Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.53
      1 /*	$NetBSD: crypto.c,v 1.53 2017/04/06 09:39:12 knakahara Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.53 2017/04/06 09:39:12 knakahara Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 static kmutex_t crypto_q_mtx;
     79 static kmutex_t crypto_ret_q_mtx;
     80 static kcondvar_t cryptoret_cv;
     81 kmutex_t crypto_mtx;
     82 
     83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     84   #define SWI_CRYPTO 17
     85   #define register_swi(lvl, fn)  \
     86   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     87   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     88   #define setsoftcrypto(x) softint_schedule(x)
     89 
     90 int crypto_ret_q_check(struct cryptop *);
     91 
     92 /*
     93  * Crypto drivers register themselves by allocating a slot in the
     94  * crypto_drivers table with crypto_get_driverid() and then registering
     95  * each algorithm they support with crypto_register() and crypto_kregister().
     96  */
     97 static	struct cryptocap *crypto_drivers;
     98 static	int crypto_drivers_num;
     99 static	void *softintr_cookie;
    100 static	int crypto_exit_flag;
    101 
    102 /*
    103  * There are two queues for crypto requests; one for symmetric (e.g.
    104  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    105  * See below for how synchronization is handled.
    106  */
    107 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    108 		TAILQ_HEAD_INITIALIZER(crp_q);
    109 static	TAILQ_HEAD(,cryptkop) crp_kq =
    110 		TAILQ_HEAD_INITIALIZER(crp_kq);
    111 
    112 /*
    113  * There are two queues for processing completed crypto requests; one
    114  * for the symmetric and one for the asymmetric ops.  We only need one
    115  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    116  * for how synchronization is handled.
    117  */
    118 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    119 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    120 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    121 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    122 
    123 /*
    124  * XXX these functions are ghastly hacks for when the submission
    125  * XXX routines discover a request that was not CBIMM is already
    126  * XXX done, and must be yanked from the retq (where _done) put it
    127  * XXX as cryptoret won't get the chance.  The queue is walked backwards
    128  * XXX as the request is generally the last one queued.
    129  *
    130  *	 call with the lock held, or else.
    131  */
    132 int
    133 crypto_ret_q_remove(struct cryptop *crp)
    134 {
    135 	struct cryptop * acrp, *next;
    136 
    137 	TAILQ_FOREACH_REVERSE_SAFE(acrp, &crp_ret_q, crprethead, crp_next, next) {
    138 		if (acrp == crp) {
    139 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
    140 			crp->crp_flags &= (~CRYPTO_F_ONRETQ);
    141 			return 1;
    142 		}
    143 	}
    144 	return 0;
    145 }
    146 
    147 int
    148 crypto_ret_kq_remove(struct cryptkop *krp)
    149 {
    150 	struct cryptkop * akrp, *next;
    151 
    152 	TAILQ_FOREACH_REVERSE_SAFE(akrp, &crp_ret_kq, krprethead, krp_next, next) {
    153 		if (akrp == krp) {
    154 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
    155 			krp->krp_flags &= (~CRYPTO_F_ONRETQ);
    156 			return 1;
    157 		}
    158 	}
    159 	return 0;
    160 }
    161 
    162 /*
    163  * Crypto op and desciptor data structures are allocated
    164  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    165  */
    166 struct pool cryptop_pool;
    167 struct pool cryptodesc_pool;
    168 struct pool cryptkop_pool;
    169 
    170 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    171 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    172 /*
    173  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    174  * access to hardware versus software transforms as below:
    175  *
    176  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    177  *                              transforms, always
    178  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    179  *                              requests for non-accelerated transforms
    180  *                              (handling the latter in software)
    181  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    182  *                               are hardware-accelerated.
    183  */
    184 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    185 
    186 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
    187 {
    188 
    189 	sysctl_createv(clog, 0, NULL, NULL,
    190 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    191 		       CTLTYPE_INT, "usercrypto",
    192 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    193 			   "crypto support"),
    194 		       NULL, 0, &crypto_usercrypto, 0,
    195 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    196 	sysctl_createv(clog, 0, NULL, NULL,
    197 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    198 		       CTLTYPE_INT, "userasymcrypto",
    199 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    200 			   "asymmetric crypto support"),
    201 		       NULL, 0, &crypto_userasymcrypto, 0,
    202 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    203 	sysctl_createv(clog, 0, NULL, NULL,
    204 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    205 		       CTLTYPE_INT, "cryptodevallowsoft",
    206 		       SYSCTL_DESCR("Enable/disable use of software "
    207 			   "asymmetric crypto support"),
    208 		       NULL, 0, &crypto_devallowsoft, 0,
    209 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    210 }
    211 
    212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    213 
    214 /*
    215  * Synchronization: read carefully, this is non-trivial.
    216  *
    217  * Crypto requests are submitted via crypto_dispatch.  Typically
    218  * these come in from network protocols at spl0 (output path) or
    219  * spl[,soft]net (input path).
    220  *
    221  * Requests are typically passed on the driver directly, but they
    222  * may also be queued for processing by a software interrupt thread,
    223  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    224  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    225  * when a request is complete.  Hardware crypto drivers are assumed
    226  * to register their IRQ's as network devices so their interrupt handlers
    227  * and subsequent "done callbacks" happen at spl[imp,net].
    228  *
    229  * Completed crypto ops are queued for a separate kernel thread that
    230  * handles the callbacks at spl0.  This decoupling insures the crypto
    231  * driver interrupt service routine is not delayed while the callback
    232  * takes place and that callbacks are delivered after a context switch
    233  * (as opposed to a software interrupt that clients must block).
    234  *
    235  * This scheme is not intended for SMP machines.
    236  */
    237 static	void cryptointr(void);		/* swi thread to dispatch ops */
    238 static	void cryptoret(void);		/* kernel thread for callbacks*/
    239 static	struct lwp *cryptothread;
    240 static	int crypto_destroy(bool);
    241 static	int crypto_invoke(struct cryptop *crp, int hint);
    242 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    243 
    244 static struct cryptostats cryptostats;
    245 #ifdef CRYPTO_TIMING
    246 static	int crypto_timing = 0;
    247 #endif
    248 
    249 #ifdef _MODULE
    250 static struct sysctllog *sysctl_opencrypto_clog;
    251 #endif
    252 
    253 static int
    254 crypto_init0(void)
    255 {
    256 	int error;
    257 
    258 	mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
    259 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
    260 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    261 	cv_init(&cryptoret_cv, "crypto_w");
    262 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    263 		  0, "cryptop", NULL, IPL_NET);
    264 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    265 		  0, "cryptodesc", NULL, IPL_NET);
    266 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    267 		  0, "cryptkop", NULL, IPL_NET);
    268 
    269 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    270 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    271 	if (crypto_drivers == NULL) {
    272 		printf("crypto_init: cannot malloc driver table\n");
    273 		return ENOMEM;
    274 	}
    275 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    276 
    277 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    278 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    279 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    280 	if (error) {
    281 		printf("crypto_init: cannot start cryptoret thread; error %d",
    282 			error);
    283 		return crypto_destroy(false);
    284 	}
    285 
    286 #ifdef _MODULE
    287 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    288 #endif
    289 	return 0;
    290 }
    291 
    292 int
    293 crypto_init(void)
    294 {
    295 	static ONCE_DECL(crypto_init_once);
    296 
    297 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    298 }
    299 
    300 static int
    301 crypto_destroy(bool exit_kthread)
    302 {
    303 	int i;
    304 
    305 	if (exit_kthread) {
    306 		mutex_spin_enter(&crypto_ret_q_mtx);
    307 
    308 		/* if we have any in-progress requests, don't unload */
    309 		if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
    310 			mutex_spin_exit(&crypto_ret_q_mtx);
    311 			return EBUSY;
    312 		}
    313 
    314 		for (i = 0; i < crypto_drivers_num; i++)
    315 			if (crypto_drivers[i].cc_sessions != 0)
    316 				break;
    317 		if (i < crypto_drivers_num) {
    318 			mutex_spin_exit(&crypto_ret_q_mtx);
    319 			return EBUSY;
    320 		}
    321 
    322 		/* kick the cryptoret thread and wait for it to exit */
    323 		crypto_exit_flag = 1;
    324 		cv_signal(&cryptoret_cv);
    325 
    326 		while (crypto_exit_flag != 0)
    327 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
    328 		mutex_spin_exit(&crypto_ret_q_mtx);
    329 	}
    330 
    331 #ifdef _MODULE
    332 	if (sysctl_opencrypto_clog != NULL)
    333 		sysctl_teardown(&sysctl_opencrypto_clog);
    334 #endif
    335 
    336 	unregister_swi(SWI_CRYPTO, cryptointr);
    337 
    338 	if (crypto_drivers != NULL)
    339 		free(crypto_drivers, M_CRYPTO_DATA);
    340 
    341 	pool_destroy(&cryptop_pool);
    342 	pool_destroy(&cryptodesc_pool);
    343 	pool_destroy(&cryptkop_pool);
    344 
    345 	cv_destroy(&cryptoret_cv);
    346 
    347 	mutex_destroy(&crypto_ret_q_mtx);
    348 	mutex_destroy(&crypto_q_mtx);
    349 	mutex_destroy(&crypto_mtx);
    350 
    351 	return 0;
    352 }
    353 
    354 /*
    355  * Create a new session.  Must be called with crypto_mtx held.
    356  */
    357 int
    358 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    359 {
    360 	struct cryptoini *cr;
    361 	u_int32_t hid, lid;
    362 	int err = EINVAL;
    363 
    364 	mutex_enter(&crypto_mtx);
    365 
    366 	if (crypto_drivers == NULL)
    367 		goto done;
    368 
    369 	/*
    370 	 * The algorithm we use here is pretty stupid; just use the
    371 	 * first driver that supports all the algorithms we need.
    372 	 *
    373 	 * XXX We need more smarts here (in real life too, but that's
    374 	 * XXX another story altogether).
    375 	 */
    376 
    377 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    378 		/*
    379 		 * If it's not initialized or has remaining sessions
    380 		 * referencing it, skip.
    381 		 */
    382 		if (crypto_drivers[hid].cc_newsession == NULL ||
    383 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    384 			continue;
    385 
    386 		/* Hardware required -- ignore software drivers. */
    387 		if (hard > 0 &&
    388 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    389 			continue;
    390 		/* Software required -- ignore hardware drivers. */
    391 		if (hard < 0 &&
    392 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    393 			continue;
    394 
    395 		/* See if all the algorithms are supported. */
    396 		for (cr = cri; cr; cr = cr->cri_next)
    397 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    398 				DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
    399 				break;
    400 			}
    401 
    402 		if (cr == NULL) {
    403 			/* Ok, all algorithms are supported. */
    404 
    405 			/*
    406 			 * Can't do everything in one session.
    407 			 *
    408 			 * XXX Fix this. We need to inject a "virtual" session layer right
    409 			 * XXX about here.
    410 			 */
    411 
    412 			/* Call the driver initialization routine. */
    413 			lid = hid;		/* Pass the driver ID. */
    414 			err = crypto_drivers[hid].cc_newsession(
    415 					crypto_drivers[hid].cc_arg, &lid, cri);
    416 			if (err == 0) {
    417 				(*sid) = hid;
    418 				(*sid) <<= 32;
    419 				(*sid) |= (lid & 0xffffffff);
    420 				crypto_drivers[hid].cc_sessions++;
    421 			} else {
    422 				DPRINTF(("%s: crypto_drivers[%d].cc_newsession() failed. error=%d\n",
    423 					__func__, hid, err));
    424 			}
    425 			goto done;
    426 			/*break;*/
    427 		}
    428 	}
    429 done:
    430 	mutex_exit(&crypto_mtx);
    431 	return err;
    432 }
    433 
    434 /*
    435  * Delete an existing session (or a reserved session on an unregistered
    436  * driver).  Must be called with crypto_mtx mutex held.
    437  */
    438 int
    439 crypto_freesession(u_int64_t sid)
    440 {
    441 	u_int32_t hid;
    442 	int err = 0;
    443 
    444 	mutex_enter(&crypto_mtx);
    445 
    446 	if (crypto_drivers == NULL) {
    447 		err = EINVAL;
    448 		goto done;
    449 	}
    450 
    451 	/* Determine two IDs. */
    452 	hid = CRYPTO_SESID2HID(sid);
    453 
    454 	if (hid >= crypto_drivers_num) {
    455 		err = ENOENT;
    456 		goto done;
    457 	}
    458 
    459 	if (crypto_drivers[hid].cc_sessions)
    460 		crypto_drivers[hid].cc_sessions--;
    461 
    462 	/* Call the driver cleanup routine, if available. */
    463 	if (crypto_drivers[hid].cc_freesession) {
    464 		err = crypto_drivers[hid].cc_freesession(
    465 				crypto_drivers[hid].cc_arg, sid);
    466 	}
    467 	else
    468 		err = 0;
    469 
    470 	/*
    471 	 * If this was the last session of a driver marked as invalid,
    472 	 * make the entry available for reuse.
    473 	 */
    474 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    475 	    crypto_drivers[hid].cc_sessions == 0)
    476 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    477 
    478 done:
    479 	mutex_exit(&crypto_mtx);
    480 	return err;
    481 }
    482 
    483 /*
    484  * Return an unused driver id.  Used by drivers prior to registering
    485  * support for the algorithms they handle.
    486  */
    487 int32_t
    488 crypto_get_driverid(u_int32_t flags)
    489 {
    490 	struct cryptocap *newdrv;
    491 	int i;
    492 
    493 	(void)crypto_init();		/* XXX oh, this is foul! */
    494 
    495 	mutex_enter(&crypto_mtx);
    496 	for (i = 0; i < crypto_drivers_num; i++)
    497 		if (crypto_drivers[i].cc_process == NULL &&
    498 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    499 		    crypto_drivers[i].cc_sessions == 0)
    500 			break;
    501 
    502 	/* Out of entries, allocate some more. */
    503 	if (i == crypto_drivers_num) {
    504 		/* Be careful about wrap-around. */
    505 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    506 			mutex_exit(&crypto_mtx);
    507 			printf("crypto: driver count wraparound!\n");
    508 			return -1;
    509 		}
    510 
    511 		newdrv = malloc(2 * crypto_drivers_num *
    512 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    513 		if (newdrv == NULL) {
    514 			mutex_exit(&crypto_mtx);
    515 			printf("crypto: no space to expand driver table!\n");
    516 			return -1;
    517 		}
    518 
    519 		memcpy(newdrv, crypto_drivers,
    520 		    crypto_drivers_num * sizeof(struct cryptocap));
    521 
    522 		crypto_drivers_num *= 2;
    523 
    524 		free(crypto_drivers, M_CRYPTO_DATA);
    525 		crypto_drivers = newdrv;
    526 	}
    527 
    528 	/* NB: state is zero'd on free */
    529 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    530 	crypto_drivers[i].cc_flags = flags;
    531 
    532 	if (bootverbose)
    533 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    534 
    535 	mutex_exit(&crypto_mtx);
    536 
    537 	return i;
    538 }
    539 
    540 static struct cryptocap *
    541 crypto_checkdriver(u_int32_t hid)
    542 {
    543 	if (crypto_drivers == NULL)
    544 		return NULL;
    545 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    546 }
    547 
    548 /*
    549  * Register support for a key-related algorithm.  This routine
    550  * is called once for each algorithm supported a driver.
    551  */
    552 int
    553 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    554     int (*kprocess)(void *, struct cryptkop *, int),
    555     void *karg)
    556 {
    557 	struct cryptocap *cap;
    558 	int err;
    559 
    560 	mutex_enter(&crypto_mtx);
    561 
    562 	cap = crypto_checkdriver(driverid);
    563 	if (cap != NULL &&
    564 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    565 		/*
    566 		 * XXX Do some performance testing to determine placing.
    567 		 * XXX We probably need an auxiliary data structure that
    568 		 * XXX describes relative performances.
    569 		 */
    570 
    571 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    572 		if (bootverbose) {
    573 			printf("crypto: driver %u registers key alg %u "
    574 			       " flags %u\n",
    575 				driverid,
    576 				kalg,
    577 				flags
    578 			);
    579 		}
    580 
    581 		if (cap->cc_kprocess == NULL) {
    582 			cap->cc_karg = karg;
    583 			cap->cc_kprocess = kprocess;
    584 		}
    585 		err = 0;
    586 	} else
    587 		err = EINVAL;
    588 
    589 	mutex_exit(&crypto_mtx);
    590 	return err;
    591 }
    592 
    593 /*
    594  * Register support for a non-key-related algorithm.  This routine
    595  * is called once for each such algorithm supported by a driver.
    596  */
    597 int
    598 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    599     u_int32_t flags,
    600     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    601     int (*freeses)(void *, u_int64_t),
    602     int (*process)(void *, struct cryptop *, int),
    603     void *arg)
    604 {
    605 	struct cryptocap *cap;
    606 	int err;
    607 
    608 	mutex_enter(&crypto_mtx);
    609 
    610 	cap = crypto_checkdriver(driverid);
    611 	/* NB: algorithms are in the range [1..max] */
    612 	if (cap != NULL &&
    613 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    614 		/*
    615 		 * XXX Do some performance testing to determine placing.
    616 		 * XXX We probably need an auxiliary data structure that
    617 		 * XXX describes relative performances.
    618 		 */
    619 
    620 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    621 		cap->cc_max_op_len[alg] = maxoplen;
    622 		if (bootverbose) {
    623 			printf("crypto: driver %u registers alg %u "
    624 				"flags %u maxoplen %u\n",
    625 				driverid,
    626 				alg,
    627 				flags,
    628 				maxoplen
    629 			);
    630 		}
    631 
    632 		if (cap->cc_process == NULL) {
    633 			cap->cc_arg = arg;
    634 			cap->cc_newsession = newses;
    635 			cap->cc_process = process;
    636 			cap->cc_freesession = freeses;
    637 			cap->cc_sessions = 0;		/* Unmark */
    638 		}
    639 		err = 0;
    640 	} else
    641 		err = EINVAL;
    642 
    643 	mutex_exit(&crypto_mtx);
    644 	return err;
    645 }
    646 
    647 /*
    648  * Unregister a crypto driver. If there are pending sessions using it,
    649  * leave enough information around so that subsequent calls using those
    650  * sessions will correctly detect the driver has been unregistered and
    651  * reroute requests.
    652  */
    653 int
    654 crypto_unregister(u_int32_t driverid, int alg)
    655 {
    656 	int i, err;
    657 	u_int32_t ses;
    658 	struct cryptocap *cap;
    659 
    660 	mutex_enter(&crypto_mtx);
    661 
    662 	cap = crypto_checkdriver(driverid);
    663 	if (cap != NULL &&
    664 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
    665 	    cap->cc_alg[alg] != 0) {
    666 		cap->cc_alg[alg] = 0;
    667 		cap->cc_max_op_len[alg] = 0;
    668 
    669 		/* Was this the last algorithm ? */
    670 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
    671 			if (cap->cc_alg[i] != 0)
    672 				break;
    673 
    674 		if (i == CRYPTO_ALGORITHM_MAX + 1) {
    675 			ses = cap->cc_sessions;
    676 			memset(cap, 0, sizeof(struct cryptocap));
    677 			if (ses != 0) {
    678 				/*
    679 				 * If there are pending sessions, just mark as invalid.
    680 				 */
    681 				cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    682 				cap->cc_sessions = ses;
    683 			}
    684 		}
    685 		err = 0;
    686 	} else
    687 		err = EINVAL;
    688 
    689 	mutex_exit(&crypto_mtx);
    690 	return err;
    691 }
    692 
    693 /*
    694  * Unregister all algorithms associated with a crypto driver.
    695  * If there are pending sessions using it, leave enough information
    696  * around so that subsequent calls using those sessions will
    697  * correctly detect the driver has been unregistered and reroute
    698  * requests.
    699  *
    700  * XXX careful.  Don't change this to call crypto_unregister() for each
    701  * XXX registered algorithm unless you drop the mutex across the calls;
    702  * XXX you can't take it recursively.
    703  */
    704 int
    705 crypto_unregister_all(u_int32_t driverid)
    706 {
    707 	int i, err;
    708 	u_int32_t ses;
    709 	struct cryptocap *cap;
    710 
    711 	mutex_enter(&crypto_mtx);
    712 	cap = crypto_checkdriver(driverid);
    713 	if (cap != NULL) {
    714 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    715 			cap->cc_alg[i] = 0;
    716 			cap->cc_max_op_len[i] = 0;
    717 		}
    718 		ses = cap->cc_sessions;
    719 		memset(cap, 0, sizeof(struct cryptocap));
    720 		if (ses != 0) {
    721 			/*
    722 			 * If there are pending sessions, just mark as invalid.
    723 			 */
    724 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    725 			cap->cc_sessions = ses;
    726 		}
    727 		err = 0;
    728 	} else
    729 		err = EINVAL;
    730 
    731 	mutex_exit(&crypto_mtx);
    732 	return err;
    733 }
    734 
    735 /*
    736  * Clear blockage on a driver.  The what parameter indicates whether
    737  * the driver is now ready for cryptop's and/or cryptokop's.
    738  */
    739 int
    740 crypto_unblock(u_int32_t driverid, int what)
    741 {
    742 	struct cryptocap *cap;
    743 	int needwakeup, err;
    744 
    745 	mutex_spin_enter(&crypto_q_mtx);
    746 	cap = crypto_checkdriver(driverid);
    747 	if (cap != NULL) {
    748 		needwakeup = 0;
    749 		if (what & CRYPTO_SYMQ) {
    750 			needwakeup |= cap->cc_qblocked;
    751 			cap->cc_qblocked = 0;
    752 		}
    753 		if (what & CRYPTO_ASYMQ) {
    754 			needwakeup |= cap->cc_kqblocked;
    755 			cap->cc_kqblocked = 0;
    756 		}
    757 		err = 0;
    758 		if (needwakeup)
    759 			setsoftcrypto(softintr_cookie);
    760 		mutex_spin_exit(&crypto_q_mtx);
    761 	} else {
    762 		err = EINVAL;
    763 		mutex_spin_exit(&crypto_q_mtx);
    764 	}
    765 
    766 	return err;
    767 }
    768 
    769 /*
    770  * Dispatch a crypto request to a driver or queue
    771  * it, to be processed by the kernel thread.
    772  */
    773 int
    774 crypto_dispatch(struct cryptop *crp)
    775 {
    776 	u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
    777 	int result;
    778 
    779 	mutex_spin_enter(&crypto_q_mtx);
    780 	DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
    781 		crp, crp->crp_desc->crd_alg));
    782 
    783 	cryptostats.cs_ops++;
    784 
    785 #ifdef CRYPTO_TIMING
    786 	if (crypto_timing)
    787 		nanouptime(&crp->crp_tstamp);
    788 #endif
    789 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
    790 		struct cryptocap *cap;
    791 		/*
    792 		 * Caller marked the request to be processed
    793 		 * immediately; dispatch it directly to the
    794 		 * driver unless the driver is currently blocked.
    795 		 */
    796 		cap = crypto_checkdriver(hid);
    797 		if (cap && !cap->cc_qblocked) {
    798 			mutex_spin_exit(&crypto_q_mtx);
    799 			result = crypto_invoke(crp, 0);
    800 			if (result == ERESTART) {
    801 				/*
    802 				 * The driver ran out of resources, mark the
    803 				 * driver ``blocked'' for cryptop's and put
    804 				 * the op on the queue.
    805 				 */
    806 				mutex_spin_enter(&crypto_q_mtx);
    807 				crypto_drivers[hid].cc_qblocked = 1;
    808 				TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    809 				cryptostats.cs_blocks++;
    810 				mutex_spin_exit(&crypto_q_mtx);
    811 			}
    812 			goto out_released;
    813 		} else {
    814 			/*
    815 			 * The driver is blocked, just queue the op until
    816 			 * it unblocks and the swi thread gets kicked.
    817 			 */
    818 			TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    819 			result = 0;
    820 		}
    821 	} else {
    822 		int wasempty = TAILQ_EMPTY(&crp_q);
    823 		/*
    824 		 * Caller marked the request as ``ok to delay'';
    825 		 * queue it for the swi thread.  This is desirable
    826 		 * when the operation is low priority and/or suitable
    827 		 * for batching.
    828 		 */
    829 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    830 		if (wasempty) {
    831 			setsoftcrypto(softintr_cookie);
    832 			mutex_spin_exit(&crypto_q_mtx);
    833 			result = 0;
    834 			goto out_released;
    835 		}
    836 
    837 		result = 0;
    838 	}
    839 
    840 	mutex_spin_exit(&crypto_q_mtx);
    841 out_released:
    842 	return result;
    843 }
    844 
    845 /*
    846  * Add an asymetric crypto request to a queue,
    847  * to be processed by the kernel thread.
    848  */
    849 int
    850 crypto_kdispatch(struct cryptkop *krp)
    851 {
    852 	struct cryptocap *cap;
    853 	int result;
    854 
    855 	mutex_spin_enter(&crypto_q_mtx);
    856 	cryptostats.cs_kops++;
    857 
    858 	cap = crypto_checkdriver(krp->krp_hid);
    859 	if (cap && !cap->cc_kqblocked) {
    860 		mutex_spin_exit(&crypto_q_mtx);
    861 		result = crypto_kinvoke(krp, 0);
    862 		if (result == ERESTART) {
    863 			/*
    864 			 * The driver ran out of resources, mark the
    865 			 * driver ``blocked'' for cryptop's and put
    866 			 * the op on the queue.
    867 			 */
    868 			mutex_spin_enter(&crypto_q_mtx);
    869 			crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    870 			TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    871 			cryptostats.cs_kblocks++;
    872 			mutex_spin_exit(&crypto_q_mtx);
    873 		}
    874 	} else {
    875 		/*
    876 		 * The driver is blocked, just queue the op until
    877 		 * it unblocks and the swi thread gets kicked.
    878 		 */
    879 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    880 		result = 0;
    881 		mutex_spin_exit(&crypto_q_mtx);
    882 	}
    883 
    884 	return result;
    885 }
    886 
    887 /*
    888  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    889  */
    890 static int
    891 crypto_kinvoke(struct cryptkop *krp, int hint)
    892 {
    893 	u_int32_t hid;
    894 	int error;
    895 
    896 	/* Sanity checks. */
    897 	if (krp == NULL)
    898 		return EINVAL;
    899 	if (krp->krp_callback == NULL) {
    900 		cv_destroy(&krp->krp_cv);
    901 		pool_put(&cryptkop_pool, krp);
    902 		return EINVAL;
    903 	}
    904 
    905 	mutex_enter(&crypto_mtx);
    906 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    907 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    908 		    crypto_devallowsoft == 0)
    909 			continue;
    910 		if (crypto_drivers[hid].cc_kprocess == NULL)
    911 			continue;
    912 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    913 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    914 			continue;
    915 		break;
    916 	}
    917 	if (hid < crypto_drivers_num) {
    918 		int (*process)(void *, struct cryptkop *, int);
    919 		void *arg;
    920 
    921 		process = crypto_drivers[hid].cc_kprocess;
    922 		arg = crypto_drivers[hid].cc_karg;
    923 		mutex_exit(&crypto_mtx);
    924 		krp->krp_hid = hid;
    925 		error = (*process)(arg, krp, hint);
    926 	} else {
    927 		mutex_exit(&crypto_mtx);
    928 		error = ENODEV;
    929 	}
    930 
    931 	if (error) {
    932 		krp->krp_status = error;
    933 		crypto_kdone(krp);
    934 	}
    935 	return 0;
    936 }
    937 
    938 #ifdef CRYPTO_TIMING
    939 static void
    940 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    941 {
    942 	struct timespec now, t;
    943 
    944 	nanouptime(&now);
    945 	t.tv_sec = now.tv_sec - tv->tv_sec;
    946 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    947 	if (t.tv_nsec < 0) {
    948 		t.tv_sec--;
    949 		t.tv_nsec += 1000000000;
    950 	}
    951 	timespecadd(&ts->acc, &t, &t);
    952 	if (timespeccmp(&t, &ts->min, <))
    953 		ts->min = t;
    954 	if (timespeccmp(&t, &ts->max, >))
    955 		ts->max = t;
    956 	ts->count++;
    957 
    958 	*tv = now;
    959 }
    960 #endif
    961 
    962 /*
    963  * Dispatch a crypto request to the appropriate crypto devices.
    964  */
    965 static int
    966 crypto_invoke(struct cryptop *crp, int hint)
    967 {
    968 	u_int32_t hid;
    969 
    970 #ifdef CRYPTO_TIMING
    971 	if (crypto_timing)
    972 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    973 #endif
    974 	/* Sanity checks. */
    975 	if (crp == NULL)
    976 		return EINVAL;
    977 	if (crp->crp_callback == NULL) {
    978 		return EINVAL;
    979 	}
    980 	if (crp->crp_desc == NULL) {
    981 		crp->crp_etype = EINVAL;
    982 		crypto_done(crp);
    983 		return 0;
    984 	}
    985 
    986 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    987 
    988 	if (hid < crypto_drivers_num) {
    989 		int (*process)(void *, struct cryptop *, int);
    990 		void *arg;
    991 
    992 		if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
    993 			crypto_freesession(crp->crp_sid);
    994 		process = crypto_drivers[hid].cc_process;
    995 		arg = crypto_drivers[hid].cc_arg;
    996 
    997 		/*
    998 		 * Invoke the driver to process the request.
    999 		 */
   1000 		DPRINTF(("calling process for %p\n", crp));
   1001 		return (*process)(arg, crp, hint);
   1002 	} else {
   1003 		struct cryptodesc *crd;
   1004 		u_int64_t nid = 0;
   1005 
   1006 		/*
   1007 		 * Driver has unregistered; migrate the session and return
   1008 		 * an error to the caller so they'll resubmit the op.
   1009 		 */
   1010 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1011 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1012 
   1013 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1014 			crp->crp_sid = nid;
   1015 
   1016 		crp->crp_etype = EAGAIN;
   1017 
   1018 		crypto_done(crp);
   1019 		return 0;
   1020 	}
   1021 }
   1022 
   1023 /*
   1024  * Release a set of crypto descriptors.
   1025  */
   1026 void
   1027 crypto_freereq(struct cryptop *crp)
   1028 {
   1029 	struct cryptodesc *crd;
   1030 
   1031 	if (crp == NULL)
   1032 		return;
   1033 	DPRINTF(("crypto_freereq[%u]: crp %p\n",
   1034 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1035 
   1036 	/* sanity check */
   1037 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1038 		panic("crypto_freereq() freeing crp on RETQ\n");
   1039 	}
   1040 
   1041 	while ((crd = crp->crp_desc) != NULL) {
   1042 		crp->crp_desc = crd->crd_next;
   1043 		pool_put(&cryptodesc_pool, crd);
   1044 	}
   1045 	pool_put(&cryptop_pool, crp);
   1046 }
   1047 
   1048 /*
   1049  * Acquire a set of crypto descriptors.
   1050  */
   1051 struct cryptop *
   1052 crypto_getreq(int num)
   1053 {
   1054 	struct cryptodesc *crd;
   1055 	struct cryptop *crp;
   1056 
   1057 	crp = pool_get(&cryptop_pool, 0);
   1058 	if (crp == NULL) {
   1059 		return NULL;
   1060 	}
   1061 	memset(crp, 0, sizeof(struct cryptop));
   1062 
   1063 	while (num--) {
   1064 		crd = pool_get(&cryptodesc_pool, 0);
   1065 		if (crd == NULL) {
   1066 			crypto_freereq(crp);
   1067 			return NULL;
   1068 		}
   1069 
   1070 		memset(crd, 0, sizeof(struct cryptodesc));
   1071 		crd->crd_next = crp->crp_desc;
   1072 		crp->crp_desc = crd;
   1073 	}
   1074 
   1075 	return crp;
   1076 }
   1077 
   1078 /*
   1079  * Invoke the callback on behalf of the driver.
   1080  */
   1081 void
   1082 crypto_done(struct cryptop *crp)
   1083 {
   1084 	int wasempty;
   1085 
   1086 	if (crp->crp_etype != 0)
   1087 		cryptostats.cs_errs++;
   1088 #ifdef CRYPTO_TIMING
   1089 	if (crypto_timing)
   1090 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1091 #endif
   1092 	DPRINTF(("crypto_done[%u]: crp %p\n",
   1093 		CRYPTO_SESID2LID(crp->crp_sid), crp));
   1094 
   1095 	/*
   1096 	 * Normal case; queue the callback for the thread.
   1097 	 *
   1098 	 * The return queue is manipulated by the swi thread
   1099 	 * and, potentially, by crypto device drivers calling
   1100 	 * back to mark operations completed.  Thus we need
   1101 	 * to mask both while manipulating the return queue.
   1102 	 */
   1103   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1104 		/*
   1105 	 	* Do the callback directly.  This is ok when the
   1106   	 	* callback routine does very little (e.g. the
   1107 	 	* /dev/crypto callback method just does a wakeup).
   1108 	 	*/
   1109 		mutex_spin_enter(&crypto_ret_q_mtx);
   1110 		crp->crp_flags |= CRYPTO_F_DONE;
   1111 		mutex_spin_exit(&crypto_ret_q_mtx);
   1112 
   1113 #ifdef CRYPTO_TIMING
   1114 		if (crypto_timing) {
   1115 			/*
   1116 		 	* NB: We must copy the timestamp before
   1117 		 	* doing the callback as the cryptop is
   1118 		 	* likely to be reclaimed.
   1119 		 	*/
   1120 			struct timespec t = crp->crp_tstamp;
   1121 			crypto_tstat(&cryptostats.cs_cb, &t);
   1122 			crp->crp_callback(crp);
   1123 			crypto_tstat(&cryptostats.cs_finis, &t);
   1124 		} else
   1125 #endif
   1126 		crp->crp_callback(crp);
   1127 	} else {
   1128 		mutex_spin_enter(&crypto_ret_q_mtx);
   1129 		crp->crp_flags |= CRYPTO_F_DONE;
   1130 #if 0
   1131 		if (crp->crp_flags & CRYPTO_F_USER) {
   1132 			/*
   1133 			 * TODO:
   1134 			 * If crp->crp_flags & CRYPTO_F_USER and the used
   1135 			 * encryption driver does all the processing in
   1136 			 * the same context, we can skip enqueueing crp_ret_q
   1137 			 * and cv_signal(&cryptoret_cv).
   1138 			 */
   1139 			DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
   1140 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1141 		} else
   1142 #endif
   1143 		{
   1144 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1145 			DPRINTF(("crypto_done[%u]: queueing %p\n",
   1146 				CRYPTO_SESID2LID(crp->crp_sid), crp));
   1147 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1148 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1149 			if (wasempty) {
   1150 				DPRINTF(("crypto_done[%u]: waking cryptoret, "
   1151 					"crp %p hit empty queue\n.",
   1152 					CRYPTO_SESID2LID(crp->crp_sid), crp));
   1153 				cv_signal(&cryptoret_cv);
   1154 			}
   1155 		}
   1156 		mutex_spin_exit(&crypto_ret_q_mtx);
   1157 	}
   1158 }
   1159 
   1160 /*
   1161  * Invoke the callback on behalf of the driver.
   1162  */
   1163 void
   1164 crypto_kdone(struct cryptkop *krp)
   1165 {
   1166 	int wasempty;
   1167 
   1168 	if (krp->krp_status != 0)
   1169 		cryptostats.cs_kerrs++;
   1170 
   1171 	krp->krp_flags |= CRYPTO_F_DONE;
   1172 
   1173 	/*
   1174 	 * The return queue is manipulated by the swi thread
   1175 	 * and, potentially, by crypto device drivers calling
   1176 	 * back to mark operations completed.  Thus we need
   1177 	 * to mask both while manipulating the return queue.
   1178 	 */
   1179 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1180 		krp->krp_callback(krp);
   1181 	} else {
   1182 		mutex_spin_enter(&crypto_ret_q_mtx);
   1183 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1184 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1185 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1186 		if (wasempty)
   1187 			cv_signal(&cryptoret_cv);
   1188 		mutex_spin_exit(&crypto_ret_q_mtx);
   1189 	}
   1190 }
   1191 
   1192 int
   1193 crypto_getfeat(int *featp)
   1194 {
   1195 	int hid, kalg, feat = 0;
   1196 
   1197 	mutex_enter(&crypto_mtx);
   1198 
   1199 	if (crypto_userasymcrypto == 0)
   1200 		goto out;
   1201 
   1202 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1203 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1204 		    crypto_devallowsoft == 0) {
   1205 			continue;
   1206 		}
   1207 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1208 			continue;
   1209 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1210 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1211 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1212 				feat |=  1 << kalg;
   1213 	}
   1214 out:
   1215 	mutex_exit(&crypto_mtx);
   1216 	*featp = feat;
   1217 	return (0);
   1218 }
   1219 
   1220 /*
   1221  * Software interrupt thread to dispatch crypto requests.
   1222  */
   1223 static void
   1224 cryptointr(void)
   1225 {
   1226 	struct cryptop *crp, *submit, *cnext;
   1227 	struct cryptkop *krp, *knext;
   1228 	struct cryptocap *cap;
   1229 	int result, hint;
   1230 
   1231 	cryptostats.cs_intrs++;
   1232 	mutex_spin_enter(&crypto_q_mtx);
   1233 	do {
   1234 		/*
   1235 		 * Find the first element in the queue that can be
   1236 		 * processed and look-ahead to see if multiple ops
   1237 		 * are ready for the same driver.
   1238 		 */
   1239 		submit = NULL;
   1240 		hint = 0;
   1241 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1242 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1243 			cap = crypto_checkdriver(hid);
   1244 			if (cap == NULL || cap->cc_process == NULL) {
   1245 				/* Op needs to be migrated, process it. */
   1246 				if (submit == NULL)
   1247 					submit = crp;
   1248 				break;
   1249 			}
   1250 			if (!cap->cc_qblocked) {
   1251 				if (submit != NULL) {
   1252 					/*
   1253 					 * We stop on finding another op,
   1254 					 * regardless whether its for the same
   1255 					 * driver or not.  We could keep
   1256 					 * searching the queue but it might be
   1257 					 * better to just use a per-driver
   1258 					 * queue instead.
   1259 					 */
   1260 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1261 					    == hid)
   1262 						hint = CRYPTO_HINT_MORE;
   1263 					break;
   1264 				} else {
   1265 					submit = crp;
   1266 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
   1267 						break;
   1268 					/* keep scanning for more are q'd */
   1269 				}
   1270 			}
   1271 		}
   1272 		if (submit != NULL) {
   1273 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1274 			mutex_spin_exit(&crypto_q_mtx);
   1275 			result = crypto_invoke(submit, hint);
   1276 			/* we must take here as the TAILQ op or kinvoke
   1277 			   may need this mutex below.  sigh. */
   1278 			mutex_spin_enter(&crypto_q_mtx);
   1279 			if (result == ERESTART) {
   1280 				/*
   1281 				 * The driver ran out of resources, mark the
   1282 				 * driver ``blocked'' for cryptop's and put
   1283 				 * the request back in the queue.  It would
   1284 				 * best to put the request back where we got
   1285 				 * it but that's hard so for now we put it
   1286 				 * at the front.  This should be ok; putting
   1287 				 * it at the end does not work.
   1288 				 */
   1289 				/* XXX validate sid again? */
   1290 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1291 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1292 				cryptostats.cs_blocks++;
   1293 			}
   1294 		}
   1295 
   1296 		/* As above, but for key ops */
   1297 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1298 			cap = crypto_checkdriver(krp->krp_hid);
   1299 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1300 				/* Op needs to be migrated, process it. */
   1301 				break;
   1302 			}
   1303 			if (!cap->cc_kqblocked)
   1304 				break;
   1305 		}
   1306 		if (krp != NULL) {
   1307 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1308 			mutex_spin_exit(&crypto_q_mtx);
   1309 			result = crypto_kinvoke(krp, 0);
   1310 			/* the next iteration will want the mutex. :-/ */
   1311 			mutex_spin_enter(&crypto_q_mtx);
   1312 			if (result == ERESTART) {
   1313 				/*
   1314 				 * The driver ran out of resources, mark the
   1315 				 * driver ``blocked'' for cryptkop's and put
   1316 				 * the request back in the queue.  It would
   1317 				 * best to put the request back where we got
   1318 				 * it but that's hard so for now we put it
   1319 				 * at the front.  This should be ok; putting
   1320 				 * it at the end does not work.
   1321 				 */
   1322 				/* XXX validate sid again? */
   1323 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1324 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1325 				cryptostats.cs_kblocks++;
   1326 			}
   1327 		}
   1328 	} while (submit != NULL || krp != NULL);
   1329 	mutex_spin_exit(&crypto_q_mtx);
   1330 }
   1331 
   1332 /*
   1333  * Kernel thread to do callbacks.
   1334  */
   1335 static void
   1336 cryptoret(void)
   1337 {
   1338 	struct cryptop *crp;
   1339 	struct cryptkop *krp;
   1340 
   1341 	mutex_spin_enter(&crypto_ret_q_mtx);
   1342 	for (;;) {
   1343 		crp = TAILQ_FIRST(&crp_ret_q);
   1344 		if (crp != NULL) {
   1345 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1346 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1347 		}
   1348 		krp = TAILQ_FIRST(&crp_ret_kq);
   1349 		if (krp != NULL) {
   1350 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1351 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1352 		}
   1353 
   1354 		/* drop before calling any callbacks. */
   1355 		if (crp == NULL && krp == NULL) {
   1356 
   1357                         /* Check for the exit condition. */
   1358 			if (crypto_exit_flag != 0) {
   1359 
   1360         			/* Time to die. */
   1361 				crypto_exit_flag = 0;
   1362         			cv_broadcast(&cryptoret_cv);
   1363 				mutex_spin_exit(&crypto_ret_q_mtx);
   1364         			kthread_exit(0);
   1365 			}
   1366 
   1367 			cryptostats.cs_rets++;
   1368 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1369 			continue;
   1370 		}
   1371 
   1372 		mutex_spin_exit(&crypto_ret_q_mtx);
   1373 
   1374 		if (crp != NULL) {
   1375 #ifdef CRYPTO_TIMING
   1376 			if (crypto_timing) {
   1377 				/*
   1378 				 * NB: We must copy the timestamp before
   1379 				 * doing the callback as the cryptop is
   1380 				 * likely to be reclaimed.
   1381 				 */
   1382 				struct timespec t = crp->crp_tstamp;
   1383 				crypto_tstat(&cryptostats.cs_cb, &t);
   1384 				crp->crp_callback(crp);
   1385 				crypto_tstat(&cryptostats.cs_finis, &t);
   1386 			} else
   1387 #endif
   1388 			{
   1389 				crp->crp_callback(crp);
   1390 			}
   1391 		}
   1392 		if (krp != NULL)
   1393 			krp->krp_callback(krp);
   1394 
   1395 		mutex_spin_enter(&crypto_ret_q_mtx);
   1396 	}
   1397 }
   1398 
   1399 /* NetBSD module interface */
   1400 
   1401 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1402 
   1403 static int
   1404 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1405 {
   1406 	int error = 0;
   1407 
   1408 	switch (cmd) {
   1409 	case MODULE_CMD_INIT:
   1410 #ifdef _MODULE
   1411 		error = crypto_init();
   1412 #endif
   1413 		break;
   1414 	case MODULE_CMD_FINI:
   1415 #ifdef _MODULE
   1416 		error = crypto_destroy(true);
   1417 #endif
   1418 		break;
   1419 	default:
   1420 		error = ENOTTY;
   1421 	}
   1422 	return error;
   1423 }
   1424