Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.72
      1 /*	$NetBSD: crypto.c,v 1.72 2017/05/24 05:11:29 knakahara Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.72 2017/05/24 05:11:29 knakahara Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 static kmutex_t crypto_q_mtx;
     79 static kmutex_t crypto_ret_q_mtx;
     80 static kcondvar_t cryptoret_cv;
     81 
     82 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     83   #define SWI_CRYPTO 17
     84   #define register_swi(lvl, fn)  \
     85   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     86   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     87   #define setsoftcrypto(x)			\
     88 	do{					\
     89 		kpreempt_disable();		\
     90 		softint_schedule(x);		\
     91 		kpreempt_enable();		\
     92 	}while(0)
     93 
     94 int crypto_ret_q_check(struct cryptop *);
     95 
     96 /*
     97  * Crypto drivers register themselves by allocating a slot in the
     98  * crypto_drivers table with crypto_get_driverid() and then registering
     99  * each algorithm they support with crypto_register() and crypto_kregister().
    100  */
    101 static kmutex_t crypto_drv_mtx;
    102 static	struct cryptocap *crypto_drivers;
    103 static	int crypto_drivers_num;
    104 static	void *softintr_cookie;
    105 static	int crypto_exit_flag;
    106 
    107 /*
    108  * There are two queues for crypto requests; one for symmetric (e.g.
    109  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    110  * See below for how synchronization is handled.
    111  */
    112 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    113 		TAILQ_HEAD_INITIALIZER(crp_q);
    114 static	TAILQ_HEAD(,cryptkop) crp_kq =
    115 		TAILQ_HEAD_INITIALIZER(crp_kq);
    116 
    117 /*
    118  * There are two queues for processing completed crypto requests; one
    119  * for the symmetric and one for the asymmetric ops.  We only need one
    120  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    121  * for how synchronization is handled.
    122  */
    123 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    124 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    125 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    126 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    127 
    128 /*
    129  * Crypto op and desciptor data structures are allocated
    130  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    131  */
    132 struct pool cryptop_pool;
    133 struct pool cryptodesc_pool;
    134 struct pool cryptkop_pool;
    135 
    136 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    137 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    138 /*
    139  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    140  * access to hardware versus software transforms as below:
    141  *
    142  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    143  *                              transforms, always
    144  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    145  *                              requests for non-accelerated transforms
    146  *                              (handling the latter in software)
    147  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    148  *                               are hardware-accelerated.
    149  */
    150 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    151 
    152 static void
    153 sysctl_opencrypto_setup(struct sysctllog **clog)
    154 {
    155 
    156 	sysctl_createv(clog, 0, NULL, NULL,
    157 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    158 		       CTLTYPE_INT, "usercrypto",
    159 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    160 			   "crypto support"),
    161 		       NULL, 0, &crypto_usercrypto, 0,
    162 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    163 	sysctl_createv(clog, 0, NULL, NULL,
    164 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    165 		       CTLTYPE_INT, "userasymcrypto",
    166 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    167 			   "asymmetric crypto support"),
    168 		       NULL, 0, &crypto_userasymcrypto, 0,
    169 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    170 	sysctl_createv(clog, 0, NULL, NULL,
    171 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    172 		       CTLTYPE_INT, "cryptodevallowsoft",
    173 		       SYSCTL_DESCR("Enable/disable use of software "
    174 			   "asymmetric crypto support"),
    175 		       NULL, 0, &crypto_devallowsoft, 0,
    176 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    177 }
    178 
    179 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    180 
    181 /*
    182  * Synchronization: read carefully, this is non-trivial.
    183  *
    184  * Crypto requests are submitted via crypto_dispatch.  Typically
    185  * these come in from network protocols at spl0 (output path) or
    186  * spl[,soft]net (input path).
    187  *
    188  * Requests are typically passed on the driver directly, but they
    189  * may also be queued for processing by a software interrupt thread,
    190  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    191  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    192  * when a request is complete.  Hardware crypto drivers are assumed
    193  * to register their IRQ's as network devices so their interrupt handlers
    194  * and subsequent "done callbacks" happen at spl[imp,net].
    195  *
    196  * Completed crypto ops are queued for a separate kernel thread that
    197  * handles the callbacks at spl0.  This decoupling insures the crypto
    198  * driver interrupt service routine is not delayed while the callback
    199  * takes place and that callbacks are delivered after a context switch
    200  * (as opposed to a software interrupt that clients must block).
    201  *
    202  * This scheme is not intended for SMP machines.
    203  */
    204 static	void cryptointr(void);		/* swi thread to dispatch ops */
    205 static	void cryptoret(void);		/* kernel thread for callbacks*/
    206 static	struct lwp *cryptothread;
    207 static	int crypto_destroy(bool);
    208 static	int crypto_invoke(struct cryptop *crp, int hint);
    209 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    210 
    211 static struct cryptostats cryptostats;
    212 #ifdef CRYPTO_TIMING
    213 static	int crypto_timing = 0;
    214 #endif
    215 
    216 static struct sysctllog *sysctl_opencrypto_clog;
    217 
    218 static int
    219 crypto_init0(void)
    220 {
    221 	int error;
    222 
    223 	mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
    224 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NET);
    225 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    226 	cv_init(&cryptoret_cv, "crypto_w");
    227 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    228 		  0, "cryptop", NULL, IPL_NET);
    229 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    230 		  0, "cryptodesc", NULL, IPL_NET);
    231 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    232 		  0, "cryptkop", NULL, IPL_NET);
    233 
    234 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    235 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    236 	if (crypto_drivers == NULL) {
    237 		printf("crypto_init: cannot malloc driver table\n");
    238 		return ENOMEM;
    239 	}
    240 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    241 
    242 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    243 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    244 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    245 	if (error) {
    246 		printf("crypto_init: cannot start cryptoret thread; error %d",
    247 			error);
    248 		return crypto_destroy(false);
    249 	}
    250 
    251 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    252 
    253 	return 0;
    254 }
    255 
    256 int
    257 crypto_init(void)
    258 {
    259 	static ONCE_DECL(crypto_init_once);
    260 
    261 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    262 }
    263 
    264 static int
    265 crypto_destroy(bool exit_kthread)
    266 {
    267 	int i;
    268 
    269 	if (exit_kthread) {
    270 		mutex_spin_enter(&crypto_ret_q_mtx);
    271 
    272 		/* if we have any in-progress requests, don't unload */
    273 		if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
    274 			mutex_spin_exit(&crypto_ret_q_mtx);
    275 			return EBUSY;
    276 		}
    277 
    278 		for (i = 0; i < crypto_drivers_num; i++)
    279 			if (crypto_drivers[i].cc_sessions != 0)
    280 				break;
    281 		if (i < crypto_drivers_num) {
    282 			mutex_spin_exit(&crypto_ret_q_mtx);
    283 			return EBUSY;
    284 		}
    285 
    286 		/* kick the cryptoret thread and wait for it to exit */
    287 		crypto_exit_flag = 1;
    288 		cv_signal(&cryptoret_cv);
    289 
    290 		while (crypto_exit_flag != 0)
    291 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
    292 		mutex_spin_exit(&crypto_ret_q_mtx);
    293 	}
    294 
    295 	if (sysctl_opencrypto_clog != NULL)
    296 		sysctl_teardown(&sysctl_opencrypto_clog);
    297 
    298 	unregister_swi(SWI_CRYPTO, cryptointr);
    299 
    300 	mutex_enter(&crypto_drv_mtx);
    301 	if (crypto_drivers != NULL)
    302 		free(crypto_drivers, M_CRYPTO_DATA);
    303 	mutex_exit(&crypto_drv_mtx);
    304 
    305 	pool_destroy(&cryptop_pool);
    306 	pool_destroy(&cryptodesc_pool);
    307 	pool_destroy(&cryptkop_pool);
    308 
    309 	cv_destroy(&cryptoret_cv);
    310 
    311 	mutex_destroy(&crypto_ret_q_mtx);
    312 	mutex_destroy(&crypto_q_mtx);
    313 	mutex_destroy(&crypto_drv_mtx);
    314 
    315 	return 0;
    316 }
    317 
    318 /*
    319  * Create a new session.
    320  */
    321 int
    322 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    323 {
    324 	struct cryptoini *cr;
    325 	u_int32_t hid, lid;
    326 	int err = EINVAL;
    327 
    328 	mutex_enter(&crypto_drv_mtx);
    329 
    330 	if (crypto_drivers == NULL)
    331 		goto done;
    332 
    333 	/*
    334 	 * The algorithm we use here is pretty stupid; just use the
    335 	 * first driver that supports all the algorithms we need.
    336 	 *
    337 	 * XXX We need more smarts here (in real life too, but that's
    338 	 * XXX another story altogether).
    339 	 */
    340 
    341 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    342 		/*
    343 		 * If it's not initialized or has remaining sessions
    344 		 * referencing it, skip.
    345 		 */
    346 		if (crypto_drivers[hid].cc_newsession == NULL ||
    347 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP))
    348 			continue;
    349 
    350 		/* Hardware required -- ignore software drivers. */
    351 		if (hard > 0 &&
    352 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE))
    353 			continue;
    354 		/* Software required -- ignore hardware drivers. */
    355 		if (hard < 0 &&
    356 		    (crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) == 0)
    357 			continue;
    358 
    359 		/* See if all the algorithms are supported. */
    360 		for (cr = cri; cr; cr = cr->cri_next)
    361 			if (crypto_drivers[hid].cc_alg[cr->cri_alg] == 0) {
    362 				DPRINTF("alg %d not supported\n", cr->cri_alg);
    363 				break;
    364 			}
    365 
    366 		if (cr == NULL) {
    367 			/* Ok, all algorithms are supported. */
    368 
    369 			/*
    370 			 * Can't do everything in one session.
    371 			 *
    372 			 * XXX Fix this. We need to inject a "virtual" session layer right
    373 			 * XXX about here.
    374 			 */
    375 
    376 			/* Call the driver initialization routine. */
    377 			lid = hid;		/* Pass the driver ID. */
    378 			err = crypto_drivers[hid].cc_newsession(
    379 					crypto_drivers[hid].cc_arg, &lid, cri);
    380 			if (err == 0) {
    381 				(*sid) = hid;
    382 				(*sid) <<= 32;
    383 				(*sid) |= (lid & 0xffffffff);
    384 				crypto_drivers[hid].cc_sessions++;
    385 			} else {
    386 				DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
    387 					hid, err);
    388 			}
    389 			goto done;
    390 			/*break;*/
    391 		}
    392 	}
    393 done:
    394 	mutex_exit(&crypto_drv_mtx);
    395 	return err;
    396 }
    397 
    398 /*
    399  * Delete an existing session (or a reserved session on an unregistered
    400  * driver).
    401  */
    402 int
    403 crypto_freesession(u_int64_t sid)
    404 {
    405 	u_int32_t hid;
    406 	int err = 0;
    407 
    408 	mutex_enter(&crypto_drv_mtx);
    409 
    410 	if (crypto_drivers == NULL) {
    411 		err = EINVAL;
    412 		goto done;
    413 	}
    414 
    415 	/* Determine two IDs. */
    416 	hid = CRYPTO_SESID2HID(sid);
    417 
    418 	if (hid >= crypto_drivers_num) {
    419 		err = ENOENT;
    420 		goto done;
    421 	}
    422 
    423 	if (crypto_drivers[hid].cc_sessions)
    424 		crypto_drivers[hid].cc_sessions--;
    425 
    426 	/* Call the driver cleanup routine, if available. */
    427 	if (crypto_drivers[hid].cc_freesession) {
    428 		err = crypto_drivers[hid].cc_freesession(
    429 				crypto_drivers[hid].cc_arg, sid);
    430 	}
    431 	else
    432 		err = 0;
    433 
    434 	/*
    435 	 * If this was the last session of a driver marked as invalid,
    436 	 * make the entry available for reuse.
    437 	 */
    438 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) &&
    439 	    crypto_drivers[hid].cc_sessions == 0)
    440 		memset(&crypto_drivers[hid], 0, sizeof(struct cryptocap));
    441 
    442 done:
    443 	mutex_exit(&crypto_drv_mtx);
    444 	return err;
    445 }
    446 
    447 /*
    448  * Return an unused driver id.  Used by drivers prior to registering
    449  * support for the algorithms they handle.
    450  */
    451 int32_t
    452 crypto_get_driverid(u_int32_t flags)
    453 {
    454 	struct cryptocap *newdrv;
    455 	int i;
    456 
    457 	(void)crypto_init();		/* XXX oh, this is foul! */
    458 
    459 	mutex_enter(&crypto_drv_mtx);
    460 	for (i = 0; i < crypto_drivers_num; i++)
    461 		if (crypto_drivers[i].cc_process == NULL &&
    462 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
    463 		    crypto_drivers[i].cc_sessions == 0)
    464 			break;
    465 
    466 	/* Out of entries, allocate some more. */
    467 	if (i == crypto_drivers_num) {
    468 		/* Be careful about wrap-around. */
    469 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    470 			mutex_exit(&crypto_drv_mtx);
    471 			printf("crypto: driver count wraparound!\n");
    472 			return -1;
    473 		}
    474 
    475 		newdrv = malloc(2 * crypto_drivers_num *
    476 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    477 		if (newdrv == NULL) {
    478 			mutex_exit(&crypto_drv_mtx);
    479 			printf("crypto: no space to expand driver table!\n");
    480 			return -1;
    481 		}
    482 
    483 		memcpy(newdrv, crypto_drivers,
    484 		    crypto_drivers_num * sizeof(struct cryptocap));
    485 
    486 		crypto_drivers_num *= 2;
    487 
    488 		free(crypto_drivers, M_CRYPTO_DATA);
    489 		crypto_drivers = newdrv;
    490 	}
    491 
    492 	/* NB: state is zero'd on free */
    493 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
    494 	crypto_drivers[i].cc_flags = flags;
    495 
    496 	if (bootverbose)
    497 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    498 
    499 	mutex_exit(&crypto_drv_mtx);
    500 
    501 	return i;
    502 }
    503 
    504 static struct cryptocap *
    505 crypto_checkdriver(u_int32_t hid)
    506 {
    507 	if (crypto_drivers == NULL)
    508 		return NULL;
    509 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    510 }
    511 
    512 /*
    513  * Register support for a key-related algorithm.  This routine
    514  * is called once for each algorithm supported a driver.
    515  */
    516 int
    517 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    518     int (*kprocess)(void *, struct cryptkop *, int),
    519     void *karg)
    520 {
    521 	struct cryptocap *cap;
    522 	int err;
    523 
    524 	mutex_enter(&crypto_drv_mtx);
    525 
    526 	cap = crypto_checkdriver(driverid);
    527 	if (cap != NULL &&
    528 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    529 		/*
    530 		 * XXX Do some performance testing to determine placing.
    531 		 * XXX We probably need an auxiliary data structure that
    532 		 * XXX describes relative performances.
    533 		 */
    534 
    535 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    536 		if (bootverbose) {
    537 			printf("crypto: driver %u registers key alg %u "
    538 			       " flags %u\n",
    539 				driverid,
    540 				kalg,
    541 				flags
    542 			);
    543 		}
    544 
    545 		if (cap->cc_kprocess == NULL) {
    546 			cap->cc_karg = karg;
    547 			cap->cc_kprocess = kprocess;
    548 		}
    549 		err = 0;
    550 	} else
    551 		err = EINVAL;
    552 
    553 	mutex_exit(&crypto_drv_mtx);
    554 	return err;
    555 }
    556 
    557 /*
    558  * Register support for a non-key-related algorithm.  This routine
    559  * is called once for each such algorithm supported by a driver.
    560  */
    561 int
    562 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    563     u_int32_t flags,
    564     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    565     int (*freeses)(void *, u_int64_t),
    566     int (*process)(void *, struct cryptop *, int),
    567     void *arg)
    568 {
    569 	struct cryptocap *cap;
    570 	int err;
    571 
    572 	mutex_enter(&crypto_drv_mtx);
    573 
    574 	cap = crypto_checkdriver(driverid);
    575 	/* NB: algorithms are in the range [1..max] */
    576 	if (cap != NULL &&
    577 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
    578 		/*
    579 		 * XXX Do some performance testing to determine placing.
    580 		 * XXX We probably need an auxiliary data structure that
    581 		 * XXX describes relative performances.
    582 		 */
    583 
    584 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    585 		cap->cc_max_op_len[alg] = maxoplen;
    586 		if (bootverbose) {
    587 			printf("crypto: driver %u registers alg %u "
    588 				"flags %u maxoplen %u\n",
    589 				driverid,
    590 				alg,
    591 				flags,
    592 				maxoplen
    593 			);
    594 		}
    595 
    596 		if (cap->cc_process == NULL) {
    597 			cap->cc_arg = arg;
    598 			cap->cc_newsession = newses;
    599 			cap->cc_process = process;
    600 			cap->cc_freesession = freeses;
    601 			cap->cc_sessions = 0;		/* Unmark */
    602 		}
    603 		err = 0;
    604 	} else
    605 		err = EINVAL;
    606 
    607 	mutex_exit(&crypto_drv_mtx);
    608 	return err;
    609 }
    610 
    611 static int
    612 crypto_unregister_locked(u_int32_t driverid, int alg, bool all)
    613 {
    614 	int i;
    615 	u_int32_t ses;
    616 	struct cryptocap *cap;
    617 	bool lastalg = true;
    618 
    619 	KASSERT(mutex_owned(&crypto_drv_mtx));
    620 
    621 	if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)
    622 		return EINVAL;
    623 
    624 	cap = crypto_checkdriver(driverid);
    625 	if (cap == NULL || (!all && cap->cc_alg[alg] == 0))
    626 		return EINVAL;
    627 
    628 	cap->cc_alg[alg] = 0;
    629 	cap->cc_max_op_len[alg] = 0;
    630 
    631 	if (all) {
    632 		if (alg != CRYPTO_ALGORITHM_MAX)
    633 			lastalg = false;
    634 	} else {
    635 		/* Was this the last algorithm ? */
    636 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
    637 			if (cap->cc_alg[i] != 0) {
    638 				lastalg = false;
    639 				break;
    640 			}
    641 	}
    642 	if (lastalg) {
    643 		ses = cap->cc_sessions;
    644 		memset(cap, 0, sizeof(struct cryptocap));
    645 		if (ses != 0) {
    646 			/*
    647 			 * If there are pending sessions, just mark as invalid.
    648 			 */
    649 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    650 			cap->cc_sessions = ses;
    651 		}
    652 	}
    653 
    654 	return 0;
    655 }
    656 
    657 /*
    658  * Unregister a crypto driver. If there are pending sessions using it,
    659  * leave enough information around so that subsequent calls using those
    660  * sessions will correctly detect the driver has been unregistered and
    661  * reroute requests.
    662  */
    663 int
    664 crypto_unregister(u_int32_t driverid, int alg)
    665 {
    666 	int err;
    667 
    668 	mutex_enter(&crypto_drv_mtx);
    669 	err = crypto_unregister_locked(driverid, alg, false);
    670 	mutex_exit(&crypto_drv_mtx);
    671 
    672 	return err;
    673 }
    674 
    675 /*
    676  * Unregister all algorithms associated with a crypto driver.
    677  * If there are pending sessions using it, leave enough information
    678  * around so that subsequent calls using those sessions will
    679  * correctly detect the driver has been unregistered and reroute
    680  * requests.
    681  */
    682 int
    683 crypto_unregister_all(u_int32_t driverid)
    684 {
    685 	int err, i;
    686 
    687 	mutex_enter(&crypto_drv_mtx);
    688 	for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    689 		err = crypto_unregister_locked(driverid, i, true);
    690 		if (err)
    691 			break;
    692 	}
    693 	mutex_exit(&crypto_drv_mtx);
    694 
    695 	return err;
    696 }
    697 
    698 /*
    699  * Clear blockage on a driver.  The what parameter indicates whether
    700  * the driver is now ready for cryptop's and/or cryptokop's.
    701  */
    702 int
    703 crypto_unblock(u_int32_t driverid, int what)
    704 {
    705 	struct cryptocap *cap;
    706 	int needwakeup = 0;
    707 
    708 	mutex_spin_enter(&crypto_q_mtx);
    709 	cap = crypto_checkdriver(driverid);
    710 	if (cap == NULL) {
    711 		mutex_spin_exit(&crypto_q_mtx);
    712 		return EINVAL;
    713 	}
    714 
    715 	if (what & CRYPTO_SYMQ) {
    716 		needwakeup |= cap->cc_qblocked;
    717 		cap->cc_qblocked = 0;
    718 	}
    719 	if (what & CRYPTO_ASYMQ) {
    720 		needwakeup |= cap->cc_kqblocked;
    721 		cap->cc_kqblocked = 0;
    722 	}
    723 	mutex_spin_exit(&crypto_q_mtx);
    724 	if (needwakeup)
    725 		setsoftcrypto(softintr_cookie);
    726 
    727 	return 0;
    728 }
    729 
    730 /*
    731  * Dispatch a crypto request to a driver or queue
    732  * it, to be processed by the kernel thread.
    733  */
    734 int
    735 crypto_dispatch(struct cryptop *crp)
    736 {
    737 	u_int32_t hid;
    738 	int result;
    739 	struct cryptocap *cap;
    740 
    741 	KASSERT(crp != NULL);
    742 
    743 	hid = CRYPTO_SESID2HID(crp->crp_sid);
    744 
    745 	DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
    746 
    747 	cryptostats.cs_ops++;
    748 
    749 #ifdef CRYPTO_TIMING
    750 	if (crypto_timing)
    751 		nanouptime(&crp->crp_tstamp);
    752 #endif
    753 
    754 	if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
    755 		int wasempty = TAILQ_EMPTY(&crp_q);
    756 		/*
    757 		 * Caller marked the request as ``ok to delay'';
    758 		 * queue it for the swi thread.  This is desirable
    759 		 * when the operation is low priority and/or suitable
    760 		 * for batching.
    761 		 */
    762 		mutex_spin_enter(&crypto_q_mtx);
    763 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    764 		mutex_spin_exit(&crypto_q_mtx);
    765 		if (wasempty)
    766 			setsoftcrypto(softintr_cookie);
    767 
    768 		return 0;
    769 	}
    770 
    771 	mutex_spin_enter(&crypto_q_mtx);
    772 
    773 	cap = crypto_checkdriver(hid);
    774 	/*
    775 	 * TODO:
    776 	 * If we can ensure the driver has been valid until the driver is
    777 	 * done crypto_unregister(), this migrate operation is not required.
    778 	 */
    779 	if (cap == NULL) {
    780 		/*
    781 		 * The driver must be detached, so this request will migrate
    782 		 * to other drivers in cryptointr() later.
    783 		 */
    784 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    785 		mutex_spin_exit(&crypto_q_mtx);
    786 
    787 		return 0;
    788 	}
    789 
    790 	/*
    791 	 * TODO:
    792 	 * cap->cc_qblocked should be protected by a spin lock other than
    793 	 * crypto_q_mtx.
    794 	 */
    795 	if (cap->cc_qblocked != 0) {
    796 		/*
    797 		 * The driver is blocked, just queue the op until
    798 		 * it unblocks and the swi thread gets kicked.
    799 		 */
    800 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
    801 		mutex_spin_exit(&crypto_q_mtx);
    802 
    803 		return 0;
    804 	}
    805 
    806 	/*
    807 	 * Caller marked the request to be processed
    808 	 * immediately; dispatch it directly to the
    809 	 * driver unless the driver is currently blocked.
    810 	 */
    811 	mutex_spin_exit(&crypto_q_mtx);
    812 	result = crypto_invoke(crp, 0);
    813 	if (result == ERESTART) {
    814 		/*
    815 		 * The driver ran out of resources, mark the
    816 		 * driver ``blocked'' for cryptop's and put
    817 		 * the op on the queue.
    818 		 */
    819 		mutex_spin_enter(&crypto_q_mtx);
    820 		crypto_drivers[hid].cc_qblocked = 1;
    821 		TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
    822 		cryptostats.cs_blocks++;
    823 		mutex_spin_exit(&crypto_q_mtx);
    824 
    825 		/*
    826 		 * The crp is enqueued to crp_q, that is,
    827 		 * no error occurs. So, this function should
    828 		 * not return error.
    829 		 */
    830 		result = 0;
    831 	}
    832 
    833 	return result;
    834 }
    835 
    836 /*
    837  * Add an asymetric crypto request to a queue,
    838  * to be processed by the kernel thread.
    839  */
    840 int
    841 crypto_kdispatch(struct cryptkop *krp)
    842 {
    843 	struct cryptocap *cap;
    844 	int result;
    845 
    846 	KASSERT(krp != NULL);
    847 
    848 	mutex_spin_enter(&crypto_q_mtx);
    849 	cryptostats.cs_kops++;
    850 
    851 	cap = crypto_checkdriver(krp->krp_hid);
    852 	/*
    853 	 * TODO:
    854 	 * If we can ensure the driver has been valid until the driver is
    855 	 * done crypto_unregister(), this migrate operation is not required.
    856 	 */
    857 	if (cap == NULL) {
    858 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    859 		mutex_spin_exit(&crypto_q_mtx);
    860 
    861 		return 0;
    862 	}
    863 
    864 	if (cap->cc_kqblocked != 0) {
    865 		/*
    866 		 * The driver is blocked, just queue the op until
    867 		 * it unblocks and the swi thread gets kicked.
    868 		 */
    869 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
    870 		mutex_spin_exit(&crypto_q_mtx);
    871 
    872 		return 0;
    873 	}
    874 
    875 	mutex_spin_exit(&crypto_q_mtx);
    876 	result = crypto_kinvoke(krp, 0);
    877 	if (result == ERESTART) {
    878 		/*
    879 		 * The driver ran out of resources, mark the
    880 		 * driver ``blocked'' for cryptop's and put
    881 		 * the op on the queue.
    882 		 */
    883 		mutex_spin_enter(&crypto_q_mtx);
    884 		crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
    885 		TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
    886 		cryptostats.cs_kblocks++;
    887 		mutex_spin_exit(&crypto_q_mtx);
    888 
    889 		/*
    890 		 * The krp is enqueued to crp_kq, that is,
    891 		 * no error occurs. So, this function should
    892 		 * not return error.
    893 		 */
    894 		result = 0;
    895 	}
    896 
    897 	return result;
    898 }
    899 
    900 /*
    901  * Dispatch an assymetric crypto request to the appropriate crypto devices.
    902  */
    903 static int
    904 crypto_kinvoke(struct cryptkop *krp, int hint)
    905 {
    906 	u_int32_t hid;
    907 	int error;
    908 
    909 	KASSERT(krp != NULL);
    910 
    911 	/* Sanity checks. */
    912 	if (krp->krp_callback == NULL) {
    913 		cv_destroy(&krp->krp_cv);
    914 		pool_put(&cryptkop_pool, krp);
    915 		return EINVAL;
    916 	}
    917 
    918 	mutex_enter(&crypto_drv_mtx);
    919 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    920 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
    921 		    crypto_devallowsoft == 0)
    922 			continue;
    923 		if (crypto_drivers[hid].cc_kprocess == NULL)
    924 			continue;
    925 		if ((crypto_drivers[hid].cc_kalg[krp->krp_op] &
    926 		    CRYPTO_ALG_FLAG_SUPPORTED) == 0)
    927 			continue;
    928 		break;
    929 	}
    930 	if (hid < crypto_drivers_num) {
    931 		int (*process)(void *, struct cryptkop *, int);
    932 		void *arg;
    933 
    934 		process = crypto_drivers[hid].cc_kprocess;
    935 		arg = crypto_drivers[hid].cc_karg;
    936 		mutex_exit(&crypto_drv_mtx);
    937 		krp->krp_hid = hid;
    938 		error = (*process)(arg, krp, hint);
    939 	} else {
    940 		mutex_exit(&crypto_drv_mtx);
    941 		error = ENODEV;
    942 	}
    943 
    944 	if (error) {
    945 		krp->krp_status = error;
    946 		crypto_kdone(krp);
    947 	}
    948 	return 0;
    949 }
    950 
    951 #ifdef CRYPTO_TIMING
    952 static void
    953 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
    954 {
    955 	struct timespec now, t;
    956 
    957 	nanouptime(&now);
    958 	t.tv_sec = now.tv_sec - tv->tv_sec;
    959 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
    960 	if (t.tv_nsec < 0) {
    961 		t.tv_sec--;
    962 		t.tv_nsec += 1000000000;
    963 	}
    964 	timespecadd(&ts->acc, &t, &t);
    965 	if (timespeccmp(&t, &ts->min, <))
    966 		ts->min = t;
    967 	if (timespeccmp(&t, &ts->max, >))
    968 		ts->max = t;
    969 	ts->count++;
    970 
    971 	*tv = now;
    972 }
    973 #endif
    974 
    975 /*
    976  * Dispatch a crypto request to the appropriate crypto devices.
    977  */
    978 static int
    979 crypto_invoke(struct cryptop *crp, int hint)
    980 {
    981 	u_int32_t hid;
    982 
    983 	KASSERT(crp != NULL);
    984 
    985 #ifdef CRYPTO_TIMING
    986 	if (crypto_timing)
    987 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
    988 #endif
    989 	/* Sanity checks. */
    990 	if (crp->crp_callback == NULL) {
    991 		return EINVAL;
    992 	}
    993 	if (crp->crp_desc == NULL) {
    994 		crp->crp_etype = EINVAL;
    995 		crypto_done(crp);
    996 		return 0;
    997 	}
    998 
    999 	hid = CRYPTO_SESID2HID(crp->crp_sid);
   1000 
   1001 	if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
   1002 		int (*process)(void *, struct cryptop *, int);
   1003 		void *arg;
   1004 
   1005 		process = crypto_drivers[hid].cc_process;
   1006 		arg = crypto_drivers[hid].cc_arg;
   1007 
   1008 		/*
   1009 		 * Invoke the driver to process the request.
   1010 		 */
   1011 		DPRINTF("calling process for %p\n", crp);
   1012 		return (*process)(arg, crp, hint);
   1013 	} else {
   1014 		struct cryptodesc *crd;
   1015 		u_int64_t nid = 0;
   1016 
   1017 		/*
   1018 		 * Driver has unregistered; migrate the session and return
   1019 		 * an error to the caller so they'll resubmit the op.
   1020 		 */
   1021 		crypto_freesession(crp->crp_sid);
   1022 
   1023 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1024 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1025 
   1026 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1027 			crp->crp_sid = nid;
   1028 
   1029 		crp->crp_etype = EAGAIN;
   1030 
   1031 		crypto_done(crp);
   1032 		return 0;
   1033 	}
   1034 }
   1035 
   1036 /*
   1037  * Release a set of crypto descriptors.
   1038  */
   1039 void
   1040 crypto_freereq(struct cryptop *crp)
   1041 {
   1042 	struct cryptodesc *crd;
   1043 
   1044 	if (crp == NULL)
   1045 		return;
   1046 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1047 
   1048 	/* sanity check */
   1049 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1050 		panic("crypto_freereq() freeing crp on RETQ\n");
   1051 	}
   1052 
   1053 	while ((crd = crp->crp_desc) != NULL) {
   1054 		crp->crp_desc = crd->crd_next;
   1055 		pool_put(&cryptodesc_pool, crd);
   1056 	}
   1057 	pool_put(&cryptop_pool, crp);
   1058 }
   1059 
   1060 /*
   1061  * Acquire a set of crypto descriptors.
   1062  */
   1063 struct cryptop *
   1064 crypto_getreq(int num)
   1065 {
   1066 	struct cryptodesc *crd;
   1067 	struct cryptop *crp;
   1068 
   1069 	crp = pool_get(&cryptop_pool, 0);
   1070 	if (crp == NULL) {
   1071 		return NULL;
   1072 	}
   1073 	memset(crp, 0, sizeof(struct cryptop));
   1074 
   1075 	while (num--) {
   1076 		crd = pool_get(&cryptodesc_pool, 0);
   1077 		if (crd == NULL) {
   1078 			crypto_freereq(crp);
   1079 			return NULL;
   1080 		}
   1081 
   1082 		memset(crd, 0, sizeof(struct cryptodesc));
   1083 		crd->crd_next = crp->crp_desc;
   1084 		crp->crp_desc = crd;
   1085 	}
   1086 
   1087 	return crp;
   1088 }
   1089 
   1090 /*
   1091  * Invoke the callback on behalf of the driver.
   1092  */
   1093 void
   1094 crypto_done(struct cryptop *crp)
   1095 {
   1096 	int wasempty;
   1097 
   1098 	KASSERT(crp != NULL);
   1099 
   1100 	if (crp->crp_etype != 0)
   1101 		cryptostats.cs_errs++;
   1102 #ifdef CRYPTO_TIMING
   1103 	if (crypto_timing)
   1104 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1105 #endif
   1106 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1107 
   1108 	/*
   1109 	 * Normal case; queue the callback for the thread.
   1110 	 *
   1111 	 * The return queue is manipulated by the swi thread
   1112 	 * and, potentially, by crypto device drivers calling
   1113 	 * back to mark operations completed.  Thus we need
   1114 	 * to mask both while manipulating the return queue.
   1115 	 */
   1116   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1117 		/*
   1118 	 	* Do the callback directly.  This is ok when the
   1119   	 	* callback routine does very little (e.g. the
   1120 	 	* /dev/crypto callback method just does a wakeup).
   1121 	 	*/
   1122 		mutex_spin_enter(&crypto_ret_q_mtx);
   1123 		crp->crp_flags |= CRYPTO_F_DONE;
   1124 		mutex_spin_exit(&crypto_ret_q_mtx);
   1125 
   1126 #ifdef CRYPTO_TIMING
   1127 		if (crypto_timing) {
   1128 			/*
   1129 		 	* NB: We must copy the timestamp before
   1130 		 	* doing the callback as the cryptop is
   1131 		 	* likely to be reclaimed.
   1132 		 	*/
   1133 			struct timespec t = crp->crp_tstamp;
   1134 			crypto_tstat(&cryptostats.cs_cb, &t);
   1135 			crp->crp_callback(crp);
   1136 			crypto_tstat(&cryptostats.cs_finis, &t);
   1137 		} else
   1138 #endif
   1139 		crp->crp_callback(crp);
   1140 	} else {
   1141 		mutex_spin_enter(&crypto_ret_q_mtx);
   1142 		crp->crp_flags |= CRYPTO_F_DONE;
   1143 #if 0
   1144 		if (crp->crp_flags & CRYPTO_F_USER) {
   1145 			/*
   1146 			 * TODO:
   1147 			 * If crp->crp_flags & CRYPTO_F_USER and the used
   1148 			 * encryption driver does all the processing in
   1149 			 * the same context, we can skip enqueueing crp_ret_q
   1150 			 * and cv_signal(&cryptoret_cv).
   1151 			 */
   1152 			DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
   1153 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1154 		} else
   1155 #endif
   1156 		{
   1157 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1158 			DPRINTF("lid[%u]: queueing %p\n",
   1159 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1160 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1161 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1162 			if (wasempty) {
   1163 				DPRINTF("lid[%u]: waking cryptoret, "
   1164 					"crp %p hit empty queue\n.",
   1165 					CRYPTO_SESID2LID(crp->crp_sid), crp);
   1166 				cv_signal(&cryptoret_cv);
   1167 			}
   1168 		}
   1169 		mutex_spin_exit(&crypto_ret_q_mtx);
   1170 	}
   1171 }
   1172 
   1173 /*
   1174  * Invoke the callback on behalf of the driver.
   1175  */
   1176 void
   1177 crypto_kdone(struct cryptkop *krp)
   1178 {
   1179 	int wasempty;
   1180 
   1181 	KASSERT(krp != NULL);
   1182 
   1183 	if (krp->krp_status != 0)
   1184 		cryptostats.cs_kerrs++;
   1185 
   1186 	krp->krp_flags |= CRYPTO_F_DONE;
   1187 
   1188 	/*
   1189 	 * The return queue is manipulated by the swi thread
   1190 	 * and, potentially, by crypto device drivers calling
   1191 	 * back to mark operations completed.  Thus we need
   1192 	 * to mask both while manipulating the return queue.
   1193 	 */
   1194 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1195 		krp->krp_callback(krp);
   1196 	} else {
   1197 		mutex_spin_enter(&crypto_ret_q_mtx);
   1198 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1199 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1200 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1201 		if (wasempty)
   1202 			cv_signal(&cryptoret_cv);
   1203 		mutex_spin_exit(&crypto_ret_q_mtx);
   1204 	}
   1205 }
   1206 
   1207 int
   1208 crypto_getfeat(int *featp)
   1209 {
   1210 	int hid, kalg, feat = 0;
   1211 
   1212 	if (crypto_userasymcrypto == 0)
   1213 		return 0;
   1214 
   1215 	mutex_enter(&crypto_drv_mtx);
   1216 
   1217 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1218 		if ((crypto_drivers[hid].cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1219 		    crypto_devallowsoft == 0) {
   1220 			continue;
   1221 		}
   1222 		if (crypto_drivers[hid].cc_kprocess == NULL)
   1223 			continue;
   1224 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1225 			if ((crypto_drivers[hid].cc_kalg[kalg] &
   1226 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1227 				feat |=  1 << kalg;
   1228 	}
   1229 
   1230 	mutex_exit(&crypto_drv_mtx);
   1231 	*featp = feat;
   1232 	return (0);
   1233 }
   1234 
   1235 /*
   1236  * Software interrupt thread to dispatch crypto requests.
   1237  */
   1238 static void
   1239 cryptointr(void)
   1240 {
   1241 	struct cryptop *crp, *submit, *cnext;
   1242 	struct cryptkop *krp, *knext;
   1243 	struct cryptocap *cap;
   1244 	int result, hint;
   1245 
   1246 	cryptostats.cs_intrs++;
   1247 	mutex_spin_enter(&crypto_q_mtx);
   1248 	do {
   1249 		/*
   1250 		 * Find the first element in the queue that can be
   1251 		 * processed and look-ahead to see if multiple ops
   1252 		 * are ready for the same driver.
   1253 		 */
   1254 		submit = NULL;
   1255 		hint = 0;
   1256 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1257 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1258 			cap = crypto_checkdriver(hid);
   1259 			if (cap == NULL || cap->cc_process == NULL) {
   1260 				/* Op needs to be migrated, process it. */
   1261 				submit = crp;
   1262 				break;
   1263 			}
   1264 
   1265 			/*
   1266 			 * skip blocked crp regardless of CRYPTO_F_BATCH
   1267 			 */
   1268 			if (cap->cc_qblocked != 0)
   1269 				continue;
   1270 
   1271 			/*
   1272 			 * skip batch crp until the end of crp_q
   1273 			 */
   1274 			if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1275 				if (submit == NULL) {
   1276 					submit = crp;
   1277 				} else {
   1278 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1279 					    == hid)
   1280 						hint = CRYPTO_HINT_MORE;
   1281 				}
   1282 
   1283 				continue;
   1284 			}
   1285 
   1286 			/*
   1287 			 * found first crp which is neither blocked nor batch.
   1288 			 */
   1289 			submit = crp;
   1290 			/*
   1291 			 * batch crp can be processed much later, so clear hint.
   1292 			 */
   1293 			hint = 0;
   1294 			break;
   1295 		}
   1296 		if (submit != NULL) {
   1297 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1298 			mutex_spin_exit(&crypto_q_mtx);
   1299 			result = crypto_invoke(submit, hint);
   1300 			/* we must take here as the TAILQ op or kinvoke
   1301 			   may need this mutex below.  sigh. */
   1302 			mutex_spin_enter(&crypto_q_mtx);
   1303 			if (result == ERESTART) {
   1304 				/*
   1305 				 * The driver ran out of resources, mark the
   1306 				 * driver ``blocked'' for cryptop's and put
   1307 				 * the request back in the queue.  It would
   1308 				 * best to put the request back where we got
   1309 				 * it but that's hard so for now we put it
   1310 				 * at the front.  This should be ok; putting
   1311 				 * it at the end does not work.
   1312 				 */
   1313 				/* XXX validate sid again? */
   1314 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
   1315 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1316 				cryptostats.cs_blocks++;
   1317 			}
   1318 		}
   1319 
   1320 		/* As above, but for key ops */
   1321 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1322 			cap = crypto_checkdriver(krp->krp_hid);
   1323 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1324 				/* Op needs to be migrated, process it. */
   1325 				break;
   1326 			}
   1327 			if (!cap->cc_kqblocked)
   1328 				break;
   1329 		}
   1330 		if (krp != NULL) {
   1331 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1332 			mutex_spin_exit(&crypto_q_mtx);
   1333 			result = crypto_kinvoke(krp, 0);
   1334 			/* the next iteration will want the mutex. :-/ */
   1335 			mutex_spin_enter(&crypto_q_mtx);
   1336 			if (result == ERESTART) {
   1337 				/*
   1338 				 * The driver ran out of resources, mark the
   1339 				 * driver ``blocked'' for cryptkop's and put
   1340 				 * the request back in the queue.  It would
   1341 				 * best to put the request back where we got
   1342 				 * it but that's hard so for now we put it
   1343 				 * at the front.  This should be ok; putting
   1344 				 * it at the end does not work.
   1345 				 */
   1346 				/* XXX validate sid again? */
   1347 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
   1348 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1349 				cryptostats.cs_kblocks++;
   1350 			}
   1351 		}
   1352 	} while (submit != NULL || krp != NULL);
   1353 	mutex_spin_exit(&crypto_q_mtx);
   1354 }
   1355 
   1356 /*
   1357  * Kernel thread to do callbacks.
   1358  */
   1359 static void
   1360 cryptoret(void)
   1361 {
   1362 	struct cryptop *crp;
   1363 	struct cryptkop *krp;
   1364 
   1365 	mutex_spin_enter(&crypto_ret_q_mtx);
   1366 	for (;;) {
   1367 		crp = TAILQ_FIRST(&crp_ret_q);
   1368 		if (crp != NULL) {
   1369 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1370 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1371 		}
   1372 		krp = TAILQ_FIRST(&crp_ret_kq);
   1373 		if (krp != NULL) {
   1374 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1375 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1376 		}
   1377 
   1378 		/* drop before calling any callbacks. */
   1379 		if (crp == NULL && krp == NULL) {
   1380 
   1381                         /* Check for the exit condition. */
   1382 			if (crypto_exit_flag != 0) {
   1383 
   1384         			/* Time to die. */
   1385 				crypto_exit_flag = 0;
   1386         			cv_broadcast(&cryptoret_cv);
   1387 				mutex_spin_exit(&crypto_ret_q_mtx);
   1388         			kthread_exit(0);
   1389 			}
   1390 
   1391 			cryptostats.cs_rets++;
   1392 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1393 			continue;
   1394 		}
   1395 
   1396 		mutex_spin_exit(&crypto_ret_q_mtx);
   1397 
   1398 		if (crp != NULL) {
   1399 #ifdef CRYPTO_TIMING
   1400 			if (crypto_timing) {
   1401 				/*
   1402 				 * NB: We must copy the timestamp before
   1403 				 * doing the callback as the cryptop is
   1404 				 * likely to be reclaimed.
   1405 				 */
   1406 				struct timespec t = crp->crp_tstamp;
   1407 				crypto_tstat(&cryptostats.cs_cb, &t);
   1408 				crp->crp_callback(crp);
   1409 				crypto_tstat(&cryptostats.cs_finis, &t);
   1410 			} else
   1411 #endif
   1412 			{
   1413 				crp->crp_callback(crp);
   1414 			}
   1415 		}
   1416 		if (krp != NULL)
   1417 			krp->krp_callback(krp);
   1418 
   1419 		mutex_spin_enter(&crypto_ret_q_mtx);
   1420 	}
   1421 }
   1422 
   1423 /* NetBSD module interface */
   1424 
   1425 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1426 
   1427 static int
   1428 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1429 {
   1430 	int error = 0;
   1431 
   1432 	switch (cmd) {
   1433 	case MODULE_CMD_INIT:
   1434 #ifdef _MODULE
   1435 		error = crypto_init();
   1436 #endif
   1437 		break;
   1438 	case MODULE_CMD_FINI:
   1439 #ifdef _MODULE
   1440 		error = crypto_destroy(true);
   1441 #endif
   1442 		break;
   1443 	default:
   1444 		error = ENOTTY;
   1445 	}
   1446 	return error;
   1447 }
   1448