Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.44
      1 /*	$NetBSD: crypto.c,v 1.44 2014/01/14 14:16:47 pgoyette Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.44 2014/01/14 14:16:47 pgoyette Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 kmutex_t crypto_q_mtx;
     79 kmutex_t crypto_ret_q_mtx;
     80 kcondvar_t cryptoret_cv;
     81 kmutex_t crypto_mtx;
     82 
     83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     84   #define SWI_CRYPTO 17
     85   #define register_swi(lvl, fn)  \
     86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     88   #define setsoftcrypto(x) softint_schedule(x)
     89 
     90 int crypto_ret_q_check(struct cryptop *);
     91 
     92 /*
     93  * Crypto drivers register themselves by allocating a slot in the
     94  * crypto_drivers table with crypto_get_driverid() and then registering
     95  * each algorithm they support with crypto_register() and crypto_kregister().
     96  */
     97 static	struct cryptocap *crypto_drivers;
     98 static	int crypto_drivers_num;
     99 static	void *softintr_cookie;
    100 
    101 /*
    102  * There are two queues for crypto requests; one for symmetric (e.g.
    103  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    104  * See below for how synchronization is handled.
    105  */
    106 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    107 		TAILQ_HEAD_INITIALIZER(crp_q);
    108 static	TAILQ_HEAD(,cryptkop) crp_kq =
    109 		TAILQ_HEAD_INITIALIZER(crp_kq);
    110 
    111 /*
    112  * There are two queues for processing completed crypto requests; one
    113  * for the symmetric and one for the asymmetric ops.  We only need one
    114  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    115  * for how synchronization is handled.
    116  */
    117 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    118 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    119 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    120 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    121 
    122 /*
    123  * XXX these functions are ghastly hacks for when the submission
    124  * XXX routines discover a request that was not CBIMM is already
    125  * XXX done, and must be yanked from the retq (where _done) put it
    126  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    127  * XXX as the request is generally the last one queued.
    128  *
    129  *	 call with the lock held, or else.
    130  */
    131 int
    132 crypto_ret_q_remove(struct cryptop *crp)
    133 {
    134 	struct cryptop * acrp, *next;
    135 
    136 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    137 		if (acrp == crp) {
    138 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    139 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    140 			return 1;
    141 		}
    142 	}
    143 	return 0;
    144 }
    145 
    146 int
    147 crypto_ret_kq_remove(struct cryptkop *krp)
    148 {
    149 	struct cryptkop * akrp, *next;
    150 
    151 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    152 		if (akrp == krp) {
    153 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    154 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    155 			return 1;
    156 		}
    157 	}
    158 	return 0;
    159 }
    160 
    161 /*
    162  * Crypto op and desciptor data structures are allocated
    163  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    164  */
    165 struct pool cryptop_pool;
    166 struct pool cryptodesc_pool;
    167 struct pool cryptkop_pool;
    168 
    169 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    170 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    171 /*
    172  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    173  * access to hardware versus software transforms as below:
    174  *
    175  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    176  *                              transforms, always
    177  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    178  *                              requests for non-accelerated transforms
    179  *                              (handling the latter in software)
    180  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    181  *                               are hardware-accelerated.
    182  */
    183 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    184 
    185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    186 {
    187 	sysctl_createv(clog, 0, NULL, NULL,
    188 		       CTLFLAG_PERMANENT,
    189 		       CTLTYPE_NODE, "kern", NULL,
    190 		       NULL, 0, NULL, 0,
    191 		       CTL_KERN, CTL_EOL);
    192 	sysctl_createv(clog, 0, NULL, NULL,
    193 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    194 		       CTLTYPE_INT, "usercrypto",
    195 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    196 			   "crypto support"),
    197 		       NULL, 0, &crypto_usercrypto, 0,
    198 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    199 	sysctl_createv(clog, 0, NULL, NULL,
    200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    201 		       CTLTYPE_INT, "userasymcrypto",
    202 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    203 			   "asymmetric crypto support"),
    204 		       NULL, 0, &crypto_userasymcrypto, 0,
    205 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    206 	sysctl_createv(clog, 0, NULL, NULL,
    207 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    208 		       CTLTYPE_INT, "cryptodevallowsoft",
    209 		       SYSCTL_DESCR("Enable/disable use of software "
    210 			   "asymmetric crypto support"),
    211 		       NULL, 0, &crypto_devallowsoft, 0,
    212 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    213 }
    214 
    215 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    216 
    217 /*
    218  * Synchronization: read carefully, this is non-trivial.
    219  *
    220  * Crypto requests are submitted via crypto_dispatch.  Typically
    221  * these come in from network protocols at spl0 (output path) or
    222  * spl[,soft]net (input path).
    223  *
    224  * Requests are typically passed on the driver directly, but they
    225  * may also be queued for processing by a software interrupt thread,
    226  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    227  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    228  * when a request is complete.  Hardware crypto drivers are assumed
    229  * to register their IRQ's as network devices so their interrupt handlers
    230  * and subsequent "done callbacks" happen at spl[imp,net].
    231  *
    232  * Completed crypto ops are queued for a separate kernel thread that
    233  * handles the callbacks at spl0.  This decoupling insures the crypto
    234  * driver interrupt service routine is not delayed while the callback
    235  * takes place and that callbacks are delivered after a context switch
    236  * (as opposed to a software interrupt that clients must block).
    237  *
    238  * This scheme is not intended for SMP machines.
    239  */
    240 static	void cryptointr(void);		/* swi thread to dispatch ops */
    241 static	void cryptoret(void);		/* kernel thread for callbacks*/
    242 static	struct lwp *cryptothread;
    243 static	void crypto_destroy(void);
    244 static	int crypto_invoke(struct cryptop *crp, int hint);
    245 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    246 
    247 static struct cryptostats cryptostats;
    248 #ifdef CRYPTO_TIMING
    249 static	int crypto_timing = 0;
    250 #endif
    251 
    252 #ifdef _MODULE
    253 	static struct sysctllog *sysctl_opencrypto_clog;
    254 #endif
    255 
    256 static int
    257 crypto_init0(void)
    258 {
    259 	int error;
    260 
    261 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
    262 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
    263 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    264 	cv_init(&cryptoret_cv, "crypto_w");
    265 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    266 		  0, "cryptop", NULL, IPL_NET);
    267 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    268 		  0, "cryptodesc", NULL, IPL_NET);
    269 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    270 		  0, "cryptkop", NULL, IPL_NET);
    271 
    272 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    273 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    274 	if (crypto_drivers == NULL) {
    275 		printf("crypto_init: cannot malloc driver table\n");
    276 		return 0;
    277 	}
    278 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    279 
    280 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    281 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    282 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    283 	if (error) {
    284 		printf("crypto_init: cannot start cryptoret thread; error %d",
    285 			error);
    286 		crypto_destroy();
    287 	}
    288 
    289 #ifdef _MODULE
    290 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    291 #endif
    292 	return 0;
    293 }
    294 
    295 void
    296 crypto_init(void)
    297 {
    298 	static ONCE_DECL(crypto_init_once);
    299 
    300 	RUN_ONCE(&crypto_init_once, crypto_init0);
    301 }
    302 
    303 static void
    304 crypto_destroy(void)
    305 {
    306 	/* XXX no wait to reclaim zones */
    307 	if (crypto_drivers != NULL)
    308 		free(crypto_drivers, M_CRYPTO_DATA);
    309 	unregister_swi(SWI_CRYPTO, cryptointr);
    310 }
    311 
    312 /*
    313  * Create a new session.  Must be called with crypto_mtx held.
    314  */
    315 int
    316 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    317 {
    318 	struct cryptoini *cr;
    319 	u_int32_t hid, lid;
    320 	int err = EINVAL;
    321 
    322 	mutex_enter(&crypto_mtx);
    323 
    324 	if (crypto_drivers == NULL)
    325 		goto done;
    326 
    327 	/*
    328 	 * The algorithm we use here is pretty stupid; just use the
    329 	 * first driver that supports all the algorithms we need.
    330 	 *
    331 	 * XXX We need more smarts here (in real life too, but that's
    332 	 * XXX another story altogether).
    333 	 */
    334 
    335 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    336 		/*
    337 		 * If it's not initialized or has remaining sessions
    338 		 * referencing it, skip.
    339 		 */
    340 		if (crypto_drivers[hid].cc_newsession == NULL ||
    341 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    342 			continue;
    343 
    344 		/* Hardware required -- ignore software drivers. */
    345 		if (hard > 0 &&
    346 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    347 			continue;
    348 		/* Software required -- ignore hardware drivers. */
    349 		if (hard < 0 &&
    350 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    351 			continue;
    352 
    353 		/* See if all the algorithms are supported. */
    354 		for (cr = cri; cr; cr = cr->cri_next)
    355 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    356 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    357 				break;
    358 			}
    359 
    360 		if (cr == NULL) {
    361 			/* Ok, all algorithms are supported. */
    362 
    363 			/*
    364 			 * Can't do everything in one session.
    365 			 *
    366 			 * XXX Fix this. We need to inject a "virtual" session layer right
    367 			 * XXX about here.
    368 			 */
    369 
    370 			/* Call the driver initialization routine. */
    371 			lid = hid;		/* Pass the driver ID. */
    372 			err = crypto_drivers[hid].cc_newsession(
    373 					crypto_drivers[hid].cc_arg, &lid, cri);
    374 			if (err == 0) {
    375 				(*sid) = hid;
    376 				(*sid) <<= 32;
    377 				(*sid) |= (lid & 0xffffffff);
    378 				crypto_drivers[hid].cc_sessions++;
    379 			}
    380 			goto done;
    381 			/*break;*/
    382 		}
    383 	}
    384 done:
    385 	mutex_exit(&crypto_mtx);
    386 	return err;
    387 }
    388 
    389 /*
    390  * Delete an existing session (or a reserved session on an unregistered
    391  * driver).  Must be called with crypto_mtx mutex held.
    392  */
    393 int
    394 crypto_freesession(u_int64_t sid)
    395 {
    396 	u_int32_t hid;
    397 	int err = 0;
    398 
    399 	mutex_enter(&crypto_mtx);
    400 
    401 	if (crypto_drivers == NULL) {
    402 		err = EINVAL;
    403 		goto done;
    404 	}
    405 
    406 	/* Determine two IDs. */
    407 	hid = CRYPTO_SESID2HID(sid);
    408 
    409 	if (hid >= crypto_drivers_num) {
    410 		err = ENOENT;
    411 		goto done;
    412 	}
    413 
    414 	if (crypto_drivers[hid].cc_sessions)
    415 		crypto_drivers[hid].cc_sessions--;
    416 
    417 	/* Call the driver cleanup routine, if available. */
    418 	if (crypto_drivers[hid].cc_freesession) {
    419 		err = crypto_drivers[hid].cc_freesession(
    420 				crypto_drivers[hid].cc_arg, sid);
    421 	}
    422 	else
    423 		err = 0;
    424 
    425 	/*
    426 	 * If this was the last session of a driver marked as invalid,
    427 	 * make the entry available for reuse.
    428 	 */
    429 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    430 	    crypto_drivers[hid].cc_sessions == 0)
    431 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    432 
    433 done:
    434 	mutex_exit(&crypto_mtx);
    435 	return err;
    436 }
    437 
    438 /*
    439  * Return an unused driver id.  Used by drivers prior to registering
    440  * support for the algorithms they handle.
    441  */
    442 int32_t
    443 crypto_get_driverid(u_int32_t flags)
    444 {
    445 	struct cryptocap *newdrv;
    446 	int i;
    447 
    448 	crypto_init();		/* XXX oh, this is foul! */
    449 
    450 	mutex_enter(&crypto_mtx);
    451 	for (i = 0; i < crypto_drivers_num; i++)
    452 		if (crypto_drivers[i].cc_process == NULL &&
    453 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    454 		    crypto_drivers[i].cc_sessions == 0)
    455 			break;
    456 
    457 	/* Out of entries, allocate some more. */
    458 	if (i == crypto_drivers_num) {
    459 		/* Be careful about wrap-around. */
    460 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    461 			mutex_exit(&crypto_mtx);
    462 			printf("crypto: driver count wraparound!\n");
    463 			return -1;
    464 		}
    465 
    466 		newdrv = malloc(2 * crypto_drivers_num *
    467 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    468 		if (newdrv == NULL) {
    469 			mutex_exit(&crypto_mtx);
    470 			printf("crypto: no space to expand driver table!\n");
    471 			return -1;
    472 		}
    473 
    474 		memcpy(newdrv, crypto_drivers,
    475 		    crypto_drivers_num * sizeof(struct cryptocap));
    476 
    477 		crypto_drivers_num *= 2;
    478 
    479 		free(crypto_drivers, M_CRYPTO_DATA);
    480 		crypto_drivers = newdrv;
    481 	}
    482 
    483 	/* NB: state is zero'd on free */
    484 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    485 	crypto_drivers[i].cc_flags = flags;
    486 
    487 	if (bootverbose)
    488 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    489 
    490 	mutex_exit(&crypto_mtx);
    491 
    492 	return i;
    493 }
    494 
    495 static struct cryptocap *
    496 crypto_checkdriver(u_int32_t hid)
    497 {
    498 	if (crypto_drivers == NULL)
    499 		return NULL;
    500 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    501 }
    502 
    503 /*
    504  * Register support for a key-related algorithm.  This routine
    505  * is called once for each algorithm supported a driver.
    506  */
    507 int
    508 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    509     int (*kprocess)(void *, struct cryptkop *, int),
    510     void *karg)
    511 {
    512 	struct cryptocap *cap;
    513 	int err;
    514 
    515 	mutex_enter(&crypto_mtx);
    516 
    517 	cap = crypto_checkdriver(driverid);
    518 	if (cap != NULL &&
    519 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    520 		/*
    521 		 * XXX Do some performance testing to determine placing.
    522 		 * XXX We probably need an auxiliary data structure that
    523 		 * XXX describes relative performances.
    524 		 */
    525 
    526 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    527 		if (bootverbose) {
    528 			printf("crypto: driver %u registers key alg %u "
    529 			       " flags %u\n",
    530 				driverid,
    531 				kalg,
    532 				flags
    533 			);
    534 		}
    535 
    536 		if (cap->cc_kprocess == NULL) {
    537 			cap->cc_karg = karg;
    538 			cap->cc_kprocess = kprocess;
    539 		}
    540 		err = 0;
    541 	} else
    542 		err = EINVAL;
    543 
    544 	mutex_exit(&crypto_mtx);
    545 	return err;
    546 }
    547 
    548 /*
    549  * Register support for a non-key-related algorithm.  This routine
    550  * is called once for each such algorithm supported by a driver.
    551  */
    552 int
    553 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    554     u_int32_t flags,
    555     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    556     int (*freeses)(void *, u_int64_t),
    557     int (*process)(void *, struct cryptop *, int),
    558     void *arg)
    559 {
    560 	struct cryptocap *cap;
    561 	int err;
    562 
    563 	mutex_enter(&crypto_mtx);
    564 
    565 	cap = crypto_checkdriver(driverid);
    566 	/* NB: algorithms are in the range [1..max] */
    567 	if (cap != NULL &&
    568 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    569 		/*
    570 		 * XXX Do some performance testing to determine placing.
    571 		 * XXX We probably need an auxiliary data structure that
    572 		 * XXX describes relative performances.
    573 		 */
    574 
    575 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    576 		cap->cc_max_op_len[alg] = maxoplen;
    577 		if (bootverbose) {
    578 			printf("crypto: driver %u registers alg %u "
    579 				"flags %u maxoplen %u\n",
    580 				driverid,
    581 				alg,
    582 				flags,
    583 				maxoplen
    584 			);
    585 		}
    586 
    587 		if (cap->cc_process == NULL) {
    588 			cap->cc_arg = arg;
    589 			cap->cc_newsession = newses;
    590 			cap->cc_process = process;
    591 			cap->cc_freesession = freeses;
    592 			cap->cc_sessions = 0;		/* Unmark */
    593 		}
    594 		err = 0;
    595 	} else
    596 		err = EINVAL;
    597 
    598 	mutex_exit(&crypto_mtx);
    599 	return err;
    600 }
    601 
    602 /*
    603  * Unregister a crypto driver. If there are pending sessions using it,
    604  * leave enough information around so that subsequent calls using those
    605  * sessions will correctly detect the driver has been unregistered and
    606  * reroute requests.
    607  */
    608 int
    609 crypto_unregister(u_int32_t driverid, int alg)
    610 {
    611 	int i, err;
    612 	u_int32_t ses;
    613 	struct cryptocap *cap;
    614 
    615 	mutex_enter(&crypto_mtx);
    616 
    617 	cap = crypto_checkdriver(driverid);
    618 	if (cap != NULL &&
    619 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    620 	    cap->cc_alg[alg] != 0) {
    621 		cap->cc_alg[alg] = 0;
    622 		cap->cc_max_op_len[alg] = 0;
    623 
    624 		/* Was this the last algorithm ? */
    625 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    626 			if (cap->cc_alg[i] != 0)
    627 				break;
    628 
    629 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    630 			ses = cap->cc_sessions;
    631 			memset(cap, 0, sizeof(struct cryptocap));
    632 			if (ses != 0) {
    633 				/*
    634 				 * If there are pending sessions, just mark as invalid.
    635 				 */
    636 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    637 				cap->cc_sessions = ses;
    638 			}
    639 		}
    640 		err = 0;
    641 	} else
    642 		err = EINVAL;
    643 
    644 	mutex_exit(&crypto_mtx);
    645 	return err;
    646 }
    647 
    648 /*
    649  * Unregister all algorithms associated with a crypto driver.
    650  * If there are pending sessions using it, leave enough information
    651  * around so that subsequent calls using those sessions will
    652  * correctly detect the driver has been unregistered and reroute
    653  * requests.
    654  *
    655  * XXX careful.  Don't change this to call crypto_unregister() for each
    656  * XXX registered algorithm unless you drop the mutex across the calls;
    657  * XXX you can't take it recursively.
    658  */
    659 int
    660 crypto_unregister_all(u_int32_t driverid)
    661 {
    662 	int i, err;
    663 	u_int32_t ses;
    664 	struct cryptocap *cap;
    665 
    666 	mutex_enter(&crypto_mtx);
    667 	cap = crypto_checkdriver(driverid);
    668 	if (cap != NULL) {
    669 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    670 			cap->cc_alg[i] = 0;
    671 			cap->cc_max_op_len[i] = 0;
    672 		}
    673 		ses = cap->cc_sessions;
    674 		memset(cap, 0, sizeof(struct cryptocap));
    675 		if (ses != 0) {
    676 			/*
    677 			 * If there are pending sessions, just mark as invalid.
    678 			 */
    679 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    680 			cap->cc_sessions = ses;
    681 		}
    682 		err = 0;
    683 	} else
    684 		err = EINVAL;
    685 
    686 	mutex_exit(&crypto_mtx);
    687 	return err;
    688 }
    689 
    690 /*
    691  * Clear blockage on a driver.  The what parameter indicates whether
    692  * the driver is now ready for cryptop's and/or cryptokop's.
    693  */
    694 int
    695 crypto_unblock(u_int32_t driverid, int what)
    696 {
    697 	struct cryptocap *cap;
    698 	int needwakeup, err;
    699 
    700 	mutex_spin_enter(&crypto_q_mtx);
    701 	cap = crypto_checkdriver(driverid);
    702 	if (cap != NULL) {
    703 		needwakeup = 0;
    704 		if (what & CRYPTO_SYMQ) {
    705 			needwakeup |= cap->cc_qblocked;
    706 			cap->cc_qblocked = 0;
    707 		}
    708 		if (what & CRYPTO_ASYMQ) {
    709 			needwakeup |= cap->cc_kqblocked;
    710 			cap->cc_kqblocked = 0;
    711 		}
    712 		err = 0;
    713 		if (needwakeup)
    714 			setsoftcrypto(softintr_cookie);
    715 		mutex_spin_exit(&crypto_q_mtx);
    716 	} else {
    717 		err = EINVAL;
    718 		mutex_spin_exit(&crypto_q_mtx);
    719 	}
    720 
    721 	return err;
    722 }
    723 
    724 /*
    725  * Dispatch a crypto request to a driver or queue
    726  * it, to be processed by the kernel thread.
    727  */
    728 int
    729 crypto_dispatch(struct cryptop *crp)
    730 {
    731 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
    732 	int result;
    733 
    734 	mutex_spin_enter(&crypto_q_mtx);
    735 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
    736 		crp, crp->crp_desc->crd_alg));
    737 
    738 	cryptostats.cs_ops++;
    739 
    740 #ifdef CRYPTO_TIMING
    741 	if (crypto_timing)
    742 		nanouptime(&crp->crp_tstamp);
    743 #endif
    744 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    745 		struct cryptocap *cap;
    746 		/*
    747 		 * Caller marked the request to be processed
    748 		 * immediately; dispatch it directly to the
    749 		 * driver unless the driver is currently blocked.
    750 		 */
    751 		cap = crypto_checkdriver(hid);
    752 		if (cap && !cap->cc_qblocked) {
    753 			mutex_spin_exit(&crypto_q_mtx);
    754 			result = crypto_invoke(crp, 0);
    755 			if (result == ERESTART) {
    756 				/*
    757 				 * The driver ran out of resources, mark the
    758 				 * driver ``blocked'' for cryptop's and put
    759 				 * the op on the queue.
    760 				 */
    761 				mutex_spin_enter(&crypto_q_mtx);
    762 				crypto_drivers[hid].cc_qblocked = 1;
    763 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    764 				cryptostats.cs_blocks++;
    765 				mutex_spin_exit(&crypto_q_mtx);
    766 			}
    767 			goto out_released;
    768 		} else {
    769 			/*
    770 			 * The driver is blocked, just queue the op until
    771 			 * it unblocks and the swi thread gets kicked.
    772 			 */
    773 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    774 			result = 0;
    775 		}
    776 	} else {
    777 		int wasempty = TAILQ_EMPTY(&crp_q);
    778 		/*
    779 		 * Caller marked the request as ``ok to delay'';
    780 		 * queue it for the swi thread.  This is desirable
    781 		 * when the operation is low priority and/or suitable
    782 		 * for batching.
    783 		 */
    784 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    785 		if (wasempty) {
    786 			setsoftcrypto(softintr_cookie);
    787 			mutex_spin_exit(&crypto_q_mtx);
    788 			result = 0;
    789 			goto out_released;
    790 		}
    791 
    792 		result = 0;
    793 	}
    794 
    795 	mutex_spin_exit(&crypto_q_mtx);
    796 out_released:
    797 	return result;
    798 }
    799 
    800 /*
    801  * Add an asymetric crypto request to a queue,
    802  * to be processed by the kernel thread.
    803  */
    804 int
    805 crypto_kdispatch(struct cryptkop *krp)
    806 {
    807 	struct cryptocap *cap;
    808 	int result;
    809 
    810 	mutex_spin_enter(&crypto_q_mtx);
    811 	cryptostats.cs_kops++;
    812 
    813 	cap = crypto_checkdriver(krp->krp_hid);
    814 	if (cap && !cap->cc_kqblocked) {
    815 		mutex_spin_exit(&crypto_q_mtx);
    816 		result = crypto_kinvoke(krp, 0);
    817 		if (result == ERESTART) {
    818 			/*
    819 			 * The driver ran out of resources, mark the
    820 			 * driver ``blocked'' for cryptop's and put
    821 			 * the op on the queue.
    822 			 */
    823 			mutex_spin_enter(&crypto_q_mtx);
    824 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    825 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    826 			cryptostats.cs_kblocks++;
    827 			mutex_spin_exit(&crypto_q_mtx);
    828 		}
    829 	} else {
    830 		/*
    831 		 * The driver is blocked, just queue the op until
    832 		 * it unblocks and the swi thread gets kicked.
    833 		 */
    834 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    835 		result = 0;
    836 		mutex_spin_exit(&crypto_q_mtx);
    837 	}
    838 
    839 	return result;
    840 }
    841 
    842 /*
    843  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    844  */
    845 static int
    846 crypto_kinvoke(struct cryptkop *krp, int hint)
    847 {
    848 	u_int32_t hid;
    849 	int error;
    850 
    851 	/* Sanity checks. */
    852 	if (krp == NULL)
    853 		return EINVAL;
    854 	if (krp->krp_callback == NULL) {
    855 		cv_destroy(&krp->krp_cv);
    856 		pool_put(&cryptkop_pool, krp);
    857 		return EINVAL;
    858 	}
    859 
    860 	mutex_enter(&crypto_mtx);
    861 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    862 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    863 		    crypto_devallowsoft == 0)
    864 			continue;
    865 		if (crypto_drivers[hid].cc_kprocess == NULL)
    866 			continue;
    867 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    868 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    869 			continue;
    870 		break;
    871 	}
    872 	if (hid < crypto_drivers_num) {
    873 		int (*process)(void *, struct cryptkop *, int);
    874 		void *arg;
    875 
    876 		process = crypto_drivers[hid].cc_kprocess;
    877 		arg = crypto_drivers[hid].cc_karg;
    878 		mutex_exit(&crypto_mtx);
    879 		krp->krp_hid = hid;
    880 		error = (*process)(arg, krp, hint);
    881 	} else {
    882 		mutex_exit(&crypto_mtx);
    883 		error = ENODEV;
    884 	}
    885 
    886 	if (error) {
    887 		krp->krp_status = error;
    888 		crypto_kdone(krp);
    889 	}
    890 	return 0;
    891 }
    892 
    893 #ifdef CRYPTO_TIMING
    894 static void
    895 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    896 {
    897 	struct timespec now, t;
    898 
    899 	nanouptime(&now);
    900 	t.tv_sec = now.tv_sec - tv->tv_sec;
    901 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    902 	if (t.tv_nsec < 0) {
    903 		t.tv_sec--;
    904 		t.tv_nsec += 1000000000;
    905 	}
    906 	timespecadd(&ts->acc, &t, &t);
    907 	if (timespeccmp(&t, &ts->min, <))
    908 		ts->min = t;
    909 	if (timespeccmp(&t, &ts->max, >))
    910 		ts->max = t;
    911 	ts->count++;
    912 
    913 	*tv = now;
    914 }
    915 #endif
    916 
    917 /*
    918  * Dispatch a crypto request to the appropriate crypto devices.
    919  */
    920 static int
    921 crypto_invoke(struct cryptop *crp, int hint)
    922 {
    923 	u_int32_t hid;
    924 
    925 #ifdef CRYPTO_TIMING
    926 	if (crypto_timing)
    927 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    928 #endif
    929 	/* Sanity checks. */
    930 	if (crp == NULL)
    931 		return EINVAL;
    932 	if (crp->crp_callback == NULL) {
    933 		return EINVAL;
    934 	}
    935 	if (crp->crp_desc == NULL) {
    936 		crp->crp_etype = EINVAL;
    937 		crypto_done(crp);
    938 		return 0;
    939 	}
    940 
    941 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    942 
    943 	if (hid < crypto_drivers_num) {
    944 		int (*process)(void *, struct cryptop *, int);
    945 		void *arg;
    946 
    947 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
    948 			mutex_exit(&crypto_mtx);
    949 			crypto_freesession(crp->crp_sid);
    950 			mutex_enter(&crypto_mtx);
    951 		}
    952 		process = crypto_drivers[hid].cc_process;
    953 		arg = crypto_drivers[hid].cc_arg;
    954 
    955 		/*
    956 		 * Invoke the driver to process the request.
    957 		 */
    958 		DPRINTF(("calling process for %p\n", crp));
    959 		return (*process)(arg, crp, hint);
    960 	} else {
    961 		struct cryptodesc *crd;
    962 		u_int64_t nid = 0;
    963 
    964 		/*
    965 		 * Driver has unregistered; migrate the session and return
    966 		 * an error to the caller so they'll resubmit the op.
    967 		 */
    968 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    969 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    970 
    971 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    972 			crp->crp_sid = nid;
    973 
    974 		crp->crp_etype = EAGAIN;
    975 
    976 		crypto_done(crp);
    977 		return 0;
    978 	}
    979 }
    980 
    981 /*
    982  * Release a set of crypto descriptors.
    983  */
    984 void
    985 crypto_freereq(struct cryptop *crp)
    986 {
    987 	struct cryptodesc *crd;
    988 
    989 	if (crp == NULL)
    990 		return;
    991 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
    992 		CRYPTO_SESID2LID(crp->crp_sid), crp));
    993 
    994 	/* sanity check */
    995 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
    996 		panic("crypto_freereq() freeing crp on RETQ\n");
    997 	}
    998 
    999 	while ((crd = crp->crp_desc) != NULL) {
   1000 		crp->crp_desc = crd->crd_next;
   1001 		pool_put(&cryptodesc_pool, crd);
   1002 	}
   1003 	pool_put(&cryptop_pool, crp);
   1004 }
   1005 
   1006 /*
   1007  * Acquire a set of crypto descriptors.
   1008  */
   1009 struct cryptop *
   1010 crypto_getreq(int num)
   1011 {
   1012 	struct cryptodesc *crd;
   1013 	struct cryptop *crp;
   1014 
   1015 	crp = pool_get(&cryptop_pool, 0);
   1016 	if (crp == NULL) {
   1017 		return NULL;
   1018 	}
   1019 	memset(crp, 0, sizeof(struct cryptop));
   1020 
   1021 	while (num--) {
   1022 		crd = pool_get(&cryptodesc_pool, 0);
   1023 		if (crd == NULL) {
   1024 			crypto_freereq(crp);
   1025 			return NULL;
   1026 		}
   1027 
   1028 		memset(crd, 0, sizeof(struct cryptodesc));
   1029 		crd->crd_next = crp->crp_desc;
   1030 		crp->crp_desc = crd;
   1031 	}
   1032 
   1033 	return crp;
   1034 }
   1035 
   1036 /*
   1037  * Invoke the callback on behalf of the driver.
   1038  */
   1039 void
   1040 crypto_done(struct cryptop *crp)
   1041 {
   1042 	int wasempty;
   1043 
   1044 	if (crp->crp_etype != 0)
   1045 		cryptostats.cs_errs++;
   1046 #ifdef CRYPTO_TIMING
   1047 	if (crypto_timing)
   1048 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1049 #endif
   1050 	DPRINTF(("crypto_done[%u]: crp %p\n",
   1051 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1052 
   1053 	/*
   1054 	 * Normal case; queue the callback for the thread.
   1055 	 *
   1056 	 * The return queue is manipulated by the swi thread
   1057 	 * and, potentially, by crypto device drivers calling
   1058 	 * back to mark operations completed.  Thus we need
   1059 	 * to mask both while manipulating the return queue.
   1060 	 */
   1061   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1062 		/*
   1063 	 	* Do the callback directly.  This is ok when the
   1064   	 	* callback routine does very little (e.g. the
   1065 	 	* /dev/crypto callback method just does a wakeup).
   1066 	 	*/
   1067 		mutex_spin_enter(&crypto_ret_q_mtx);
   1068 		crp->crp_flags |= CRYPTO_F_DONE;
   1069 		mutex_spin_exit(&crypto_ret_q_mtx);
   1070 
   1071 #ifdef CRYPTO_TIMING
   1072 		if (crypto_timing) {
   1073 			/*
   1074 		 	* NB: We must copy the timestamp before
   1075 		 	* doing the callback as the cryptop is
   1076 		 	* likely to be reclaimed.
   1077 		 	*/
   1078 			struct timespec t = crp->crp_tstamp;
   1079 			crypto_tstat(&cryptostats.cs_cb, &t);
   1080 			crp->crp_callback(crp);
   1081 			crypto_tstat(&cryptostats.cs_finis, &t);
   1082 		} else
   1083 #endif
   1084 		crp->crp_callback(crp);
   1085 	} else {
   1086 		mutex_spin_enter(&crypto_ret_q_mtx);
   1087 		crp->crp_flags |= CRYPTO_F_DONE;
   1088 
   1089 		if (crp->crp_flags & CRYPTO_F_USER) {
   1090 			/* the request has completed while
   1091 			 * running in the user context
   1092 			 * so don't queue it - the user
   1093 			 * thread won't sleep when it sees
   1094 			 * the CRYPTO_F_DONE flag.
   1095 			 * This is an optimization to avoid
   1096 			 * unecessary context switches.
   1097 			 */
   1098 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
   1099 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1100 		} else {
   1101 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1102 			DPRINTF(("crypto_done[%u]: queueing %p\n",
   1103 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1104 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1105 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1106 			if (wasempty) {
   1107 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
   1108 					"crp %p hit empty queue\n.",
   1109 					CRYPTO_SESID2LID(crp->crp_sid), crp));
   1110 				cv_signal(&cryptoret_cv);
   1111 			}
   1112 		}
   1113 		mutex_spin_exit(&crypto_ret_q_mtx);
   1114 	}
   1115 }
   1116 
   1117 /*
   1118  * Invoke the callback on behalf of the driver.
   1119  */
   1120 void
   1121 crypto_kdone(struct cryptkop *krp)
   1122 {
   1123 	int wasempty;
   1124 
   1125 	if (krp->krp_status != 0)
   1126 		cryptostats.cs_kerrs++;
   1127 
   1128 	krp->krp_flags |= CRYPTO_F_DONE;
   1129 
   1130 	/*
   1131 	 * The return queue is manipulated by the swi thread
   1132 	 * and, potentially, by crypto device drivers calling
   1133 	 * back to mark operations completed.  Thus we need
   1134 	 * to mask both while manipulating the return queue.
   1135 	 */
   1136 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1137 		krp->krp_callback(krp);
   1138 	} else {
   1139 		mutex_spin_enter(&crypto_ret_q_mtx);
   1140 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1141 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1142 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1143 		if (wasempty)
   1144 			cv_signal(&cryptoret_cv);
   1145 		mutex_spin_exit(&crypto_ret_q_mtx);
   1146 	}
   1147 }
   1148 
   1149 int
   1150 crypto_getfeat(int *featp)
   1151 {
   1152 	int hid, kalg, feat = 0;
   1153 
   1154 	mutex_enter(&crypto_mtx);
   1155 
   1156 	if (crypto_userasymcrypto == 0)
   1157 		goto out;
   1158 
   1159 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1160 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1161 		    crypto_devallowsoft == 0) {
   1162 			continue;
   1163 		}
   1164 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1165 			continue;
   1166 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1167 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1168 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1169 				feat |=  1 << kalg;
   1170 	}
   1171 out:
   1172 	mutex_exit(&crypto_mtx);
   1173 	*featp = feat;
   1174 	return (0);
   1175 }
   1176 
   1177 /*
   1178  * Software interrupt thread to dispatch crypto requests.
   1179  */
   1180 static void
   1181 cryptointr(void)
   1182 {
   1183 	struct cryptop *crp, *submit, *cnext;
   1184 	struct cryptkop *krp, *knext;
   1185 	struct cryptocap *cap;
   1186 	int result, hint;
   1187 
   1188 	cryptostats.cs_intrs++;
   1189 	mutex_spin_enter(&crypto_q_mtx);
   1190 	do {
   1191 		/*
   1192 		 * Find the first element in the queue that can be
   1193 		 * processed and look-ahead to see if multiple ops
   1194 		 * are ready for the same driver.
   1195 		 */
   1196 		submit = NULL;
   1197 		hint = 0;
   1198 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1199 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1200 			cap = crypto_checkdriver(hid);
   1201 			if (cap == NULL || cap->cc_process == NULL) {
   1202 				/* Op needs to be migrated, process it. */
   1203 				if (submit == NULL)
   1204 					submit = crp;
   1205 				break;
   1206 			}
   1207 			if (!cap->cc_qblocked) {
   1208 				if (submit != NULL) {
   1209 					/*
   1210 					 * We stop on finding another op,
   1211 					 * regardless whether its for the same
   1212 					 * driver or not.  We could keep
   1213 					 * searching the queue but it might be
   1214 					 * better to just use a per-driver
   1215 					 * queue instead.
   1216 					 */
   1217 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1218 					    == hid)
   1219 						hint = CRYPTO_HINT_MORE;
   1220 					break;
   1221 				} else {
   1222 					submit = crp;
   1223 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1224 						break;
   1225 					/* keep scanning for more are q'd */
   1226 				}
   1227 			}
   1228 		}
   1229 		if (submit != NULL) {
   1230 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1231 			mutex_spin_exit(&crypto_q_mtx);
   1232 			result = crypto_invoke(submit, hint);
   1233 			/* we must take here as the TAILQ op or kinvoke
   1234 			   may need this mutex below.  sigh. */
   1235 			mutex_spin_enter(&crypto_q_mtx);
   1236 			if (result == ERESTART) {
   1237 				/*
   1238 				 * The driver ran out of resources, mark the
   1239 				 * driver ``blocked'' for cryptop's and put
   1240 				 * the request back in the queue.  It would
   1241 				 * best to put the request back where we got
   1242 				 * it but that's hard so for now we put it
   1243 				 * at the front.  This should be ok; putting
   1244 				 * it at the end does not work.
   1245 				 */
   1246 				/* XXX validate sid again? */
   1247 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1248 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1249 				cryptostats.cs_blocks++;
   1250 			}
   1251 		}
   1252 
   1253 		/* As above, but for key ops */
   1254 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1255 			cap = crypto_checkdriver(krp->krp_hid);
   1256 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1257 				/* Op needs to be migrated, process it. */
   1258 				break;
   1259 			}
   1260 			if (!cap->cc_kqblocked)
   1261 				break;
   1262 		}
   1263 		if (krp != NULL) {
   1264 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1265 			mutex_spin_exit(&crypto_q_mtx);
   1266 			result = crypto_kinvoke(krp, 0);
   1267 			/* the next iteration will want the mutex. :-/ */
   1268 			mutex_spin_enter(&crypto_q_mtx);
   1269 			if (result == ERESTART) {
   1270 				/*
   1271 				 * The driver ran out of resources, mark the
   1272 				 * driver ``blocked'' for cryptkop's and put
   1273 				 * the request back in the queue.  It would
   1274 				 * best to put the request back where we got
   1275 				 * it but that's hard so for now we put it
   1276 				 * at the front.  This should be ok; putting
   1277 				 * it at the end does not work.
   1278 				 */
   1279 				/* XXX validate sid again? */
   1280 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1281 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1282 				cryptostats.cs_kblocks++;
   1283 			}
   1284 		}
   1285 	} while (submit != NULL || krp != NULL);
   1286 	mutex_spin_exit(&crypto_q_mtx);
   1287 }
   1288 
   1289 /*
   1290  * Kernel thread to do callbacks.
   1291  */
   1292 static void
   1293 cryptoret(void)
   1294 {
   1295 	struct cryptop *crp;
   1296 	struct cryptkop *krp;
   1297 
   1298 	mutex_spin_enter(&crypto_ret_q_mtx);
   1299 	for (;;) {
   1300 		crp = TAILQ_FIRST(&crp_ret_q);
   1301 		if (crp != NULL) {
   1302 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1303 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1304 		}
   1305 		krp = TAILQ_FIRST(&crp_ret_kq);
   1306 		if (krp != NULL) {
   1307 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1308 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1309 		}
   1310 
   1311 		/* drop before calling any callbacks. */
   1312 		if (crp == NULL && krp == NULL) {
   1313 			cryptostats.cs_rets++;
   1314 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1315 			continue;
   1316 		}
   1317 
   1318 		mutex_spin_exit(&crypto_ret_q_mtx);
   1319 
   1320 		if (crp != NULL) {
   1321 #ifdef CRYPTO_TIMING
   1322 			if (crypto_timing) {
   1323 				/*
   1324 				 * NB: We must copy the timestamp before
   1325 				 * doing the callback as the cryptop is
   1326 				 * likely to be reclaimed.
   1327 				 */
   1328 				struct timespec t = crp->crp_tstamp;
   1329 				crypto_tstat(&cryptostats.cs_cb, &t);
   1330 				crp->crp_callback(crp);
   1331 				crypto_tstat(&cryptostats.cs_finis, &t);
   1332 			} else
   1333 #endif
   1334 			{
   1335 				crp->crp_callback(crp);
   1336 			}
   1337 		}
   1338 		if (krp != NULL)
   1339 			krp->krp_callback(krp);
   1340 
   1341 		mutex_spin_enter(&crypto_ret_q_mtx);
   1342 	}
   1343 }
   1344 
   1345 /* NetBSD module interface */
   1346 
   1347 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1348 
   1349 static int
   1350 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1351 {
   1352 
   1353 	switch (cmd) {
   1354 	case MODULE_CMD_INIT:
   1355 #ifdef _MODULE
   1356 		crypto_init();
   1357 #endif
   1358 		return 0;
   1359 	case MODULE_CMD_FINI:
   1360 #ifdef _MODULE
   1361 		sysctl_teardown(&sysctl_opencrypto_clog);
   1362 #endif
   1363 		return 0;
   1364 	default:
   1365 		return ENOTTY;
   1366 	}
   1367 }
   1368