Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.48
      1 /*	$NetBSD: crypto.c,v 1.48 2016/07/07 06:55:43 msaitoh Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.48 2016/07/07 06:55:43 msaitoh Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 kmutex_t crypto_q_mtx;
     79 kmutex_t crypto_ret_q_mtx;
     80 kcondvar_t cryptoret_cv;
     81 kmutex_t crypto_mtx;
     82 
     83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     84   #define SWI_CRYPTO 17
     85   #define register_swi(lvl, fn)  \
     86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     88   #define setsoftcrypto(x) softint_schedule(x)
     89 
     90 int crypto_ret_q_check(struct cryptop *);
     91 
     92 /*
     93  * Crypto drivers register themselves by allocating a slot in the
     94  * crypto_drivers table with crypto_get_driverid() and then registering
     95  * each algorithm they support with crypto_register() and crypto_kregister().
     96  */
     97 static	struct cryptocap *crypto_drivers;
     98 static	int crypto_drivers_num;
     99 static	void *softintr_cookie;
    100 static	int crypto_exit_flag;
    101 
    102 /*
    103  * There are two queues for crypto requests; one for symmetric (e.g.
    104  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    105  * See below for how synchronization is handled.
    106  */
    107 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    108 		TAILQ_HEAD_INITIALIZER(crp_q);
    109 static	TAILQ_HEAD(,cryptkop) crp_kq =
    110 		TAILQ_HEAD_INITIALIZER(crp_kq);
    111 
    112 /*
    113  * There are two queues for processing completed crypto requests; one
    114  * for the symmetric and one for the asymmetric ops.  We only need one
    115  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    116  * for how synchronization is handled.
    117  */
    118 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    119 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    120 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    121 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    122 
    123 /*
    124  * XXX these functions are ghastly hacks for when the submission
    125  * XXX routines discover a request that was not CBIMM is already
    126  * XXX done, and must be yanked from the retq (where _done) put it
    127  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    128  * XXX as the request is generally the last one queued.
    129  *
    130  *	 call with the lock held, or else.
    131  */
    132 int
    133 crypto_ret_q_remove(struct cryptop *crp)
    134 {
    135 	struct cryptop * acrp, *next;
    136 
    137 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    138 		if (acrp == crp) {
    139 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    140 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    141 			return 1;
    142 		}
    143 	}
    144 	return 0;
    145 }
    146 
    147 int
    148 crypto_ret_kq_remove(struct cryptkop *krp)
    149 {
    150 	struct cryptkop * akrp, *next;
    151 
    152 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    153 		if (akrp == krp) {
    154 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    155 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    156 			return 1;
    157 		}
    158 	}
    159 	return 0;
    160 }
    161 
    162 /*
    163  * Crypto op and desciptor data structures are allocated
    164  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    165  */
    166 struct pool cryptop_pool;
    167 struct pool cryptodesc_pool;
    168 struct pool cryptkop_pool;
    169 
    170 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    171 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    172 /*
    173  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    174  * access to hardware versus software transforms as below:
    175  *
    176  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    177  *                              transforms, always
    178  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    179  *                              requests for non-accelerated transforms
    180  *                              (handling the latter in software)
    181  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    182  *                               are hardware-accelerated.
    183  */
    184 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    185 
    186 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    187 {
    188 
    189 	sysctl_createv(clog, 0, NULL, NULL,
    190 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    191 		       CTLTYPE_INT, "usercrypto",
    192 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    193 			   "crypto support"),
    194 		       NULL, 0, &crypto_usercrypto, 0,
    195 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    196 	sysctl_createv(clog, 0, NULL, NULL,
    197 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    198 		       CTLTYPE_INT, "userasymcrypto",
    199 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    200 			   "asymmetric crypto support"),
    201 		       NULL, 0, &crypto_userasymcrypto, 0,
    202 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    203 	sysctl_createv(clog, 0, NULL, NULL,
    204 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    205 		       CTLTYPE_INT, "cryptodevallowsoft",
    206 		       SYSCTL_DESCR("Enable/disable use of software "
    207 			   "asymmetric crypto support"),
    208 		       NULL, 0, &crypto_devallowsoft, 0,
    209 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    210 }
    211 
    212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    213 
    214 /*
    215  * Synchronization: read carefully, this is non-trivial.
    216  *
    217  * Crypto requests are submitted via crypto_dispatch.  Typically
    218  * these come in from network protocols at spl0 (output path) or
    219  * spl[,soft]net (input path).
    220  *
    221  * Requests are typically passed on the driver directly, but they
    222  * may also be queued for processing by a software interrupt thread,
    223  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    224  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    225  * when a request is complete.  Hardware crypto drivers are assumed
    226  * to register their IRQ's as network devices so their interrupt handlers
    227  * and subsequent "done callbacks" happen at spl[imp,net].
    228  *
    229  * Completed crypto ops are queued for a separate kernel thread that
    230  * handles the callbacks at spl0.  This decoupling insures the crypto
    231  * driver interrupt service routine is not delayed while the callback
    232  * takes place and that callbacks are delivered after a context switch
    233  * (as opposed to a software interrupt that clients must block).
    234  *
    235  * This scheme is not intended for SMP machines.
    236  */
    237 static	void cryptointr(void);		/* swi thread to dispatch ops */
    238 static	void cryptoret(void);		/* kernel thread for callbacks*/
    239 static	struct lwp *cryptothread;
    240 static	int crypto_destroy(bool);
    241 static	int crypto_invoke(struct cryptop *crp, int hint);
    242 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    243 
    244 static struct cryptostats cryptostats;
    245 #ifdef CRYPTO_TIMING
    246 static	int crypto_timing = 0;
    247 #endif
    248 
    249 #ifdef _MODULE
    250 static struct sysctllog *sysctl_opencrypto_clog;
    251 #endif
    252 
    253 static int
    254 crypto_init0(void)
    255 {
    256 	int error;
    257 
    258 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
    259 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
    260 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    261 	cv_init(&cryptoret_cv, "crypto_w");
    262 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    263 		  0, "cryptop", NULL, IPL_NET);
    264 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    265 		  0, "cryptodesc", NULL, IPL_NET);
    266 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    267 		  0, "cryptkop", NULL, IPL_NET);
    268 
    269 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    270 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    271 	if (crypto_drivers == NULL) {
    272 		printf("crypto_init: cannot malloc driver table\n");
    273 		return ENOMEM;
    274 	}
    275 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    276 
    277 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    278 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    279 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    280 	if (error) {
    281 		printf("crypto_init: cannot start cryptoret thread; error %d",
    282 			error);
    283 		return crypto_destroy(false);
    284 	}
    285 
    286 #ifdef _MODULE
    287 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    288 #endif
    289 	return 0;
    290 }
    291 
    292 int
    293 crypto_init(void)
    294 {
    295 	static ONCE_DECL(crypto_init_once);
    296 
    297 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    298 }
    299 
    300 static int
    301 crypto_destroy(bool exit_kthread)
    302 {
    303 	int i;
    304 
    305 	if (exit_kthread) {
    306 		mutex_spin_enter(&crypto_ret_q_mtx);
    307 
    308 		/* if we have any in-progress requests, don't unload */
    309 		if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq))
    310 			return EBUSY;
    311 
    312 		for (i = 0; i < crypto_drivers_num; i++)
    313 			if (crypto_drivers[i].cc_sessions != 0)
    314 				break;
    315 		if (i < crypto_drivers_num)
    316 			return EBUSY;
    317 
    318 		/* kick the cryptoret thread and wait for it to exit */
    319 		crypto_exit_flag = 1;
    320 		cv_signal(&cryptoret_cv);
    321 
    322 		while (crypto_exit_flag != 0)
    323 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
    324 		mutex_spin_exit(&crypto_ret_q_mtx);
    325 	}
    326 
    327 #ifdef _MODULE
    328 	if (sysctl_opencrypto_clog != NULL)
    329 		sysctl_teardown(&sysctl_opencrypto_clog);
    330 #endif
    331 
    332 	unregister_swi(SWI_CRYPTO, cryptointr);
    333 
    334 	if (crypto_drivers != NULL)
    335 		free(crypto_drivers, M_CRYPTO_DATA);
    336 
    337 	pool_destroy(&cryptop_pool);
    338 	pool_destroy(&cryptodesc_pool);
    339 	pool_destroy(&cryptkop_pool);
    340 
    341 	cv_destroy(&cryptoret_cv);
    342 
    343 	mutex_destroy(&crypto_ret_q_mtx);
    344 	mutex_destroy(&crypto_q_mtx);
    345 	mutex_destroy(&crypto_mtx);
    346 
    347 	return 0;
    348 }
    349 
    350 /*
    351  * Create a new session.  Must be called with crypto_mtx held.
    352  */
    353 int
    354 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    355 {
    356 	struct cryptoini *cr;
    357 	u_int32_t hid, lid;
    358 	int err = EINVAL;
    359 
    360 	mutex_enter(&crypto_mtx);
    361 
    362 	if (crypto_drivers == NULL)
    363 		goto done;
    364 
    365 	/*
    366 	 * The algorithm we use here is pretty stupid; just use the
    367 	 * first driver that supports all the algorithms we need.
    368 	 *
    369 	 * XXX We need more smarts here (in real life too, but that's
    370 	 * XXX another story altogether).
    371 	 */
    372 
    373 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    374 		/*
    375 		 * If it's not initialized or has remaining sessions
    376 		 * referencing it, skip.
    377 		 */
    378 		if (crypto_drivers[hid].cc_newsession == NULL ||
    379 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    380 			continue;
    381 
    382 		/* Hardware required -- ignore software drivers. */
    383 		if (hard > 0 &&
    384 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    385 			continue;
    386 		/* Software required -- ignore hardware drivers. */
    387 		if (hard < 0 &&
    388 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    389 			continue;
    390 
    391 		/* See if all the algorithms are supported. */
    392 		for (cr = cri; cr; cr = cr->cri_next)
    393 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    394 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    395 				break;
    396 			}
    397 
    398 		if (cr == NULL) {
    399 			/* Ok, all algorithms are supported. */
    400 
    401 			/*
    402 			 * Can't do everything in one session.
    403 			 *
    404 			 * XXX Fix this. We need to inject a "virtual" session layer right
    405 			 * XXX about here.
    406 			 */
    407 
    408 			/* Call the driver initialization routine. */
    409 			lid = hid;		/* Pass the driver ID. */
    410 			err = crypto_drivers[hid].cc_newsession(
    411 					crypto_drivers[hid].cc_arg, &lid, cri);
    412 			if (err == 0) {
    413 				(*sid) = hid;
    414 				(*sid) <<= 32;
    415 				(*sid) |= (lid & 0xffffffff);
    416 				crypto_drivers[hid].cc_sessions++;
    417 			}
    418 			goto done;
    419 			/*break;*/
    420 		}
    421 	}
    422 done:
    423 	mutex_exit(&crypto_mtx);
    424 	return err;
    425 }
    426 
    427 /*
    428  * Delete an existing session (or a reserved session on an unregistered
    429  * driver).  Must be called with crypto_mtx mutex held.
    430  */
    431 int
    432 crypto_freesession(u_int64_t sid)
    433 {
    434 	u_int32_t hid;
    435 	int err = 0;
    436 
    437 	mutex_enter(&crypto_mtx);
    438 
    439 	if (crypto_drivers == NULL) {
    440 		err = EINVAL;
    441 		goto done;
    442 	}
    443 
    444 	/* Determine two IDs. */
    445 	hid = CRYPTO_SESID2HID(sid);
    446 
    447 	if (hid >= crypto_drivers_num) {
    448 		err = ENOENT;
    449 		goto done;
    450 	}
    451 
    452 	if (crypto_drivers[hid].cc_sessions)
    453 		crypto_drivers[hid].cc_sessions--;
    454 
    455 	/* Call the driver cleanup routine, if available. */
    456 	if (crypto_drivers[hid].cc_freesession) {
    457 		err = crypto_drivers[hid].cc_freesession(
    458 				crypto_drivers[hid].cc_arg, sid);
    459 	}
    460 	else
    461 		err = 0;
    462 
    463 	/*
    464 	 * If this was the last session of a driver marked as invalid,
    465 	 * make the entry available for reuse.
    466 	 */
    467 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    468 	    crypto_drivers[hid].cc_sessions == 0)
    469 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    470 
    471 done:
    472 	mutex_exit(&crypto_mtx);
    473 	return err;
    474 }
    475 
    476 /*
    477  * Return an unused driver id.  Used by drivers prior to registering
    478  * support for the algorithms they handle.
    479  */
    480 int32_t
    481 crypto_get_driverid(u_int32_t flags)
    482 {
    483 	struct cryptocap *newdrv;
    484 	int i;
    485 
    486 	(void)crypto_init();		/* XXX oh, this is foul! */
    487 
    488 	mutex_enter(&crypto_mtx);
    489 	for (i = 0; i < crypto_drivers_num; i++)
    490 		if (crypto_drivers[i].cc_process == NULL &&
    491 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    492 		    crypto_drivers[i].cc_sessions == 0)
    493 			break;
    494 
    495 	/* Out of entries, allocate some more. */
    496 	if (i == crypto_drivers_num) {
    497 		/* Be careful about wrap-around. */
    498 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    499 			mutex_exit(&crypto_mtx);
    500 			printf("crypto: driver count wraparound!\n");
    501 			return -1;
    502 		}
    503 
    504 		newdrv = malloc(2 * crypto_drivers_num *
    505 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    506 		if (newdrv == NULL) {
    507 			mutex_exit(&crypto_mtx);
    508 			printf("crypto: no space to expand driver table!\n");
    509 			return -1;
    510 		}
    511 
    512 		memcpy(newdrv, crypto_drivers,
    513 		    crypto_drivers_num * sizeof(struct cryptocap));
    514 
    515 		crypto_drivers_num *= 2;
    516 
    517 		free(crypto_drivers, M_CRYPTO_DATA);
    518 		crypto_drivers = newdrv;
    519 	}
    520 
    521 	/* NB: state is zero'd on free */
    522 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    523 	crypto_drivers[i].cc_flags = flags;
    524 
    525 	if (bootverbose)
    526 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    527 
    528 	mutex_exit(&crypto_mtx);
    529 
    530 	return i;
    531 }
    532 
    533 static struct cryptocap *
    534 crypto_checkdriver(u_int32_t hid)
    535 {
    536 	if (crypto_drivers == NULL)
    537 		return NULL;
    538 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    539 }
    540 
    541 /*
    542  * Register support for a key-related algorithm.  This routine
    543  * is called once for each algorithm supported a driver.
    544  */
    545 int
    546 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    547     int (*kprocess)(void *, struct cryptkop *, int),
    548     void *karg)
    549 {
    550 	struct cryptocap *cap;
    551 	int err;
    552 
    553 	mutex_enter(&crypto_mtx);
    554 
    555 	cap = crypto_checkdriver(driverid);
    556 	if (cap != NULL &&
    557 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    558 		/*
    559 		 * XXX Do some performance testing to determine placing.
    560 		 * XXX We probably need an auxiliary data structure that
    561 		 * XXX describes relative performances.
    562 		 */
    563 
    564 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    565 		if (bootverbose) {
    566 			printf("crypto: driver %u registers key alg %u "
    567 			       " flags %u\n",
    568 				driverid,
    569 				kalg,
    570 				flags
    571 			);
    572 		}
    573 
    574 		if (cap->cc_kprocess == NULL) {
    575 			cap->cc_karg = karg;
    576 			cap->cc_kprocess = kprocess;
    577 		}
    578 		err = 0;
    579 	} else
    580 		err = EINVAL;
    581 
    582 	mutex_exit(&crypto_mtx);
    583 	return err;
    584 }
    585 
    586 /*
    587  * Register support for a non-key-related algorithm.  This routine
    588  * is called once for each such algorithm supported by a driver.
    589  */
    590 int
    591 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    592     u_int32_t flags,
    593     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    594     int (*freeses)(void *, u_int64_t),
    595     int (*process)(void *, struct cryptop *, int),
    596     void *arg)
    597 {
    598 	struct cryptocap *cap;
    599 	int err;
    600 
    601 	mutex_enter(&crypto_mtx);
    602 
    603 	cap = crypto_checkdriver(driverid);
    604 	/* NB: algorithms are in the range [1..max] */
    605 	if (cap != NULL &&
    606 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    607 		/*
    608 		 * XXX Do some performance testing to determine placing.
    609 		 * XXX We probably need an auxiliary data structure that
    610 		 * XXX describes relative performances.
    611 		 */
    612 
    613 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    614 		cap->cc_max_op_len[alg] = maxoplen;
    615 		if (bootverbose) {
    616 			printf("crypto: driver %u registers alg %u "
    617 				"flags %u maxoplen %u\n",
    618 				driverid,
    619 				alg,
    620 				flags,
    621 				maxoplen
    622 			);
    623 		}
    624 
    625 		if (cap->cc_process == NULL) {
    626 			cap->cc_arg = arg;
    627 			cap->cc_newsession = newses;
    628 			cap->cc_process = process;
    629 			cap->cc_freesession = freeses;
    630 			cap->cc_sessions = 0;		/* Unmark */
    631 		}
    632 		err = 0;
    633 	} else
    634 		err = EINVAL;
    635 
    636 	mutex_exit(&crypto_mtx);
    637 	return err;
    638 }
    639 
    640 /*
    641  * Unregister a crypto driver. If there are pending sessions using it,
    642  * leave enough information around so that subsequent calls using those
    643  * sessions will correctly detect the driver has been unregistered and
    644  * reroute requests.
    645  */
    646 int
    647 crypto_unregister(u_int32_t driverid, int alg)
    648 {
    649 	int i, err;
    650 	u_int32_t ses;
    651 	struct cryptocap *cap;
    652 
    653 	mutex_enter(&crypto_mtx);
    654 
    655 	cap = crypto_checkdriver(driverid);
    656 	if (cap != NULL &&
    657 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    658 	    cap->cc_alg[alg] != 0) {
    659 		cap->cc_alg[alg] = 0;
    660 		cap->cc_max_op_len[alg] = 0;
    661 
    662 		/* Was this the last algorithm ? */
    663 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    664 			if (cap->cc_alg[i] != 0)
    665 				break;
    666 
    667 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    668 			ses = cap->cc_sessions;
    669 			memset(cap, 0, sizeof(struct cryptocap));
    670 			if (ses != 0) {
    671 				/*
    672 				 * If there are pending sessions, just mark as invalid.
    673 				 */
    674 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    675 				cap->cc_sessions = ses;
    676 			}
    677 		}
    678 		err = 0;
    679 	} else
    680 		err = EINVAL;
    681 
    682 	mutex_exit(&crypto_mtx);
    683 	return err;
    684 }
    685 
    686 /*
    687  * Unregister all algorithms associated with a crypto driver.
    688  * If there are pending sessions using it, leave enough information
    689  * around so that subsequent calls using those sessions will
    690  * correctly detect the driver has been unregistered and reroute
    691  * requests.
    692  *
    693  * XXX careful.  Don't change this to call crypto_unregister() for each
    694  * XXX registered algorithm unless you drop the mutex across the calls;
    695  * XXX you can't take it recursively.
    696  */
    697 int
    698 crypto_unregister_all(u_int32_t driverid)
    699 {
    700 	int i, err;
    701 	u_int32_t ses;
    702 	struct cryptocap *cap;
    703 
    704 	mutex_enter(&crypto_mtx);
    705 	cap = crypto_checkdriver(driverid);
    706 	if (cap != NULL) {
    707 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    708 			cap->cc_alg[i] = 0;
    709 			cap->cc_max_op_len[i] = 0;
    710 		}
    711 		ses = cap->cc_sessions;
    712 		memset(cap, 0, sizeof(struct cryptocap));
    713 		if (ses != 0) {
    714 			/*
    715 			 * If there are pending sessions, just mark as invalid.
    716 			 */
    717 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    718 			cap->cc_sessions = ses;
    719 		}
    720 		err = 0;
    721 	} else
    722 		err = EINVAL;
    723 
    724 	mutex_exit(&crypto_mtx);
    725 	return err;
    726 }
    727 
    728 /*
    729  * Clear blockage on a driver.  The what parameter indicates whether
    730  * the driver is now ready for cryptop's and/or cryptokop's.
    731  */
    732 int
    733 crypto_unblock(u_int32_t driverid, int what)
    734 {
    735 	struct cryptocap *cap;
    736 	int needwakeup, err;
    737 
    738 	mutex_spin_enter(&crypto_q_mtx);
    739 	cap = crypto_checkdriver(driverid);
    740 	if (cap != NULL) {
    741 		needwakeup = 0;
    742 		if (what & CRYPTO_SYMQ) {
    743 			needwakeup |= cap->cc_qblocked;
    744 			cap->cc_qblocked = 0;
    745 		}
    746 		if (what & CRYPTO_ASYMQ) {
    747 			needwakeup |= cap->cc_kqblocked;
    748 			cap->cc_kqblocked = 0;
    749 		}
    750 		err = 0;
    751 		if (needwakeup)
    752 			setsoftcrypto(softintr_cookie);
    753 		mutex_spin_exit(&crypto_q_mtx);
    754 	} else {
    755 		err = EINVAL;
    756 		mutex_spin_exit(&crypto_q_mtx);
    757 	}
    758 
    759 	return err;
    760 }
    761 
    762 /*
    763  * Dispatch a crypto request to a driver or queue
    764  * it, to be processed by the kernel thread.
    765  */
    766 int
    767 crypto_dispatch(struct cryptop *crp)
    768 {
    769 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
    770 	int result;
    771 
    772 	mutex_spin_enter(&crypto_q_mtx);
    773 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
    774 		crp, crp->crp_desc->crd_alg));
    775 
    776 	cryptostats.cs_ops++;
    777 
    778 #ifdef CRYPTO_TIMING
    779 	if (crypto_timing)
    780 		nanouptime(&crp->crp_tstamp);
    781 #endif
    782 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    783 		struct cryptocap *cap;
    784 		/*
    785 		 * Caller marked the request to be processed
    786 		 * immediately; dispatch it directly to the
    787 		 * driver unless the driver is currently blocked.
    788 		 */
    789 		cap = crypto_checkdriver(hid);
    790 		if (cap && !cap->cc_qblocked) {
    791 			mutex_spin_exit(&crypto_q_mtx);
    792 			result = crypto_invoke(crp, 0);
    793 			if (result == ERESTART) {
    794 				/*
    795 				 * The driver ran out of resources, mark the
    796 				 * driver ``blocked'' for cryptop's and put
    797 				 * the op on the queue.
    798 				 */
    799 				mutex_spin_enter(&crypto_q_mtx);
    800 				crypto_drivers[hid].cc_qblocked = 1;
    801 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    802 				cryptostats.cs_blocks++;
    803 				mutex_spin_exit(&crypto_q_mtx);
    804 			}
    805 			goto out_released;
    806 		} else {
    807 			/*
    808 			 * The driver is blocked, just queue the op until
    809 			 * it unblocks and the swi thread gets kicked.
    810 			 */
    811 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    812 			result = 0;
    813 		}
    814 	} else {
    815 		int wasempty = TAILQ_EMPTY(&crp_q);
    816 		/*
    817 		 * Caller marked the request as ``ok to delay'';
    818 		 * queue it for the swi thread.  This is desirable
    819 		 * when the operation is low priority and/or suitable
    820 		 * for batching.
    821 		 */
    822 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    823 		if (wasempty) {
    824 			setsoftcrypto(softintr_cookie);
    825 			mutex_spin_exit(&crypto_q_mtx);
    826 			result = 0;
    827 			goto out_released;
    828 		}
    829 
    830 		result = 0;
    831 	}
    832 
    833 	mutex_spin_exit(&crypto_q_mtx);
    834 out_released:
    835 	return result;
    836 }
    837 
    838 /*
    839  * Add an asymetric crypto request to a queue,
    840  * to be processed by the kernel thread.
    841  */
    842 int
    843 crypto_kdispatch(struct cryptkop *krp)
    844 {
    845 	struct cryptocap *cap;
    846 	int result;
    847 
    848 	mutex_spin_enter(&crypto_q_mtx);
    849 	cryptostats.cs_kops++;
    850 
    851 	cap = crypto_checkdriver(krp->krp_hid);
    852 	if (cap && !cap->cc_kqblocked) {
    853 		mutex_spin_exit(&crypto_q_mtx);
    854 		result = crypto_kinvoke(krp, 0);
    855 		if (result == ERESTART) {
    856 			/*
    857 			 * The driver ran out of resources, mark the
    858 			 * driver ``blocked'' for cryptop's and put
    859 			 * the op on the queue.
    860 			 */
    861 			mutex_spin_enter(&crypto_q_mtx);
    862 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    863 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    864 			cryptostats.cs_kblocks++;
    865 			mutex_spin_exit(&crypto_q_mtx);
    866 		}
    867 	} else {
    868 		/*
    869 		 * The driver is blocked, just queue the op until
    870 		 * it unblocks and the swi thread gets kicked.
    871 		 */
    872 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    873 		result = 0;
    874 		mutex_spin_exit(&crypto_q_mtx);
    875 	}
    876 
    877 	return result;
    878 }
    879 
    880 /*
    881  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    882  */
    883 static int
    884 crypto_kinvoke(struct cryptkop *krp, int hint)
    885 {
    886 	u_int32_t hid;
    887 	int error;
    888 
    889 	/* Sanity checks. */
    890 	if (krp == NULL)
    891 		return EINVAL;
    892 	if (krp->krp_callback == NULL) {
    893 		cv_destroy(&krp->krp_cv);
    894 		pool_put(&cryptkop_pool, krp);
    895 		return EINVAL;
    896 	}
    897 
    898 	mutex_enter(&crypto_mtx);
    899 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    900 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    901 		    crypto_devallowsoft == 0)
    902 			continue;
    903 		if (crypto_drivers[hid].cc_kprocess == NULL)
    904 			continue;
    905 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    906 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    907 			continue;
    908 		break;
    909 	}
    910 	if (hid < crypto_drivers_num) {
    911 		int (*process)(void *, struct cryptkop *, int);
    912 		void *arg;
    913 
    914 		process = crypto_drivers[hid].cc_kprocess;
    915 		arg = crypto_drivers[hid].cc_karg;
    916 		mutex_exit(&crypto_mtx);
    917 		krp->krp_hid = hid;
    918 		error = (*process)(arg, krp, hint);
    919 	} else {
    920 		mutex_exit(&crypto_mtx);
    921 		error = ENODEV;
    922 	}
    923 
    924 	if (error) {
    925 		krp->krp_status = error;
    926 		crypto_kdone(krp);
    927 	}
    928 	return 0;
    929 }
    930 
    931 #ifdef CRYPTO_TIMING
    932 static void
    933 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    934 {
    935 	struct timespec now, t;
    936 
    937 	nanouptime(&now);
    938 	t.tv_sec = now.tv_sec - tv->tv_sec;
    939 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    940 	if (t.tv_nsec < 0) {
    941 		t.tv_sec--;
    942 		t.tv_nsec += 1000000000;
    943 	}
    944 	timespecadd(&ts->acc, &t, &t);
    945 	if (timespeccmp(&t, &ts->min, <))
    946 		ts->min = t;
    947 	if (timespeccmp(&t, &ts->max, >))
    948 		ts->max = t;
    949 	ts->count++;
    950 
    951 	*tv = now;
    952 }
    953 #endif
    954 
    955 /*
    956  * Dispatch a crypto request to the appropriate crypto devices.
    957  */
    958 static int
    959 crypto_invoke(struct cryptop *crp, int hint)
    960 {
    961 	u_int32_t hid;
    962 
    963 #ifdef CRYPTO_TIMING
    964 	if (crypto_timing)
    965 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    966 #endif
    967 	/* Sanity checks. */
    968 	if (crp == NULL)
    969 		return EINVAL;
    970 	if (crp->crp_callback == NULL) {
    971 		return EINVAL;
    972 	}
    973 	if (crp->crp_desc == NULL) {
    974 		crp->crp_etype = EINVAL;
    975 		crypto_done(crp);
    976 		return 0;
    977 	}
    978 
    979 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    980 
    981 	if (hid < crypto_drivers_num) {
    982 		int (*process)(void *, struct cryptop *, int);
    983 		void *arg;
    984 
    985 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) {
    986 			mutex_exit(&crypto_mtx);
    987 			crypto_freesession(crp->crp_sid);
    988 			mutex_enter(&crypto_mtx);
    989 		}
    990 		process = crypto_drivers[hid].cc_process;
    991 		arg = crypto_drivers[hid].cc_arg;
    992 
    993 		/*
    994 		 * Invoke the driver to process the request.
    995 		 */
    996 		DPRINTF(("calling process for %p\n", crp));
    997 		return (*process)(arg, crp, hint);
    998 	} else {
    999 		struct cryptodesc *crd;
   1000 		u_int64_t nid = 0;
   1001 
   1002 		/*
   1003 		 * Driver has unregistered; migrate the session and return
   1004 		 * an error to the caller so they'll resubmit the op.
   1005 		 */
   1006 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1007 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1008 
   1009 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1010 			crp->crp_sid = nid;
   1011 
   1012 		crp->crp_etype = EAGAIN;
   1013 
   1014 		crypto_done(crp);
   1015 		return 0;
   1016 	}
   1017 }
   1018 
   1019 /*
   1020  * Release a set of crypto descriptors.
   1021  */
   1022 void
   1023 crypto_freereq(struct cryptop *crp)
   1024 {
   1025 	struct cryptodesc *crd;
   1026 
   1027 	if (crp == NULL)
   1028 		return;
   1029 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
   1030 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1031 
   1032 	/* sanity check */
   1033 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1034 		panic("crypto_freereq() freeing crp on RETQ\n");
   1035 	}
   1036 
   1037 	while ((crd = crp->crp_desc) != NULL) {
   1038 		crp->crp_desc = crd->crd_next;
   1039 		pool_put(&cryptodesc_pool, crd);
   1040 	}
   1041 	pool_put(&cryptop_pool, crp);
   1042 }
   1043 
   1044 /*
   1045  * Acquire a set of crypto descriptors.
   1046  */
   1047 struct cryptop *
   1048 crypto_getreq(int num)
   1049 {
   1050 	struct cryptodesc *crd;
   1051 	struct cryptop *crp;
   1052 
   1053 	crp = pool_get(&cryptop_pool, 0);
   1054 	if (crp == NULL) {
   1055 		return NULL;
   1056 	}
   1057 	memset(crp, 0, sizeof(struct cryptop));
   1058 
   1059 	while (num--) {
   1060 		crd = pool_get(&cryptodesc_pool, 0);
   1061 		if (crd == NULL) {
   1062 			crypto_freereq(crp);
   1063 			return NULL;
   1064 		}
   1065 
   1066 		memset(crd, 0, sizeof(struct cryptodesc));
   1067 		crd->crd_next = crp->crp_desc;
   1068 		crp->crp_desc = crd;
   1069 	}
   1070 
   1071 	return crp;
   1072 }
   1073 
   1074 /*
   1075  * Invoke the callback on behalf of the driver.
   1076  */
   1077 void
   1078 crypto_done(struct cryptop *crp)
   1079 {
   1080 	int wasempty;
   1081 
   1082 	if (crp->crp_etype != 0)
   1083 		cryptostats.cs_errs++;
   1084 #ifdef CRYPTO_TIMING
   1085 	if (crypto_timing)
   1086 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1087 #endif
   1088 	DPRINTF(("crypto_done[%u]: crp %p\n",
   1089 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1090 
   1091 	/*
   1092 	 * Normal case; queue the callback for the thread.
   1093 	 *
   1094 	 * The return queue is manipulated by the swi thread
   1095 	 * and, potentially, by crypto device drivers calling
   1096 	 * back to mark operations completed.  Thus we need
   1097 	 * to mask both while manipulating the return queue.
   1098 	 */
   1099   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1100 		/*
   1101 	 	* Do the callback directly.  This is ok when the
   1102   	 	* callback routine does very little (e.g. the
   1103 	 	* /dev/crypto callback method just does a wakeup).
   1104 	 	*/
   1105 		mutex_spin_enter(&crypto_ret_q_mtx);
   1106 		crp->crp_flags |= CRYPTO_F_DONE;
   1107 		mutex_spin_exit(&crypto_ret_q_mtx);
   1108 
   1109 #ifdef CRYPTO_TIMING
   1110 		if (crypto_timing) {
   1111 			/*
   1112 		 	* NB: We must copy the timestamp before
   1113 		 	* doing the callback as the cryptop is
   1114 		 	* likely to be reclaimed.
   1115 		 	*/
   1116 			struct timespec t = crp->crp_tstamp;
   1117 			crypto_tstat(&cryptostats.cs_cb, &t);
   1118 			crp->crp_callback(crp);
   1119 			crypto_tstat(&cryptostats.cs_finis, &t);
   1120 		} else
   1121 #endif
   1122 		crp->crp_callback(crp);
   1123 	} else {
   1124 		mutex_spin_enter(&crypto_ret_q_mtx);
   1125 		crp->crp_flags |= CRYPTO_F_DONE;
   1126 
   1127 		if (crp->crp_flags & CRYPTO_F_USER) {
   1128 			/* the request has completed while
   1129 			 * running in the user context
   1130 			 * so don't queue it - the user
   1131 			 * thread won't sleep when it sees
   1132 			 * the CRYPTO_F_DONE flag.
   1133 			 * This is an optimization to avoid
   1134 			 * unecessary context switches.
   1135 			 */
   1136 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
   1137 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1138 		} else {
   1139 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1140 			DPRINTF(("crypto_done[%u]: queueing %p\n",
   1141 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1142 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1143 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1144 			if (wasempty) {
   1145 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
   1146 					"crp %p hit empty queue\n.",
   1147 					CRYPTO_SESID2LID(crp->crp_sid), crp));
   1148 				cv_signal(&cryptoret_cv);
   1149 			}
   1150 		}
   1151 		mutex_spin_exit(&crypto_ret_q_mtx);
   1152 	}
   1153 }
   1154 
   1155 /*
   1156  * Invoke the callback on behalf of the driver.
   1157  */
   1158 void
   1159 crypto_kdone(struct cryptkop *krp)
   1160 {
   1161 	int wasempty;
   1162 
   1163 	if (krp->krp_status != 0)
   1164 		cryptostats.cs_kerrs++;
   1165 
   1166 	krp->krp_flags |= CRYPTO_F_DONE;
   1167 
   1168 	/*
   1169 	 * The return queue is manipulated by the swi thread
   1170 	 * and, potentially, by crypto device drivers calling
   1171 	 * back to mark operations completed.  Thus we need
   1172 	 * to mask both while manipulating the return queue.
   1173 	 */
   1174 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1175 		krp->krp_callback(krp);
   1176 	} else {
   1177 		mutex_spin_enter(&crypto_ret_q_mtx);
   1178 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1179 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1180 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1181 		if (wasempty)
   1182 			cv_signal(&cryptoret_cv);
   1183 		mutex_spin_exit(&crypto_ret_q_mtx);
   1184 	}
   1185 }
   1186 
   1187 int
   1188 crypto_getfeat(int *featp)
   1189 {
   1190 	int hid, kalg, feat = 0;
   1191 
   1192 	mutex_enter(&crypto_mtx);
   1193 
   1194 	if (crypto_userasymcrypto == 0)
   1195 		goto out;
   1196 
   1197 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1198 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1199 		    crypto_devallowsoft == 0) {
   1200 			continue;
   1201 		}
   1202 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1203 			continue;
   1204 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1205 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1206 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1207 				feat |=  1 << kalg;
   1208 	}
   1209 out:
   1210 	mutex_exit(&crypto_mtx);
   1211 	*featp = feat;
   1212 	return (0);
   1213 }
   1214 
   1215 /*
   1216  * Software interrupt thread to dispatch crypto requests.
   1217  */
   1218 static void
   1219 cryptointr(void)
   1220 {
   1221 	struct cryptop *crp, *submit, *cnext;
   1222 	struct cryptkop *krp, *knext;
   1223 	struct cryptocap *cap;
   1224 	int result, hint;
   1225 
   1226 	cryptostats.cs_intrs++;
   1227 	mutex_spin_enter(&crypto_q_mtx);
   1228 	do {
   1229 		/*
   1230 		 * Find the first element in the queue that can be
   1231 		 * processed and look-ahead to see if multiple ops
   1232 		 * are ready for the same driver.
   1233 		 */
   1234 		submit = NULL;
   1235 		hint = 0;
   1236 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1237 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1238 			cap = crypto_checkdriver(hid);
   1239 			if (cap == NULL || cap->cc_process == NULL) {
   1240 				/* Op needs to be migrated, process it. */
   1241 				if (submit == NULL)
   1242 					submit = crp;
   1243 				break;
   1244 			}
   1245 			if (!cap->cc_qblocked) {
   1246 				if (submit != NULL) {
   1247 					/*
   1248 					 * We stop on finding another op,
   1249 					 * regardless whether its for the same
   1250 					 * driver or not.  We could keep
   1251 					 * searching the queue but it might be
   1252 					 * better to just use a per-driver
   1253 					 * queue instead.
   1254 					 */
   1255 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1256 					    == hid)
   1257 						hint = CRYPTO_HINT_MORE;
   1258 					break;
   1259 				} else {
   1260 					submit = crp;
   1261 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1262 						break;
   1263 					/* keep scanning for more are q'd */
   1264 				}
   1265 			}
   1266 		}
   1267 		if (submit != NULL) {
   1268 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1269 			mutex_spin_exit(&crypto_q_mtx);
   1270 			result = crypto_invoke(submit, hint);
   1271 			/* we must take here as the TAILQ op or kinvoke
   1272 			   may need this mutex below.  sigh. */
   1273 			mutex_spin_enter(&crypto_q_mtx);
   1274 			if (result == ERESTART) {
   1275 				/*
   1276 				 * The driver ran out of resources, mark the
   1277 				 * driver ``blocked'' for cryptop's and put
   1278 				 * the request back in the queue.  It would
   1279 				 * best to put the request back where we got
   1280 				 * it but that's hard so for now we put it
   1281 				 * at the front.  This should be ok; putting
   1282 				 * it at the end does not work.
   1283 				 */
   1284 				/* XXX validate sid again? */
   1285 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1286 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1287 				cryptostats.cs_blocks++;
   1288 			}
   1289 		}
   1290 
   1291 		/* As above, but for key ops */
   1292 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1293 			cap = crypto_checkdriver(krp->krp_hid);
   1294 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1295 				/* Op needs to be migrated, process it. */
   1296 				break;
   1297 			}
   1298 			if (!cap->cc_kqblocked)
   1299 				break;
   1300 		}
   1301 		if (krp != NULL) {
   1302 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1303 			mutex_spin_exit(&crypto_q_mtx);
   1304 			result = crypto_kinvoke(krp, 0);
   1305 			/* the next iteration will want the mutex. :-/ */
   1306 			mutex_spin_enter(&crypto_q_mtx);
   1307 			if (result == ERESTART) {
   1308 				/*
   1309 				 * The driver ran out of resources, mark the
   1310 				 * driver ``blocked'' for cryptkop's and put
   1311 				 * the request back in the queue.  It would
   1312 				 * best to put the request back where we got
   1313 				 * it but that's hard so for now we put it
   1314 				 * at the front.  This should be ok; putting
   1315 				 * it at the end does not work.
   1316 				 */
   1317 				/* XXX validate sid again? */
   1318 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1319 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1320 				cryptostats.cs_kblocks++;
   1321 			}
   1322 		}
   1323 	} while (submit != NULL || krp != NULL);
   1324 	mutex_spin_exit(&crypto_q_mtx);
   1325 }
   1326 
   1327 /*
   1328  * Kernel thread to do callbacks.
   1329  */
   1330 static void
   1331 cryptoret(void)
   1332 {
   1333 	struct cryptop *crp;
   1334 	struct cryptkop *krp;
   1335 
   1336 	mutex_spin_enter(&crypto_ret_q_mtx);
   1337 	for (;;) {
   1338 		crp = TAILQ_FIRST(&crp_ret_q);
   1339 		if (crp != NULL) {
   1340 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1341 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1342 		}
   1343 		krp = TAILQ_FIRST(&crp_ret_kq);
   1344 		if (krp != NULL) {
   1345 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1346 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1347 		}
   1348 
   1349 		/* drop before calling any callbacks. */
   1350 		if (crp == NULL && krp == NULL) {
   1351 
   1352                         /* Check for the exit condition. */
   1353 			if (crypto_exit_flag != 0) {
   1354 
   1355         			/* Time to die. */
   1356 				crypto_exit_flag = 0;
   1357         			cv_broadcast(&cryptoret_cv);
   1358 				mutex_spin_exit(&crypto_ret_q_mtx);
   1359         			kthread_exit(0);
   1360 			}
   1361 
   1362 			cryptostats.cs_rets++;
   1363 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1364 			continue;
   1365 		}
   1366 
   1367 		mutex_spin_exit(&crypto_ret_q_mtx);
   1368 
   1369 		if (crp != NULL) {
   1370 #ifdef CRYPTO_TIMING
   1371 			if (crypto_timing) {
   1372 				/*
   1373 				 * NB: We must copy the timestamp before
   1374 				 * doing the callback as the cryptop is
   1375 				 * likely to be reclaimed.
   1376 				 */
   1377 				struct timespec t = crp->crp_tstamp;
   1378 				crypto_tstat(&cryptostats.cs_cb, &t);
   1379 				crp->crp_callback(crp);
   1380 				crypto_tstat(&cryptostats.cs_finis, &t);
   1381 			} else
   1382 #endif
   1383 			{
   1384 				crp->crp_callback(crp);
   1385 			}
   1386 		}
   1387 		if (krp != NULL)
   1388 			krp->krp_callback(krp);
   1389 
   1390 		mutex_spin_enter(&crypto_ret_q_mtx);
   1391 	}
   1392 }
   1393 
   1394 /* NetBSD module interface */
   1395 
   1396 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1397 
   1398 static int
   1399 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1400 {
   1401 	int error = 0;
   1402 
   1403 	switch (cmd) {
   1404 	case MODULE_CMD_INIT:
   1405 #ifdef _MODULE
   1406 		error = crypto_init();
   1407 #endif
   1408 		break;
   1409 	case MODULE_CMD_FINI:
   1410 #ifdef _MODULE
   1411 		error = crypto_destroy(true);
   1412 #endif
   1413 		break;
   1414 	default:
   1415 		error = ENOTTY;
   1416 	}
   1417 	return error;
   1418 }
   1419