crypto.c revision 1.56 1 /* $NetBSD: crypto.c,v 1.56 2017/04/24 02:04:55 knakahara Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.56 2017/04/24 02:04:55 knakahara Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 static kmutex_t crypto_q_mtx;
79 static kmutex_t crypto_ret_q_mtx;
80 static kcondvar_t cryptoret_cv;
81 kmutex_t crypto_mtx;
82
83 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
84 #define SWI_CRYPTO 17
85 #define register_swi(lvl, fn) \
86 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
87 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
88 #define setsoftcrypto(x) \
89 do{ \
90 kpreempt_disable(); \
91 softint_schedule(x); \
92 kpreempt_enable(); \
93 }while(0)
94
95 int crypto_ret_q_check(struct cryptop *);
96
97 /*
98 * Crypto drivers register themselves by allocating a slot in the
99 * crypto_drivers table with crypto_get_driverid() and then registering
100 * each algorithm they support with crypto_register() and crypto_kregister().
101 */
102 static struct cryptocap *crypto_drivers;
103 static int crypto_drivers_num;
104 static void *softintr_cookie;
105 static int crypto_exit_flag;
106
107 /*
108 * There are two queues for crypto requests; one for symmetric (e.g.
109 * cipher) operations and one for asymmetric (e.g. MOD) operations.
110 * See below for how synchronization is handled.
111 */
112 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
113 TAILQ_HEAD_INITIALIZER(crp_q);
114 static TAILQ_HEAD(,cryptkop) crp_kq =
115 TAILQ_HEAD_INITIALIZER(crp_kq);
116
117 /*
118 * There are two queues for processing completed crypto requests; one
119 * for the symmetric and one for the asymmetric ops. We only need one
120 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
121 * for how synchronization is handled.
122 */
123 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
124 TAILQ_HEAD_INITIALIZER(crp_ret_q);
125 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
126 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
127
128 /*
129 * Crypto op and desciptor data structures are allocated
130 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
131 */
132 struct pool cryptop_pool;
133 struct pool cryptodesc_pool;
134 struct pool cryptkop_pool;
135
136 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
137 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
138 /*
139 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
140 * access to hardware versus software transforms as below:
141 *
142 * crypto_devallowsoft < 0: Force userlevel requests to use software
143 * transforms, always
144 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
145 * requests for non-accelerated transforms
146 * (handling the latter in software)
147 * crypto_devallowsoft > 0: Allow user requests only for transforms which
148 * are hardware-accelerated.
149 */
150 int crypto_devallowsoft = 1; /* only use hardware crypto */
151
152 SYSCTL_SETUP(sysctl_opencrypto_setup, "sysctl opencrypto subtree setup")
153 {
154
155 sysctl_createv(clog, 0, NULL, NULL,
156 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
157 CTLTYPE_INT, "usercrypto",
158 SYSCTL_DESCR("Enable/disable user-mode access to "
159 "crypto support"),
160 NULL, 0, &crypto_usercrypto, 0,
161 CTL_KERN, CTL_CREATE, CTL_EOL);
162 sysctl_createv(clog, 0, NULL, NULL,
163 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
164 CTLTYPE_INT, "userasymcrypto",
165 SYSCTL_DESCR("Enable/disable user-mode access to "
166 "asymmetric crypto support"),
167 NULL, 0, &crypto_userasymcrypto, 0,
168 CTL_KERN, CTL_CREATE, CTL_EOL);
169 sysctl_createv(clog, 0, NULL, NULL,
170 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
171 CTLTYPE_INT, "cryptodevallowsoft",
172 SYSCTL_DESCR("Enable/disable use of software "
173 "asymmetric crypto support"),
174 NULL, 0, &crypto_devallowsoft, 0,
175 CTL_KERN, CTL_CREATE, CTL_EOL);
176 }
177
178 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
179
180 /*
181 * Synchronization: read carefully, this is non-trivial.
182 *
183 * Crypto requests are submitted via crypto_dispatch. Typically
184 * these come in from network protocols at spl0 (output path) or
185 * spl[,soft]net (input path).
186 *
187 * Requests are typically passed on the driver directly, but they
188 * may also be queued for processing by a software interrupt thread,
189 * cryptointr, that runs at splsoftcrypto. This thread dispatches
190 * the requests to crypto drivers (h/w or s/w) who call crypto_done
191 * when a request is complete. Hardware crypto drivers are assumed
192 * to register their IRQ's as network devices so their interrupt handlers
193 * and subsequent "done callbacks" happen at spl[imp,net].
194 *
195 * Completed crypto ops are queued for a separate kernel thread that
196 * handles the callbacks at spl0. This decoupling insures the crypto
197 * driver interrupt service routine is not delayed while the callback
198 * takes place and that callbacks are delivered after a context switch
199 * (as opposed to a software interrupt that clients must block).
200 *
201 * This scheme is not intended for SMP machines.
202 */
203 static void cryptointr(void); /* swi thread to dispatch ops */
204 static void cryptoret(void); /* kernel thread for callbacks*/
205 static struct lwp *cryptothread;
206 static int crypto_destroy(bool);
207 static int crypto_invoke(struct cryptop *crp, int hint);
208 static int crypto_kinvoke(struct cryptkop *krp, int hint);
209
210 static struct cryptostats cryptostats;
211 #ifdef CRYPTO_TIMING
212 static int crypto_timing = 0;
213 #endif
214
215 #ifdef _MODULE
216 static struct sysctllog *sysctl_opencrypto_clog;
217 #endif
218
219 static int
220 crypto_init0(void)
221 {
222 int error;
223
224 mutex_init(&crypto_mtx, MUTEX_DEFAULT, IPL_NONE);
225 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
226 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
227 cv_init(&cryptoret_cv, "crypto_w");
228 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
229 0, "cryptop", NULL, IPL_NET);
230 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
231 0, "cryptodesc", NULL, IPL_NET);
232 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
233 0, "cryptkop", NULL, IPL_NET);
234
235 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
236 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
237 if (crypto_drivers == NULL) {
238 printf("crypto_init: cannot malloc driver table\n");
239 return ENOMEM;
240 }
241 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
242
243 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
244 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
245 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
246 if (error) {
247 printf("crypto_init: cannot start cryptoret thread; error %d",
248 error);
249 return crypto_destroy(false);
250 }
251
252 #ifdef _MODULE
253 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
254 #endif
255 return 0;
256 }
257
258 int
259 crypto_init(void)
260 {
261 static ONCE_DECL(crypto_init_once);
262
263 return RUN_ONCE(&crypto_init_once, crypto_init0);
264 }
265
266 static int
267 crypto_destroy(bool exit_kthread)
268 {
269 int i;
270
271 if (exit_kthread) {
272 mutex_spin_enter(&crypto_ret_q_mtx);
273
274 /* if we have any in-progress requests, don't unload */
275 if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
276 mutex_spin_exit(&crypto_ret_q_mtx);
277 return EBUSY;
278 }
279
280 for (i = 0; i < crypto_drivers_num; i++)
281 if (crypto_drivers[i].cc_sessions != 0)
282 break;
283 if (i < crypto_drivers_num) {
284 mutex_spin_exit(&crypto_ret_q_mtx);
285 return EBUSY;
286 }
287
288 /* kick the cryptoret thread and wait for it to exit */
289 crypto_exit_flag = 1;
290 cv_signal(&cryptoret_cv);
291
292 while (crypto_exit_flag != 0)
293 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
294 mutex_spin_exit(&crypto_ret_q_mtx);
295 }
296
297 #ifdef _MODULE
298 if (sysctl_opencrypto_clog != NULL)
299 sysctl_teardown(&sysctl_opencrypto_clog);
300 #endif
301
302 unregister_swi(SWI_CRYPTO, cryptointr);
303
304 if (crypto_drivers != NULL)
305 free(crypto_drivers, M_CRYPTO_DATA);
306
307 pool_destroy(&cryptop_pool);
308 pool_destroy(&cryptodesc_pool);
309 pool_destroy(&cryptkop_pool);
310
311 cv_destroy(&cryptoret_cv);
312
313 mutex_destroy(&crypto_ret_q_mtx);
314 mutex_destroy(&crypto_q_mtx);
315 mutex_destroy(&crypto_mtx);
316
317 return 0;
318 }
319
320 /*
321 * Create a new session. Must be called with crypto_mtx held.
322 */
323 int
324 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
325 {
326 struct cryptoini *cr;
327 u_int32_t hid, lid;
328 int err = EINVAL;
329
330 mutex_enter(&crypto_mtx);
331
332 if (crypto_drivers == NULL)
333 goto done;
334
335 /*
336 * The algorithm we use here is pretty stupid; just use the
337 * first driver that supports all the algorithms we need.
338 *
339 * XXX We need more smarts here (in real life too, but that's
340 * XXX another story altogether).
341 */
342
343 for (hid = 0; hid < crypto_drivers_num; hid++) {
344 /*
345 * If it's not initialized or has remaining sessions
346 * referencing it, skip.
347 */
348 if (crypto_drivers[hid].cc_newsession == NULL ||
349 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
350 continue;
351
352 /* Hardware required -- ignore software drivers. */
353 if (hard > 0 &&
354 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
355 continue;
356 /* Software required -- ignore hardware drivers. */
357 if (hard < 0 &&
358 (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
359 continue;
360
361 /* See if all the algorithms are supported. */
362 for (cr = cri; cr; cr = cr->cri_next)
363 if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
364 DPRINTF(("crypto_newsession: alg %d not supported\n", cr->cri_alg));
365 break;
366 }
367
368 if (cr == NULL) {
369 /* Ok, all algorithms are supported. */
370
371 /*
372 * Can't do everything in one session.
373 *
374 * XXX Fix this. We need to inject a "virtual" session layer right
375 * XXX about here.
376 */
377
378 /* Call the driver initialization routine. */
379 lid = hid; /* Pass the driver ID. */
380 err = crypto_drivers[hid].cc_newsession(
381 crypto_drivers[hid].cc_arg, &lid, cri);
382 if (err == 0) {
383 (*sid) = hid;
384 (*sid) <<= 32;
385 (*sid) |= (lid & 0xffffffff);
386 crypto_drivers[hid].cc_sessions++;
387 } else {
388 DPRINTF(("%s: crypto_drivers[%d].cc_newsession() failed. error=%d\n",
389 __func__, hid, err));
390 }
391 goto done;
392 /*break;*/
393 }
394 }
395 done:
396 mutex_exit(&crypto_mtx);
397 return err;
398 }
399
400 /*
401 * Delete an existing session (or a reserved session on an unregistered
402 * driver). Must be called with crypto_mtx mutex held.
403 */
404 int
405 crypto_freesession(u_int64_t sid)
406 {
407 u_int32_t hid;
408 int err = 0;
409
410 mutex_enter(&crypto_mtx);
411
412 if (crypto_drivers == NULL) {
413 err = EINVAL;
414 goto done;
415 }
416
417 /* Determine two IDs. */
418 hid = CRYPTO_SESID2HID(sid);
419
420 if (hid >= crypto_drivers_num) {
421 err = ENOENT;
422 goto done;
423 }
424
425 if (crypto_drivers[hid].cc_sessions)
426 crypto_drivers[hid].cc_sessions--;
427
428 /* Call the driver cleanup routine, if available. */
429 if (crypto_drivers[hid].cc_freesession) {
430 err = crypto_drivers[hid].cc_freesession(
431 crypto_drivers[hid].cc_arg, sid);
432 }
433 else
434 err = 0;
435
436 /*
437 * If this was the last session of a driver marked as invalid,
438 * make the entry available for reuse.
439 */
440 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
441 crypto_drivers[hid].cc_sessions == 0)
442 memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
443
444 done:
445 mutex_exit(&crypto_mtx);
446 return err;
447 }
448
449 /*
450 * Return an unused driver id. Used by drivers prior to registering
451 * support for the algorithms they handle.
452 */
453 int32_t
454 crypto_get_driverid(u_int32_t flags)
455 {
456 struct cryptocap *newdrv;
457 int i;
458
459 (void)crypto_init(); /* XXX oh, this is foul! */
460
461 mutex_enter(&crypto_mtx);
462 for (i = 0; i < crypto_drivers_num; i++)
463 if (crypto_drivers[i].cc_process == NULL &&
464 (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
465 crypto_drivers[i].cc_sessions == 0)
466 break;
467
468 /* Out of entries, allocate some more. */
469 if (i == crypto_drivers_num) {
470 /* Be careful about wrap-around. */
471 if (2 * crypto_drivers_num <= crypto_drivers_num) {
472 mutex_exit(&crypto_mtx);
473 printf("crypto: driver count wraparound!\n");
474 return -1;
475 }
476
477 newdrv = malloc(2 * crypto_drivers_num *
478 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
479 if (newdrv == NULL) {
480 mutex_exit(&crypto_mtx);
481 printf("crypto: no space to expand driver table!\n");
482 return -1;
483 }
484
485 memcpy(newdrv, crypto_drivers,
486 crypto_drivers_num * sizeof(struct cryptocap));
487
488 crypto_drivers_num *= 2;
489
490 free(crypto_drivers, M_CRYPTO_DATA);
491 crypto_drivers = newdrv;
492 }
493
494 /* NB: state is zero'd on free */
495 crypto_drivers[i].cc_sessions = 1; /* Mark */
496 crypto_drivers[i].cc_flags = flags;
497
498 if (bootverbose)
499 printf("crypto: assign driver %u, flags %u\n", i, flags);
500
501 mutex_exit(&crypto_mtx);
502
503 return i;
504 }
505
506 static struct cryptocap *
507 crypto_checkdriver(u_int32_t hid)
508 {
509 if (crypto_drivers == NULL)
510 return NULL;
511 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
512 }
513
514 /*
515 * Register support for a key-related algorithm. This routine
516 * is called once for each algorithm supported a driver.
517 */
518 int
519 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
520 int (*kprocess)(void *, struct cryptkop *, int),
521 void *karg)
522 {
523 struct cryptocap *cap;
524 int err;
525
526 mutex_enter(&crypto_mtx);
527
528 cap = crypto_checkdriver(driverid);
529 if (cap != NULL &&
530 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
531 /*
532 * XXX Do some performance testing to determine placing.
533 * XXX We probably need an auxiliary data structure that
534 * XXX describes relative performances.
535 */
536
537 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
538 if (bootverbose) {
539 printf("crypto: driver %u registers key alg %u "
540 " flags %u\n",
541 driverid,
542 kalg,
543 flags
544 );
545 }
546
547 if (cap->cc_kprocess == NULL) {
548 cap->cc_karg = karg;
549 cap->cc_kprocess = kprocess;
550 }
551 err = 0;
552 } else
553 err = EINVAL;
554
555 mutex_exit(&crypto_mtx);
556 return err;
557 }
558
559 /*
560 * Register support for a non-key-related algorithm. This routine
561 * is called once for each such algorithm supported by a driver.
562 */
563 int
564 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
565 u_int32_t flags,
566 int (*newses)(void *, u_int32_t*, struct cryptoini*),
567 int (*freeses)(void *, u_int64_t),
568 int (*process)(void *, struct cryptop *, int),
569 void *arg)
570 {
571 struct cryptocap *cap;
572 int err;
573
574 mutex_enter(&crypto_mtx);
575
576 cap = crypto_checkdriver(driverid);
577 /* NB: algorithms are in the range [1..max] */
578 if (cap != NULL &&
579 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
580 /*
581 * XXX Do some performance testing to determine placing.
582 * XXX We probably need an auxiliary data structure that
583 * XXX describes relative performances.
584 */
585
586 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
587 cap->cc_max_op_len[alg] = maxoplen;
588 if (bootverbose) {
589 printf("crypto: driver %u registers alg %u "
590 "flags %u maxoplen %u\n",
591 driverid,
592 alg,
593 flags,
594 maxoplen
595 );
596 }
597
598 if (cap->cc_process == NULL) {
599 cap->cc_arg = arg;
600 cap->cc_newsession = newses;
601 cap->cc_process = process;
602 cap->cc_freesession = freeses;
603 cap->cc_sessions = 0; /* Unmark */
604 }
605 err = 0;
606 } else
607 err = EINVAL;
608
609 mutex_exit(&crypto_mtx);
610 return err;
611 }
612
613 /*
614 * Unregister a crypto driver. If there are pending sessions using it,
615 * leave enough information around so that subsequent calls using those
616 * sessions will correctly detect the driver has been unregistered and
617 * reroute requests.
618 */
619 int
620 crypto_unregister(u_int32_t driverid, int alg)
621 {
622 int i, err;
623 u_int32_t ses;
624 struct cryptocap *cap;
625
626 mutex_enter(&crypto_mtx);
627
628 cap = crypto_checkdriver(driverid);
629 if (cap != NULL &&
630 (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
631 cap->cc_alg[alg] != 0) {
632 cap->cc_alg[alg] = 0;
633 cap->cc_max_op_len[alg] = 0;
634
635 /* Was this the last algorithm ? */
636 for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
637 if (cap->cc_alg[i] != 0)
638 break;
639
640 if (i == CRYPTO_ALGORITHM_MAX + 1) {
641 ses = cap->cc_sessions;
642 memset(cap, 0, sizeof(struct cryptocap));
643 if (ses != 0) {
644 /*
645 * If there are pending sessions, just mark as invalid.
646 */
647 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
648 cap->cc_sessions = ses;
649 }
650 }
651 err = 0;
652 } else
653 err = EINVAL;
654
655 mutex_exit(&crypto_mtx);
656 return err;
657 }
658
659 /*
660 * Unregister all algorithms associated with a crypto driver.
661 * If there are pending sessions using it, leave enough information
662 * around so that subsequent calls using those sessions will
663 * correctly detect the driver has been unregistered and reroute
664 * requests.
665 *
666 * XXX careful. Don't change this to call crypto_unregister() for each
667 * XXX registered algorithm unless you drop the mutex across the calls;
668 * XXX you can't take it recursively.
669 */
670 int
671 crypto_unregister_all(u_int32_t driverid)
672 {
673 int i, err;
674 u_int32_t ses;
675 struct cryptocap *cap;
676
677 mutex_enter(&crypto_mtx);
678 cap = crypto_checkdriver(driverid);
679 if (cap != NULL) {
680 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
681 cap->cc_alg[i] = 0;
682 cap->cc_max_op_len[i] = 0;
683 }
684 ses = cap->cc_sessions;
685 memset(cap, 0, sizeof(struct cryptocap));
686 if (ses != 0) {
687 /*
688 * If there are pending sessions, just mark as invalid.
689 */
690 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
691 cap->cc_sessions = ses;
692 }
693 err = 0;
694 } else
695 err = EINVAL;
696
697 mutex_exit(&crypto_mtx);
698 return err;
699 }
700
701 /*
702 * Clear blockage on a driver. The what parameter indicates whether
703 * the driver is now ready for cryptop's and/or cryptokop's.
704 */
705 int
706 crypto_unblock(u_int32_t driverid, int what)
707 {
708 struct cryptocap *cap;
709 int needwakeup = 0;
710
711 mutex_spin_enter(&crypto_q_mtx);
712 cap = crypto_checkdriver(driverid);
713 if (cap == NULL) {
714 mutex_spin_exit(&crypto_q_mtx);
715 return EINVAL;
716 }
717
718 if (what & CRYPTO_SYMQ) {
719 needwakeup |= cap->cc_qblocked;
720 cap->cc_qblocked = 0;
721 }
722 if (what & CRYPTO_ASYMQ) {
723 needwakeup |= cap->cc_kqblocked;
724 cap->cc_kqblocked = 0;
725 }
726 mutex_spin_exit(&crypto_q_mtx);
727 if (needwakeup)
728 setsoftcrypto(softintr_cookie);
729
730 return 0;
731 }
732
733 /*
734 * Dispatch a crypto request to a driver or queue
735 * it, to be processed by the kernel thread.
736 */
737 int
738 crypto_dispatch(struct cryptop *crp)
739 {
740 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
741 int result;
742
743 mutex_spin_enter(&crypto_q_mtx);
744 DPRINTF(("crypto_dispatch: crp %p, alg %d\n",
745 crp, crp->crp_desc->crd_alg));
746
747 cryptostats.cs_ops++;
748
749 #ifdef CRYPTO_TIMING
750 if (crypto_timing)
751 nanouptime(&crp->crp_tstamp);
752 #endif
753 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
754 struct cryptocap *cap;
755 /*
756 * Caller marked the request to be processed
757 * immediately; dispatch it directly to the
758 * driver unless the driver is currently blocked.
759 */
760 cap = crypto_checkdriver(hid);
761 if (cap && !cap->cc_qblocked) {
762 mutex_spin_exit(&crypto_q_mtx);
763 result = crypto_invoke(crp, 0);
764 if (result == ERESTART) {
765 /*
766 * The driver ran out of resources, mark the
767 * driver ``blocked'' for cryptop's and put
768 * the op on the queue.
769 */
770 mutex_spin_enter(&crypto_q_mtx);
771 crypto_drivers[hid].cc_qblocked = 1;
772 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
773 cryptostats.cs_blocks++;
774 mutex_spin_exit(&crypto_q_mtx);
775 }
776 goto out_released;
777 } else {
778 /*
779 * The driver is blocked, just queue the op until
780 * it unblocks and the swi thread gets kicked.
781 */
782 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
783 result = 0;
784 }
785 } else {
786 int wasempty = TAILQ_EMPTY(&crp_q);
787 /*
788 * Caller marked the request as ``ok to delay'';
789 * queue it for the swi thread. This is desirable
790 * when the operation is low priority and/or suitable
791 * for batching.
792 */
793 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
794 mutex_spin_exit(&crypto_q_mtx);
795 if (wasempty) {
796 setsoftcrypto(softintr_cookie);
797 result = 0;
798 goto out_released;
799 }
800
801 result = 0;
802 }
803
804 mutex_spin_exit(&crypto_q_mtx);
805 out_released:
806 return result;
807 }
808
809 /*
810 * Add an asymetric crypto request to a queue,
811 * to be processed by the kernel thread.
812 */
813 int
814 crypto_kdispatch(struct cryptkop *krp)
815 {
816 struct cryptocap *cap;
817 int result;
818
819 mutex_spin_enter(&crypto_q_mtx);
820 cryptostats.cs_kops++;
821
822 cap = crypto_checkdriver(krp->krp_hid);
823 if (cap && !cap->cc_kqblocked) {
824 mutex_spin_exit(&crypto_q_mtx);
825 result = crypto_kinvoke(krp, 0);
826 if (result == ERESTART) {
827 /*
828 * The driver ran out of resources, mark the
829 * driver ``blocked'' for cryptop's and put
830 * the op on the queue.
831 */
832 mutex_spin_enter(&crypto_q_mtx);
833 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
834 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
835 cryptostats.cs_kblocks++;
836 mutex_spin_exit(&crypto_q_mtx);
837 }
838 } else {
839 /*
840 * The driver is blocked, just queue the op until
841 * it unblocks and the swi thread gets kicked.
842 */
843 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
844 result = 0;
845 mutex_spin_exit(&crypto_q_mtx);
846 }
847
848 return result;
849 }
850
851 /*
852 * Dispatch an assymetric crypto request to the appropriate crypto devices.
853 */
854 static int
855 crypto_kinvoke(struct cryptkop *krp, int hint)
856 {
857 u_int32_t hid;
858 int error;
859
860 /* Sanity checks. */
861 if (krp == NULL)
862 return EINVAL;
863 if (krp->krp_callback == NULL) {
864 cv_destroy(&krp->krp_cv);
865 pool_put(&cryptkop_pool, krp);
866 return EINVAL;
867 }
868
869 mutex_enter(&crypto_mtx);
870 for (hid = 0; hid < crypto_drivers_num; hid++) {
871 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
872 crypto_devallowsoft == 0)
873 continue;
874 if (crypto_drivers[hid].cc_kprocess == NULL)
875 continue;
876 if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
877 CRYPTO_ALG_FLAG_SUPPORTED) == 0)
878 continue;
879 break;
880 }
881 if (hid < crypto_drivers_num) {
882 int (*process)(void *, struct cryptkop *, int);
883 void *arg;
884
885 process = crypto_drivers[hid].cc_kprocess;
886 arg = crypto_drivers[hid].cc_karg;
887 mutex_exit(&crypto_mtx);
888 krp->krp_hid = hid;
889 error = (*process)(arg, krp, hint);
890 } else {
891 mutex_exit(&crypto_mtx);
892 error = ENODEV;
893 }
894
895 if (error) {
896 krp->krp_status = error;
897 crypto_kdone(krp);
898 }
899 return 0;
900 }
901
902 #ifdef CRYPTO_TIMING
903 static void
904 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
905 {
906 struct timespec now, t;
907
908 nanouptime(&now);
909 t.tv_sec = now.tv_sec - tv->tv_sec;
910 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
911 if (t.tv_nsec < 0) {
912 t.tv_sec--;
913 t.tv_nsec += 1000000000;
914 }
915 timespecadd(&ts->acc, &t, &t);
916 if (timespeccmp(&t, &ts->min, <))
917 ts->min = t;
918 if (timespeccmp(&t, &ts->max, >))
919 ts->max = t;
920 ts->count++;
921
922 *tv = now;
923 }
924 #endif
925
926 /*
927 * Dispatch a crypto request to the appropriate crypto devices.
928 */
929 static int
930 crypto_invoke(struct cryptop *crp, int hint)
931 {
932 u_int32_t hid;
933
934 #ifdef CRYPTO_TIMING
935 if (crypto_timing)
936 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
937 #endif
938 /* Sanity checks. */
939 if (crp == NULL)
940 return EINVAL;
941 if (crp->crp_callback == NULL) {
942 return EINVAL;
943 }
944 if (crp->crp_desc == NULL) {
945 crp->crp_etype = EINVAL;
946 crypto_done(crp);
947 return 0;
948 }
949
950 hid = CRYPTO_SESID2HID(crp->crp_sid);
951
952 if (hid < crypto_drivers_num) {
953 int (*process)(void *, struct cryptop *, int);
954 void *arg;
955
956 if (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP)
957 crypto_freesession(crp->crp_sid);
958 process = crypto_drivers[hid].cc_process;
959 arg = crypto_drivers[hid].cc_arg;
960
961 /*
962 * Invoke the driver to process the request.
963 */
964 DPRINTF(("calling process for %p\n", crp));
965 return (*process)(arg, crp, hint);
966 } else {
967 struct cryptodesc *crd;
968 u_int64_t nid = 0;
969
970 /*
971 * Driver has unregistered; migrate the session and return
972 * an error to the caller so they'll resubmit the op.
973 */
974 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
975 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
976
977 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
978 crp->crp_sid = nid;
979
980 crp->crp_etype = EAGAIN;
981
982 crypto_done(crp);
983 return 0;
984 }
985 }
986
987 /*
988 * Release a set of crypto descriptors.
989 */
990 void
991 crypto_freereq(struct cryptop *crp)
992 {
993 struct cryptodesc *crd;
994
995 if (crp == NULL)
996 return;
997 DPRINTF(("crypto_freereq[%u]: crp %p\n",
998 CRYPTO_SESID2LID(crp->crp_sid), crp));
999
1000 /* sanity check */
1001 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1002 panic("crypto_freereq() freeing crp on RETQ\n");
1003 }
1004
1005 while ((crd = crp->crp_desc) != NULL) {
1006 crp->crp_desc = crd->crd_next;
1007 pool_put(&cryptodesc_pool, crd);
1008 }
1009 pool_put(&cryptop_pool, crp);
1010 }
1011
1012 /*
1013 * Acquire a set of crypto descriptors.
1014 */
1015 struct cryptop *
1016 crypto_getreq(int num)
1017 {
1018 struct cryptodesc *crd;
1019 struct cryptop *crp;
1020
1021 crp = pool_get(&cryptop_pool, 0);
1022 if (crp == NULL) {
1023 return NULL;
1024 }
1025 memset(crp, 0, sizeof(struct cryptop));
1026
1027 while (num--) {
1028 crd = pool_get(&cryptodesc_pool, 0);
1029 if (crd == NULL) {
1030 crypto_freereq(crp);
1031 return NULL;
1032 }
1033
1034 memset(crd, 0, sizeof(struct cryptodesc));
1035 crd->crd_next = crp->crp_desc;
1036 crp->crp_desc = crd;
1037 }
1038
1039 return crp;
1040 }
1041
1042 /*
1043 * Invoke the callback on behalf of the driver.
1044 */
1045 void
1046 crypto_done(struct cryptop *crp)
1047 {
1048 int wasempty;
1049
1050 if (crp->crp_etype != 0)
1051 cryptostats.cs_errs++;
1052 #ifdef CRYPTO_TIMING
1053 if (crypto_timing)
1054 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1055 #endif
1056 DPRINTF(("crypto_done[%u]: crp %p\n",
1057 CRYPTO_SESID2LID(crp->crp_sid), crp));
1058
1059 /*
1060 * Normal case; queue the callback for the thread.
1061 *
1062 * The return queue is manipulated by the swi thread
1063 * and, potentially, by crypto device drivers calling
1064 * back to mark operations completed. Thus we need
1065 * to mask both while manipulating the return queue.
1066 */
1067 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1068 /*
1069 * Do the callback directly. This is ok when the
1070 * callback routine does very little (e.g. the
1071 * /dev/crypto callback method just does a wakeup).
1072 */
1073 mutex_spin_enter(&crypto_ret_q_mtx);
1074 crp->crp_flags |= CRYPTO_F_DONE;
1075 mutex_spin_exit(&crypto_ret_q_mtx);
1076
1077 #ifdef CRYPTO_TIMING
1078 if (crypto_timing) {
1079 /*
1080 * NB: We must copy the timestamp before
1081 * doing the callback as the cryptop is
1082 * likely to be reclaimed.
1083 */
1084 struct timespec t = crp->crp_tstamp;
1085 crypto_tstat(&cryptostats.cs_cb, &t);
1086 crp->crp_callback(crp);
1087 crypto_tstat(&cryptostats.cs_finis, &t);
1088 } else
1089 #endif
1090 crp->crp_callback(crp);
1091 } else {
1092 mutex_spin_enter(&crypto_ret_q_mtx);
1093 crp->crp_flags |= CRYPTO_F_DONE;
1094 #if 0
1095 if (crp->crp_flags & CRYPTO_F_USER) {
1096 /*
1097 * TODO:
1098 * If crp->crp_flags & CRYPTO_F_USER and the used
1099 * encryption driver does all the processing in
1100 * the same context, we can skip enqueueing crp_ret_q
1101 * and cv_signal(&cryptoret_cv).
1102 */
1103 DPRINTF(("crypto_done[%u]: crp %p CRYPTO_F_USER\n",
1104 CRYPTO_SESID2LID(crp->crp_sid), crp));
1105 } else
1106 #endif
1107 {
1108 wasempty = TAILQ_EMPTY(&crp_ret_q);
1109 DPRINTF(("crypto_done[%u]: queueing %p\n",
1110 CRYPTO_SESID2LID(crp->crp_sid), crp));
1111 crp->crp_flags |= CRYPTO_F_ONRETQ;
1112 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1113 if (wasempty) {
1114 DPRINTF(("crypto_done[%u]: waking cryptoret, "
1115 "crp %p hit empty queue\n.",
1116 CRYPTO_SESID2LID(crp->crp_sid), crp));
1117 cv_signal(&cryptoret_cv);
1118 }
1119 }
1120 mutex_spin_exit(&crypto_ret_q_mtx);
1121 }
1122 }
1123
1124 /*
1125 * Invoke the callback on behalf of the driver.
1126 */
1127 void
1128 crypto_kdone(struct cryptkop *krp)
1129 {
1130 int wasempty;
1131
1132 if (krp->krp_status != 0)
1133 cryptostats.cs_kerrs++;
1134
1135 krp->krp_flags |= CRYPTO_F_DONE;
1136
1137 /*
1138 * The return queue is manipulated by the swi thread
1139 * and, potentially, by crypto device drivers calling
1140 * back to mark operations completed. Thus we need
1141 * to mask both while manipulating the return queue.
1142 */
1143 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1144 krp->krp_callback(krp);
1145 } else {
1146 mutex_spin_enter(&crypto_ret_q_mtx);
1147 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1148 krp->krp_flags |= CRYPTO_F_ONRETQ;
1149 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1150 if (wasempty)
1151 cv_signal(&cryptoret_cv);
1152 mutex_spin_exit(&crypto_ret_q_mtx);
1153 }
1154 }
1155
1156 int
1157 crypto_getfeat(int *featp)
1158 {
1159 int hid, kalg, feat = 0;
1160
1161 mutex_enter(&crypto_mtx);
1162
1163 if (crypto_userasymcrypto == 0)
1164 goto out;
1165
1166 for (hid = 0; hid < crypto_drivers_num; hid++) {
1167 if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1168 crypto_devallowsoft == 0) {
1169 continue;
1170 }
1171 if (crypto_drivers[hid].cc_kprocess == NULL)
1172 continue;
1173 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1174 if ((crypto_drivers[hid].cc_kalg[kalg] &
1175 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1176 feat |= 1 << kalg;
1177 }
1178 out:
1179 mutex_exit(&crypto_mtx);
1180 *featp = feat;
1181 return (0);
1182 }
1183
1184 /*
1185 * Software interrupt thread to dispatch crypto requests.
1186 */
1187 static void
1188 cryptointr(void)
1189 {
1190 struct cryptop *crp, *submit, *cnext;
1191 struct cryptkop *krp, *knext;
1192 struct cryptocap *cap;
1193 int result, hint;
1194
1195 cryptostats.cs_intrs++;
1196 mutex_spin_enter(&crypto_q_mtx);
1197 do {
1198 /*
1199 * Find the first element in the queue that can be
1200 * processed and look-ahead to see if multiple ops
1201 * are ready for the same driver.
1202 */
1203 submit = NULL;
1204 hint = 0;
1205 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1206 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1207 cap = crypto_checkdriver(hid);
1208 if (cap == NULL || cap->cc_process == NULL) {
1209 /* Op needs to be migrated, process it. */
1210 if (submit == NULL)
1211 submit = crp;
1212 break;
1213 }
1214 if (!cap->cc_qblocked) {
1215 if (submit != NULL) {
1216 /*
1217 * We stop on finding another op,
1218 * regardless whether its for the same
1219 * driver or not. We could keep
1220 * searching the queue but it might be
1221 * better to just use a per-driver
1222 * queue instead.
1223 */
1224 if (CRYPTO_SESID2HID(submit->crp_sid)
1225 == hid)
1226 hint = CRYPTO_HINT_MORE;
1227 break;
1228 } else {
1229 submit = crp;
1230 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1231 break;
1232 /* keep scanning for more are q'd */
1233 }
1234 }
1235 }
1236 if (submit != NULL) {
1237 TAILQ_REMOVE(&crp_q, submit, crp_next);
1238 mutex_spin_exit(&crypto_q_mtx);
1239 result = crypto_invoke(submit, hint);
1240 /* we must take here as the TAILQ op or kinvoke
1241 may need this mutex below. sigh. */
1242 mutex_spin_enter(&crypto_q_mtx);
1243 if (result == ERESTART) {
1244 /*
1245 * The driver ran out of resources, mark the
1246 * driver ``blocked'' for cryptop's and put
1247 * the request back in the queue. It would
1248 * best to put the request back where we got
1249 * it but that's hard so for now we put it
1250 * at the front. This should be ok; putting
1251 * it at the end does not work.
1252 */
1253 /* XXX validate sid again? */
1254 crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1255 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1256 cryptostats.cs_blocks++;
1257 }
1258 }
1259
1260 /* As above, but for key ops */
1261 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1262 cap = crypto_checkdriver(krp->krp_hid);
1263 if (cap == NULL || cap->cc_kprocess == NULL) {
1264 /* Op needs to be migrated, process it. */
1265 break;
1266 }
1267 if (!cap->cc_kqblocked)
1268 break;
1269 }
1270 if (krp != NULL) {
1271 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1272 mutex_spin_exit(&crypto_q_mtx);
1273 result = crypto_kinvoke(krp, 0);
1274 /* the next iteration will want the mutex. :-/ */
1275 mutex_spin_enter(&crypto_q_mtx);
1276 if (result == ERESTART) {
1277 /*
1278 * The driver ran out of resources, mark the
1279 * driver ``blocked'' for cryptkop's and put
1280 * the request back in the queue. It would
1281 * best to put the request back where we got
1282 * it but that's hard so for now we put it
1283 * at the front. This should be ok; putting
1284 * it at the end does not work.
1285 */
1286 /* XXX validate sid again? */
1287 crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1288 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1289 cryptostats.cs_kblocks++;
1290 }
1291 }
1292 } while (submit != NULL || krp != NULL);
1293 mutex_spin_exit(&crypto_q_mtx);
1294 }
1295
1296 /*
1297 * Kernel thread to do callbacks.
1298 */
1299 static void
1300 cryptoret(void)
1301 {
1302 struct cryptop *crp;
1303 struct cryptkop *krp;
1304
1305 mutex_spin_enter(&crypto_ret_q_mtx);
1306 for (;;) {
1307 crp = TAILQ_FIRST(&crp_ret_q);
1308 if (crp != NULL) {
1309 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1310 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1311 }
1312 krp = TAILQ_FIRST(&crp_ret_kq);
1313 if (krp != NULL) {
1314 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1315 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1316 }
1317
1318 /* drop before calling any callbacks. */
1319 if (crp == NULL && krp == NULL) {
1320
1321 /* Check for the exit condition. */
1322 if (crypto_exit_flag != 0) {
1323
1324 /* Time to die. */
1325 crypto_exit_flag = 0;
1326 cv_broadcast(&cryptoret_cv);
1327 mutex_spin_exit(&crypto_ret_q_mtx);
1328 kthread_exit(0);
1329 }
1330
1331 cryptostats.cs_rets++;
1332 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1333 continue;
1334 }
1335
1336 mutex_spin_exit(&crypto_ret_q_mtx);
1337
1338 if (crp != NULL) {
1339 #ifdef CRYPTO_TIMING
1340 if (crypto_timing) {
1341 /*
1342 * NB: We must copy the timestamp before
1343 * doing the callback as the cryptop is
1344 * likely to be reclaimed.
1345 */
1346 struct timespec t = crp->crp_tstamp;
1347 crypto_tstat(&cryptostats.cs_cb, &t);
1348 crp->crp_callback(crp);
1349 crypto_tstat(&cryptostats.cs_finis, &t);
1350 } else
1351 #endif
1352 {
1353 crp->crp_callback(crp);
1354 }
1355 }
1356 if (krp != NULL)
1357 krp->krp_callback(krp);
1358
1359 mutex_spin_enter(&crypto_ret_q_mtx);
1360 }
1361 }
1362
1363 /* NetBSD module interface */
1364
1365 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1366
1367 static int
1368 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1369 {
1370 int error = 0;
1371
1372 switch (cmd) {
1373 case MODULE_CMD_INIT:
1374 #ifdef _MODULE
1375 error = crypto_init();
1376 #endif
1377 break;
1378 case MODULE_CMD_FINI:
1379 #ifdef _MODULE
1380 error = crypto_destroy(true);
1381 #endif
1382 break;
1383 default:
1384 error = ENOTTY;
1385 }
1386 return error;
1387 }
1388