``blocked'' for cryptop's and put
1240 * the request back in the queue. It would
1241 * best to put the request back where we got
1242 * it but that's hard so for now we put it
1243 * at the front. This should be ok; putting
1244 * it at the end does not work.
1245 */
1246 /* XXX validate sid again? */
1247 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1248 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1249 cryptostats.cs_blocks++;
1250 }
1251 }
1252
1253 /* As above, but for key ops */
1254 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1255 cap = crypto_checkdriver(krp->krp_hid);
1256 if (cap == NULL || cap->cc_kprocess == NULL) {
1257 /* Op needs to be migrated, process it. */
1258 break;
1259 }
1260 if (!cap->cc_kqblocked)
1261 break;
1262 }
1263 if (krp != NULL) {
1264 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1265 mutex_spin_exit(&crypto_q_mtx);
1266 result = crypto_kinvoke(krp, 0);
1267 /* the next iteration will want the mutex. :-/ */
1268 mutex_spin_enter(&crypto_q_mtx);
1269 if (result == ERESTART) {
1270 /*
1271 * The driver ran out of resources, mark the
1272 * driver ``blocked'' for cryptkop's and put
1273 * the request back in the queue. It would
1274 * best to put the request back where we got
1275 * it but that's hard so for now we put it
1276 * at the front. This should be ok; putting
1277 * it at the end does not work.
1278 */
1279 /* XXX validate sid again? */
1280 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1281 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1282 cryptostats.cs_kblocks++;
1283 }
1284 }
1285 } while (submit != NULL || krp != NULL);
1286 mutex_spin_exit(&crypto_q_mtx);
1287 }
1288
1289 /*
1290 * Kernel thread to do callbacks.
1291 */
1292 static void
1293 cryptoret(void)
1294 {
1295 struct cryptop *crp;
1296 struct cryptkop *krp;
1297
1298 mutex_spin_enter(&crypto_ret_q_mtx);
1299 for (;;) {
1300 crp = TAILQ_FIRST(&crp_ret_q);
1301 if (crp != NULL) {
1302 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1303 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1304 }
1305 krp = TAILQ_FIRST(&crp_ret_kq);
1306 if (krp != NULL) {
1307 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1308 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1309 }
1310
1311 /* drop before calling any callbacks. */
1312 if (crp == NULL && krp == NULL) {
1313 cryptostats.cs_rets++;
1314 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1315 continue;
1316 }
1317
1318 mutex_spin_exit(&crypto_ret_q_mtx);
1319
1320 if (crp != NULL) {
1321 #ifdef CRYPTO_TIMING
1322 if (crypto_timing) {
1323 /*
1324 * NB: We must copy the timestamp before
1325 * doing the callback as the cryptop is
1326 * likely to be reclaimed.
1327 */
1328 struct timespec t = crp->crp_tstamp;
1329 crypto_tstat(&cryptostats.cs_cb, &t);
1330 crp->crp_callback(crp);
1331 crypto_tstat(&cryptostats.cs_finis, &t);
1332 } else
1333 #endif
1334 {
1335 crp->crp_callback(crp);
1336 }
1337 }
1338 if (krp != NULL)
1339 krp->krp_callback(krp);
1340
1341 mutex_spin_enter(&crypto_ret_q_mtx);
1342 }
1343 }
1344
1345 /* NetBSD module interface */
1346
1347 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1348
1349 static int
1350 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1351 {
1352
1353 switch (cmd) {
1354 case MODULE_CMD_INIT:
1355 #ifdef _MODULE
1356 crypto_init();
1357 #endif
1358 return 0;
1359 case MODULE_CMD_FINI:
1360 #ifdef _MODULE
1361 sysctl_teardown(&sysctl_opencrypto_clog);
1362 #endif
1363 return 0;
1364 default:
1365 return ENOTTY;
1366 }
1367 }
1368