crypto.c revision 1.51 1 /* $NetBSD: crypto.c,v 1.51 2017/03/29 23:02:43 knakahara Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.51 2017/03/29 23:02:43 knakahara Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 static kmutex_t crypto_q_mtx;
79 static kmutex_t crypto_ret_q_mtx;
80 static kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 #define SWI_CRYPTO 17
85 #define register_swi(lvl, fn) \
86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 #define setsoftcrypto(x) softint_schedule(x)
89
90 int crypto_ret_q_check(struct cryptop *);
91
92 /*
93 * Crypto drivers register themselves by allocating a slot in the
94 * crypto_drivers table with crypto_get_driverid() and then registering
95 * each algorithm they support with crypto_register() and crypto_kregister().
96 */
97 static struct cryptocap *crypto_drivers;
98 static int crypto_drivers_num;
99 static void *softintr_cookie;
100 static int crypto_exit_flag;
101
102 /*
103 * There are two queues for crypto requests; one for symmetric (e.g.
104 * cipher) operations and one for asymmetric (e.g. MOD) operations.
105 * See below for how synchronization is handled.
106 */
107 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
108 TAILQ_HEAD_INITIALIZER(crp_q);
109 static TAILQ_HEAD(,cryptkop) crp_kq =
110 TAILQ_HEAD_INITIALIZER(crp_kq);
111
112 /*
113 * There are two queues for processing completed crypto requests; one
114 * for the symmetric and one for the asymmetric ops. We only need one
115 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
116 * for how synchronization is handled.
117 */
118 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
119 TAILQ_HEAD_INITIALIZER(crp_ret_q);
120 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
121 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
122
123 /*
124 * XXX these functions are ghastly hacks for when the submission
125 * XXX routines discover a request that was not CBIMM is already
126 * XXX done, and must be yanked from the retq (where _done) put it
127 * XXX as cryptoret won't get the chance. The queue is walked backwards
128 * XXX as the request is generally the last one queued.
129 *
130 * call with the lock held, or else.
131 */
132 int
133 crypto_ret_q_remove(struct cryptop *crp)
134 {
135 struct cryptop * acrp, *next;
136
137 TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
138 if (acrp == crp) {
139 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
140 crp->crp_flags &= (~CRYPTO_F_ONRETQ);
141 return 1;
142 }
143 }
144 return 0;
145 }
146
147 int
148 crypto_ret_kq_remove(struct cryptkop *krp)
149 {
150 struct cryptkop * akrp, *next;
151
152 TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
153 if (akrp == krp) {
154 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
155 krp->krp_flags &= (~CRYPTO_F_ONRETQ);
156 return 1;
157 }
158 }
159 return 0;
160 }
161
162 /*
163 * Crypto op and desciptor data structures are allocated
164 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
165 */
166 struct pool cryptop_pool;
167 struct pool cryptodesc_pool;
168 struct pool cryptkop_pool;
169
170 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
171 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
172 /*
173 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
174 * access to hardware versus software transforms as below:
175 *
176 * crypto_devallowsoft < 0: Force userlevel requests to use software
177 * transforms, always
178 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
179 * requests for non-accelerated transforms
180 * (handling the latter in software)
181 * crypto_devallowsoft > 0: Allow user requests only for transforms which
182 * are hardware-accelerated.
183 */
184 int crypto_devallowsoft = 1; /* only use hardware crypto */
185
186 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
187 {
188
189 sysctl_createv(clog, 0, NULL, NULL,
190 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
191 CTLTYPE_INT, "usercrypto",
192 SYSCTL_DESCR("Enable/disable user-mode access to "
193 "crypto support"),
194 NULL, 0, &crypto_usercrypto, 0,
195 CTL_KERN, CTL_CREATE, CTL_EOL);
196 sysctl_createv(clog, 0, NULL, NULL,
197 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
198 CTLTYPE_INT, "userasymcrypto",
199 SYSCTL_DESCR("Enable/disable user-mode access to "
200 "asymmetric crypto support"),
201 NULL, 0, &crypto_userasymcrypto, 0,
202 CTL_KERN, CTL_CREATE, CTL_EOL);
203 sysctl_createv(clog, 0, NULL, NULL,
204 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
205 CTLTYPE_INT, "cryptodevallowsoft",
206 SYSCTL_DESCR("Enable/disable use of software "
207 "asymmetric crypto support"),
208 NULL, 0, &crypto_devallowsoft, 0,
209 CTL_KERN, CTL_CREATE, CTL_EOL);
210 }
211
212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
213
214 /*
215 * Synchronization: read carefully, this is non-trivial.
216 *
217 * Crypto requests are submitted via crypto_dispatch. Typically
218 * these come in from network protocols at spl0 (output path) or
219 * spl[,soft]net (input path).
220 *
221 * Requests are typically passed on the driver directly, but they
222 * may also be queued for processing by a software interrupt thread,
223 * cryptointr, that runs at splsoftcrypto. This thread dispatches
224 * the requests to crypto drivers (h/w or s/w) who call crypto_done
225 * when a request is complete. Hardware crypto drivers are assumed
226 * to register their IRQ's as network devices so their interrupt handlers
227 * and subsequent "done callbacks" happen at spl[imp,net].
228 *
229 * Completed crypto ops are queued for a separate kernel thread that
230 * handles the callbacks at spl0. This decoupling insures the crypto
231 * driver interrupt service routine is not delayed while the callback
232 * takes place and that callbacks are delivered after a context switch
233 * (as opposed to a software interrupt that clients must block).
234 *
235 * This scheme is not intended for SMP machines.
236 */
237 static void cryptointr(void); /* swi thread to dispatch ops */
238 static void cryptoret(void); /* kernel thread for callbacks*/
239 static struct lwp *cryptothread;
240 static int crypto_destroy(bool);
241 static int crypto_invoke(struct cryptop *crp, int hint);
242 static int crypto_kinvoke(struct cryptkop *krp, int hint);
243
244 static struct cryptostats cryptostats;
245 #ifdef CRYPTO_TIMING
246 static int crypto_timing = 0;
247 #endif
248
249 #ifdef _MODULE
250 static struct sysctllog *sysctl_opencrypto_clog;
251 #endif
252
253 static int
254 crypto_init0(void)
255 {
256 int error;
257
258 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
259 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
260 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
261 cv_init(&cryptoret_cv, "crypto_w");
262 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
263 0, "cryptop", NULL, IPL_NET);
264 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
265 0, "cryptodesc", NULL, IPL_NET);
266 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
267 0, "cryptkop", NULL, IPL_NET);
268
269 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
270 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
271 if (crypto_drivers == NULL) {
272 printf("crypto_init: cannot malloc driver table\n");
273 return ENOMEM;
274 }
275 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
276
277 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
278 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
279 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
280 if (error) {
281 printf("crypto_init: cannot start cryptoret thread; error %d",
282 error);
283 return crypto_destroy(false);
284 }
285
286 #ifdef _MODULE
287 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
288 #endif
289 return 0;
290 }
291
292 int
293 crypto_init(void)
294 {
295 static ONCE_DECL(crypto_init_once);
296
297 return RUN_ONCE(&crypto_init_once, crypto_init0);
298 }
299
300 static int
301 crypto_destroy(bool exit_kthread)
302 {
303 int i;
304
305 if (exit_kthread) {
306 mutex_spin_enter(&crypto_ret_q_mtx);
307
308 /* if we have any in-progress requests, don't unload */
309 if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
310 mutex_spin_exit(&crypto_ret_q_mtx);
311 return EBUSY;
312 }
313
314 for (i = 0; i < crypto_drivers_num; i++)
315 if (crypto_drivers[i].cc_sessions != 0)
316 break;
317 if (i < crypto_drivers_num) {
318 mutex_spin_exit(&crypto_ret_q_mtx);
319 return EBUSY;
320 }
321
322 /* kick the cryptoret thread and wait for it to exit */
323 crypto_exit_flag = 1;
324 cv_signal(&cryptoret_cv);
325
326 while (crypto_exit_flag != 0)
327 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
328 mutex_spin_exit(&crypto_ret_q_mtx);
329 }
330
331 #ifdef _MODULE
332 if (sysctl_opencrypto_clog != NULL)
333 sysctl_teardown(&sysctl_opencrypto_clog);
334 #endif
335
336 unregister_swi(SWI_CRYPTO, cryptointr);
337
338 if (crypto_drivers != NULL)
339 free(crypto_drivers, M_CRYPTO_DATA);
340
341 pool_destroy(&cryptop_pool);
342 pool_destroy(&cryptodesc_pool);
343 pool_destroy(&cryptkop_pool);
344
345 cv_destroy(&cryptoret_cv);
346
347 mutex_destroy(&crypto_ret_q_mtx);
348 mutex_destroy(&crypto_q_mtx);
349 mutex_destroy(&crypto_mtx);
350
351 return 0;
352 }
353
354 /*
355 * Create a new session. Must be called with crypto_mtx held.
356 */
357 int
358 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
359 {
360 struct cryptoini *cr;
361 u_int32_t hid, lid;
362 int err = EINVAL;
363
364 mutex_enter(&crypto_mtx);
365
366 if (crypto_drivers == NULL)
367 goto done;
368
369 /*
370 * The algorithm we use here is pretty stupid; just use the
371 * first driver that supports all the algorithms we need.
372 *
373 * XXX We need more smarts here (in real life too, but that's
374 * XXX another story altogether).
375 */
376
377 for (hid = 0; hid < crypto_drivers_num; hid++) {
378 /*
379 * If it's not initialized or has remaining sessions
380 * referencing it, skip.
381 */
382 if (crypto_drivers[hid].cc_newsession == NULL ||
383 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
384 continue;
385
386 /* Hardware required -- ignore software drivers. */
387 if (hard > 0 &&
388 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
389 continue;
390 /* Software required -- ignore hardware drivers. */
391 if (hard < 0 &&
392 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
393 continue;
394
395 /* See if all the algorithms are supported. */
396 for (cr = cri; cr; cr = cr->cri_next)
397 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
398 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
399 break;
400 }
401
402 if (cr == NULL) {
403 /* Ok, all algorithms are supported. */
404
405 /*
406 * Can't do everything in one session.
407 *
408 * XXX Fix this. We need to inject a "virtual" session layer right
409 * XXX about here.
410 */
411
412 /* Call the driver initialization routine. */
413 lid = hid; /* Pass the driver ID. */
414 err = crypto_drivers[hid].cc_newsession(
415 crypto_drivers[hid].cc_arg, &lid, cri);
416 if (err == 0) {
417 (*sid) = hid;
418 (*sid) <<= 32;
419 (*sid) |= (lid & 0xffffffff);
420 crypto_drivers[hid].cc_sessions++;
421 }
422 goto done;
423 /*break;*/
424 }
425 }
426 done:
427 mutex_exit(&crypto_mtx);
428 return err;
429 }
430
431 /*
432 * Delete an existing session (or a reserved session on an unregistered
433 * driver). Must be called with crypto_mtx mutex held.
434 */
435 int
436 crypto_freesession(u_int64_t sid)
437 {
438 u_int32_t hid;
439 int err = 0;
440
441 mutex_enter(&crypto_mtx);
442
443 if (crypto_drivers == NULL) {
444 err = EINVAL;
445 goto done;
446 }
447
448 /* Determine two IDs. */
449 hid = CRYPTO_SESID2HID(sid);
450
451 if (hid >= crypto_drivers_num) {
452 err = ENOENT;
453 goto done;
454 }
455
456 if (crypto_drivers[hid].cc_sessions)
457 crypto_drivers[hid].cc_sessions--;
458
459 /* Call the driver cleanup routine, if available. */
460 if (crypto_drivers[hid].cc_freesession) {
461 err = crypto_drivers[hid].cc_freesession(
462 crypto_drivers[hid].cc_arg, sid);
463 }
464 else
465 err = 0;
466
467 /*
468 * If this was the last session of a driver marked as invalid,
469 * make the entry available for reuse.
470 */
471 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
472 crypto_drivers[hid].cc_sessions == 0)
473 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
474
475 done:
476 mutex_exit(&crypto_mtx);
477 return err;
478 }
479
480 /*
481 * Return an unused driver id. Used by drivers prior to registering
482 * support for the algorithms they handle.
483 */
484 int32_t
485 crypto_get_driverid(u_int32_t flags)
486 {
487 struct cryptocap *newdrv;
488 int i;
489
490 (void)crypto_init(); /* XXX oh, this is foul! */
491
492 mutex_enter(&crypto_mtx);
493 for (i = 0; i < crypto_drivers_num; i++)
494 if (crypto_drivers[i].cc_process == NULL &&
495 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
496 crypto_drivers[i].cc_sessions == 0)
497 break;
498
499 /* Out of entries, allocate some more. */
500 if (i == crypto_drivers_num) {
501 /* Be careful about wrap-around. */
502 if (2 * crypto_drivers_num <= crypto_drivers_num) {
503 mutex_exit(&crypto_mtx);
504 printf("crypto: driver count wraparound!\n");
505 return -1;
506 }
507
508 newdrv = malloc(2 * crypto_drivers_num *
509 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
510 if (newdrv == NULL) {
511 mutex_exit(&crypto_mtx);
512 printf("crypto: no space to expand driver table!\n");
513 return -1;
514 }
515
516 memcpy(newdrv, crypto_drivers,
517 crypto_drivers_num * sizeof(struct cryptocap));
518
519 crypto_drivers_num *= 2;
520
521 free(crypto_drivers, M_CRYPTO_DATA);
522 crypto_drivers = newdrv;
523 }
524
525 /* NB: state is zero'd on free */
526 crypto_drivers[i].cc_sessions = 1; /* Mark */
527 crypto_drivers[i].cc_flags = flags;
528
529 if (bootverbose)
530 printf("crypto: assign driver %u, flags %u\n", i, flags);
531
532 mutex_exit(&crypto_mtx);
533
534 return i;
535 }
536
537 static struct cryptocap *
538 crypto_checkdriver(u_int32_t hid)
539 {
540 if (crypto_drivers == NULL)
541 return NULL;
542 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
543 }
544
545 /*
546 * Register support for a key-related algorithm. This routine
547 * is called once for each algorithm supported a driver.
548 */
549 int
550 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
551 int (*kprocess)(void *, struct cryptkop *, int),
552 void *karg)
553 {
554 struct cryptocap *cap;
555 int err;
556
557 mutex_enter(&crypto_mtx);
558
559 cap = crypto_checkdriver(driverid);
560 if (cap != NULL &&
561 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
562 /*
563 * XXX Do some performance testing to determine placing.
564 * XXX We probably need an auxiliary data structure that
565 * XXX describes relative performances.
566 */
567
568 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
569 if (bootverbose) {
570 printf("crypto: driver %u registers key alg %u "
571 " flags %u\n",
572 driverid,
573 kalg,
574 flags
575 );
576 }
577
578 if (cap->cc_kprocess == NULL) {
579 cap->cc_karg = karg;
580 cap->cc_kprocess = kprocess;
581 }
582 err = 0;
583 } else
584 err = EINVAL;
585
586 mutex_exit(&crypto_mtx);
587 return err;
588 }
589
590 /*
591 * Register support for a non-key-related algorithm. This routine
592 * is called once for each such algorithm supported by a driver.
593 */
594 int
595 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
596 u_int32_t flags,
597 int (*newses)(void *, u_int32_t*, struct cryptoini*),
598 int (*freeses)(void *, u_int64_t),
599 int (*process)(void *, struct cryptop *, int),
600 void *arg)
601 {
602 struct cryptocap *cap;
603 int err;
604
605 mutex_enter(&crypto_mtx);
606
607 cap = crypto_checkdriver(driverid);
608 /* NB: algorithms are in the range [1..max] */
609 if (cap != NULL &&
610 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
611 /*
612 * XXX Do some performance testing to determine placing.
613 * XXX We probably need an auxiliary data structure that
614 * XXX describes relative performances.
615 */
616
617 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
618 cap->cc_max_op_len[alg] = maxoplen;
619 if (bootverbose) {
620 printf("crypto: driver %u registers alg %u "
621 "flags %u maxoplen %u\n",
622 driverid,
623 alg,
624 flags,
625 maxoplen
626 );
627 }
628
629 if (cap->cc_process == NULL) {
630 cap->cc_arg = arg;
631 cap->cc_newsession = newses;
632 cap->cc_process = process;
633 cap->cc_freesession = freeses;
634 cap->cc_sessions = 0; /* Unmark */
635 }
636 err = 0;
637 } else
638 err = EINVAL;
639
640 mutex_exit(&crypto_mtx);
641 return err;
642 }
643
644 /*
645 * Unregister a crypto driver. If there are pending sessions using it,
646 * leave enough information around so that subsequent calls using those
647 * sessions will correctly detect the driver has been unregistered and
648 * reroute requests.
649 */
650 int
651 crypto_unregister(u_int32_t driverid, int alg)
652 {
653 int i, err;
654 u_int32_t ses;
655 struct cryptocap *cap;
656
657 mutex_enter(&crypto_mtx);
658
659 cap = crypto_checkdriver(driverid);
660 if (cap != NULL &&
661 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
662 cap->cc_alg[alg] != 0) {
663 cap->cc_alg[alg] = 0;
664 cap->cc_max_op_len[alg] = 0;
665
666 /* Was this the last algorithm ? */
667 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
668 if (cap->cc_alg[i] != 0)
669 break;
670
671 if (i == CRYPTO_ALGORITHM_MAX + 1) {
672 ses = cap->cc_sessions;
673 memset(cap, 0, sizeof(struct cryptocap));
674 if (ses != 0) {
675 /*
676 * If there are pending sessions, just mark as invalid.
677 */
678 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
679 cap->cc_sessions = ses;
680 }
681 }
682 err = 0;
683 } else
684 err = EINVAL;
685
686 mutex_exit(&crypto_mtx);
687 return err;
688 }
689
690 /*
691 * Unregister all algorithms associated with a crypto driver.
692 * If there are pending sessions using it, leave enough information
693 * around so that subsequent calls using those sessions will
694 * correctly detect the driver has been unregistered and reroute
695 * requests.
696 *
697 * XXX careful. Don't change this to call crypto_unregister() for each
698 * XXX registered algorithm unless you drop the mutex across the calls;
699 * XXX you can't take it recursively.
700 */
701 int
702 crypto_unregister_all(u_int32_t driverid)
703 {
704 int i, err;
705 u_int32_t ses;
706 struct cryptocap *cap;
707
708 mutex_enter(&crypto_mtx);
709 cap = crypto_checkdriver(driverid);
710 if (cap != NULL) {
711 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
712 cap->cc_alg[i] = 0;
713 cap->cc_max_op_len[i] = 0;
714 }
715 ses = cap->cc_sessions;
716 memset(cap, 0, sizeof(struct cryptocap));
717 if (ses != 0) {
718 /*
719 * If there are pending sessions, just mark as invalid.
720 */
721 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
722 cap->cc_sessions = ses;
723 }
724 err = 0;
725 } else
726 err = EINVAL;
727
728 mutex_exit(&crypto_mtx);
729 return err;
730 }
731
732 /*
733 * Clear blockage on a driver. The what parameter indicates whether
734 * the driver is now ready for cryptop's and/or cryptokop's.
735 */
736 int
737 crypto_unblock(u_int32_t driverid, int what)
738 {
739 struct cryptocap *cap;
740 int needwakeup, err;
741
742 mutex_spin_enter(&crypto_q_mtx);
743 cap = crypto_checkdriver(driverid);
744 if (cap != NULL) {
745 needwakeup = 0;
746 if (what & CRYPTO_SYMQ) {
747 needwakeup |= cap->cc_qblocked;
748 cap->cc_qblocked = 0;
749 }
750 if (what & CRYPTO_ASYMQ) {
751 needwakeup |= cap->cc_kqblocked;
752 cap->cc_kqblocked = 0;
753 }
754 err = 0;
755 if (needwakeup)
756 setsoftcrypto(softintr_cookie);
757 mutex_spin_exit(&crypto_q_mtx);
758 } else {
759 err = EINVAL;
760 mutex_spin_exit(&crypto_q_mtx);
761 }
762
763 return err;
764 }
765
766 /*
767 * Dispatch a crypto request to a driver or queue
768 * it, to be processed by the kernel thread.
769 */
770 int
771 crypto_dispatch(struct cryptop *crp)
772 {
773 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
774 int result;
775
776 mutex_spin_enter(&crypto_q_mtx);
777 DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
778 crp, crp->crp_desc->crd_alg));
779
780 cryptostats.cs_ops++;
781
782 #ifdef CRYPTO_TIMING
783 if (crypto_timing)
784 nanouptime(&crp->crp_tstamp);
785 #endif
786 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
787 struct cryptocap *cap;
788 /*
789 * Caller marked the request to be processed
790 * immediately; dispatch it directly to the
791 * driver unless the driver is currently blocked.
792 */
793 cap = crypto_checkdriver(hid);
794 if (cap && !cap->cc_qblocked) {
795 mutex_spin_exit(&crypto_q_mtx);
796 result = crypto_invoke(crp, 0);
797 if (result == ERESTART) {
798 /*
799 * The driver ran out of resources, mark the
800 * driver ``blocked'' for cryptop's and put
801 * the op on the queue.
802 */
803 mutex_spin_enter(&crypto_q_mtx);
804 crypto_drivers[hid].cc_qblocked = 1;
805 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
806 cryptostats.cs_blocks++;
807 mutex_spin_exit(&crypto_q_mtx);
808 }
809 goto out_released;
810 } else {
811 /*
812 * The driver is blocked, just queue the op until
813 * it unblocks and the swi thread gets kicked.
814 */
815 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
816 result = 0;
817 }
818 } else {
819 int wasempty = TAILQ_EMPTY(&crp_q);
820 /*
821 * Caller marked the request as ``ok to delay'';
822 * queue it for the swi thread. This is desirable
823 * when the operation is low priority and/or suitable
824 * for batching.
825 */
826 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
827 if (wasempty) {
828 setsoftcrypto(softintr_cookie);
829 mutex_spin_exit(&crypto_q_mtx);
830 result = 0;
831 goto out_released;
832 }
833
834 result = 0;
835 }
836
837 mutex_spin_exit(&crypto_q_mtx);
838 out_released:
839 return result;
840 }
841
842 /*
843 * Add an asymetric crypto request to a queue,
844 * to be processed by the kernel thread.
845 */
846 int
847 crypto_kdispatch(struct cryptkop *krp)
848 {
849 struct cryptocap *cap;
850 int result;
851
852 mutex_spin_enter(&crypto_q_mtx);
853 cryptostats.cs_kops++;
854
855 cap = crypto_checkdriver(krp->krp_hid);
856 if (cap && !cap->cc_kqblocked) {
857 mutex_spin_exit(&crypto_q_mtx);
858 result = crypto_kinvoke(krp, 0);
859 if (result == ERESTART) {
860 /*
861 * The driver ran out of resources, mark the
862 * driver ``blocked'' for cryptop's and put
863 * the op on the queue.
864 */
865 mutex_spin_enter(&crypto_q_mtx);
866 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
867 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
868 cryptostats.cs_kblocks++;
869 mutex_spin_exit(&crypto_q_mtx);
870 }
871 } else {
872 /*
873 * The driver is blocked, just queue the op until
874 * it unblocks and the swi thread gets kicked.
875 */
876 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
877 result = 0;
878 mutex_spin_exit(&crypto_q_mtx);
879 }
880
881 return result;
882 }
883
884 /*
885 * Dispatch an assymetric crypto request to the appropriate crypto devices.
886 */
887 static int
888 crypto_kinvoke(struct cryptkop *krp, int hint)
889 {
890 u_int32_t hid;
891 int error;
892
893 /* Sanity checks. */
894 if (krp == NULL)
895 return EINVAL;
896 if (krp->krp_callback == NULL) {
897 cv_destroy(&krp->krp_cv);
898 pool_put(&cryptkop_pool, krp);
899 return EINVAL;
900 }
901
902 mutex_enter(&crypto_mtx);
903 for (hid = 0; hid < crypto_drivers_num; hid++) {
904 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
905 crypto_devallowsoft == 0)
906 continue;
907 if (crypto_drivers[hid].cc_kprocess == NULL)
908 continue;
909 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
910 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
911 continue;
912 break;
913 }
914 if (hid < crypto_drivers_num) {
915 int (*process)(void *, struct cryptkop *, int);
916 void *arg;
917
918 process = crypto_drivers[hid].cc_kprocess;
919 arg = crypto_drivers[hid].cc_karg;
920 mutex_exit(&crypto_mtx);
921 krp->krp_hid = hid;
922 error = (*process)(arg, krp, hint);
923 } else {
924 mutex_exit(&crypto_mtx);
925 error = ENODEV;
926 }
927
928 if (error) {
929 krp->krp_status = error;
930 crypto_kdone(krp);
931 }
932 return 0;
933 }
934
935 #ifdef CRYPTO_TIMING
936 static void
937 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
938 {
939 struct timespec now, t;
940
941 nanouptime(&now);
942 t.tv_sec = now.tv_sec - tv->tv_sec;
943 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
944 if (t.tv_nsec < 0) {
945 t.tv_sec--;
946 t.tv_nsec += 1000000000;
947 }
948 timespecadd(&ts->acc, &t, &t);
949 if (timespeccmp(&t, &ts->min, <))
950 ts->min = t;
951 if (timespeccmp(&t, &ts->max, >))
952 ts->max = t;
953 ts->count++;
954
955 *tv = now;
956 }
957 #endif
958
959 /*
960 * Dispatch a crypto request to the appropriate crypto devices.
961 */
962 static int
963 crypto_invoke(struct cryptop *crp, int hint)
964 {
965 u_int32_t hid;
966
967 #ifdef CRYPTO_TIMING
968 if (crypto_timing)
969 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
970 #endif
971 /* Sanity checks. */
972 if (crp == NULL)
973 return EINVAL;
974 if (crp->crp_callback == NULL) {
975 return EINVAL;
976 }
977 if (crp->crp_desc == NULL) {
978 crp->crp_etype = EINVAL;
979 crypto_done(crp);
980 return 0;
981 }
982
983 hid = CRYPTO_SESID2HID(crp->crp_sid);
984
985 if (hid < crypto_drivers_num) {
986 int (*process)(void *, struct cryptop *, int);
987 void *arg;
988
989 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
990 crypto_freesession(crp->crp_sid);
991 process = crypto_drivers[hid].cc_process;
992 arg = crypto_drivers[hid].cc_arg;
993
994 /*
995 * Invoke the driver to process the request.
996 */
997 DPRINTF(("calling process for %p\n", crp));
998 return (*process)(arg, crp, hint);
999 } else {
1000 struct cryptodesc *crd;
1001 u_int64_t nid = 0;
1002
1003 /*
1004 * Driver has unregistered; migrate the session and return
1005 * an error to the caller so they'll resubmit the op.
1006 */
1007 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1008 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1009
1010 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1011 crp->crp_sid = nid;
1012
1013 crp->crp_etype = EAGAIN;
1014
1015 crypto_done(crp);
1016 return 0;
1017 }
1018 }
1019
1020 /*
1021 * Release a set of crypto descriptors.
1022 */
1023 void
1024 crypto_freereq(struct cryptop *crp)
1025 {
1026 struct cryptodesc *crd;
1027
1028 if (crp == NULL)
1029 return;
1030 DPRINTF(("crypto_freereq[%u]: crp %p\n",
1031 CRYPTO_SESID2LID(crp->crp_sid), crp));
1032
1033 /* sanity check */
1034 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1035 panic("crypto_freereq() freeing crp on RETQ\n");
1036 }
1037
1038 while ((crd = crp->crp_desc) != NULL) {
1039 crp->crp_desc = crd->crd_next;
1040 pool_put(&cryptodesc_pool, crd);
1041 }
1042 pool_put(&cryptop_pool, crp);
1043 }
1044
1045 /*
1046 * Acquire a set of crypto descriptors.
1047 */
1048 struct cryptop *
1049 crypto_getreq(int num)
1050 {
1051 struct cryptodesc *crd;
1052 struct cryptop *crp;
1053
1054 crp = pool_get(&cryptop_pool, 0);
1055 if (crp == NULL) {
1056 return NULL;
1057 }
1058 memset(crp, 0, sizeof(struct cryptop));
1059
1060 while (num--) {
1061 crd = pool_get(&cryptodesc_pool, 0);
1062 if (crd == NULL) {
1063 crypto_freereq(crp);
1064 return NULL;
1065 }
1066
1067 memset(crd, 0, sizeof(struct cryptodesc));
1068 crd->crd_next = crp->crp_desc;
1069 crp->crp_desc = crd;
1070 }
1071
1072 return crp;
1073 }
1074
1075 /*
1076 * Invoke the callback on behalf of the driver.
1077 */
1078 void
1079 crypto_done(struct cryptop *crp)
1080 {
1081 int wasempty;
1082
1083 if (crp->crp_etype != 0)
1084 cryptostats.cs_errs++;
1085 #ifdef CRYPTO_TIMING
1086 if (crypto_timing)
1087 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1088 #endif
1089 DPRINTF(("crypto_done[%u]: crp %p\n",
1090 CRYPTO_SESID2LID(crp->crp_sid), crp));
1091
1092 /*
1093 * Normal case; queue the callback for the thread.
1094 *
1095 * The return queue is manipulated by the swi thread
1096 * and, potentially, by crypto device drivers calling
1097 * back to mark operations completed. Thus we need
1098 * to mask both while manipulating the return queue.
1099 */
1100 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1101 /*
1102 * Do the callback directly. This is ok when the
1103 * callback routine does very little (e.g. the
1104 * /dev/crypto callback method just does a wakeup).
1105 */
1106 mutex_spin_enter(&crypto_ret_q_mtx);
1107 crp->crp_flags |= CRYPTO_F_DONE;
1108 mutex_spin_exit(&crypto_ret_q_mtx);
1109
1110 #ifdef CRYPTO_TIMING
1111 if (crypto_timing) {
1112 /*
1113 * NB: We must copy the timestamp before
1114 * doing the callback as the cryptop is
1115 * likely to be reclaimed.
1116 */
1117 struct timespec t = crp->crp_tstamp;
1118 crypto_tstat(&cryptostats.cs_cb, &t);
1119 crp->crp_callback(crp);
1120 crypto_tstat(&cryptostats.cs_finis, &t);
1121 } else
1122 #endif
1123 crp->crp_callback(crp);
1124 } else {
1125 mutex_spin_enter(&crypto_ret_q_mtx);
1126 crp->crp_flags |= CRYPTO_F_DONE;
1127
1128 if (crp->crp_flags & CRYPTO_F_USER) {
1129 /* the request has completed while
1130 * running in the user context
1131 * so don't queue it - the user
1132 * thread won't sleep when it sees
1133 * the CRYPTO_F_DONE flag.
1134 * This is an optimization to avoid
1135 * unecessary context switches.
1136 */
1137 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1138 CRYPTO_SESID2LID(crp->crp_sid), crp));
1139 } else {
1140 wasempty = TAILQ_EMPTY(&crp_ret_q);
1141 DPRINTF(("crypto_done[%u]: queueing %p\n",
1142 CRYPTO_SESID2LID(crp->crp_sid), crp));
1143 crp->crp_flags |= CRYPTO_F_ONRETQ;
1144 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1145 if (wasempty) {
1146 DPRINTF(("crypto_done[%u]: waking cryptoret, "
1147 "crp %p hit empty queue\n.",
1148 CRYPTO_SESID2LID(crp->crp_sid), crp));
1149 cv_signal(&cryptoret_cv);
1150 }
1151 }
1152 mutex_spin_exit(&crypto_ret_q_mtx);
1153 }
1154 }
1155
1156 /*
1157 * Invoke the callback on behalf of the driver.
1158 */
1159 void
1160 crypto_kdone(struct cryptkop *krp)
1161 {
1162 int wasempty;
1163
1164 if (krp->krp_status != 0)
1165 cryptostats.cs_kerrs++;
1166
1167 krp->krp_flags |= CRYPTO_F_DONE;
1168
1169 /*
1170 * The return queue is manipulated by the swi thread
1171 * and, potentially, by crypto device drivers calling
1172 * back to mark operations completed. Thus we need
1173 * to mask both while manipulating the return queue.
1174 */
1175 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1176 krp->krp_callback(krp);
1177 } else {
1178 mutex_spin_enter(&crypto_ret_q_mtx);
1179 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1180 krp->krp_flags |= CRYPTO_F_ONRETQ;
1181 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1182 if (wasempty)
1183 cv_signal(&cryptoret_cv);
1184 mutex_spin_exit(&crypto_ret_q_mtx);
1185 }
1186 }
1187
1188 int
1189 crypto_getfeat(int *featp)
1190 {
1191 int hid, kalg, feat = 0;
1192
1193 mutex_enter(&crypto_mtx);
1194
1195 if (crypto_userasymcrypto == 0)
1196 goto out;
1197
1198 for (hid = 0; hid < crypto_drivers_num; hid++) {
1199 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1200 crypto_devallowsoft == 0) {
1201 continue;
1202 }
1203 if (crypto_drivers[hid].cc_kprocess == NULL)
1204 continue;
1205 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1206 if ((crypto_drivers[hid].cc_kalg[kalg] &
1207 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1208 feat |= 1 << kalg;
1209 }
1210 out:
1211 mutex_exit(&crypto_mtx);
1212 *featp = feat;
1213 return (0);
1214 }
1215
1216 /*
1217 * Software interrupt thread to dispatch crypto requests.
1218 */
1219 static void
1220 cryptointr(void)
1221 {
1222 struct cryptop *crp, *submit, *cnext;
1223 struct cryptkop *krp, *knext;
1224 struct cryptocap *cap;
1225 int result, hint;
1226
1227 cryptostats.cs_intrs++;
1228 mutex_spin_enter(&crypto_q_mtx);
1229 do {
1230 /*
1231 * Find the first element in the queue that can be
1232 * processed and look-ahead to see if multiple ops
1233 * are ready for the same driver.
1234 */
1235 submit = NULL;
1236 hint = 0;
1237 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1238 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1239 cap = crypto_checkdriver(hid);
1240 if (cap == NULL || cap->cc_process == NULL) {
1241 /* Op needs to be migrated, process it. */
1242 if (submit == NULL)
1243 submit = crp;
1244 break;
1245 }
1246 if (!cap->cc_qblocked) {
1247 if (submit != NULL) {
1248 /*
1249 * We stop on finding another op,
1250 * regardless whether its for the same
1251 * driver or not. We could keep
1252 * searching the queue but it might be
1253 * better to just use a per-driver
1254 * queue instead.
1255 */
1256 if (CRYPTO_SESID2HID(submit->crp_sid)
1257 == hid)
1258 hint = CRYPTO_HINT_MORE;
1259 break;
1260 } else {
1261 submit = crp;
1262 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1263 break;
1264 /* keep scanning for more are q'd */
1265 }
1266 }
1267 }
1268 if (submit != NULL) {
1269 TAILQ_REMOVE(&crp_q, submit, crp_next);
1270 mutex_spin_exit(&crypto_q_mtx);
1271 result = crypto_invoke(submit, hint);
1272 /* we must take here as the TAILQ op or kinvoke
1273 may need this mutex below. sigh. */
1274 mutex_spin_enter(&crypto_q_mtx);
1275 if (result == ERESTART) {
1276 /*
1277 * The driver ran out of resources, mark the
1278 * driver ``blocked'' for cryptop's and put
1279 * the request back in the queue. It would
1280 * best to put the request back where we got
1281 * it but that's hard so for now we put it
1282 * at the front. This should be ok; putting
1283 * it at the end does not work.
1284 */
1285 /* XXX validate sid again? */
1286 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1287 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1288 cryptostats.cs_blocks++;
1289 }
1290 }
1291
1292 /* As above, but for key ops */
1293 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1294 cap = crypto_checkdriver(krp->krp_hid);
1295 if (cap == NULL || cap->cc_kprocess == NULL) {
1296 /* Op needs to be migrated, process it. */
1297 break;
1298 }
1299 if (!cap->cc_kqblocked)
1300 break;
1301 }
1302 if (krp != NULL) {
1303 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1304 mutex_spin_exit(&crypto_q_mtx);
1305 result = crypto_kinvoke(krp, 0);
1306 /* the next iteration will want the mutex. :-/ */
1307 mutex_spin_enter(&crypto_q_mtx);
1308 if (result == ERESTART) {
1309 /*
1310 * The driver ran out of resources, mark the
1311 * driver ``blocked'' for cryptkop's and put
1312 * the request back in the queue. It would
1313 * best to put the request back where we got
1314 * it but that's hard so for now we put it
1315 * at the front. This should be ok; putting
1316 * it at the end does not work.
1317 */
1318 /* XXX validate sid again? */
1319 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1320 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1321 cryptostats.cs_kblocks++;
1322 }
1323 }
1324 } while (submit != NULL || krp != NULL);
1325 mutex_spin_exit(&crypto_q_mtx);
1326 }
1327
1328 /*
1329 * Kernel thread to do callbacks.
1330 */
1331 static void
1332 cryptoret(void)
1333 {
1334 struct cryptop *crp;
1335 struct cryptkop *krp;
1336
1337 mutex_spin_enter(&crypto_ret_q_mtx);
1338 for (;;) {
1339 crp = TAILQ_FIRST(&crp_ret_q);
1340 if (crp != NULL) {
1341 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1342 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1343 }
1344 krp = TAILQ_FIRST(&crp_ret_kq);
1345 if (krp != NULL) {
1346 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1347 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1348 }
1349
1350 /* drop before calling any callbacks. */
1351 if (crp == NULL && krp == NULL) {
1352
1353 /* Check for the exit condition. */
1354 if (crypto_exit_flag != 0) {
1355
1356 /* Time to die. */
1357 crypto_exit_flag = 0;
1358 cv_broadcast(&cryptoret_cv);
1359 mutex_spin_exit(&crypto_ret_q_mtx);
1360 kthread_exit(0);
1361 }
1362
1363 cryptostats.cs_rets++;
1364 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1365 continue;
1366 }
1367
1368 mutex_spin_exit(&crypto_ret_q_mtx);
1369
1370 if (crp != NULL) {
1371 #ifdef CRYPTO_TIMING
1372 if (crypto_timing) {
1373 /*
1374 * NB: We must copy the timestamp before
1375 * doing the callback as the cryptop is
1376 * likely to be reclaimed.
1377 */
1378 struct timespec t = crp->crp_tstamp;
1379 crypto_tstat(&cryptostats.cs_cb, &t);
1380 crp->crp_callback(crp);
1381 crypto_tstat(&cryptostats.cs_finis, &t);
1382 } else
1383 #endif
1384 {
1385 crp->crp_callback(crp);
1386 }
1387 }
1388 if (krp != NULL)
1389 krp->krp_callback(krp);
1390
1391 mutex_spin_enter(&crypto_ret_q_mtx);
1392 }
1393 }
1394
1395 /* NetBSD module interface */
1396
1397 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1398
1399 static int
1400 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1401 {
1402 int error = 0;
1403
1404 switch (cmd) {
1405 case MODULE_CMD_INIT:
1406 #ifdef _MODULE
1407 error = crypto_init();
1408 #endif
1409 break;
1410 case MODULE_CMD_FINI:
1411 #ifdef _MODULE
1412 error = crypto_destroy(true);
1413 #endif
1414 break;
1415 default:
1416 error = ENOTTY;
1417 }
1418 return error;
1419 }
1420