Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.45
      1 /*	$NetBSD: crypto.c,v 1.45 2014/02/25 18:30:12 pooka Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.45 2014/02/25 18:30:12 pooka Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 kmutex_t crypto_q_mtx;
     79 kmutex_t crypto_ret_q_mtx;
     80 kcondvar_t cryptoret_cv;
     81 kmutex_t crypto_mtx;
     82 
     83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     84   #define SWI_CRYPTO 17
     85   #define register_swi(lvl, fn)  \
     86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     88   #define setsoftcrypto(x) softint_schedule(x)
     89 
     90 int crypto_ret_q_check(struct cryptop *);
     91 
     92 /*
     93  * Crypto drivers register themselves by allocating a slot in the
     94  * crypto_drivers table with crypto_get_driverid() and then registering
     95  * each algorithm they support with crypto_register() and crypto_kregister().
     96  */
     97 static	struct cryptocap *crypto_drivers;
     98 static	int crypto_drivers_num;
     99 static	void *softintr_cookie;
    100 
    101 /*
    102  * There are two queues for crypto requests; one for symmetric (e.g.
    103  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    104  * See below for how synchronization is handled.
    105  */
    106 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    107 		TAILQ_HEAD_INITIALIZER(crp_q);
    108 static	TAILQ_HEAD(,cryptkop) crp_kq =
    109 		TAILQ_HEAD_INITIALIZER(crp_kq);
    110 
    111 /*
    112  * There are two queues for processing completed crypto requests; one
    113  * for the symmetric and one for the asymmetric ops.  We only need one
    114  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    115  * for how synchronization is handled.
    116  */
    117 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    118 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    119 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    120 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    121 
    122 /*
    123  * XXX these functions are ghastly hacks for when the submission
    124  * XXX routines discover a request that was not CBIMM is already
    125  * XXX done, and must be yanked from the retq (where _done) put it
    126  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    127  * XXX as the request is generally the last one queued.
    128  *
    129  *	 call with the lock held, or else.
    130  */
    131 int
    132 crypto_ret_q_remove(struct cryptop *crp)
    133 {
    134 	struct cryptop * acrp, *next;
    135 
    136 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    137 		if (acrp == crp) {
    138 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    139 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    140 			return 1;
    141 		}
    142 	}
    143 	return 0;
    144 }
    145 
    146 int
    147 crypto_ret_kq_remove(struct cryptkop *krp)
    148 {
    149 	struct cryptkop * akrp, *next;
    150 
    151 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    152 		if (akrp == krp) {
    153 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    154 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    155 			return 1;
    156 		}
    157 	}
    158 	return 0;
    159 }
    160 
    161 /*
    162  * Crypto op and desciptor data structures are allocated
    163  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    164  */
    165 struct pool cryptop_pool;
    166 struct pool cryptodesc_pool;
    167 struct pool cryptkop_pool;
    168 
    169 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    170 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    171 /*
    172  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    173  * access to hardware versus software transforms as below:
    174  *
    175  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    176  *                              transforms, always
    177  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    178  *                              requests for non-accelerated transforms
    179  *                              (handling the latter in software)
    180  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    181  *                               are hardware-accelerated.
    182  */
    183 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    184 
    185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    186 {
    187 
    188 	sysctl_createv(clog, 0, NULL, NULL,
    189 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    190 		       CTLTYPE_INT, "usercrypto",
    191 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    192 			   "crypto support"),
    193 		       NULL, 0, &crypto_usercrypto, 0,
    194 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    195 	sysctl_createv(clog, 0, NULL, NULL,
    196 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    197 		       CTLTYPE_INT, "userasymcrypto",
    198 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    199 			   "asymmetric crypto support"),
    200 		       NULL, 0, &crypto_userasymcrypto, 0,
    201 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    202 	sysctl_createv(clog, 0, NULL, NULL,
    203 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    204 		       CTLTYPE_INT, "cryptodevallowsoft",
    205 		       SYSCTL_DESCR("Enable/disable use of software "
    206 			   "asymmetric crypto support"),
    207 		       NULL, 0, &crypto_devallowsoft, 0,
    208 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    209 }
    210 
    211 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    212 
    213 /*
    214  * Synchronization: read carefully, this is non-trivial.
    215  *
    216  * Crypto requests are submitted via crypto_dispatch.  Typically
    217  * these come in from network protocols at spl0 (output path) or
    218  * spl[,soft]net (input path).
    219  *
    220  * Requests are typically passed on the driver directly, but they
    221  * may also be queued for processing by a software interrupt thread,
    222  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    223  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    224  * when a request is complete.  Hardware crypto drivers are assumed
    225  * to register their IRQ's as network devices so their interrupt handlers
    226  * and subsequent "done callbacks" happen at spl[imp,net].
    227  *
    228  * Completed crypto ops are queued for a separate kernel thread that
    229  * handles the callbacks at spl0.  This decoupling insures the crypto
    230  * driver interrupt service routine is not delayed while the callback
    231  * takes place and that callbacks are delivered after a context switch
    232  * (as opposed to a software interrupt that clients must block).
    233  *
    234  * This scheme is not intended for SMP machines.
    235  */
    236 static	void cryptointr(void);		/* swi thread to dispatch ops */
    237 static	void cryptoret(void);		/* kernel thread for callbacks*/
    238 static	struct lwp *cryptothread;
    239 static	void crypto_destroy(void);
    240 static	int crypto_invoke(struct cryptop *crp, int hint);
    241 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    242 
    243 static struct cryptostats cryptostats;
    244 #ifdef CRYPTO_TIMING
    245 static	int crypto_timing = 0;
    246 #endif
    247 
    248 #ifdef _MODULE
    249 	static struct sysctllog *sysctl_opencrypto_clog;
    250 #endif
    251 
    252 static int
    253 crypto_init0(void)
    254 {
    255 	int error;
    256 
    257 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
    258 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
    259 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    260 	cv_init(&cryptoret_cv, "crypto_w");
    261 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    262 		  0, "cryptop", NULL, IPL_NET);
    263 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    264 		  0, "cryptodesc", NULL, IPL_NET);
    265 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    266 		  0, "cryptkop", NULL, IPL_NET);
    267 
    268 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    269 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    270 	if (crypto_drivers == NULL) {
    271 		printf("crypto_init: cannot malloc driver table\n");
    272 		return 0;
    273 	}
    274 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    275 
    276 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    277 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    278 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    279 	if (error) {
    280 		printf("crypto_init: cannot start cryptoret thread; error %d",
    281 			error);
    282 		crypto_destroy();
    283 	}
    284 
    285 #ifdef _MODULE
    286 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    287 #endif
    288 	return 0;
    289 }
    290 
    291 void
    292 crypto_init(void)
    293 {
    294 	static ONCE_DECL(crypto_init_once);
    295 
    296 	RUN_ONCE(&crypto_init_once, crypto_init0);
    297 }
    298 
    299 static void
    300 crypto_destroy(void)
    301 {
    302 	/* XXX no wait to reclaim zones */
    303 	if (crypto_drivers != NULL)
    304 		free(crypto_drivers, M_CRYPTO_DATA);
    305 	unregister_swi(SWI_CRYPTO, cryptointr);
    306 }
    307 
    308 /*
    309  * Create a new session.  Must be called with crypto_mtx held.
    310  */
    311 int
    312 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    313 {
    314 	struct cryptoini *cr;
    315 	u_int32_t hid, lid;
    316 	int err = EINVAL;
    317 
    318 	mutex_enter(&crypto_mtx);
    319 
    320 	if (crypto_drivers == NULL)
    321 		goto done;
    322 
    323 	/*
    324 	 * The algorithm we use here is pretty stupid; just use the
    325 	 * first driver that supports all the algorithms we need.
    326 	 *
    327 	 * XXX We need more smarts here (in real life too, but that's
    328 	 * XXX another story altogether).
    329 	 */
    330 
    331 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    332 		/*
    333 		 * If it's not initialized or has remaining sessions
    334 		 * referencing it, skip.
    335 		 */
    336 		if (crypto_drivers[hid].cc_newsession == NULL ||
    337 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    338 			continue;
    339 
    340 		/* Hardware required -- ignore software drivers. */
    341 		if (hard > 0 &&
    342 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    343 			continue;
    344 		/* Software required -- ignore hardware drivers. */
    345 		if (hard < 0 &&
    346 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    347 			continue;
    348 
    349 		/* See if all the algorithms are supported. */
    350 		for (cr = cri; cr; cr = cr->cri_next)
    351 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    352 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    353 				break;
    354 			}
    355 
    356 		if (cr == NULL) {
    357 			/* Ok, all algorithms are supported. */
    358 
    359 			/*
    360 			 * Can't do everything in one session.
    361 			 *
    362 			 * XXX Fix this. We need to inject a "virtual" session layer right
    363 			 * XXX about here.
    364 			 */
    365 
    366 			/* Call the driver initialization routine. */
    367 			lid = hid;		/* Pass the driver ID. */
    368 			err = crypto_drivers[hid].cc_newsession(
    369 					crypto_drivers[hid].cc_arg, &lid, cri);
    370 			if (err == 0) {
    371 				(*sid) = hid;
    372 				(*sid) <<= 32;
    373 				(*sid) |= (lid & 0xffffffff);
    374 				crypto_drivers[hid].cc_sessions++;
    375 			}
    376 			goto done;
    377 			/*break;*/
    378 		}
    379 	}
    380 done:
    381 	mutex_exit(&crypto_mtx);
    382 	return err;
    383 }
    384 
    385 /*
    386  * Delete an existing session (or a reserved session on an unregistered
    387  * driver).  Must be called with crypto_mtx mutex held.
    388  */
    389 int
    390 crypto_freesession(u_int64_t sid)
    391 {
    392 	u_int32_t hid;
    393 	int err = 0;
    394 
    395 	mutex_enter(&crypto_mtx);
    396 
    397 	if (crypto_drivers == NULL) {
    398 		err = EINVAL;
    399 		goto done;
    400 	}
    401 
    402 	/* Determine two IDs. */
    403 	hid = CRYPTO_SESID2HID(sid);
    404 
    405 	if (hid >= crypto_drivers_num) {
    406 		err = ENOENT;
    407 		goto done;
    408 	}
    409 
    410 	if (crypto_drivers[hid].cc_sessions)
    411 		crypto_drivers[hid].cc_sessions--;
    412 
    413 	/* Call the driver cleanup routine, if available. */
    414 	if (crypto_drivers[hid].cc_freesession) {
    415 		err = crypto_drivers[hid].cc_freesession(
    416 				crypto_drivers[hid].cc_arg, sid);
    417 	}
    418 	else
    419 		err = 0;
    420 
    421 	/*
    422 	 * If this was the last session of a driver marked as invalid,
    423 	 * make the entry available for reuse.
    424 	 */
    425 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    426 	    crypto_drivers[hid].cc_sessions == 0)
    427 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    428 
    429 done:
    430 	mutex_exit(&crypto_mtx);
    431 	return err;
    432 }
    433 
    434 /*
    435  * Return an unused driver id.  Used by drivers prior to registering
    436  * support for the algorithms they handle.
    437  */
    438 int32_t
    439 crypto_get_driverid(u_int32_t flags)
    440 {
    441 	struct cryptocap *newdrv;
    442 	int i;
    443 
    444 	crypto_init();		/* XXX oh, this is foul! */
    445 
    446 	mutex_enter(&crypto_mtx);
    447 	for (i = 0; i < crypto_drivers_num; i++)
    448 		if (crypto_drivers[i].cc_process == NULL &&
    449 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    450 		    crypto_drivers[i].cc_sessions == 0)
    451 			break;
    452 
    453 	/* Out of entries, allocate some more. */
    454 	if (i == crypto_drivers_num) {
    455 		/* Be careful about wrap-around. */
    456 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    457 			mutex_exit(&crypto_mtx);
    458 			printf("crypto: driver count wraparound!\n");
    459 			return -1;
    460 		}
    461 
    462 		newdrv = malloc(2 * crypto_drivers_num *
    463 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    464 		if (newdrv == NULL) {
    465 			mutex_exit(&crypto_mtx);
    466 			printf("crypto: no space to expand driver table!\n");
    467 			return -1;
    468 		}
    469 
    470 		memcpy(newdrv, crypto_drivers,
    471 		    crypto_drivers_num * sizeof(struct cryptocap));
    472 
    473 		crypto_drivers_num *= 2;
    474 
    475 		free(crypto_drivers, M_CRYPTO_DATA);
    476 		crypto_drivers = newdrv;
    477 	}
    478 
    479 	/* NB: state is zero'd on free */
    480 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    481 	crypto_drivers[i].cc_flags = flags;
    482 
    483 	if (bootverbose)
    484 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    485 
    486 	mutex_exit(&crypto_mtx);
    487 
    488 	return i;
    489 }
    490 
    491 static struct cryptocap *
    492 crypto_checkdriver(u_int32_t hid)
    493 {
    494 	if (crypto_drivers == NULL)
    495 		return NULL;
    496 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    497 }
    498 
    499 /*
    500  * Register support for a key-related algorithm.  This routine
    501  * is called once for each algorithm supported a driver.
    502  */
    503 int
    504 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    505     int (*kprocess)(void *, struct cryptkop *, int),
    506     void *karg)
    507 {
    508 	struct cryptocap *cap;
    509 	int err;
    510 
    511 	mutex_enter(&crypto_mtx);
    512 
    513 	cap = crypto_checkdriver(driverid);
    514 	if (cap != NULL &&
    515 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    516 		/*
    517 		 * XXX Do some performance testing to determine placing.
    518 		 * XXX We probably need an auxiliary data structure that
    519 		 * XXX describes relative performances.
    520 		 */
    521 
    522 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    523 		if (bootverbose) {
    524 			printf("crypto: driver %u registers key alg %u "
    525 			       " flags %u\n",
    526 				driverid,
    527 				kalg,
    528 				flags
    529 			);
    530 		}
    531 
    532 		if (cap->cc_kprocess == NULL) {
    533 			cap->cc_karg = karg;
    534 			cap->cc_kprocess = kprocess;
    535 		}
    536 		err = 0;
    537 	} else
    538 		err = EINVAL;
    539 
    540 	mutex_exit(&crypto_mtx);
    541 	return err;
    542 }
    543 
    544 /*
    545  * Register support for a non-key-related algorithm.  This routine
    546  * is called once for each such algorithm supported by a driver.
    547  */
    548 int
    549 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    550     u_int32_t flags,
    551     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    552     int (*freeses)(void *, u_int64_t),
    553     int (*process)(void *, struct cryptop *, int),
    554     void *arg)
    555 {
    556 	struct cryptocap *cap;
    557 	int err;
    558 
    559 	mutex_enter(&crypto_mtx);
    560 
    561 	cap = crypto_checkdriver(driverid);
    562 	/* NB: algorithms are in the range [1..max] */
    563 	if (cap != NULL &&
    564 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    565 		/*
    566 		 * XXX Do some performance testing to determine placing.
    567 		 * XXX We probably need an auxiliary data structure that
    568 		 * XXX describes relative performances.
    569 		 */
    570 
    571 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    572 		cap->cc_max_op_len[alg] = maxoplen;
    573 		if (bootverbose) {
    574 			printf("crypto: driver %u registers alg %u "
    575 				"flags %u maxoplen %u\n",
    576 				driverid,
    577 				alg,
    578 				flags,
    579 				maxoplen
    580 			);
    581 		}
    582 
    583 		if (cap->cc_process == NULL) {
    584 			cap->cc_arg = arg;
    585 			cap->cc_newsession = newses;
    586 			cap->cc_process = process;
    587 			cap->cc_freesession = freeses;
    588 			cap->cc_sessions = 0;		/* Unmark */
    589 		}
    590 		err = 0;
    591 	} else
    592 		err = EINVAL;
    593 
    594 	mutex_exit(&crypto_mtx);
    595 	return err;
    596 }
    597 
    598 /*
    599  * Unregister a crypto driver. If there are pending sessions using it,
    600  * leave enough information around so that subsequent calls using those
    601  * sessions will correctly detect the driver has been unregistered and
    602  * reroute requests.
    603  */
    604 int
    605 crypto_unregister(u_int32_t driverid, int alg)
    606 {
    607 	int i, err;
    608 	u_int32_t ses;
    609 	struct cryptocap *cap;
    610 
    611 	mutex_enter(&crypto_mtx);
    612 
    613 	cap = crypto_checkdriver(driverid);
    614 	if (cap != NULL &&
    615 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    616 	    cap->cc_alg[alg] != 0) {
    617 		cap->cc_alg[alg] = 0;
    618 		cap->cc_max_op_len[alg] = 0;
    619 
    620 		/* Was this the last algorithm ? */
    621 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    622 			if (cap->cc_alg[i] != 0)
    623 				break;
    624 
    625 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    626 			ses = cap->cc_sessions;
    627 			memset(cap, 0, sizeof(struct cryptocap));
    628 			if (ses != 0) {
    629 				/*
    630 				 * If there are pending sessions, just mark as invalid.
    631 				 */
    632 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    633 				cap->cc_sessions = ses;
    634 			}
    635 		}
    636 		err = 0;
    637 	} else
    638 		err = EINVAL;
    639 
    640 	mutex_exit(&crypto_mtx);
    641 	return err;
    642 }
    643 
    644 /*
    645  * Unregister all algorithms associated with a crypto driver.
    646  * If there are pending sessions using it, leave enough information
    647  * around so that subsequent calls using those sessions will
    648  * correctly detect the driver has been unregistered and reroute
    649  * requests.
    650  *
    651  * XXX careful.  Don't change this to call crypto_unregister() for each
    652  * XXX registered algorithm unless you drop the mutex across the calls;
    653  * XXX you can't take it recursively.
    654  */
    655 int
    656 crypto_unregister_all(u_int32_t driverid)
    657 {
    658 	int i, err;
    659 	u_int32_t ses;
    660 	struct cryptocap *cap;
    661 
    662 	mutex_enter(&crypto_mtx);
    663 	cap = crypto_checkdriver(driverid);
    664 	if (cap != NULL) {
    665 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    666 			cap->cc_alg[i] = 0;
    667 			cap->cc_max_op_len[i] = 0;
    668 		}
    669 		ses = cap->cc_sessions;
    670 		memset(cap, 0, sizeof(struct cryptocap));
    671 		if (ses != 0) {
    672 			/*
    673 			 * If there are pending sessions, just mark as invalid.
    674 			 */
    675 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    676 			cap->cc_sessions = ses;
    677 		}
    678 		err = 0;
    679 	} else
    680 		err = EINVAL;
    681 
    682 	mutex_exit(&crypto_mtx);
    683 	return err;
    684 }
    685 
    686 /*
    687  * Clear blockage on a driver.  The what parameter indicates whether
    688  * the driver is now ready for cryptop's and/or cryptokop's.
    689  */
    690 int
    691 crypto_unblock(u_int32_t driverid, int what)
    692 {
    693 	struct cryptocap *cap;
    694 	int needwakeup, err;
    695 
    696 	mutex_spin_enter(&crypto_q_mtx);
    697 	cap = crypto_checkdriver(driverid);
    698 	if (cap != NULL) {
    699 		needwakeup = 0;
    700 		if (what & CRYPTO_SYMQ) {
    701 			needwakeup |= cap->cc_qblocked;
    702 			cap->cc_qblocked = 0;
    703 		}
    704 		if (what & CRYPTO_ASYMQ) {
    705 			needwakeup |= cap->cc_kqblocked;
    706 			cap->cc_kqblocked = 0;
    707 		}
    708 		err = 0;
    709 		if (needwakeup)
    710 			setsoftcrypto(softintr_cookie);
    711 		mutex_spin_exit(&crypto_q_mtx);
    712 	} else {
    713 		err = EINVAL;
    714 		mutex_spin_exit(&crypto_q_mtx);
    715 	}
    716 
    717 	return err;
    718 }
    719 
    720 /*
    721  * Dispatch a crypto request to a driver or queue
    722  * it, to be processed by the kernel thread.
    723  */
    724 int
    725 crypto_dispatch(struct cryptop *crp)
    726 {
    727 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
    728 	int result;
    729 
    730 	mutex_spin_enter(&crypto_q_mtx);
    731 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
    732 		crp, crp->crp_desc->crd_alg));
    733 
    734 	cryptostats.cs_ops++;
    735 
    736 #ifdef CRYPTO_TIMING
    737 	if (crypto_timing)
    738 		nanouptime(&crp->crp_tstamp);
    739 #endif
    740 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    741 		struct cryptocap *cap;
    742 		/*
    743 		 * Caller marked the request to be processed
    744 		 * immediately; dispatch it directly to the
    745 		 * driver unless the driver is currently blocked.
    746 		 */
    747 		cap = crypto_checkdriver(hid);
    748 		if (cap && !cap->cc_qblocked) {
    749 			mutex_spin_exit(&crypto_q_mtx);
    750 			result = crypto_invoke(crp, 0);
    751 			if (result == ERESTART) {
    752 				/*
    753 				 * The driver ran out of resources, mark the
    754 				 * driver ``blocked'' for cryptop's and put
    755 				 * the op on the queue.
    756 				 */
    757 				mutex_spin_enter(&crypto_q_mtx);
    758 				crypto_drivers[hid].cc_qblocked = 1;
    759 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    760 				cryptostats.cs_blocks++;
    761 				mutex_spin_exit(&crypto_q_mtx);
    762 			}
    763 			goto out_released;
    764 		} else {
    765 			/*
    766 			 * The driver is blocked, just queue the op until
    767 			 * it unblocks and the swi thread gets kicked.
    768 			 */
    769 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    770 			result = 0;
    771 		}
    772 	} else {
    773 		int wasempty = TAILQ_EMPTY(&crp_q);
    774 		/*
    775 		 * Caller marked the request as ``ok to delay'';
    776 		 * queue it for the swi thread.  This is desirable
    777 		 * when the operation is low priority and/or suitable
    778 		 * for batching.
    779 		 */
    780 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    781 		if (wasempty) {
    782 			setsoftcrypto(softintr_cookie);
    783 			mutex_spin_exit(&crypto_q_mtx);
    784 			result = 0;
    785 			goto out_released;
    786 		}
    787 
    788 		result = 0;
    789 	}
    790 
    791 	mutex_spin_exit(&crypto_q_mtx);
    792 out_released:
    793 	return result;
    794 }
    795 
    796 /*
    797  * Add an asymetric crypto request to a queue,
    798  * to be processed by the kernel thread.
    799  */
    800 int
    801 crypto_kdispatch(struct cryptkop *krp)
    802 {
    803 	struct cryptocap *cap;
    804 	int result;
    805 
    806 	mutex_spin_enter(&crypto_q_mtx);
    807 	cryptostats.cs_kops++;
    808 
    809 	cap = crypto_checkdriver(krp->krp_hid);
    810 	if (cap && !cap->cc_kqblocked) {
    811 		mutex_spin_exit(&crypto_q_mtx);
    812 		result = crypto_kinvoke(krp, 0);
    813 		if (result == ERESTART) {
    814 			/*
    815 			 * The driver ran out of resources, mark the
    816 			 * driver ``blocked'' for cryptop's and put
    817 			 * the op on the queue.
    818 			 */
    819 			mutex_spin_enter(&crypto_q_mtx);
    820 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    821 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    822 			cryptostats.cs_kblocks++;
    823 			mutex_spin_exit(&crypto_q_mtx);
    824 		}
    825 	} else {
    826 		/*
    827 		 * The driver is blocked, just queue the op until
    828 		 * it unblocks and the swi thread gets kicked.
    829 		 */
    830 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    831 		result = 0;
    832 		mutex_spin_exit(&crypto_q_mtx);
    833 	}
    834 
    835 	return result;
    836 }
    837 
    838 /*
    839  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    840  */
    841 static int
    842 crypto_kinvoke(struct cryptkop *krp, int hint)
    843 {
    844 	u_int32_t hid;
    845 	int error;
    846 
    847 	/* Sanity checks. */
    848 	if (krp == NULL)
    849 		return EINVAL;
    850 	if (krp->krp_callback == NULL) {
    851 		cv_destroy(&krp->krp_cv);
    852 		pool_put(&cryptkop_pool, krp);
    853 		return EINVAL;
    854 	}
    855 
    856 	mutex_enter(&crypto_mtx);
    857 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    858 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    859 		    crypto_devallowsoft == 0)
    860 			continue;
    861 		if (crypto_drivers[hid].cc_kprocess == NULL)
    862 			continue;
    863 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    864 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    865 			continue;
    866 		break;
    867 	}
    868 	if (hid < crypto_drivers_num) {
    869 		int (*process)(void *, struct cryptkop *, int);
    870 		void *arg;
    871 
    872 		process = crypto_drivers[hid].cc_kprocess;
    873 		arg = crypto_drivers[hid].cc_karg;
    874 		mutex_exit(&crypto_mtx);
    875 		krp->krp_hid = hid;
    876 		error = (*process)(arg, krp, hint);
    877 	} else {
    878 		mutex_exit(&crypto_mtx);
    879 		error = ENODEV;
    880 	}
    881 
    882 	if (error) {
    883 		krp->krp_status = error;
    884 		crypto_kdone(krp);
    885 	}
    886 	return 0;
    887 }
    888 
    889 #ifdef CRYPTO_TIMING
    890 static void
    891 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    892 {
    893 	struct timespec now, t;
    894 
    895 	nanouptime(&now);
    896 	t.tv_sec = now.tv_sec - tv->tv_sec;
    897 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    898 	if (t.tv_nsec < 0) {
    899 		t.tv_sec--;
    900 		t.tv_nsec += 1000000000;
    901 	}
    902 	timespecadd(&ts->acc, &t, &t);
    903 	if (timespeccmp(&t, &ts->min, <))
    904 		ts->min = t;
    905 	if (timespeccmp(&t, &ts->max, >))
    906 		ts->max = t;
    907 	ts->count++;
    908 
    909 	*tv = now;
    910 }
    911 #endif
    912 
    913 /*
    914  * Dispatch a crypto request to the appropriate crypto devices.
    915  */
    916 static int
    917 crypto_invoke(struct cryptop *crp, int hint)
    918 {
    919 	u_int32_t hid;
    920 
    921 #ifdef CRYPTO_TIMING
    922 	if (crypto_timing)
    923 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    924 #endif
    925 	/* Sanity checks. */
    926 	if (crp == NULL)
    927 		return EINVAL;
    928 	if (crp->crp_callback == NULL) {
    929 		return EINVAL;
    930 	}
    931 	if (crp->crp_desc == NULL) {
    932 		crp->crp_etype = EINVAL;
    933 		crypto_done(crp);
    934 		return 0;
    935 	}
    936 
    937 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    938 
    939 	if (hid < crypto_drivers_num) {
    940 		int (*process)(void *, struct cryptop *, int);
    941 		void *arg;
    942 
    943 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
    944 			mutex_exit(&crypto_mtx);
    945 			crypto_freesession(crp->crp_sid);
    946 			mutex_enter(&crypto_mtx);
    947 		}
    948 		process = crypto_drivers[hid].cc_process;
    949 		arg = crypto_drivers[hid].cc_arg;
    950 
    951 		/*
    952 		 * Invoke the driver to process the request.
    953 		 */
    954 		DPRINTF(("calling process for %p\n", crp));
    955 		return (*process)(arg, crp, hint);
    956 	} else {
    957 		struct cryptodesc *crd;
    958 		u_int64_t nid = 0;
    959 
    960 		/*
    961 		 * Driver has unregistered; migrate the session and return
    962 		 * an error to the caller so they'll resubmit the op.
    963 		 */
    964 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
    965 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
    966 
    967 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
    968 			crp->crp_sid = nid;
    969 
    970 		crp->crp_etype = EAGAIN;
    971 
    972 		crypto_done(crp);
    973 		return 0;
    974 	}
    975 }
    976 
    977 /*
    978  * Release a set of crypto descriptors.
    979  */
    980 void
    981 crypto_freereq(struct cryptop *crp)
    982 {
    983 	struct cryptodesc *crd;
    984 
    985 	if (crp == NULL)
    986 		return;
    987 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
    988 		CRYPTO_SESID2LID(crp->crp_sid), crp));
    989 
    990 	/* sanity check */
    991 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
    992 		panic("crypto_freereq() freeing crp on RETQ\n");
    993 	}
    994 
    995 	while ((crd = crp->crp_desc) != NULL) {
    996 		crp->crp_desc = crd->crd_next;
    997 		pool_put(&cryptodesc_pool, crd);
    998 	}
    999 	pool_put(&cryptop_pool, crp);
   1000 }
   1001 
   1002 /*
   1003  * Acquire a set of crypto descriptors.
   1004  */
   1005 struct cryptop *
   1006 crypto_getreq(int num)
   1007 {
   1008 	struct cryptodesc *crd;
   1009 	struct cryptop *crp;
   1010 
   1011 	crp = pool_get(&cryptop_pool, 0);
   1012 	if (crp == NULL) {
   1013 		return NULL;
   1014 	}
   1015 	memset(crp, 0, sizeof(struct cryptop));
   1016 
   1017 	while (num--) {
   1018 		crd = pool_get(&cryptodesc_pool, 0);
   1019 		if (crd == NULL) {
   1020 			crypto_freereq(crp);
   1021 			return NULL;
   1022 		}
   1023 
   1024 		memset(crd, 0, sizeof(struct cryptodesc));
   1025 		crd->crd_next = crp->crp_desc;
   1026 		crp->crp_desc = crd;
   1027 	}
   1028 
   1029 	return crp;
   1030 }
   1031 
   1032 /*
   1033  * Invoke the callback on behalf of the driver.
   1034  */
   1035 void
   1036 crypto_done(struct cryptop *crp)
   1037 {
   1038 	int wasempty;
   1039 
   1040 	if (crp->crp_etype != 0)
   1041 		cryptostats.cs_errs++;
   1042 #ifdef CRYPTO_TIMING
   1043 	if (crypto_timing)
   1044 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1045 #endif
   1046 	DPRINTF(("crypto_done[%u]: crp %p\n",
   1047 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1048 
   1049 	/*
   1050 	 * Normal case; queue the callback for the thread.
   1051 	 *
   1052 	 * The return queue is manipulated by the swi thread
   1053 	 * and, potentially, by crypto device drivers calling
   1054 	 * back to mark operations completed.  Thus we need
   1055 	 * to mask both while manipulating the return queue.
   1056 	 */
   1057   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1058 		/*
   1059 	 	* Do the callback directly.  This is ok when the
   1060   	 	* callback routine does very little (e.g. the
   1061 	 	* /dev/crypto callback method just does a wakeup).
   1062 	 	*/
   1063 		mutex_spin_enter(&crypto_ret_q_mtx);
   1064 		crp->crp_flags |= CRYPTO_F_DONE;
   1065 		mutex_spin_exit(&crypto_ret_q_mtx);
   1066 
   1067 #ifdef CRYPTO_TIMING
   1068 		if (crypto_timing) {
   1069 			/*
   1070 		 	* NB: We must copy the timestamp before
   1071 		 	* doing the callback as the cryptop is
   1072 		 	* likely to be reclaimed.
   1073 		 	*/
   1074 			struct timespec t = crp->crp_tstamp;
   1075 			crypto_tstat(&cryptostats.cs_cb, &t);
   1076 			crp->crp_callback(crp);
   1077 			crypto_tstat(&cryptostats.cs_finis, &t);
   1078 		} else
   1079 #endif
   1080 		crp->crp_callback(crp);
   1081 	} else {
   1082 		mutex_spin_enter(&crypto_ret_q_mtx);
   1083 		crp->crp_flags |= CRYPTO_F_DONE;
   1084 
   1085 		if (crp->crp_flags & CRYPTO_F_USER) {
   1086 			/* the request has completed while
   1087 			 * running in the user context
   1088 			 * so don't queue it - the user
   1089 			 * thread won't sleep when it sees
   1090 			 * the CRYPTO_F_DONE flag.
   1091 			 * This is an optimization to avoid
   1092 			 * unecessary context switches.
   1093 			 */
   1094 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
   1095 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1096 		} else {
   1097 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1098 			DPRINTF(("crypto_done[%u]: queueing %p\n",
   1099 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1100 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1101 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1102 			if (wasempty) {
   1103 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
   1104 					"crp %p hit empty queue\n.",
   1105 					CRYPTO_SESID2LID(crp->crp_sid), crp));
   1106 				cv_signal(&cryptoret_cv);
   1107 			}
   1108 		}
   1109 		mutex_spin_exit(&crypto_ret_q_mtx);
   1110 	}
   1111 }
   1112 
   1113 /*
   1114  * Invoke the callback on behalf of the driver.
   1115  */
   1116 void
   1117 crypto_kdone(struct cryptkop *krp)
   1118 {
   1119 	int wasempty;
   1120 
   1121 	if (krp->krp_status != 0)
   1122 		cryptostats.cs_kerrs++;
   1123 
   1124 	krp->krp_flags |= CRYPTO_F_DONE;
   1125 
   1126 	/*
   1127 	 * The return queue is manipulated by the swi thread
   1128 	 * and, potentially, by crypto device drivers calling
   1129 	 * back to mark operations completed.  Thus we need
   1130 	 * to mask both while manipulating the return queue.
   1131 	 */
   1132 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1133 		krp->krp_callback(krp);
   1134 	} else {
   1135 		mutex_spin_enter(&crypto_ret_q_mtx);
   1136 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1137 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1138 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1139 		if (wasempty)
   1140 			cv_signal(&cryptoret_cv);
   1141 		mutex_spin_exit(&crypto_ret_q_mtx);
   1142 	}
   1143 }
   1144 
   1145 int
   1146 crypto_getfeat(int *featp)
   1147 {
   1148 	int hid, kalg, feat = 0;
   1149 
   1150 	mutex_enter(&crypto_mtx);
   1151 
   1152 	if (crypto_userasymcrypto == 0)
   1153 		goto out;
   1154 
   1155 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1156 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1157 		    crypto_devallowsoft == 0) {
   1158 			continue;
   1159 		}
   1160 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1161 			continue;
   1162 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1163 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1164 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1165 				feat |=  1 << kalg;
   1166 	}
   1167 out:
   1168 	mutex_exit(&crypto_mtx);
   1169 	*featp = feat;
   1170 	return (0);
   1171 }
   1172 
   1173 /*
   1174  * Software interrupt thread to dispatch crypto requests.
   1175  */
   1176 static void
   1177 cryptointr(void)
   1178 {
   1179 	struct cryptop *crp, *submit, *cnext;
   1180 	struct cryptkop *krp, *knext;
   1181 	struct cryptocap *cap;
   1182 	int result, hint;
   1183 
   1184 	cryptostats.cs_intrs++;
   1185 	mutex_spin_enter(&crypto_q_mtx);
   1186 	do {
   1187 		/*
   1188 		 * Find the first element in the queue that can be
   1189 		 * processed and look-ahead to see if multiple ops
   1190 		 * are ready for the same driver.
   1191 		 */
   1192 		submit = NULL;
   1193 		hint = 0;
   1194 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1195 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1196 			cap = crypto_checkdriver(hid);
   1197 			if (cap == NULL || cap->cc_process == NULL) {
   1198 				/* Op needs to be migrated, process it. */
   1199 				if (submit == NULL)
   1200 					submit = crp;
   1201 				break;
   1202 			}
   1203 			if (!cap->cc_qblocked) {
   1204 				if (submit != NULL) {
   1205 					/*
   1206 					 * We stop on finding another op,
   1207 					 * regardless whether its for the same
   1208 					 * driver or not.  We could keep
   1209 					 * searching the queue but it might be
   1210 					 * better to just use a per-driver
   1211 					 * queue instead.
   1212 					 */
   1213 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1214 					    == hid)
   1215 						hint = CRYPTO_HINT_MORE;
   1216 					break;
   1217 				} else {
   1218 					submit = crp;
   1219 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1220 						break;
   1221 					/* keep scanning for more are q'd */
   1222 				}
   1223 			}
   1224 		}
   1225 		if (submit != NULL) {
   1226 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1227 			mutex_spin_exit(&crypto_q_mtx);
   1228 			result = crypto_invoke(submit, hint);
   1229 			/* we must take here as the TAILQ op or kinvoke
   1230 			   may need this mutex below.  sigh. */
   1231 			mutex_spin_enter(&crypto_q_mtx);
   1232 			if (result == ERESTART) {
   1233 				/*
   1234 				 * The driver ran out of resources, mark the
   1235 				 * driver ``blocked'' for cryptop's and put
   1236 				 * the request back in the queue.  It would
   1237 				 * best to put the request back where we got
   1238 				 * it but that's hard so for now we put it
   1239 				 * at the front.  This should be ok; putting
   1240 				 * it at the end does not work.
   1241 				 */
   1242 				/* XXX validate sid again? */
   1243 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1244 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1245 				cryptostats.cs_blocks++;
   1246 			}
   1247 		}
   1248 
   1249 		/* As above, but for key ops */
   1250 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1251 			cap = crypto_checkdriver(krp->krp_hid);
   1252 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1253 				/* Op needs to be migrated, process it. */
   1254 				break;
   1255 			}
   1256 			if (!cap->cc_kqblocked)
   1257 				break;
   1258 		}
   1259 		if (krp != NULL) {
   1260 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1261 			mutex_spin_exit(&crypto_q_mtx);
   1262 			result = crypto_kinvoke(krp, 0);
   1263 			/* the next iteration will want the mutex. :-/ */
   1264 			mutex_spin_enter(&crypto_q_mtx);
   1265 			if (result == ERESTART) {
   1266 				/*
   1267 				 * The driver ran out of resources, mark the
   1268 				 * driver ``blocked'' for cryptkop's and put
   1269 				 * the request back in the queue.  It would
   1270 				 * best to put the request back where we got
   1271 				 * it but that's hard so for now we put it
   1272 				 * at the front.  This should be ok; putting
   1273 				 * it at the end does not work.
   1274 				 */
   1275 				/* XXX validate sid again? */
   1276 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1277 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1278 				cryptostats.cs_kblocks++;
   1279 			}
   1280 		}
   1281 	} while (submit != NULL || krp != NULL);
   1282 	mutex_spin_exit(&crypto_q_mtx);
   1283 }
   1284 
   1285 /*
   1286  * Kernel thread to do callbacks.
   1287  */
   1288 static void
   1289 cryptoret(void)
   1290 {
   1291 	struct cryptop *crp;
   1292 	struct cryptkop *krp;
   1293 
   1294 	mutex_spin_enter(&crypto_ret_q_mtx);
   1295 	for (;;) {
   1296 		crp = TAILQ_FIRST(&crp_ret_q);
   1297 		if (crp != NULL) {
   1298 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1299 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1300 		}
   1301 		krp = TAILQ_FIRST(&crp_ret_kq);
   1302 		if (krp != NULL) {
   1303 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1304 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1305 		}
   1306 
   1307 		/* drop before calling any callbacks. */
   1308 		if (crp == NULL && krp == NULL) {
   1309 			cryptostats.cs_rets++;
   1310 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1311 			continue;
   1312 		}
   1313 
   1314 		mutex_spin_exit(&crypto_ret_q_mtx);
   1315 
   1316 		if (crp != NULL) {
   1317 #ifdef CRYPTO_TIMING
   1318 			if (crypto_timing) {
   1319 				/*
   1320 				 * NB: We must copy the timestamp before
   1321 				 * doing the callback as the cryptop is
   1322 				 * likely to be reclaimed.
   1323 				 */
   1324 				struct timespec t = crp->crp_tstamp;
   1325 				crypto_tstat(&cryptostats.cs_cb, &t);
   1326 				crp->crp_callback(crp);
   1327 				crypto_tstat(&cryptostats.cs_finis, &t);
   1328 			} else
   1329 #endif
   1330 			{
   1331 				crp->crp_callback(crp);
   1332 			}
   1333 		}
   1334 		if (krp != NULL)
   1335 			krp->krp_callback(krp);
   1336 
   1337 		mutex_spin_enter(&crypto_ret_q_mtx);
   1338 	}
   1339 }
   1340 
   1341 /* NetBSD module interface */
   1342 
   1343 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1344 
   1345 static int
   1346 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1347 {
   1348 
   1349 	switch (cmd) {
   1350 	case MODULE_CMD_INIT:
   1351 #ifdef _MODULE
   1352 		crypto_init();
   1353 #endif
   1354 		return 0;
   1355 	case MODULE_CMD_FINI:
   1356 #ifdef _MODULE
   1357 		sysctl_teardown(&sysctl_opencrypto_clog);
   1358 #endif
   1359 		return 0;
   1360 	default:
   1361 		return ENOTTY;
   1362 	}
   1363 }
   1364