crypto.c revision 1.45 1 /* $NetBSD: crypto.c,v 1.45 2014/02/25 18:30:12 pooka Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.45 2014/02/25 18:30:12 pooka Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 kmutex_t crypto_q_mtx;
79 kmutex_t crypto_ret_q_mtx;
80 kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 #define SWI_CRYPTO 17
85 #define register_swi(lvl, fn) \
86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 #define setsoftcrypto(x) softint_schedule(x)
89
90 int crypto_ret_q_check(struct cryptop *);
91
92 /*
93 * Crypto drivers register themselves by allocating a slot in the
94 * crypto_drivers table with crypto_get_driverid() and then registering
95 * each algorithm they support with crypto_register() and crypto_kregister().
96 */
97 static struct cryptocap *crypto_drivers;
98 static int crypto_drivers_num;
99 static void *softintr_cookie;
100
101 /*
102 * There are two queues for crypto requests; one for symmetric (e.g.
103 * cipher) operations and one for asymmetric (e.g. MOD) operations.
104 * See below for how synchronization is handled.
105 */
106 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
107 TAILQ_HEAD_INITIALIZER(crp_q);
108 static TAILQ_HEAD(,cryptkop) crp_kq =
109 TAILQ_HEAD_INITIALIZER(crp_kq);
110
111 /*
112 * There are two queues for processing completed crypto requests; one
113 * for the symmetric and one for the asymmetric ops. We only need one
114 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
115 * for how synchronization is handled.
116 */
117 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
118 TAILQ_HEAD_INITIALIZER(crp_ret_q);
119 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
120 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
121
122 /*
123 * XXX these functions are ghastly hacks for when the submission
124 * XXX routines discover a request that was not CBIMM is already
125 * XXX done, and must be yanked from the retq (where _done) put it
126 * XXX as cryptoret won't get the chance. The queue is walked backwards
127 * XXX as the request is generally the last one queued.
128 *
129 * call with the lock held, or else.
130 */
131 int
132 crypto_ret_q_remove(struct cryptop *crp)
133 {
134 struct cryptop * acrp, *next;
135
136 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
137 if (acrp == crp) {
138 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
139 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
140 return 1;
141 }
142 }
143 return 0;
144 }
145
146 int
147 crypto_ret_kq_remove(struct cryptkop *krp)
148 {
149 struct cryptkop * akrp, *next;
150
151 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
152 if (akrp == krp) {
153 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
154 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
155 return 1;
156 }
157 }
158 return 0;
159 }
160
161 /*
162 * Crypto op and desciptor data structures are allocated
163 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
164 */
165 struct pool cryptop_pool;
166 struct pool cryptodesc_pool;
167 struct pool cryptkop_pool;
168
169 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
170 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
171 /*
172 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
173 * access to hardware versus software transforms as below:
174 *
175 * crypto_devallowsoft < 0: Force userlevel requests to use software
176 * transforms, always
177 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
178 * requests for non-accelerated transforms
179 * (handling the latter in software)
180 * crypto_devallowsoft > 0: Allow user requests only for transforms which
181 * are hardware-accelerated.
182 */
183 int crypto_devallowsoft = 1; /* only use hardware crypto */
184
185 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
186 {
187
188 sysctl_createv(clog, 0, NULL, NULL,
189 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
190 CTLTYPE_INT, "usercrypto",
191 SYSCTL_DESCR("Enable/disable user-mode access to "
192 "crypto support"),
193 NULL, 0, &crypto_usercrypto, 0,
194 CTL_KERN, CTL_CREATE, CTL_EOL);
195 sysctl_createv(clog, 0, NULL, NULL,
196 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
197 CTLTYPE_INT, "userasymcrypto",
198 SYSCTL_DESCR("Enable/disable user-mode access to "
199 "asymmetric crypto support"),
200 NULL, 0, &crypto_userasymcrypto, 0,
201 CTL_KERN, CTL_CREATE, CTL_EOL);
202 sysctl_createv(clog, 0, NULL, NULL,
203 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
204 CTLTYPE_INT, "cryptodevallowsoft",
205 SYSCTL_DESCR("Enable/disable use of software "
206 "asymmetric crypto support"),
207 NULL, 0, &crypto_devallowsoft, 0,
208 CTL_KERN, CTL_CREATE, CTL_EOL);
209 }
210
211 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
212
213 /*
214 * Synchronization: read carefully, this is non-trivial.
215 *
216 * Crypto requests are submitted via crypto_dispatch. Typically
217 * these come in from network protocols at spl0 (output path) or
218 * spl[,soft]net (input path).
219 *
220 * Requests are typically passed on the driver directly, but they
221 * may also be queued for processing by a software interrupt thread,
222 * cryptointr, that runs at splsoftcrypto. This thread dispatches
223 * the requests to crypto drivers (h/w or s/w) who call crypto_done
224 * when a request is complete. Hardware crypto drivers are assumed
225 * to register their IRQ's as network devices so their interrupt handlers
226 * and subsequent "done callbacks" happen at spl[imp,net].
227 *
228 * Completed crypto ops are queued for a separate kernel thread that
229 * handles the callbacks at spl0. This decoupling insures the crypto
230 * driver interrupt service routine is not delayed while the callback
231 * takes place and that callbacks are delivered after a context switch
232 * (as opposed to a software interrupt that clients must block).
233 *
234 * This scheme is not intended for SMP machines.
235 */
236 static void cryptointr(void); /* swi thread to dispatch ops */
237 static void cryptoret(void); /* kernel thread for callbacks*/
238 static struct lwp *cryptothread;
239 static void crypto_destroy(void);
240 static int crypto_invoke(struct cryptop *crp, int hint);
241 static int crypto_kinvoke(struct cryptkop *krp, int hint);
242
243 static struct cryptostats cryptostats;
244 #ifdef CRYPTO_TIMING
245 static int crypto_timing = 0;
246 #endif
247
248 #ifdef _MODULE
249 static struct sysctllog *sysctl_opencrypto_clog;
250 #endif
251
252 static int
253 crypto_init0(void)
254 {
255 int error;
256
257 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
258 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
259 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 cv_init(&cryptoret_cv, "crypto_w");
261 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
262 0, "cryptop", NULL, IPL_NET);
263 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
264 0, "cryptodesc", NULL, IPL_NET);
265 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
266 0, "cryptkop", NULL, IPL_NET);
267
268 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
269 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
270 if (crypto_drivers == NULL) {
271 printf("crypto_init: cannot malloc driver table\n");
272 return 0;
273 }
274 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
275
276 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
277 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
278 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
279 if (error) {
280 printf("crypto_init: cannot start cryptoret thread; error %d",
281 error);
282 crypto_destroy();
283 }
284
285 #ifdef _MODULE
286 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
287 #endif
288 return 0;
289 }
290
291 void
292 crypto_init(void)
293 {
294 static ONCE_DECL(crypto_init_once);
295
296 RUN_ONCE(&crypto_init_once, crypto_init0);
297 }
298
299 static void
300 crypto_destroy(void)
301 {
302 /* XXX no wait to reclaim zones */
303 if (crypto_drivers != NULL)
304 free(crypto_drivers, M_CRYPTO_DATA);
305 unregister_swi(SWI_CRYPTO, cryptointr);
306 }
307
308 /*
309 * Create a new session. Must be called with crypto_mtx held.
310 */
311 int
312 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
313 {
314 struct cryptoini *cr;
315 u_int32_t hid, lid;
316 int err = EINVAL;
317
318 mutex_enter(&crypto_mtx);
319
320 if (crypto_drivers == NULL)
321 goto done;
322
323 /*
324 * The algorithm we use here is pretty stupid; just use the
325 * first driver that supports all the algorithms we need.
326 *
327 * XXX We need more smarts here (in real life too, but that's
328 * XXX another story altogether).
329 */
330
331 for (hid = 0; hid < crypto_drivers_num; hid++) {
332 /*
333 * If it's not initialized or has remaining sessions
334 * referencing it, skip.
335 */
336 if (crypto_drivers[hid].cc_newsession == NULL ||
337 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
338 continue;
339
340 /* Hardware required -- ignore software drivers. */
341 if (hard > 0 &&
342 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
343 continue;
344 /* Software required -- ignore hardware drivers. */
345 if (hard < 0 &&
346 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
347 continue;
348
349 /* See if all the algorithms are supported. */
350 for (cr = cri; cr; cr = cr->cri_next)
351 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
352 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
353 break;
354 }
355
356 if (cr == NULL) {
357 /* Ok, all algorithms are supported. */
358
359 /*
360 * Can't do everything in one session.
361 *
362 * XXX Fix this. We need to inject a "virtual" session layer right
363 * XXX about here.
364 */
365
366 /* Call the driver initialization routine. */
367 lid = hid; /* Pass the driver ID. */
368 err = crypto_drivers[hid].cc_newsession(
369 crypto_drivers[hid].cc_arg, &lid, cri);
370 if (err == 0) {
371 (*sid) = hid;
372 (*sid) <<= 32;
373 (*sid) |= (lid & 0xffffffff);
374 crypto_drivers[hid].cc_sessions++;
375 }
376 goto done;
377 /*break;*/
378 }
379 }
380 done:
381 mutex_exit(&crypto_mtx);
382 return err;
383 }
384
385 /*
386 * Delete an existing session (or a reserved session on an unregistered
387 * driver). Must be called with crypto_mtx mutex held.
388 */
389 int
390 crypto_freesession(u_int64_t sid)
391 {
392 u_int32_t hid;
393 int err = 0;
394
395 mutex_enter(&crypto_mtx);
396
397 if (crypto_drivers == NULL) {
398 err = EINVAL;
399 goto done;
400 }
401
402 /* Determine two IDs. */
403 hid = CRYPTO_SESID2HID(sid);
404
405 if (hid >= crypto_drivers_num) {
406 err = ENOENT;
407 goto done;
408 }
409
410 if (crypto_drivers[hid].cc_sessions)
411 crypto_drivers[hid].cc_sessions--;
412
413 /* Call the driver cleanup routine, if available. */
414 if (crypto_drivers[hid].cc_freesession) {
415 err = crypto_drivers[hid].cc_freesession(
416 crypto_drivers[hid].cc_arg, sid);
417 }
418 else
419 err = 0;
420
421 /*
422 * If this was the last session of a driver marked as invalid,
423 * make the entry available for reuse.
424 */
425 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
426 crypto_drivers[hid].cc_sessions == 0)
427 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
428
429 done:
430 mutex_exit(&crypto_mtx);
431 return err;
432 }
433
434 /*
435 * Return an unused driver id. Used by drivers prior to registering
436 * support for the algorithms they handle.
437 */
438 int32_t
439 crypto_get_driverid(u_int32_t flags)
440 {
441 struct cryptocap *newdrv;
442 int i;
443
444 crypto_init(); /* XXX oh, this is foul! */
445
446 mutex_enter(&crypto_mtx);
447 for (i = 0; i < crypto_drivers_num; i++)
448 if (crypto_drivers[i].cc_process == NULL &&
449 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
450 crypto_drivers[i].cc_sessions == 0)
451 break;
452
453 /* Out of entries, allocate some more. */
454 if (i == crypto_drivers_num) {
455 /* Be careful about wrap-around. */
456 if (2 * crypto_drivers_num <= crypto_drivers_num) {
457 mutex_exit(&crypto_mtx);
458 printf("crypto: driver count wraparound!\n");
459 return -1;
460 }
461
462 newdrv = malloc(2 * crypto_drivers_num *
463 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
464 if (newdrv == NULL) {
465 mutex_exit(&crypto_mtx);
466 printf("crypto: no space to expand driver table!\n");
467 return -1;
468 }
469
470 memcpy(newdrv, crypto_drivers,
471 crypto_drivers_num * sizeof(struct cryptocap));
472
473 crypto_drivers_num *= 2;
474
475 free(crypto_drivers, M_CRYPTO_DATA);
476 crypto_drivers = newdrv;
477 }
478
479 /* NB: state is zero'd on free */
480 crypto_drivers[i].cc_sessions = 1; /* Mark */
481 crypto_drivers[i].cc_flags = flags;
482
483 if (bootverbose)
484 printf("crypto: assign driver %u, flags %u\n", i, flags);
485
486 mutex_exit(&crypto_mtx);
487
488 return i;
489 }
490
491 static struct cryptocap *
492 crypto_checkdriver(u_int32_t hid)
493 {
494 if (crypto_drivers == NULL)
495 return NULL;
496 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
497 }
498
499 /*
500 * Register support for a key-related algorithm. This routine
501 * is called once for each algorithm supported a driver.
502 */
503 int
504 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
505 int (*kprocess)(void *, struct cryptkop *, int),
506 void *karg)
507 {
508 struct cryptocap *cap;
509 int err;
510
511 mutex_enter(&crypto_mtx);
512
513 cap = crypto_checkdriver(driverid);
514 if (cap != NULL &&
515 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
516 /*
517 * XXX Do some performance testing to determine placing.
518 * XXX We probably need an auxiliary data structure that
519 * XXX describes relative performances.
520 */
521
522 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
523 if (bootverbose) {
524 printf("crypto: driver %u registers key alg %u "
525 " flags %u\n",
526 driverid,
527 kalg,
528 flags
529 );
530 }
531
532 if (cap->cc_kprocess == NULL) {
533 cap->cc_karg = karg;
534 cap->cc_kprocess = kprocess;
535 }
536 err = 0;
537 } else
538 err = EINVAL;
539
540 mutex_exit(&crypto_mtx);
541 return err;
542 }
543
544 /*
545 * Register support for a non-key-related algorithm. This routine
546 * is called once for each such algorithm supported by a driver.
547 */
548 int
549 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
550 u_int32_t flags,
551 int (*newses)(void *, u_int32_t*, struct cryptoini*),
552 int (*freeses)(void *, u_int64_t),
553 int (*process)(void *, struct cryptop *, int),
554 void *arg)
555 {
556 struct cryptocap *cap;
557 int err;
558
559 mutex_enter(&crypto_mtx);
560
561 cap = crypto_checkdriver(driverid);
562 /* NB: algorithms are in the range [1..max] */
563 if (cap != NULL &&
564 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
565 /*
566 * XXX Do some performance testing to determine placing.
567 * XXX We probably need an auxiliary data structure that
568 * XXX describes relative performances.
569 */
570
571 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
572 cap->cc_max_op_len[alg] = maxoplen;
573 if (bootverbose) {
574 printf("crypto: driver %u registers alg %u "
575 "flags %u maxoplen %u\n",
576 driverid,
577 alg,
578 flags,
579 maxoplen
580 );
581 }
582
583 if (cap->cc_process == NULL) {
584 cap->cc_arg = arg;
585 cap->cc_newsession = newses;
586 cap->cc_process = process;
587 cap->cc_freesession = freeses;
588 cap->cc_sessions = 0; /* Unmark */
589 }
590 err = 0;
591 } else
592 err = EINVAL;
593
594 mutex_exit(&crypto_mtx);
595 return err;
596 }
597
598 /*
599 * Unregister a crypto driver. If there are pending sessions using it,
600 * leave enough information around so that subsequent calls using those
601 * sessions will correctly detect the driver has been unregistered and
602 * reroute requests.
603 */
604 int
605 crypto_unregister(u_int32_t driverid, int alg)
606 {
607 int i, err;
608 u_int32_t ses;
609 struct cryptocap *cap;
610
611 mutex_enter(&crypto_mtx);
612
613 cap = crypto_checkdriver(driverid);
614 if (cap != NULL &&
615 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
616 cap->cc_alg[alg] != 0) {
617 cap->cc_alg[alg] = 0;
618 cap->cc_max_op_len[alg] = 0;
619
620 /* Was this the last algorithm ? */
621 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
622 if (cap->cc_alg[i] != 0)
623 break;
624
625 if (i == CRYPTO_ALGORITHM_MAX + 1) {
626 ses = cap->cc_sessions;
627 memset(cap, 0, sizeof(struct cryptocap));
628 if (ses != 0) {
629 /*
630 * If there are pending sessions, just mark as invalid.
631 */
632 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
633 cap->cc_sessions = ses;
634 }
635 }
636 err = 0;
637 } else
638 err = EINVAL;
639
640 mutex_exit(&crypto_mtx);
641 return err;
642 }
643
644 /*
645 * Unregister all algorithms associated with a crypto driver.
646 * If there are pending sessions using it, leave enough information
647 * around so that subsequent calls using those sessions will
648 * correctly detect the driver has been unregistered and reroute
649 * requests.
650 *
651 * XXX careful. Don't change this to call crypto_unregister() for each
652 * XXX registered algorithm unless you drop the mutex across the calls;
653 * XXX you can't take it recursively.
654 */
655 int
656 crypto_unregister_all(u_int32_t driverid)
657 {
658 int i, err;
659 u_int32_t ses;
660 struct cryptocap *cap;
661
662 mutex_enter(&crypto_mtx);
663 cap = crypto_checkdriver(driverid);
664 if (cap != NULL) {
665 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
666 cap->cc_alg[i] = 0;
667 cap->cc_max_op_len[i] = 0;
668 }
669 ses = cap->cc_sessions;
670 memset(cap, 0, sizeof(struct cryptocap));
671 if (ses != 0) {
672 /*
673 * If there are pending sessions, just mark as invalid.
674 */
675 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
676 cap->cc_sessions = ses;
677 }
678 err = 0;
679 } else
680 err = EINVAL;
681
682 mutex_exit(&crypto_mtx);
683 return err;
684 }
685
686 /*
687 * Clear blockage on a driver. The what parameter indicates whether
688 * the driver is now ready for cryptop's and/or cryptokop's.
689 */
690 int
691 crypto_unblock(u_int32_t driverid, int what)
692 {
693 struct cryptocap *cap;
694 int needwakeup, err;
695
696 mutex_spin_enter(&crypto_q_mtx);
697 cap = crypto_checkdriver(driverid);
698 if (cap != NULL) {
699 needwakeup = 0;
700 if (what & CRYPTO_SYMQ) {
701 needwakeup |= cap->cc_qblocked;
702 cap->cc_qblocked = 0;
703 }
704 if (what & CRYPTO_ASYMQ) {
705 needwakeup |= cap->cc_kqblocked;
706 cap->cc_kqblocked = 0;
707 }
708 err = 0;
709 if (needwakeup)
710 setsoftcrypto(softintr_cookie);
711 mutex_spin_exit(&crypto_q_mtx);
712 } else {
713 err = EINVAL;
714 mutex_spin_exit(&crypto_q_mtx);
715 }
716
717 return err;
718 }
719
720 /*
721 * Dispatch a crypto request to a driver or queue
722 * it, to be processed by the kernel thread.
723 */
724 int
725 crypto_dispatch(struct cryptop *crp)
726 {
727 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
728 int result;
729
730 mutex_spin_enter(&crypto_q_mtx);
731 DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
732 crp, crp->crp_desc->crd_alg));
733
734 cryptostats.cs_ops++;
735
736 #ifdef CRYPTO_TIMING
737 if (crypto_timing)
738 nanouptime(&crp->crp_tstamp);
739 #endif
740 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
741 struct cryptocap *cap;
742 /*
743 * Caller marked the request to be processed
744 * immediately; dispatch it directly to the
745 * driver unless the driver is currently blocked.
746 */
747 cap = crypto_checkdriver(hid);
748 if (cap && !cap->cc_qblocked) {
749 mutex_spin_exit(&crypto_q_mtx);
750 result = crypto_invoke(crp, 0);
751 if (result == ERESTART) {
752 /*
753 * The driver ran out of resources, mark the
754 * driver ``blocked'' for cryptop's and put
755 * the op on the queue.
756 */
757 mutex_spin_enter(&crypto_q_mtx);
758 crypto_drivers[hid].cc_qblocked = 1;
759 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
760 cryptostats.cs_blocks++;
761 mutex_spin_exit(&crypto_q_mtx);
762 }
763 goto out_released;
764 } else {
765 /*
766 * The driver is blocked, just queue the op until
767 * it unblocks and the swi thread gets kicked.
768 */
769 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
770 result = 0;
771 }
772 } else {
773 int wasempty = TAILQ_EMPTY(&crp_q);
774 /*
775 * Caller marked the request as ``ok to delay'';
776 * queue it for the swi thread. This is desirable
777 * when the operation is low priority and/or suitable
778 * for batching.
779 */
780 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
781 if (wasempty) {
782 setsoftcrypto(softintr_cookie);
783 mutex_spin_exit(&crypto_q_mtx);
784 result = 0;
785 goto out_released;
786 }
787
788 result = 0;
789 }
790
791 mutex_spin_exit(&crypto_q_mtx);
792 out_released:
793 return result;
794 }
795
796 /*
797 * Add an asymetric crypto request to a queue,
798 * to be processed by the kernel thread.
799 */
800 int
801 crypto_kdispatch(struct cryptkop *krp)
802 {
803 struct cryptocap *cap;
804 int result;
805
806 mutex_spin_enter(&crypto_q_mtx);
807 cryptostats.cs_kops++;
808
809 cap = crypto_checkdriver(krp->krp_hid);
810 if (cap && !cap->cc_kqblocked) {
811 mutex_spin_exit(&crypto_q_mtx);
812 result = crypto_kinvoke(krp, 0);
813 if (result == ERESTART) {
814 /*
815 * The driver ran out of resources, mark the
816 * driver ``blocked'' for cryptop's and put
817 * the op on the queue.
818 */
819 mutex_spin_enter(&crypto_q_mtx);
820 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
821 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
822 cryptostats.cs_kblocks++;
823 mutex_spin_exit(&crypto_q_mtx);
824 }
825 } else {
826 /*
827 * The driver is blocked, just queue the op until
828 * it unblocks and the swi thread gets kicked.
829 */
830 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
831 result = 0;
832 mutex_spin_exit(&crypto_q_mtx);
833 }
834
835 return result;
836 }
837
838 /*
839 * Dispatch an assymetric crypto request to the appropriate crypto devices.
840 */
841 static int
842 crypto_kinvoke(struct cryptkop *krp, int hint)
843 {
844 u_int32_t hid;
845 int error;
846
847 /* Sanity checks. */
848 if (krp == NULL)
849 return EINVAL;
850 if (krp->krp_callback == NULL) {
851 cv_destroy(&krp->krp_cv);
852 pool_put(&cryptkop_pool, krp);
853 return EINVAL;
854 }
855
856 mutex_enter(&crypto_mtx);
857 for (hid = 0; hid < crypto_drivers_num; hid++) {
858 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
859 crypto_devallowsoft == 0)
860 continue;
861 if (crypto_drivers[hid].cc_kprocess == NULL)
862 continue;
863 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
864 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
865 continue;
866 break;
867 }
868 if (hid < crypto_drivers_num) {
869 int (*process)(void *, struct cryptkop *, int);
870 void *arg;
871
872 process = crypto_drivers[hid].cc_kprocess;
873 arg = crypto_drivers[hid].cc_karg;
874 mutex_exit(&crypto_mtx);
875 krp->krp_hid = hid;
876 error = (*process)(arg, krp, hint);
877 } else {
878 mutex_exit(&crypto_mtx);
879 error = ENODEV;
880 }
881
882 if (error) {
883 krp->krp_status = error;
884 crypto_kdone(krp);
885 }
886 return 0;
887 }
888
889 #ifdef CRYPTO_TIMING
890 static void
891 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
892 {
893 struct timespec now, t;
894
895 nanouptime(&now);
896 t.tv_sec = now.tv_sec - tv->tv_sec;
897 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
898 if (t.tv_nsec < 0) {
899 t.tv_sec--;
900 t.tv_nsec += 1000000000;
901 }
902 timespecadd(&ts->acc, &t, &t);
903 if (timespeccmp(&t, &ts->min, <))
904 ts->min = t;
905 if (timespeccmp(&t, &ts->max, >))
906 ts->max = t;
907 ts->count++;
908
909 *tv = now;
910 }
911 #endif
912
913 /*
914 * Dispatch a crypto request to the appropriate crypto devices.
915 */
916 static int
917 crypto_invoke(struct cryptop *crp, int hint)
918 {
919 u_int32_t hid;
920
921 #ifdef CRYPTO_TIMING
922 if (crypto_timing)
923 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
924 #endif
925 /* Sanity checks. */
926 if (crp == NULL)
927 return EINVAL;
928 if (crp->crp_callback == NULL) {
929 return EINVAL;
930 }
931 if (crp->crp_desc == NULL) {
932 crp->crp_etype = EINVAL;
933 crypto_done(crp);
934 return 0;
935 }
936
937 hid = CRYPTO_SESID2HID(crp->crp_sid);
938
939 if (hid < crypto_drivers_num) {
940 int (*process)(void *, struct cryptop *, int);
941 void *arg;
942
943 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
944 mutex_exit(&crypto_mtx);
945 crypto_freesession(crp->crp_sid);
946 mutex_enter(&crypto_mtx);
947 }
948 process = crypto_drivers[hid].cc_process;
949 arg = crypto_drivers[hid].cc_arg;
950
951 /*
952 * Invoke the driver to process the request.
953 */
954 DPRINTF(("calling process for %p\n", crp));
955 return (*process)(arg, crp, hint);
956 } else {
957 struct cryptodesc *crd;
958 u_int64_t nid = 0;
959
960 /*
961 * Driver has unregistered; migrate the session and return
962 * an error to the caller so they'll resubmit the op.
963 */
964 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
965 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
966
967 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
968 crp->crp_sid = nid;
969
970 crp->crp_etype = EAGAIN;
971
972 crypto_done(crp);
973 return 0;
974 }
975 }
976
977 /*
978 * Release a set of crypto descriptors.
979 */
980 void
981 crypto_freereq(struct cryptop *crp)
982 {
983 struct cryptodesc *crd;
984
985 if (crp == NULL)
986 return;
987 DPRINTF(("crypto_freereq[%u]: crp %p\n",
988 CRYPTO_SESID2LID(crp->crp_sid), crp));
989
990 /* sanity check */
991 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
992 panic("crypto_freereq() freeing crp on RETQ\n");
993 }
994
995 while ((crd = crp->crp_desc) != NULL) {
996 crp->crp_desc = crd->crd_next;
997 pool_put(&cryptodesc_pool, crd);
998 }
999 pool_put(&cryptop_pool, crp);
1000 }
1001
1002 /*
1003 * Acquire a set of crypto descriptors.
1004 */
1005 struct cryptop *
1006 crypto_getreq(int num)
1007 {
1008 struct cryptodesc *crd;
1009 struct cryptop *crp;
1010
1011 crp = pool_get(&cryptop_pool, 0);
1012 if (crp == NULL) {
1013 return NULL;
1014 }
1015 memset(crp, 0, sizeof(struct cryptop));
1016
1017 while (num--) {
1018 crd = pool_get(&cryptodesc_pool, 0);
1019 if (crd == NULL) {
1020 crypto_freereq(crp);
1021 return NULL;
1022 }
1023
1024 memset(crd, 0, sizeof(struct cryptodesc));
1025 crd->crd_next = crp->crp_desc;
1026 crp->crp_desc = crd;
1027 }
1028
1029 return crp;
1030 }
1031
1032 /*
1033 * Invoke the callback on behalf of the driver.
1034 */
1035 void
1036 crypto_done(struct cryptop *crp)
1037 {
1038 int wasempty;
1039
1040 if (crp->crp_etype != 0)
1041 cryptostats.cs_errs++;
1042 #ifdef CRYPTO_TIMING
1043 if (crypto_timing)
1044 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1045 #endif
1046 DPRINTF(("crypto_done[%u]: crp %p\n",
1047 CRYPTO_SESID2LID(crp->crp_sid), crp));
1048
1049 /*
1050 * Normal case; queue the callback for the thread.
1051 *
1052 * The return queue is manipulated by the swi thread
1053 * and, potentially, by crypto device drivers calling
1054 * back to mark operations completed. Thus we need
1055 * to mask both while manipulating the return queue.
1056 */
1057 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1058 /*
1059 * Do the callback directly. This is ok when the
1060 * callback routine does very little (e.g. the
1061 * /dev/crypto callback method just does a wakeup).
1062 */
1063 mutex_spin_enter(&crypto_ret_q_mtx);
1064 crp->crp_flags |= CRYPTO_F_DONE;
1065 mutex_spin_exit(&crypto_ret_q_mtx);
1066
1067 #ifdef CRYPTO_TIMING
1068 if (crypto_timing) {
1069 /*
1070 * NB: We must copy the timestamp before
1071 * doing the callback as the cryptop is
1072 * likely to be reclaimed.
1073 */
1074 struct timespec t = crp->crp_tstamp;
1075 crypto_tstat(&cryptostats.cs_cb, &t);
1076 crp->crp_callback(crp);
1077 crypto_tstat(&cryptostats.cs_finis, &t);
1078 } else
1079 #endif
1080 crp->crp_callback(crp);
1081 } else {
1082 mutex_spin_enter(&crypto_ret_q_mtx);
1083 crp->crp_flags |= CRYPTO_F_DONE;
1084
1085 if (crp->crp_flags & CRYPTO_F_USER) {
1086 /* the request has completed while
1087 * running in the user context
1088 * so don't queue it - the user
1089 * thread won't sleep when it sees
1090 * the CRYPTO_F_DONE flag.
1091 * This is an optimization to avoid
1092 * unecessary context switches.
1093 */
1094 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1095 CRYPTO_SESID2LID(crp->crp_sid), crp));
1096 } else {
1097 wasempty = TAILQ_EMPTY(&crp_ret_q);
1098 DPRINTF(("crypto_done[%u]: queueing %p\n",
1099 CRYPTO_SESID2LID(crp->crp_sid), crp));
1100 crp->crp_flags |= CRYPTO_F_ONRETQ;
1101 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1102 if (wasempty) {
1103 DPRINTF(("crypto_done[%u]: waking cryptoret, "
1104 "crp %p hit empty queue\n.",
1105 CRYPTO_SESID2LID(crp->crp_sid), crp));
1106 cv_signal(&cryptoret_cv);
1107 }
1108 }
1109 mutex_spin_exit(&crypto_ret_q_mtx);
1110 }
1111 }
1112
1113 /*
1114 * Invoke the callback on behalf of the driver.
1115 */
1116 void
1117 crypto_kdone(struct cryptkop *krp)
1118 {
1119 int wasempty;
1120
1121 if (krp->krp_status != 0)
1122 cryptostats.cs_kerrs++;
1123
1124 krp->krp_flags |= CRYPTO_F_DONE;
1125
1126 /*
1127 * The return queue is manipulated by the swi thread
1128 * and, potentially, by crypto device drivers calling
1129 * back to mark operations completed. Thus we need
1130 * to mask both while manipulating the return queue.
1131 */
1132 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1133 krp->krp_callback(krp);
1134 } else {
1135 mutex_spin_enter(&crypto_ret_q_mtx);
1136 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1137 krp->krp_flags |= CRYPTO_F_ONRETQ;
1138 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1139 if (wasempty)
1140 cv_signal(&cryptoret_cv);
1141 mutex_spin_exit(&crypto_ret_q_mtx);
1142 }
1143 }
1144
1145 int
1146 crypto_getfeat(int *featp)
1147 {
1148 int hid, kalg, feat = 0;
1149
1150 mutex_enter(&crypto_mtx);
1151
1152 if (crypto_userasymcrypto == 0)
1153 goto out;
1154
1155 for (hid = 0; hid < crypto_drivers_num; hid++) {
1156 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1157 crypto_devallowsoft == 0) {
1158 continue;
1159 }
1160 if (crypto_drivers[hid].cc_kprocess == NULL)
1161 continue;
1162 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1163 if ((crypto_drivers[hid].cc_kalg[kalg] &
1164 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1165 feat |= 1 << kalg;
1166 }
1167 out:
1168 mutex_exit(&crypto_mtx);
1169 *featp = feat;
1170 return (0);
1171 }
1172
1173 /*
1174 * Software interrupt thread to dispatch crypto requests.
1175 */
1176 static void
1177 cryptointr(void)
1178 {
1179 struct cryptop *crp, *submit, *cnext;
1180 struct cryptkop *krp, *knext;
1181 struct cryptocap *cap;
1182 int result, hint;
1183
1184 cryptostats.cs_intrs++;
1185 mutex_spin_enter(&crypto_q_mtx);
1186 do {
1187 /*
1188 * Find the first element in the queue that can be
1189 * processed and look-ahead to see if multiple ops
1190 * are ready for the same driver.
1191 */
1192 submit = NULL;
1193 hint = 0;
1194 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1195 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1196 cap = crypto_checkdriver(hid);
1197 if (cap == NULL || cap->cc_process == NULL) {
1198 /* Op needs to be migrated, process it. */
1199 if (submit == NULL)
1200 submit = crp;
1201 break;
1202 }
1203 if (!cap->cc_qblocked) {
1204 if (submit != NULL) {
1205 /*
1206 * We stop on finding another op,
1207 * regardless whether its for the same
1208 * driver or not. We could keep
1209 * searching the queue but it might be
1210 * better to just use a per-driver
1211 * queue instead.
1212 */
1213 if (CRYPTO_SESID2HID(submit->crp_sid)
1214 == hid)
1215 hint = CRYPTO_HINT_MORE;
1216 break;
1217 } else {
1218 submit = crp;
1219 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1220 break;
1221 /* keep scanning for more are q'd */
1222 }
1223 }
1224 }
1225 if (submit != NULL) {
1226 TAILQ_REMOVE(&crp_q, submit, crp_next);
1227 mutex_spin_exit(&crypto_q_mtx);
1228 result = crypto_invoke(submit, hint);
1229 /* we must take here as the TAILQ op or kinvoke
1230 may need this mutex below. sigh. */
1231 mutex_spin_enter(&crypto_q_mtx);
1232 if (result == ERESTART) {
1233 /*
1234 * The driver ran out of resources, mark the
1235 * driver ``blocked'' for cryptop's and put
1236 * the request back in the queue. It would
1237 * best to put the request back where we got
1238 * it but that's hard so for now we put it
1239 * at the front. This should be ok; putting
1240 * it at the end does not work.
1241 */
1242 /* XXX validate sid again? */
1243 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1244 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1245 cryptostats.cs_blocks++;
1246 }
1247 }
1248
1249 /* As above, but for key ops */
1250 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1251 cap = crypto_checkdriver(krp->krp_hid);
1252 if (cap == NULL || cap->cc_kprocess == NULL) {
1253 /* Op needs to be migrated, process it. */
1254 break;
1255 }
1256 if (!cap->cc_kqblocked)
1257 break;
1258 }
1259 if (krp != NULL) {
1260 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1261 mutex_spin_exit(&crypto_q_mtx);
1262 result = crypto_kinvoke(krp, 0);
1263 /* the next iteration will want the mutex. :-/ */
1264 mutex_spin_enter(&crypto_q_mtx);
1265 if (result == ERESTART) {
1266 /*
1267 * The driver ran out of resources, mark the
1268 * driver ``blocked'' for cryptkop's and put
1269 * the request back in the queue. It would
1270 * best to put the request back where we got
1271 * it but that's hard so for now we put it
1272 * at the front. This should be ok; putting
1273 * it at the end does not work.
1274 */
1275 /* XXX validate sid again? */
1276 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1277 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1278 cryptostats.cs_kblocks++;
1279 }
1280 }
1281 } while (submit != NULL || krp != NULL);
1282 mutex_spin_exit(&crypto_q_mtx);
1283 }
1284
1285 /*
1286 * Kernel thread to do callbacks.
1287 */
1288 static void
1289 cryptoret(void)
1290 {
1291 struct cryptop *crp;
1292 struct cryptkop *krp;
1293
1294 mutex_spin_enter(&crypto_ret_q_mtx);
1295 for (;;) {
1296 crp = TAILQ_FIRST(&crp_ret_q);
1297 if (crp != NULL) {
1298 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1299 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1300 }
1301 krp = TAILQ_FIRST(&crp_ret_kq);
1302 if (krp != NULL) {
1303 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1304 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1305 }
1306
1307 /* drop before calling any callbacks. */
1308 if (crp == NULL && krp == NULL) {
1309 cryptostats.cs_rets++;
1310 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1311 continue;
1312 }
1313
1314 mutex_spin_exit(&crypto_ret_q_mtx);
1315
1316 if (crp != NULL) {
1317 #ifdef CRYPTO_TIMING
1318 if (crypto_timing) {
1319 /*
1320 * NB: We must copy the timestamp before
1321 * doing the callback as the cryptop is
1322 * likely to be reclaimed.
1323 */
1324 struct timespec t = crp->crp_tstamp;
1325 crypto_tstat(&cryptostats.cs_cb, &t);
1326 crp->crp_callback(crp);
1327 crypto_tstat(&cryptostats.cs_finis, &t);
1328 } else
1329 #endif
1330 {
1331 crp->crp_callback(crp);
1332 }
1333 }
1334 if (krp != NULL)
1335 krp->krp_callback(krp);
1336
1337 mutex_spin_enter(&crypto_ret_q_mtx);
1338 }
1339 }
1340
1341 /* NetBSD module interface */
1342
1343 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1344
1345 static int
1346 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1347 {
1348
1349 switch (cmd) {
1350 case MODULE_CMD_INIT:
1351 #ifdef _MODULE
1352 crypto_init();
1353 #endif
1354 return 0;
1355 case MODULE_CMD_FINI:
1356 #ifdef _MODULE
1357 sysctl_teardown(&sysctl_opencrypto_clog);
1358 #endif
1359 return 0;
1360 default:
1361 return ENOTTY;
1362 }
1363 }
1364