Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.78.2.1
      1 /*	$NetBSD: crypto.c,v 1.78.2.1 2017/06/22 05:36:41 snj Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.78.2.1 2017/06/22 05:36:41 snj Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 static kmutex_t crypto_q_mtx;
     79 static kmutex_t crypto_ret_q_mtx;
     80 static kcondvar_t cryptoret_cv;
     81 
     82 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     83   #define SWI_CRYPTO 17
     84   #define register_swi(lvl, fn)  \
     85   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     86   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     87   #define setsoftcrypto(x)			\
     88 	do{					\
     89 		kpreempt_disable();		\
     90 		softint_schedule(x);		\
     91 		kpreempt_enable();		\
     92 	}while(0)
     93 
     94 int crypto_ret_q_check(struct cryptop *);
     95 
     96 /*
     97  * Crypto drivers register themselves by allocating a slot in the
     98  * crypto_drivers table with crypto_get_driverid() and then registering
     99  * each algorithm they support with crypto_register() and crypto_kregister().
    100  */
    101 static kmutex_t crypto_drv_mtx;
    102 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
    103 static	struct cryptocap *crypto_drivers;
    104 static	int crypto_drivers_num;
    105 static	void *softintr_cookie;
    106 static	int crypto_exit_flag;
    107 
    108 /*
    109  * There are two queues for crypto requests; one for symmetric (e.g.
    110  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    111  * See below for how synchronization is handled.
    112  */
    113 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    114 		TAILQ_HEAD_INITIALIZER(crp_q);
    115 static	TAILQ_HEAD(,cryptkop) crp_kq =
    116 		TAILQ_HEAD_INITIALIZER(crp_kq);
    117 
    118 /*
    119  * There are two queues for processing completed crypto requests; one
    120  * for the symmetric and one for the asymmetric ops.  We only need one
    121  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    122  * for how synchronization is handled.
    123  */
    124 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    125 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    126 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    127 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    128 
    129 #define DEFINIT_CRYPTO_Q_LEN(name)		\
    130 	static int crypto_##name##_len = 0
    131 
    132 #define DEFINIT_CRYPTO_Q_DROPS(name)		\
    133 	static int crypto_##name##_drops = 0
    134 
    135 #define DEFINIT_CRYPTO_Q_MAXLEN(name, defval)		\
    136 	static int crypto_##name##_maxlen = defval
    137 
    138 #define CRYPTO_Q_INC(name)			\
    139 	do {					\
    140 		crypto_##name##_len++;		\
    141 	} while(0);
    142 
    143 #define CRYPTO_Q_DEC(name)			\
    144 	do {					\
    145 		crypto_##name##_len--;		\
    146 	} while(0);
    147 
    148 #define CRYPTO_Q_INC_DROPS(name)		\
    149 	do {					\
    150 		crypto_##name##_drops++;	\
    151 	} while(0);
    152 
    153 #define CRYPTO_Q_IS_FULL(name)					\
    154 	(crypto_##name##_maxlen > 0				\
    155 	    && (crypto_##name##_len > crypto_##name##_maxlen))
    156 
    157 /*
    158  * current queue length.
    159  */
    160 DEFINIT_CRYPTO_Q_LEN(crp_ret_q);
    161 DEFINIT_CRYPTO_Q_LEN(crp_ret_kq);
    162 
    163 /*
    164  * queue dropped count.
    165  */
    166 DEFINIT_CRYPTO_Q_DROPS(crp_ret_q);
    167 DEFINIT_CRYPTO_Q_DROPS(crp_ret_kq);
    168 
    169 #ifndef CRYPTO_RET_Q_MAXLEN
    170 #define CRYPTO_RET_Q_MAXLEN 0
    171 #endif
    172 #ifndef CRYPTO_RET_KQ_MAXLEN
    173 #define CRYPTO_RET_KQ_MAXLEN 0
    174 #endif
    175 /*
    176  * queue length limit.
    177  * default value is 0. <=0 means unlimited.
    178  */
    179 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_q, CRYPTO_RET_Q_MAXLEN);
    180 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_kq, CRYPTO_RET_KQ_MAXLEN);
    181 
    182 /*
    183  * TODO:
    184  * make percpu
    185  */
    186 static int
    187 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
    188 {
    189 	int error;
    190 
    191 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    192 	if (error || newp == NULL)
    193 		return error;
    194 
    195 	return 0;
    196 }
    197 
    198 /*
    199  * TODO:
    200  * make percpu
    201  */
    202 static int
    203 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
    204 {
    205 	int error;
    206 
    207 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    208 	if (error || newp == NULL)
    209 		return error;
    210 
    211 	return 0;
    212 }
    213 
    214 /*
    215  * need to make percpu?
    216  */
    217 static int
    218 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
    219 {
    220 	int error;
    221 
    222 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    223 	if (error || newp == NULL)
    224 		return error;
    225 
    226 	return 0;
    227 }
    228 
    229 /*
    230  * Crypto op and desciptor data structures are allocated
    231  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    232  */
    233 struct pool cryptop_pool;
    234 struct pool cryptodesc_pool;
    235 struct pool cryptkop_pool;
    236 
    237 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    238 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    239 /*
    240  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    241  * access to hardware versus software transforms as below:
    242  *
    243  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    244  *                              transforms, always
    245  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    246  *                              requests for non-accelerated transforms
    247  *                              (handling the latter in software)
    248  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    249  *                               are hardware-accelerated.
    250  */
    251 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    252 
    253 static void
    254 sysctl_opencrypto_setup(struct sysctllog **clog)
    255 {
    256 	const struct sysctlnode *ocnode;
    257 	const struct sysctlnode *retqnode, *retkqnode;
    258 
    259 	sysctl_createv(clog, 0, NULL, NULL,
    260 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    261 		       CTLTYPE_INT, "usercrypto",
    262 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    263 			   "crypto support"),
    264 		       NULL, 0, &crypto_usercrypto, 0,
    265 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    266 	sysctl_createv(clog, 0, NULL, NULL,
    267 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    268 		       CTLTYPE_INT, "userasymcrypto",
    269 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    270 			   "asymmetric crypto support"),
    271 		       NULL, 0, &crypto_userasymcrypto, 0,
    272 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    273 	sysctl_createv(clog, 0, NULL, NULL,
    274 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    275 		       CTLTYPE_INT, "cryptodevallowsoft",
    276 		       SYSCTL_DESCR("Enable/disable use of software "
    277 			   "asymmetric crypto support"),
    278 		       NULL, 0, &crypto_devallowsoft, 0,
    279 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    280 
    281 	sysctl_createv(clog, 0, NULL, &ocnode,
    282 		       CTLFLAG_PERMANENT,
    283 		       CTLTYPE_NODE, "opencrypto",
    284 		       SYSCTL_DESCR("opencrypto related entries"),
    285 		       NULL, 0, NULL, 0,
    286 		       CTL_CREATE, CTL_EOL);
    287 
    288 	sysctl_createv(clog, 0, &ocnode, &retqnode,
    289 		       CTLFLAG_PERMANENT,
    290 		       CTLTYPE_NODE, "crypto_ret_q",
    291 		       SYSCTL_DESCR("crypto_ret_q related entries"),
    292 		       NULL, 0, NULL, 0,
    293 		       CTL_CREATE, CTL_EOL);
    294 	sysctl_createv(clog, 0, &retqnode, NULL,
    295 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    296 		       CTLTYPE_INT, "len",
    297 		       SYSCTL_DESCR("Current queue length"),
    298 		       sysctl_opencrypto_q_len, 0,
    299 		       (void *)&crypto_crp_ret_q_len, 0,
    300 		       CTL_CREATE, CTL_EOL);
    301 	sysctl_createv(clog, 0, &retqnode, NULL,
    302 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    303 		       CTLTYPE_INT, "drops",
    304 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    305 		       sysctl_opencrypto_q_drops, 0,
    306 		       (void *)&crypto_crp_ret_q_drops, 0,
    307 		       CTL_CREATE, CTL_EOL);
    308 	sysctl_createv(clog, 0, &retqnode, NULL,
    309 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    310 		       CTLTYPE_INT, "maxlen",
    311 		       SYSCTL_DESCR("Maximum allowed queue length"),
    312 		       sysctl_opencrypto_q_maxlen, 0,
    313 		       (void *)&crypto_crp_ret_q_maxlen, 0,
    314 		       CTL_CREATE, CTL_EOL);
    315 
    316 	sysctl_createv(clog, 0, &ocnode, &retkqnode,
    317 		       CTLFLAG_PERMANENT,
    318 		       CTLTYPE_NODE, "crypto_ret_kq",
    319 		       SYSCTL_DESCR("crypto_ret_kq related entries"),
    320 		       NULL, 0, NULL, 0,
    321 		       CTL_CREATE, CTL_EOL);
    322 	sysctl_createv(clog, 0, &retkqnode, NULL,
    323 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    324 		       CTLTYPE_INT, "len",
    325 		       SYSCTL_DESCR("Current queue length"),
    326 		       sysctl_opencrypto_q_len, 0,
    327 		       (void *)&crypto_crp_ret_kq_len, 0,
    328 		       CTL_CREATE, CTL_EOL);
    329 	sysctl_createv(clog, 0, &retkqnode, NULL,
    330 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    331 		       CTLTYPE_INT, "drops",
    332 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    333 		       sysctl_opencrypto_q_drops, 0,
    334 		       (void *)&crypto_crp_ret_kq_drops, 0,
    335 		       CTL_CREATE, CTL_EOL);
    336 	sysctl_createv(clog, 0, &retkqnode, NULL,
    337 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    338 		       CTLTYPE_INT, "maxlen",
    339 		       SYSCTL_DESCR("Maximum allowed queue length"),
    340 		       sysctl_opencrypto_q_maxlen, 0,
    341 		       (void *)&crypto_crp_ret_kq_maxlen, 0,
    342 		       CTL_CREATE, CTL_EOL);
    343 }
    344 
    345 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    346 
    347 /*
    348  * Synchronization: read carefully, this is non-trivial.
    349  *
    350  * Crypto requests are submitted via crypto_dispatch.  Typically
    351  * these come in from network protocols at spl0 (output path) or
    352  * spl[,soft]net (input path).
    353  *
    354  * Requests are typically passed on the driver directly, but they
    355  * may also be queued for processing by a software interrupt thread,
    356  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    357  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    358  * when a request is complete.  Hardware crypto drivers are assumed
    359  * to register their IRQ's as network devices so their interrupt handlers
    360  * and subsequent "done callbacks" happen at spl[imp,net].
    361  *
    362  * Completed crypto ops are queued for a separate kernel thread that
    363  * handles the callbacks at spl0.  This decoupling insures the crypto
    364  * driver interrupt service routine is not delayed while the callback
    365  * takes place and that callbacks are delivered after a context switch
    366  * (as opposed to a software interrupt that clients must block).
    367  *
    368  * This scheme is not intended for SMP machines.
    369  */
    370 static	void cryptointr(void);		/* swi thread to dispatch ops */
    371 static	void cryptoret(void);		/* kernel thread for callbacks*/
    372 static	struct lwp *cryptothread;
    373 static	int crypto_destroy(bool);
    374 static	int crypto_invoke(struct cryptop *crp, int hint);
    375 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    376 
    377 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
    378 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
    379 static struct cryptocap *crypto_checkdriver(u_int32_t);
    380 static void crypto_driver_lock(struct cryptocap *);
    381 static void crypto_driver_unlock(struct cryptocap *);
    382 static void crypto_driver_clear(struct cryptocap *);
    383 
    384 static struct cryptostats cryptostats;
    385 #ifdef CRYPTO_TIMING
    386 static	int crypto_timing = 0;
    387 #endif
    388 
    389 static struct sysctllog *sysctl_opencrypto_clog;
    390 
    391 static int
    392 crypto_init0(void)
    393 {
    394 	int error;
    395 
    396 	mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
    397 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NONE);
    398 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    399 	cv_init(&cryptoret_cv, "crypto_w");
    400 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    401 		  0, "cryptop", NULL, IPL_NET);
    402 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    403 		  0, "cryptodesc", NULL, IPL_NET);
    404 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    405 		  0, "cryptkop", NULL, IPL_NET);
    406 
    407 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    408 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    409 	if (crypto_drivers == NULL) {
    410 		printf("crypto_init: cannot malloc driver table\n");
    411 		return ENOMEM;
    412 	}
    413 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    414 
    415 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    416 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    417 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    418 	if (error) {
    419 		printf("crypto_init: cannot start cryptoret thread; error %d",
    420 			error);
    421 		return crypto_destroy(false);
    422 	}
    423 
    424 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    425 
    426 	return 0;
    427 }
    428 
    429 int
    430 crypto_init(void)
    431 {
    432 	static ONCE_DECL(crypto_init_once);
    433 
    434 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    435 }
    436 
    437 static int
    438 crypto_destroy(bool exit_kthread)
    439 {
    440 	int i;
    441 
    442 	if (exit_kthread) {
    443 		struct cryptocap *cap = NULL;
    444 
    445 		/* if we have any in-progress requests, don't unload */
    446 		mutex_enter(&crypto_q_mtx);
    447 		if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
    448 			mutex_exit(&crypto_q_mtx);
    449 			return EBUSY;
    450 		}
    451 		mutex_exit(&crypto_q_mtx);
    452 		/* FIXME:
    453 		 * prohibit enqueue to crp_q and crp_kq after here.
    454 		 */
    455 
    456 		mutex_enter(&crypto_drv_mtx);
    457 		for (i = 0; i < crypto_drivers_num; i++) {
    458 			cap = crypto_checkdriver(i);
    459 			if (cap == NULL)
    460 				continue;
    461 			if (cap->cc_sessions != 0) {
    462 				mutex_exit(&crypto_drv_mtx);
    463 				return EBUSY;
    464 			}
    465 		}
    466 		mutex_exit(&crypto_drv_mtx);
    467 		/* FIXME:
    468 		 * prohibit touch crypto_drivers[] and each element after here.
    469 		 */
    470 
    471 		mutex_spin_enter(&crypto_ret_q_mtx);
    472 		/* kick the cryptoret thread and wait for it to exit */
    473 		crypto_exit_flag = 1;
    474 		cv_signal(&cryptoret_cv);
    475 
    476 		while (crypto_exit_flag != 0)
    477 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
    478 		mutex_spin_exit(&crypto_ret_q_mtx);
    479 	}
    480 
    481 	if (sysctl_opencrypto_clog != NULL)
    482 		sysctl_teardown(&sysctl_opencrypto_clog);
    483 
    484 	unregister_swi(SWI_CRYPTO, cryptointr);
    485 
    486 	mutex_enter(&crypto_drv_mtx);
    487 	if (crypto_drivers != NULL)
    488 		free(crypto_drivers, M_CRYPTO_DATA);
    489 	mutex_exit(&crypto_drv_mtx);
    490 
    491 	pool_destroy(&cryptop_pool);
    492 	pool_destroy(&cryptodesc_pool);
    493 	pool_destroy(&cryptkop_pool);
    494 
    495 	cv_destroy(&cryptoret_cv);
    496 
    497 	mutex_destroy(&crypto_ret_q_mtx);
    498 	mutex_destroy(&crypto_q_mtx);
    499 	mutex_destroy(&crypto_drv_mtx);
    500 
    501 	return 0;
    502 }
    503 
    504 /*
    505  * Create a new session.
    506  */
    507 int
    508 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    509 {
    510 	struct cryptoini *cr;
    511 	struct cryptocap *cap;
    512 	u_int32_t hid, lid;
    513 	int err = EINVAL;
    514 
    515 	mutex_enter(&crypto_drv_mtx);
    516 
    517 	/*
    518 	 * The algorithm we use here is pretty stupid; just use the
    519 	 * first driver that supports all the algorithms we need.
    520 	 *
    521 	 * XXX We need more smarts here (in real life too, but that's
    522 	 * XXX another story altogether).
    523 	 */
    524 
    525 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    526 		cap = crypto_checkdriver(hid);
    527 		if (cap == NULL)
    528 			continue;
    529 
    530 		crypto_driver_lock(cap);
    531 
    532 		/*
    533 		 * If it's not initialized or has remaining sessions
    534 		 * referencing it, skip.
    535 		 */
    536 		if (cap->cc_newsession == NULL ||
    537 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
    538 			crypto_driver_unlock(cap);
    539 			continue;
    540 		}
    541 
    542 		/* Hardware required -- ignore software drivers. */
    543 		if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
    544 			crypto_driver_unlock(cap);
    545 			continue;
    546 		}
    547 		/* Software required -- ignore hardware drivers. */
    548 		if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
    549 			crypto_driver_unlock(cap);
    550 			continue;
    551 		}
    552 
    553 		/* See if all the algorithms are supported. */
    554 		for (cr = cri; cr; cr = cr->cri_next)
    555 			if (cap->cc_alg[cr->cri_alg] == 0) {
    556 				DPRINTF("alg %d not supported\n", cr->cri_alg);
    557 				break;
    558 			}
    559 
    560 		if (cr == NULL) {
    561 			/* Ok, all algorithms are supported. */
    562 
    563 			/*
    564 			 * Can't do everything in one session.
    565 			 *
    566 			 * XXX Fix this. We need to inject a "virtual" session layer right
    567 			 * XXX about here.
    568 			 */
    569 
    570 			/* Call the driver initialization routine. */
    571 			lid = hid;		/* Pass the driver ID. */
    572 			err = cap->cc_newsession(cap->cc_arg, &lid, cri);
    573 			if (err == 0) {
    574 				(*sid) = hid;
    575 				(*sid) <<= 32;
    576 				(*sid) |= (lid & 0xffffffff);
    577 				(cap->cc_sessions)++;
    578 			} else {
    579 				DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
    580 					hid, err);
    581 			}
    582 			crypto_driver_unlock(cap);
    583 			goto done;
    584 			/*break;*/
    585 		}
    586 
    587 		crypto_driver_unlock(cap);
    588 	}
    589 done:
    590 	mutex_exit(&crypto_drv_mtx);
    591 	return err;
    592 }
    593 
    594 /*
    595  * Delete an existing session (or a reserved session on an unregistered
    596  * driver).
    597  */
    598 int
    599 crypto_freesession(u_int64_t sid)
    600 {
    601 	struct cryptocap *cap;
    602 	int err = 0;
    603 
    604 	/* Determine two IDs. */
    605 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
    606 	if (cap == NULL)
    607 		return ENOENT;
    608 
    609 	if (cap->cc_sessions)
    610 		(cap->cc_sessions)--;
    611 
    612 	/* Call the driver cleanup routine, if available. */
    613 	if (cap->cc_freesession)
    614 		err = cap->cc_freesession(cap->cc_arg, sid);
    615 	else
    616 		err = 0;
    617 
    618 	/*
    619 	 * If this was the last session of a driver marked as invalid,
    620 	 * make the entry available for reuse.
    621 	 */
    622 	if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
    623 		crypto_driver_clear(cap);
    624 
    625 	crypto_driver_unlock(cap);
    626 	return err;
    627 }
    628 
    629 static bool
    630 crypto_checkdriver_initialized(const struct cryptocap *cap)
    631 {
    632 
    633 	return cap->cc_process != NULL ||
    634 	    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
    635 	    cap->cc_sessions != 0;
    636 }
    637 
    638 /*
    639  * Return an unused driver id.  Used by drivers prior to registering
    640  * support for the algorithms they handle.
    641  */
    642 int32_t
    643 crypto_get_driverid(u_int32_t flags)
    644 {
    645 	struct cryptocap *newdrv;
    646 	struct cryptocap *cap = NULL;
    647 	int i;
    648 
    649 	(void)crypto_init();		/* XXX oh, this is foul! */
    650 
    651 	mutex_enter(&crypto_drv_mtx);
    652 	for (i = 0; i < crypto_drivers_num; i++) {
    653 		cap = crypto_checkdriver_uninit(i);
    654 		if (cap == NULL || crypto_checkdriver_initialized(cap))
    655 			continue;
    656 		break;
    657 	}
    658 
    659 	/* Out of entries, allocate some more. */
    660 	if (cap == NULL) {
    661 		/* Be careful about wrap-around. */
    662 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    663 			mutex_exit(&crypto_drv_mtx);
    664 			printf("crypto: driver count wraparound!\n");
    665 			return -1;
    666 		}
    667 
    668 		newdrv = malloc(2 * crypto_drivers_num *
    669 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    670 		if (newdrv == NULL) {
    671 			mutex_exit(&crypto_drv_mtx);
    672 			printf("crypto: no space to expand driver table!\n");
    673 			return -1;
    674 		}
    675 
    676 		memcpy(newdrv, crypto_drivers,
    677 		    crypto_drivers_num * sizeof(struct cryptocap));
    678 
    679 		crypto_drivers_num *= 2;
    680 
    681 		free(crypto_drivers, M_CRYPTO_DATA);
    682 		crypto_drivers = newdrv;
    683 
    684 		cap = crypto_checkdriver_uninit(i);
    685 		KASSERT(cap != NULL);
    686 	}
    687 
    688 	/* NB: state is zero'd on free */
    689 	cap->cc_sessions = 1;	/* Mark */
    690 	cap->cc_flags = flags;
    691 	mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
    692 
    693 	if (bootverbose)
    694 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    695 
    696 	mutex_exit(&crypto_drv_mtx);
    697 
    698 	return i;
    699 }
    700 
    701 static struct cryptocap *
    702 crypto_checkdriver_lock(u_int32_t hid)
    703 {
    704 	struct cryptocap *cap;
    705 
    706 	KASSERT(crypto_drivers != NULL);
    707 
    708 	if (hid >= crypto_drivers_num)
    709 		return NULL;
    710 
    711 	cap = &crypto_drivers[hid];
    712 	mutex_enter(&cap->cc_lock);
    713 	return cap;
    714 }
    715 
    716 /*
    717  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    718  * situations
    719  *     - crypto_drivers[] may not be allocated
    720  *     - crypto_drivers[hid] may not be initialized
    721  */
    722 static struct cryptocap *
    723 crypto_checkdriver_uninit(u_int32_t hid)
    724 {
    725 
    726 	KASSERT(mutex_owned(&crypto_drv_mtx));
    727 
    728 	if (crypto_drivers == NULL)
    729 		return NULL;
    730 
    731 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    732 }
    733 
    734 /*
    735  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    736  * situations
    737  *     - crypto_drivers[] may not be allocated
    738  *     - crypto_drivers[hid] may not be initialized
    739  */
    740 static struct cryptocap *
    741 crypto_checkdriver(u_int32_t hid)
    742 {
    743 
    744 	KASSERT(mutex_owned(&crypto_drv_mtx));
    745 
    746 	if (crypto_drivers == NULL || hid >= crypto_drivers_num)
    747 		return NULL;
    748 
    749 	struct cryptocap *cap = &crypto_drivers[hid];
    750 	return crypto_checkdriver_initialized(cap) ? cap : NULL;
    751 }
    752 
    753 static inline void
    754 crypto_driver_lock(struct cryptocap *cap)
    755 {
    756 
    757 	KASSERT(cap != NULL);
    758 
    759 	mutex_enter(&cap->cc_lock);
    760 }
    761 
    762 static inline void
    763 crypto_driver_unlock(struct cryptocap *cap)
    764 {
    765 
    766 	KASSERT(cap != NULL);
    767 
    768 	mutex_exit(&cap->cc_lock);
    769 }
    770 
    771 static void
    772 crypto_driver_clear(struct cryptocap *cap)
    773 {
    774 
    775 	if (cap == NULL)
    776 		return;
    777 
    778 	KASSERT(mutex_owned(&cap->cc_lock));
    779 
    780 	cap->cc_sessions = 0;
    781 	memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
    782 	memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
    783 	memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
    784 	cap->cc_flags = 0;
    785 	cap->cc_qblocked = 0;
    786 	cap->cc_kqblocked = 0;
    787 
    788 	cap->cc_arg = NULL;
    789 	cap->cc_newsession = NULL;
    790 	cap->cc_process = NULL;
    791 	cap->cc_freesession = NULL;
    792 	cap->cc_kprocess = NULL;
    793 }
    794 
    795 /*
    796  * Register support for a key-related algorithm.  This routine
    797  * is called once for each algorithm supported a driver.
    798  */
    799 int
    800 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    801     int (*kprocess)(void *, struct cryptkop *, int),
    802     void *karg)
    803 {
    804 	struct cryptocap *cap;
    805 	int err;
    806 
    807 	mutex_enter(&crypto_drv_mtx);
    808 
    809 	cap = crypto_checkdriver_lock(driverid);
    810 	if (cap != NULL &&
    811 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    812 		/*
    813 		 * XXX Do some performance testing to determine placing.
    814 		 * XXX We probably need an auxiliary data structure that
    815 		 * XXX describes relative performances.
    816 		 */
    817 
    818 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    819 		if (bootverbose) {
    820 			printf("crypto: driver %u registers key alg %u "
    821 			       " flags %u\n",
    822 				driverid,
    823 				kalg,
    824 				flags
    825 			);
    826 		}
    827 
    828 		if (cap->cc_kprocess == NULL) {
    829 			cap->cc_karg = karg;
    830 			cap->cc_kprocess = kprocess;
    831 		}
    832 		err = 0;
    833 	} else
    834 		err = EINVAL;
    835 
    836 	mutex_exit(&crypto_drv_mtx);
    837 	return err;
    838 }
    839 
    840 /*
    841  * Register support for a non-key-related algorithm.  This routine
    842  * is called once for each such algorithm supported by a driver.
    843  */
    844 int
    845 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    846     u_int32_t flags,
    847     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    848     int (*freeses)(void *, u_int64_t),
    849     int (*process)(void *, struct cryptop *, int),
    850     void *arg)
    851 {
    852 	struct cryptocap *cap;
    853 	int err;
    854 
    855 	cap = crypto_checkdriver_lock(driverid);
    856 	if (cap == NULL)
    857 		return EINVAL;
    858 
    859 	/* NB: algorithms are in the range [1..max] */
    860 	if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
    861 		/*
    862 		 * XXX Do some performance testing to determine placing.
    863 		 * XXX We probably need an auxiliary data structure that
    864 		 * XXX describes relative performances.
    865 		 */
    866 
    867 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    868 		cap->cc_max_op_len[alg] = maxoplen;
    869 		if (bootverbose) {
    870 			printf("crypto: driver %u registers alg %u "
    871 				"flags %u maxoplen %u\n",
    872 				driverid,
    873 				alg,
    874 				flags,
    875 				maxoplen
    876 			);
    877 		}
    878 
    879 		if (cap->cc_process == NULL) {
    880 			cap->cc_arg = arg;
    881 			cap->cc_newsession = newses;
    882 			cap->cc_process = process;
    883 			cap->cc_freesession = freeses;
    884 			cap->cc_sessions = 0;		/* Unmark */
    885 		}
    886 		err = 0;
    887 	} else
    888 		err = EINVAL;
    889 
    890 	crypto_driver_unlock(cap);
    891 
    892 	return err;
    893 }
    894 
    895 static int
    896 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
    897 {
    898 	int i;
    899 	u_int32_t ses;
    900 	bool lastalg = true;
    901 
    902 	KASSERT(cap != NULL);
    903 	KASSERT(mutex_owned(&cap->cc_lock));
    904 
    905 	if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
    906 		return EINVAL;
    907 
    908 	if (!all && cap->cc_alg[alg] == 0)
    909 		return EINVAL;
    910 
    911 	cap->cc_alg[alg] = 0;
    912 	cap->cc_max_op_len[alg] = 0;
    913 
    914 	if (all) {
    915 		if (alg != CRYPTO_ALGORITHM_MAX)
    916 			lastalg = false;
    917 	} else {
    918 		/* Was this the last algorithm ? */
    919 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
    920 			if (cap->cc_alg[i] != 0) {
    921 				lastalg = false;
    922 				break;
    923 			}
    924 	}
    925 	if (lastalg) {
    926 		ses = cap->cc_sessions;
    927 		crypto_driver_clear(cap);
    928 		if (ses != 0) {
    929 			/*
    930 			 * If there are pending sessions, just mark as invalid.
    931 			 */
    932 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    933 			cap->cc_sessions = ses;
    934 		}
    935 	}
    936 
    937 	return 0;
    938 }
    939 
    940 /*
    941  * Unregister a crypto driver. If there are pending sessions using it,
    942  * leave enough information around so that subsequent calls using those
    943  * sessions will correctly detect the driver has been unregistered and
    944  * reroute requests.
    945  */
    946 int
    947 crypto_unregister(u_int32_t driverid, int alg)
    948 {
    949 	int err;
    950 	struct cryptocap *cap;
    951 
    952 	cap = crypto_checkdriver_lock(driverid);
    953 	err = crypto_unregister_locked(cap, alg, false);
    954 	crypto_driver_unlock(cap);
    955 
    956 	return err;
    957 }
    958 
    959 /*
    960  * Unregister all algorithms associated with a crypto driver.
    961  * If there are pending sessions using it, leave enough information
    962  * around so that subsequent calls using those sessions will
    963  * correctly detect the driver has been unregistered and reroute
    964  * requests.
    965  */
    966 int
    967 crypto_unregister_all(u_int32_t driverid)
    968 {
    969 	int err, i;
    970 	struct cryptocap *cap;
    971 
    972 	cap = crypto_checkdriver_lock(driverid);
    973 	for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
    974 		err = crypto_unregister_locked(cap, i, true);
    975 		if (err)
    976 			break;
    977 	}
    978 	crypto_driver_unlock(cap);
    979 
    980 	return err;
    981 }
    982 
    983 /*
    984  * Clear blockage on a driver.  The what parameter indicates whether
    985  * the driver is now ready for cryptop's and/or cryptokop's.
    986  */
    987 int
    988 crypto_unblock(u_int32_t driverid, int what)
    989 {
    990 	struct cryptocap *cap;
    991 	int needwakeup = 0;
    992 
    993 	cap = crypto_checkdriver_lock(driverid);
    994 	if (cap == NULL)
    995 		return EINVAL;
    996 
    997 	if (what & CRYPTO_SYMQ) {
    998 		needwakeup |= cap->cc_qblocked;
    999 		cap->cc_qblocked = 0;
   1000 	}
   1001 	if (what & CRYPTO_ASYMQ) {
   1002 		needwakeup |= cap->cc_kqblocked;
   1003 		cap->cc_kqblocked = 0;
   1004 	}
   1005 	crypto_driver_unlock(cap);
   1006 	if (needwakeup)
   1007 		setsoftcrypto(softintr_cookie);
   1008 
   1009 	return 0;
   1010 }
   1011 
   1012 /*
   1013  * Dispatch a crypto request to a driver or queue
   1014  * it, to be processed by the kernel thread.
   1015  */
   1016 int
   1017 crypto_dispatch(struct cryptop *crp)
   1018 {
   1019 	int result;
   1020 	struct cryptocap *cap;
   1021 
   1022 	KASSERT(crp != NULL);
   1023 
   1024 	DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
   1025 
   1026 	cryptostats.cs_ops++;
   1027 
   1028 #ifdef CRYPTO_TIMING
   1029 	if (crypto_timing)
   1030 		nanouptime(&crp->crp_tstamp);
   1031 #endif
   1032 
   1033 	if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1034 		int wasempty;
   1035 		/*
   1036 		 * Caller marked the request as ``ok to delay'';
   1037 		 * queue it for the swi thread.  This is desirable
   1038 		 * when the operation is low priority and/or suitable
   1039 		 * for batching.
   1040 		 *
   1041 		 * don't care list order in batch job.
   1042 		 */
   1043 		mutex_enter(&crypto_q_mtx);
   1044 		wasempty  = TAILQ_EMPTY(&crp_q);
   1045 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
   1046 		mutex_exit(&crypto_q_mtx);
   1047 		if (wasempty)
   1048 			setsoftcrypto(softintr_cookie);
   1049 
   1050 		return 0;
   1051 	}
   1052 
   1053 	mutex_enter(&crypto_q_mtx);
   1054 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1055 	/*
   1056 	 * TODO:
   1057 	 * If we can ensure the driver has been valid until the driver is
   1058 	 * done crypto_unregister(), this migrate operation is not required.
   1059 	 */
   1060 	if (cap == NULL) {
   1061 		/*
   1062 		 * The driver must be detached, so this request will migrate
   1063 		 * to other drivers in cryptointr() later.
   1064 		 */
   1065 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
   1066 		mutex_exit(&crypto_q_mtx);
   1067 		return 0;
   1068 	}
   1069 
   1070 	if (cap->cc_qblocked != 0) {
   1071 		crypto_driver_unlock(cap);
   1072 		/*
   1073 		 * The driver is blocked, just queue the op until
   1074 		 * it unblocks and the swi thread gets kicked.
   1075 		 */
   1076 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
   1077 		mutex_exit(&crypto_q_mtx);
   1078 		return 0;
   1079 	}
   1080 
   1081 	/*
   1082 	 * Caller marked the request to be processed
   1083 	 * immediately; dispatch it directly to the
   1084 	 * driver unless the driver is currently blocked.
   1085 	 */
   1086 	crypto_driver_unlock(cap);
   1087 	result = crypto_invoke(crp, 0);
   1088 	if (result == ERESTART) {
   1089 		/*
   1090 		 * The driver ran out of resources, mark the
   1091 		 * driver ``blocked'' for cryptop's and put
   1092 		 * the op on the queue.
   1093 		 */
   1094 		crypto_driver_lock(cap);
   1095 		cap->cc_qblocked = 1;
   1096 		crypto_driver_unlock(cap);
   1097 		TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
   1098 		cryptostats.cs_blocks++;
   1099 
   1100 		/*
   1101 		 * The crp is enqueued to crp_q, that is,
   1102 		 * no error occurs. So, this function should
   1103 		 * not return error.
   1104 		 */
   1105 		result = 0;
   1106 	}
   1107 
   1108 	mutex_exit(&crypto_q_mtx);
   1109 	return result;
   1110 }
   1111 
   1112 /*
   1113  * Add an asymetric crypto request to a queue,
   1114  * to be processed by the kernel thread.
   1115  */
   1116 int
   1117 crypto_kdispatch(struct cryptkop *krp)
   1118 {
   1119 	struct cryptocap *cap;
   1120 	int result;
   1121 
   1122 	KASSERT(krp != NULL);
   1123 
   1124 	cryptostats.cs_kops++;
   1125 
   1126 	mutex_enter(&crypto_q_mtx);
   1127 	cap = crypto_checkdriver_lock(krp->krp_hid);
   1128 	/*
   1129 	 * TODO:
   1130 	 * If we can ensure the driver has been valid until the driver is
   1131 	 * done crypto_unregister(), this migrate operation is not required.
   1132 	 */
   1133 	if (cap == NULL) {
   1134 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
   1135 		mutex_exit(&crypto_q_mtx);
   1136 		return 0;
   1137 	}
   1138 
   1139 	if (cap->cc_kqblocked != 0) {
   1140 		crypto_driver_unlock(cap);
   1141 		/*
   1142 		 * The driver is blocked, just queue the op until
   1143 		 * it unblocks and the swi thread gets kicked.
   1144 		 */
   1145 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
   1146 		mutex_exit(&crypto_q_mtx);
   1147 		return 0;
   1148 	}
   1149 
   1150 	crypto_driver_unlock(cap);
   1151 	result = crypto_kinvoke(krp, 0);
   1152 	if (result == ERESTART) {
   1153 		/*
   1154 		 * The driver ran out of resources, mark the
   1155 		 * driver ``blocked'' for cryptop's and put
   1156 		 * the op on the queue.
   1157 		 */
   1158 		crypto_driver_lock(cap);
   1159 		cap->cc_kqblocked = 1;
   1160 		crypto_driver_unlock(cap);
   1161 		TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1162 		cryptostats.cs_kblocks++;
   1163 		mutex_exit(&crypto_q_mtx);
   1164 
   1165 		/*
   1166 		 * The krp is enqueued to crp_kq, that is,
   1167 		 * no error occurs. So, this function should
   1168 		 * not return error.
   1169 		 */
   1170 		result = 0;
   1171 	}
   1172 
   1173 	return result;
   1174 }
   1175 
   1176 /*
   1177  * Dispatch an assymetric crypto request to the appropriate crypto devices.
   1178  */
   1179 static int
   1180 crypto_kinvoke(struct cryptkop *krp, int hint)
   1181 {
   1182 	struct cryptocap *cap = NULL;
   1183 	u_int32_t hid;
   1184 	int error;
   1185 
   1186 	KASSERT(krp != NULL);
   1187 
   1188 	/* Sanity checks. */
   1189 	if (krp->krp_callback == NULL) {
   1190 		cv_destroy(&krp->krp_cv);
   1191 		crypto_kfreereq(krp);
   1192 		return EINVAL;
   1193 	}
   1194 
   1195 	mutex_enter(&crypto_drv_mtx);
   1196 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1197 		cap = crypto_checkdriver(hid);
   1198 		if (cap == NULL)
   1199 			continue;
   1200 		crypto_driver_lock(cap);
   1201 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1202 		    crypto_devallowsoft == 0) {
   1203 			crypto_driver_unlock(cap);
   1204 			continue;
   1205 		}
   1206 		if (cap->cc_kprocess == NULL) {
   1207 			crypto_driver_unlock(cap);
   1208 			continue;
   1209 		}
   1210 		if ((cap->cc_kalg[krp->krp_op] &
   1211 			CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
   1212 			crypto_driver_unlock(cap);
   1213 			continue;
   1214 		}
   1215 		break;
   1216 	}
   1217 	mutex_exit(&crypto_drv_mtx);
   1218 	if (cap != NULL) {
   1219 		int (*process)(void *, struct cryptkop *, int);
   1220 		void *arg;
   1221 
   1222 		process = cap->cc_kprocess;
   1223 		arg = cap->cc_karg;
   1224 		krp->krp_hid = hid;
   1225 		crypto_driver_unlock(cap);
   1226 		error = (*process)(arg, krp, hint);
   1227 	} else {
   1228 		error = ENODEV;
   1229 	}
   1230 
   1231 	if (error) {
   1232 		krp->krp_status = error;
   1233 		crypto_kdone(krp);
   1234 	}
   1235 	return 0;
   1236 }
   1237 
   1238 #ifdef CRYPTO_TIMING
   1239 static void
   1240 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
   1241 {
   1242 	struct timespec now, t;
   1243 
   1244 	nanouptime(&now);
   1245 	t.tv_sec = now.tv_sec - tv->tv_sec;
   1246 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
   1247 	if (t.tv_nsec < 0) {
   1248 		t.tv_sec--;
   1249 		t.tv_nsec += 1000000000;
   1250 	}
   1251 	timespecadd(&ts->acc, &t, &t);
   1252 	if (timespeccmp(&t, &ts->min, <))
   1253 		ts->min = t;
   1254 	if (timespeccmp(&t, &ts->max, >))
   1255 		ts->max = t;
   1256 	ts->count++;
   1257 
   1258 	*tv = now;
   1259 }
   1260 #endif
   1261 
   1262 /*
   1263  * Dispatch a crypto request to the appropriate crypto devices.
   1264  */
   1265 static int
   1266 crypto_invoke(struct cryptop *crp, int hint)
   1267 {
   1268 	struct cryptocap *cap;
   1269 
   1270 	KASSERT(crp != NULL);
   1271 
   1272 #ifdef CRYPTO_TIMING
   1273 	if (crypto_timing)
   1274 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
   1275 #endif
   1276 	/* Sanity checks. */
   1277 	if (crp->crp_callback == NULL) {
   1278 		return EINVAL;
   1279 	}
   1280 	if (crp->crp_desc == NULL) {
   1281 		crp->crp_etype = EINVAL;
   1282 		crypto_done(crp);
   1283 		return 0;
   1284 	}
   1285 
   1286 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1287 	if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
   1288 		int (*process)(void *, struct cryptop *, int);
   1289 		void *arg;
   1290 
   1291 		process = cap->cc_process;
   1292 		arg = cap->cc_arg;
   1293 
   1294 		/*
   1295 		 * Invoke the driver to process the request.
   1296 		 */
   1297 		DPRINTF("calling process for %p\n", crp);
   1298 		crypto_driver_unlock(cap);
   1299 		return (*process)(arg, crp, hint);
   1300 	} else {
   1301 		struct cryptodesc *crd;
   1302 		u_int64_t nid = 0;
   1303 
   1304 		if (cap != NULL)
   1305 			crypto_driver_unlock(cap);
   1306 
   1307 		/*
   1308 		 * Driver has unregistered; migrate the session and return
   1309 		 * an error to the caller so they'll resubmit the op.
   1310 		 */
   1311 		crypto_freesession(crp->crp_sid);
   1312 
   1313 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1314 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1315 
   1316 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1317 			crp->crp_sid = nid;
   1318 
   1319 		crp->crp_etype = EAGAIN;
   1320 
   1321 		crypto_done(crp);
   1322 		return 0;
   1323 	}
   1324 }
   1325 
   1326 /*
   1327  * Release a set of crypto descriptors.
   1328  */
   1329 void
   1330 crypto_freereq(struct cryptop *crp)
   1331 {
   1332 	struct cryptodesc *crd;
   1333 
   1334 	if (crp == NULL)
   1335 		return;
   1336 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1337 
   1338 	/* sanity check */
   1339 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1340 		panic("crypto_freereq() freeing crp on RETQ\n");
   1341 	}
   1342 
   1343 	while ((crd = crp->crp_desc) != NULL) {
   1344 		crp->crp_desc = crd->crd_next;
   1345 		pool_put(&cryptodesc_pool, crd);
   1346 	}
   1347 	pool_put(&cryptop_pool, crp);
   1348 }
   1349 
   1350 /*
   1351  * Acquire a set of crypto descriptors.
   1352  */
   1353 struct cryptop *
   1354 crypto_getreq(int num)
   1355 {
   1356 	struct cryptodesc *crd;
   1357 	struct cryptop *crp;
   1358 
   1359 	/*
   1360 	 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
   1361 	 * by error callback.
   1362 	 */
   1363 	if (CRYPTO_Q_IS_FULL(crp_ret_q)) {
   1364 		CRYPTO_Q_INC_DROPS(crp_ret_q);
   1365 		return NULL;
   1366 	}
   1367 
   1368 	crp = pool_get(&cryptop_pool, 0);
   1369 	if (crp == NULL) {
   1370 		return NULL;
   1371 	}
   1372 	memset(crp, 0, sizeof(struct cryptop));
   1373 
   1374 	while (num--) {
   1375 		crd = pool_get(&cryptodesc_pool, 0);
   1376 		if (crd == NULL) {
   1377 			crypto_freereq(crp);
   1378 			return NULL;
   1379 		}
   1380 
   1381 		memset(crd, 0, sizeof(struct cryptodesc));
   1382 		crd->crd_next = crp->crp_desc;
   1383 		crp->crp_desc = crd;
   1384 	}
   1385 
   1386 	return crp;
   1387 }
   1388 
   1389 /*
   1390  * Release a set of asymmetric crypto descriptors.
   1391  * Currently, support one descriptor only.
   1392  */
   1393 void
   1394 crypto_kfreereq(struct cryptkop *krp)
   1395 {
   1396 
   1397 	if (krp == NULL)
   1398 		return;
   1399 
   1400 	DPRINTF("krp %p\n", krp);
   1401 
   1402 	/* sanity check */
   1403 	if (krp->krp_flags & CRYPTO_F_ONRETQ) {
   1404 		panic("crypto_kfreereq() freeing krp on RETQ\n");
   1405 	}
   1406 
   1407 	pool_put(&cryptkop_pool, krp);
   1408 }
   1409 
   1410 /*
   1411  * Acquire a set of asymmetric crypto descriptors.
   1412  * Currently, support one descriptor only.
   1413  */
   1414 struct cryptkop *
   1415 crypto_kgetreq(int num __unused, int prflags)
   1416 {
   1417 	struct cryptkop *krp;
   1418 
   1419 	/*
   1420 	 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
   1421 	 * overflow by error callback.
   1422 	 */
   1423 	if (CRYPTO_Q_IS_FULL(crp_ret_kq)) {
   1424 		CRYPTO_Q_INC_DROPS(crp_ret_kq);
   1425 		return NULL;
   1426 	}
   1427 
   1428 	krp = pool_get(&cryptkop_pool, prflags);
   1429 	if (krp == NULL) {
   1430 		return NULL;
   1431 	}
   1432 	memset(krp, 0, sizeof(struct cryptkop));
   1433 
   1434 	return krp;
   1435 }
   1436 
   1437 /*
   1438  * Invoke the callback on behalf of the driver.
   1439  */
   1440 void
   1441 crypto_done(struct cryptop *crp)
   1442 {
   1443 	int wasempty;
   1444 
   1445 	KASSERT(crp != NULL);
   1446 
   1447 	if (crp->crp_etype != 0)
   1448 		cryptostats.cs_errs++;
   1449 #ifdef CRYPTO_TIMING
   1450 	if (crypto_timing)
   1451 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1452 #endif
   1453 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1454 
   1455 	/*
   1456 	 * Normal case; queue the callback for the thread.
   1457 	 *
   1458 	 * The return queue is manipulated by the swi thread
   1459 	 * and, potentially, by crypto device drivers calling
   1460 	 * back to mark operations completed.  Thus we need
   1461 	 * to mask both while manipulating the return queue.
   1462 	 */
   1463   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1464 		/*
   1465 	 	* Do the callback directly.  This is ok when the
   1466   	 	* callback routine does very little (e.g. the
   1467 	 	* /dev/crypto callback method just does a wakeup).
   1468 	 	*/
   1469 		mutex_spin_enter(&crypto_ret_q_mtx);
   1470 		crp->crp_flags |= CRYPTO_F_DONE;
   1471 		mutex_spin_exit(&crypto_ret_q_mtx);
   1472 
   1473 #ifdef CRYPTO_TIMING
   1474 		if (crypto_timing) {
   1475 			/*
   1476 		 	* NB: We must copy the timestamp before
   1477 		 	* doing the callback as the cryptop is
   1478 		 	* likely to be reclaimed.
   1479 		 	*/
   1480 			struct timespec t = crp->crp_tstamp;
   1481 			crypto_tstat(&cryptostats.cs_cb, &t);
   1482 			crp->crp_callback(crp);
   1483 			crypto_tstat(&cryptostats.cs_finis, &t);
   1484 		} else
   1485 #endif
   1486 		crp->crp_callback(crp);
   1487 	} else {
   1488 		mutex_spin_enter(&crypto_ret_q_mtx);
   1489 		crp->crp_flags |= CRYPTO_F_DONE;
   1490 #if 0
   1491 		if (crp->crp_flags & CRYPTO_F_USER) {
   1492 			/*
   1493 			 * TODO:
   1494 			 * If crp->crp_flags & CRYPTO_F_USER and the used
   1495 			 * encryption driver does all the processing in
   1496 			 * the same context, we can skip enqueueing crp_ret_q
   1497 			 * and cv_signal(&cryptoret_cv).
   1498 			 */
   1499 			DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
   1500 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1501 		} else
   1502 #endif
   1503 		{
   1504 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1505 			DPRINTF("lid[%u]: queueing %p\n",
   1506 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1507 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1508 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1509 			CRYPTO_Q_INC(crp_ret_q);
   1510 			if (wasempty) {
   1511 				DPRINTF("lid[%u]: waking cryptoret, "
   1512 					"crp %p hit empty queue\n.",
   1513 					CRYPTO_SESID2LID(crp->crp_sid), crp);
   1514 				cv_signal(&cryptoret_cv);
   1515 			}
   1516 		}
   1517 		mutex_spin_exit(&crypto_ret_q_mtx);
   1518 	}
   1519 }
   1520 
   1521 /*
   1522  * Invoke the callback on behalf of the driver.
   1523  */
   1524 void
   1525 crypto_kdone(struct cryptkop *krp)
   1526 {
   1527 	int wasempty;
   1528 
   1529 	KASSERT(krp != NULL);
   1530 
   1531 	if (krp->krp_status != 0)
   1532 		cryptostats.cs_kerrs++;
   1533 
   1534 	krp->krp_flags |= CRYPTO_F_DONE;
   1535 
   1536 	/*
   1537 	 * The return queue is manipulated by the swi thread
   1538 	 * and, potentially, by crypto device drivers calling
   1539 	 * back to mark operations completed.  Thus we need
   1540 	 * to mask both while manipulating the return queue.
   1541 	 */
   1542 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1543 		krp->krp_callback(krp);
   1544 	} else {
   1545 		mutex_spin_enter(&crypto_ret_q_mtx);
   1546 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1547 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1548 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1549 		CRYPTO_Q_INC(crp_ret_kq);
   1550 		if (wasempty)
   1551 			cv_signal(&cryptoret_cv);
   1552 		mutex_spin_exit(&crypto_ret_q_mtx);
   1553 	}
   1554 }
   1555 
   1556 int
   1557 crypto_getfeat(int *featp)
   1558 {
   1559 
   1560 	if (crypto_userasymcrypto == 0) {
   1561 		*featp = 0;
   1562 		return 0;
   1563 	}
   1564 
   1565 	mutex_enter(&crypto_drv_mtx);
   1566 
   1567 	int feat = 0;
   1568 	for (int hid = 0; hid < crypto_drivers_num; hid++) {
   1569 		struct cryptocap *cap;
   1570 		cap = crypto_checkdriver(hid);
   1571 		if (cap == NULL)
   1572 			continue;
   1573 
   1574 		crypto_driver_lock(cap);
   1575 
   1576 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1577 		    crypto_devallowsoft == 0)
   1578 			goto unlock;
   1579 
   1580 		if (cap->cc_kprocess == NULL)
   1581 			goto unlock;
   1582 
   1583 		for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1584 			if ((cap->cc_kalg[kalg] &
   1585 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1586 				feat |=  1 << kalg;
   1587 
   1588 unlock:		crypto_driver_unlock(cap);
   1589 	}
   1590 
   1591 	mutex_exit(&crypto_drv_mtx);
   1592 	*featp = feat;
   1593 	return (0);
   1594 }
   1595 
   1596 /*
   1597  * Software interrupt thread to dispatch crypto requests.
   1598  */
   1599 static void
   1600 cryptointr(void)
   1601 {
   1602 	struct cryptop *crp, *submit, *cnext;
   1603 	struct cryptkop *krp, *knext;
   1604 	struct cryptocap *cap;
   1605 	int result, hint;
   1606 
   1607 	cryptostats.cs_intrs++;
   1608 	mutex_enter(&crypto_q_mtx);
   1609 	do {
   1610 		/*
   1611 		 * Find the first element in the queue that can be
   1612 		 * processed and look-ahead to see if multiple ops
   1613 		 * are ready for the same driver.
   1614 		 */
   1615 		submit = NULL;
   1616 		hint = 0;
   1617 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1618 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1619 			cap = crypto_checkdriver_lock(hid);
   1620 			if (cap == NULL || cap->cc_process == NULL) {
   1621 				if (cap != NULL)
   1622 					crypto_driver_unlock(cap);
   1623 				/* Op needs to be migrated, process it. */
   1624 				submit = crp;
   1625 				break;
   1626 			}
   1627 
   1628 			/*
   1629 			 * skip blocked crp regardless of CRYPTO_F_BATCH
   1630 			 */
   1631 			if (cap->cc_qblocked != 0) {
   1632 				crypto_driver_unlock(cap);
   1633 				continue;
   1634 			}
   1635 			crypto_driver_unlock(cap);
   1636 
   1637 			/*
   1638 			 * skip batch crp until the end of crp_q
   1639 			 */
   1640 			if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1641 				if (submit == NULL) {
   1642 					submit = crp;
   1643 				} else {
   1644 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1645 					    == hid)
   1646 						hint = CRYPTO_HINT_MORE;
   1647 				}
   1648 
   1649 				continue;
   1650 			}
   1651 
   1652 			/*
   1653 			 * found first crp which is neither blocked nor batch.
   1654 			 */
   1655 			submit = crp;
   1656 			/*
   1657 			 * batch crp can be processed much later, so clear hint.
   1658 			 */
   1659 			hint = 0;
   1660 			break;
   1661 		}
   1662 		if (submit != NULL) {
   1663 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1664 			result = crypto_invoke(submit, hint);
   1665 			/* we must take here as the TAILQ op or kinvoke
   1666 			   may need this mutex below.  sigh. */
   1667 			if (result == ERESTART) {
   1668 				/*
   1669 				 * The driver ran out of resources, mark the
   1670 				 * driver ``blocked'' for cryptop's and put
   1671 				 * the request back in the queue.  It would
   1672 				 * best to put the request back where we got
   1673 				 * it but that's hard so for now we put it
   1674 				 * at the front.  This should be ok; putting
   1675 				 * it at the end does not work.
   1676 				 */
   1677 				/* validate sid again */
   1678 				cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
   1679 				if (cap == NULL) {
   1680 					/* migrate again, sigh... */
   1681 					TAILQ_INSERT_TAIL(&crp_q, submit, crp_next);
   1682 				} else {
   1683 					cap->cc_qblocked = 1;
   1684 					crypto_driver_unlock(cap);
   1685 					TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1686 					cryptostats.cs_blocks++;
   1687 				}
   1688 			}
   1689 		}
   1690 
   1691 		/* As above, but for key ops */
   1692 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1693 			cap = crypto_checkdriver_lock(krp->krp_hid);
   1694 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1695 				if (cap != NULL)
   1696 					crypto_driver_unlock(cap);
   1697 				/* Op needs to be migrated, process it. */
   1698 				break;
   1699 			}
   1700 			if (!cap->cc_kqblocked) {
   1701 				crypto_driver_unlock(cap);
   1702 				break;
   1703 			}
   1704 			crypto_driver_unlock(cap);
   1705 		}
   1706 		if (krp != NULL) {
   1707 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1708 			result = crypto_kinvoke(krp, 0);
   1709 			/* the next iteration will want the mutex. :-/ */
   1710 			if (result == ERESTART) {
   1711 				/*
   1712 				 * The driver ran out of resources, mark the
   1713 				 * driver ``blocked'' for cryptkop's and put
   1714 				 * the request back in the queue.  It would
   1715 				 * best to put the request back where we got
   1716 				 * it but that's hard so for now we put it
   1717 				 * at the front.  This should be ok; putting
   1718 				 * it at the end does not work.
   1719 				 */
   1720 				/* validate sid again */
   1721 				cap = crypto_checkdriver_lock(krp->krp_hid);
   1722 				if (cap == NULL) {
   1723 					/* migrate again, sigh... */
   1724 					TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
   1725 				} else {
   1726 					cap->cc_kqblocked = 1;
   1727 					crypto_driver_unlock(cap);
   1728 					TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1729 					cryptostats.cs_kblocks++;
   1730 				}
   1731 			}
   1732 		}
   1733 	} while (submit != NULL || krp != NULL);
   1734 	mutex_exit(&crypto_q_mtx);
   1735 }
   1736 
   1737 /*
   1738  * Kernel thread to do callbacks.
   1739  */
   1740 static void
   1741 cryptoret(void)
   1742 {
   1743 	struct cryptop *crp;
   1744 	struct cryptkop *krp;
   1745 
   1746 	mutex_spin_enter(&crypto_ret_q_mtx);
   1747 	for (;;) {
   1748 		crp = TAILQ_FIRST(&crp_ret_q);
   1749 		if (crp != NULL) {
   1750 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1751 			CRYPTO_Q_DEC(crp_ret_q);
   1752 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1753 		}
   1754 		krp = TAILQ_FIRST(&crp_ret_kq);
   1755 		if (krp != NULL) {
   1756 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1757 			CRYPTO_Q_DEC(crp_ret_kq);
   1758 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1759 		}
   1760 
   1761 		/* drop before calling any callbacks. */
   1762 		if (crp == NULL && krp == NULL) {
   1763 
   1764                         /* Check for the exit condition. */
   1765 			if (crypto_exit_flag != 0) {
   1766 
   1767         			/* Time to die. */
   1768 				crypto_exit_flag = 0;
   1769         			cv_broadcast(&cryptoret_cv);
   1770 				mutex_spin_exit(&crypto_ret_q_mtx);
   1771         			kthread_exit(0);
   1772 			}
   1773 
   1774 			cryptostats.cs_rets++;
   1775 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1776 			continue;
   1777 		}
   1778 
   1779 		mutex_spin_exit(&crypto_ret_q_mtx);
   1780 
   1781 		if (crp != NULL) {
   1782 #ifdef CRYPTO_TIMING
   1783 			if (crypto_timing) {
   1784 				/*
   1785 				 * NB: We must copy the timestamp before
   1786 				 * doing the callback as the cryptop is
   1787 				 * likely to be reclaimed.
   1788 				 */
   1789 				struct timespec t = crp->crp_tstamp;
   1790 				crypto_tstat(&cryptostats.cs_cb, &t);
   1791 				crp->crp_callback(crp);
   1792 				crypto_tstat(&cryptostats.cs_finis, &t);
   1793 			} else
   1794 #endif
   1795 			{
   1796 				crp->crp_callback(crp);
   1797 			}
   1798 		}
   1799 		if (krp != NULL)
   1800 			krp->krp_callback(krp);
   1801 
   1802 		mutex_spin_enter(&crypto_ret_q_mtx);
   1803 	}
   1804 }
   1805 
   1806 /* NetBSD module interface */
   1807 
   1808 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1809 
   1810 static int
   1811 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1812 {
   1813 	int error = 0;
   1814 
   1815 	switch (cmd) {
   1816 	case MODULE_CMD_INIT:
   1817 #ifdef _MODULE
   1818 		error = crypto_init();
   1819 #endif
   1820 		break;
   1821 	case MODULE_CMD_FINI:
   1822 #ifdef _MODULE
   1823 		error = crypto_destroy(true);
   1824 #endif
   1825 		break;
   1826 	default:
   1827 		error = ENOTTY;
   1828 	}
   1829 	return error;
   1830 }
   1831