crypto.c revision 1.78.2.1 1 /* $NetBSD: crypto.c,v 1.78.2.1 2017/06/22 05:36:41 snj Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.78.2.1 2017/06/22 05:36:41 snj Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 static kmutex_t crypto_q_mtx;
79 static kmutex_t crypto_ret_q_mtx;
80 static kcondvar_t cryptoret_cv;
81
82 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
83 #define SWI_CRYPTO 17
84 #define register_swi(lvl, fn) \
85 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
86 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
87 #define setsoftcrypto(x) \
88 do{ \
89 kpreempt_disable(); \
90 softint_schedule(x); \
91 kpreempt_enable(); \
92 }while(0)
93
94 int crypto_ret_q_check(struct cryptop *);
95
96 /*
97 * Crypto drivers register themselves by allocating a slot in the
98 * crypto_drivers table with crypto_get_driverid() and then registering
99 * each algorithm they support with crypto_register() and crypto_kregister().
100 */
101 static kmutex_t crypto_drv_mtx;
102 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
103 static struct cryptocap *crypto_drivers;
104 static int crypto_drivers_num;
105 static void *softintr_cookie;
106 static int crypto_exit_flag;
107
108 /*
109 * There are two queues for crypto requests; one for symmetric (e.g.
110 * cipher) operations and one for asymmetric (e.g. MOD) operations.
111 * See below for how synchronization is handled.
112 */
113 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
114 TAILQ_HEAD_INITIALIZER(crp_q);
115 static TAILQ_HEAD(,cryptkop) crp_kq =
116 TAILQ_HEAD_INITIALIZER(crp_kq);
117
118 /*
119 * There are two queues for processing completed crypto requests; one
120 * for the symmetric and one for the asymmetric ops. We only need one
121 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
122 * for how synchronization is handled.
123 */
124 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
125 TAILQ_HEAD_INITIALIZER(crp_ret_q);
126 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
127 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
128
129 #define DEFINIT_CRYPTO_Q_LEN(name) \
130 static int crypto_##name##_len = 0
131
132 #define DEFINIT_CRYPTO_Q_DROPS(name) \
133 static int crypto_##name##_drops = 0
134
135 #define DEFINIT_CRYPTO_Q_MAXLEN(name, defval) \
136 static int crypto_##name##_maxlen = defval
137
138 #define CRYPTO_Q_INC(name) \
139 do { \
140 crypto_##name##_len++; \
141 } while(0);
142
143 #define CRYPTO_Q_DEC(name) \
144 do { \
145 crypto_##name##_len--; \
146 } while(0);
147
148 #define CRYPTO_Q_INC_DROPS(name) \
149 do { \
150 crypto_##name##_drops++; \
151 } while(0);
152
153 #define CRYPTO_Q_IS_FULL(name) \
154 (crypto_##name##_maxlen > 0 \
155 && (crypto_##name##_len > crypto_##name##_maxlen))
156
157 /*
158 * current queue length.
159 */
160 DEFINIT_CRYPTO_Q_LEN(crp_ret_q);
161 DEFINIT_CRYPTO_Q_LEN(crp_ret_kq);
162
163 /*
164 * queue dropped count.
165 */
166 DEFINIT_CRYPTO_Q_DROPS(crp_ret_q);
167 DEFINIT_CRYPTO_Q_DROPS(crp_ret_kq);
168
169 #ifndef CRYPTO_RET_Q_MAXLEN
170 #define CRYPTO_RET_Q_MAXLEN 0
171 #endif
172 #ifndef CRYPTO_RET_KQ_MAXLEN
173 #define CRYPTO_RET_KQ_MAXLEN 0
174 #endif
175 /*
176 * queue length limit.
177 * default value is 0. <=0 means unlimited.
178 */
179 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_q, CRYPTO_RET_Q_MAXLEN);
180 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_kq, CRYPTO_RET_KQ_MAXLEN);
181
182 /*
183 * TODO:
184 * make percpu
185 */
186 static int
187 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
188 {
189 int error;
190
191 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
192 if (error || newp == NULL)
193 return error;
194
195 return 0;
196 }
197
198 /*
199 * TODO:
200 * make percpu
201 */
202 static int
203 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
204 {
205 int error;
206
207 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
208 if (error || newp == NULL)
209 return error;
210
211 return 0;
212 }
213
214 /*
215 * need to make percpu?
216 */
217 static int
218 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
219 {
220 int error;
221
222 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
223 if (error || newp == NULL)
224 return error;
225
226 return 0;
227 }
228
229 /*
230 * Crypto op and desciptor data structures are allocated
231 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
232 */
233 struct pool cryptop_pool;
234 struct pool cryptodesc_pool;
235 struct pool cryptkop_pool;
236
237 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
238 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
239 /*
240 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
241 * access to hardware versus software transforms as below:
242 *
243 * crypto_devallowsoft < 0: Force userlevel requests to use software
244 * transforms, always
245 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
246 * requests for non-accelerated transforms
247 * (handling the latter in software)
248 * crypto_devallowsoft > 0: Allow user requests only for transforms which
249 * are hardware-accelerated.
250 */
251 int crypto_devallowsoft = 1; /* only use hardware crypto */
252
253 static void
254 sysctl_opencrypto_setup(struct sysctllog **clog)
255 {
256 const struct sysctlnode *ocnode;
257 const struct sysctlnode *retqnode, *retkqnode;
258
259 sysctl_createv(clog, 0, NULL, NULL,
260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
261 CTLTYPE_INT, "usercrypto",
262 SYSCTL_DESCR("Enable/disable user-mode access to "
263 "crypto support"),
264 NULL, 0, &crypto_usercrypto, 0,
265 CTL_KERN, CTL_CREATE, CTL_EOL);
266 sysctl_createv(clog, 0, NULL, NULL,
267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
268 CTLTYPE_INT, "userasymcrypto",
269 SYSCTL_DESCR("Enable/disable user-mode access to "
270 "asymmetric crypto support"),
271 NULL, 0, &crypto_userasymcrypto, 0,
272 CTL_KERN, CTL_CREATE, CTL_EOL);
273 sysctl_createv(clog, 0, NULL, NULL,
274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
275 CTLTYPE_INT, "cryptodevallowsoft",
276 SYSCTL_DESCR("Enable/disable use of software "
277 "asymmetric crypto support"),
278 NULL, 0, &crypto_devallowsoft, 0,
279 CTL_KERN, CTL_CREATE, CTL_EOL);
280
281 sysctl_createv(clog, 0, NULL, &ocnode,
282 CTLFLAG_PERMANENT,
283 CTLTYPE_NODE, "opencrypto",
284 SYSCTL_DESCR("opencrypto related entries"),
285 NULL, 0, NULL, 0,
286 CTL_CREATE, CTL_EOL);
287
288 sysctl_createv(clog, 0, &ocnode, &retqnode,
289 CTLFLAG_PERMANENT,
290 CTLTYPE_NODE, "crypto_ret_q",
291 SYSCTL_DESCR("crypto_ret_q related entries"),
292 NULL, 0, NULL, 0,
293 CTL_CREATE, CTL_EOL);
294 sysctl_createv(clog, 0, &retqnode, NULL,
295 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
296 CTLTYPE_INT, "len",
297 SYSCTL_DESCR("Current queue length"),
298 sysctl_opencrypto_q_len, 0,
299 (void *)&crypto_crp_ret_q_len, 0,
300 CTL_CREATE, CTL_EOL);
301 sysctl_createv(clog, 0, &retqnode, NULL,
302 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
303 CTLTYPE_INT, "drops",
304 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
305 sysctl_opencrypto_q_drops, 0,
306 (void *)&crypto_crp_ret_q_drops, 0,
307 CTL_CREATE, CTL_EOL);
308 sysctl_createv(clog, 0, &retqnode, NULL,
309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
310 CTLTYPE_INT, "maxlen",
311 SYSCTL_DESCR("Maximum allowed queue length"),
312 sysctl_opencrypto_q_maxlen, 0,
313 (void *)&crypto_crp_ret_q_maxlen, 0,
314 CTL_CREATE, CTL_EOL);
315
316 sysctl_createv(clog, 0, &ocnode, &retkqnode,
317 CTLFLAG_PERMANENT,
318 CTLTYPE_NODE, "crypto_ret_kq",
319 SYSCTL_DESCR("crypto_ret_kq related entries"),
320 NULL, 0, NULL, 0,
321 CTL_CREATE, CTL_EOL);
322 sysctl_createv(clog, 0, &retkqnode, NULL,
323 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
324 CTLTYPE_INT, "len",
325 SYSCTL_DESCR("Current queue length"),
326 sysctl_opencrypto_q_len, 0,
327 (void *)&crypto_crp_ret_kq_len, 0,
328 CTL_CREATE, CTL_EOL);
329 sysctl_createv(clog, 0, &retkqnode, NULL,
330 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
331 CTLTYPE_INT, "drops",
332 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
333 sysctl_opencrypto_q_drops, 0,
334 (void *)&crypto_crp_ret_kq_drops, 0,
335 CTL_CREATE, CTL_EOL);
336 sysctl_createv(clog, 0, &retkqnode, NULL,
337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
338 CTLTYPE_INT, "maxlen",
339 SYSCTL_DESCR("Maximum allowed queue length"),
340 sysctl_opencrypto_q_maxlen, 0,
341 (void *)&crypto_crp_ret_kq_maxlen, 0,
342 CTL_CREATE, CTL_EOL);
343 }
344
345 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
346
347 /*
348 * Synchronization: read carefully, this is non-trivial.
349 *
350 * Crypto requests are submitted via crypto_dispatch. Typically
351 * these come in from network protocols at spl0 (output path) or
352 * spl[,soft]net (input path).
353 *
354 * Requests are typically passed on the driver directly, but they
355 * may also be queued for processing by a software interrupt thread,
356 * cryptointr, that runs at splsoftcrypto. This thread dispatches
357 * the requests to crypto drivers (h/w or s/w) who call crypto_done
358 * when a request is complete. Hardware crypto drivers are assumed
359 * to register their IRQ's as network devices so their interrupt handlers
360 * and subsequent "done callbacks" happen at spl[imp,net].
361 *
362 * Completed crypto ops are queued for a separate kernel thread that
363 * handles the callbacks at spl0. This decoupling insures the crypto
364 * driver interrupt service routine is not delayed while the callback
365 * takes place and that callbacks are delivered after a context switch
366 * (as opposed to a software interrupt that clients must block).
367 *
368 * This scheme is not intended for SMP machines.
369 */
370 static void cryptointr(void); /* swi thread to dispatch ops */
371 static void cryptoret(void); /* kernel thread for callbacks*/
372 static struct lwp *cryptothread;
373 static int crypto_destroy(bool);
374 static int crypto_invoke(struct cryptop *crp, int hint);
375 static int crypto_kinvoke(struct cryptkop *krp, int hint);
376
377 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
378 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
379 static struct cryptocap *crypto_checkdriver(u_int32_t);
380 static void crypto_driver_lock(struct cryptocap *);
381 static void crypto_driver_unlock(struct cryptocap *);
382 static void crypto_driver_clear(struct cryptocap *);
383
384 static struct cryptostats cryptostats;
385 #ifdef CRYPTO_TIMING
386 static int crypto_timing = 0;
387 #endif
388
389 static struct sysctllog *sysctl_opencrypto_clog;
390
391 static int
392 crypto_init0(void)
393 {
394 int error;
395
396 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
397 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NONE);
398 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
399 cv_init(&cryptoret_cv, "crypto_w");
400 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
401 0, "cryptop", NULL, IPL_NET);
402 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
403 0, "cryptodesc", NULL, IPL_NET);
404 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
405 0, "cryptkop", NULL, IPL_NET);
406
407 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
408 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
409 if (crypto_drivers == NULL) {
410 printf("crypto_init: cannot malloc driver table\n");
411 return ENOMEM;
412 }
413 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
414
415 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
416 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
417 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
418 if (error) {
419 printf("crypto_init: cannot start cryptoret thread; error %d",
420 error);
421 return crypto_destroy(false);
422 }
423
424 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
425
426 return 0;
427 }
428
429 int
430 crypto_init(void)
431 {
432 static ONCE_DECL(crypto_init_once);
433
434 return RUN_ONCE(&crypto_init_once, crypto_init0);
435 }
436
437 static int
438 crypto_destroy(bool exit_kthread)
439 {
440 int i;
441
442 if (exit_kthread) {
443 struct cryptocap *cap = NULL;
444
445 /* if we have any in-progress requests, don't unload */
446 mutex_enter(&crypto_q_mtx);
447 if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
448 mutex_exit(&crypto_q_mtx);
449 return EBUSY;
450 }
451 mutex_exit(&crypto_q_mtx);
452 /* FIXME:
453 * prohibit enqueue to crp_q and crp_kq after here.
454 */
455
456 mutex_enter(&crypto_drv_mtx);
457 for (i = 0; i < crypto_drivers_num; i++) {
458 cap = crypto_checkdriver(i);
459 if (cap == NULL)
460 continue;
461 if (cap->cc_sessions != 0) {
462 mutex_exit(&crypto_drv_mtx);
463 return EBUSY;
464 }
465 }
466 mutex_exit(&crypto_drv_mtx);
467 /* FIXME:
468 * prohibit touch crypto_drivers[] and each element after here.
469 */
470
471 mutex_spin_enter(&crypto_ret_q_mtx);
472 /* kick the cryptoret thread and wait for it to exit */
473 crypto_exit_flag = 1;
474 cv_signal(&cryptoret_cv);
475
476 while (crypto_exit_flag != 0)
477 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
478 mutex_spin_exit(&crypto_ret_q_mtx);
479 }
480
481 if (sysctl_opencrypto_clog != NULL)
482 sysctl_teardown(&sysctl_opencrypto_clog);
483
484 unregister_swi(SWI_CRYPTO, cryptointr);
485
486 mutex_enter(&crypto_drv_mtx);
487 if (crypto_drivers != NULL)
488 free(crypto_drivers, M_CRYPTO_DATA);
489 mutex_exit(&crypto_drv_mtx);
490
491 pool_destroy(&cryptop_pool);
492 pool_destroy(&cryptodesc_pool);
493 pool_destroy(&cryptkop_pool);
494
495 cv_destroy(&cryptoret_cv);
496
497 mutex_destroy(&crypto_ret_q_mtx);
498 mutex_destroy(&crypto_q_mtx);
499 mutex_destroy(&crypto_drv_mtx);
500
501 return 0;
502 }
503
504 /*
505 * Create a new session.
506 */
507 int
508 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
509 {
510 struct cryptoini *cr;
511 struct cryptocap *cap;
512 u_int32_t hid, lid;
513 int err = EINVAL;
514
515 mutex_enter(&crypto_drv_mtx);
516
517 /*
518 * The algorithm we use here is pretty stupid; just use the
519 * first driver that supports all the algorithms we need.
520 *
521 * XXX We need more smarts here (in real life too, but that's
522 * XXX another story altogether).
523 */
524
525 for (hid = 0; hid < crypto_drivers_num; hid++) {
526 cap = crypto_checkdriver(hid);
527 if (cap == NULL)
528 continue;
529
530 crypto_driver_lock(cap);
531
532 /*
533 * If it's not initialized or has remaining sessions
534 * referencing it, skip.
535 */
536 if (cap->cc_newsession == NULL ||
537 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
538 crypto_driver_unlock(cap);
539 continue;
540 }
541
542 /* Hardware required -- ignore software drivers. */
543 if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
544 crypto_driver_unlock(cap);
545 continue;
546 }
547 /* Software required -- ignore hardware drivers. */
548 if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
549 crypto_driver_unlock(cap);
550 continue;
551 }
552
553 /* See if all the algorithms are supported. */
554 for (cr = cri; cr; cr = cr->cri_next)
555 if (cap->cc_alg[cr->cri_alg] == 0) {
556 DPRINTF("alg %d not supported\n", cr->cri_alg);
557 break;
558 }
559
560 if (cr == NULL) {
561 /* Ok, all algorithms are supported. */
562
563 /*
564 * Can't do everything in one session.
565 *
566 * XXX Fix this. We need to inject a "virtual" session layer right
567 * XXX about here.
568 */
569
570 /* Call the driver initialization routine. */
571 lid = hid; /* Pass the driver ID. */
572 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
573 if (err == 0) {
574 (*sid) = hid;
575 (*sid) <<= 32;
576 (*sid) |= (lid & 0xffffffff);
577 (cap->cc_sessions)++;
578 } else {
579 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
580 hid, err);
581 }
582 crypto_driver_unlock(cap);
583 goto done;
584 /*break;*/
585 }
586
587 crypto_driver_unlock(cap);
588 }
589 done:
590 mutex_exit(&crypto_drv_mtx);
591 return err;
592 }
593
594 /*
595 * Delete an existing session (or a reserved session on an unregistered
596 * driver).
597 */
598 int
599 crypto_freesession(u_int64_t sid)
600 {
601 struct cryptocap *cap;
602 int err = 0;
603
604 /* Determine two IDs. */
605 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
606 if (cap == NULL)
607 return ENOENT;
608
609 if (cap->cc_sessions)
610 (cap->cc_sessions)--;
611
612 /* Call the driver cleanup routine, if available. */
613 if (cap->cc_freesession)
614 err = cap->cc_freesession(cap->cc_arg, sid);
615 else
616 err = 0;
617
618 /*
619 * If this was the last session of a driver marked as invalid,
620 * make the entry available for reuse.
621 */
622 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
623 crypto_driver_clear(cap);
624
625 crypto_driver_unlock(cap);
626 return err;
627 }
628
629 static bool
630 crypto_checkdriver_initialized(const struct cryptocap *cap)
631 {
632
633 return cap->cc_process != NULL ||
634 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
635 cap->cc_sessions != 0;
636 }
637
638 /*
639 * Return an unused driver id. Used by drivers prior to registering
640 * support for the algorithms they handle.
641 */
642 int32_t
643 crypto_get_driverid(u_int32_t flags)
644 {
645 struct cryptocap *newdrv;
646 struct cryptocap *cap = NULL;
647 int i;
648
649 (void)crypto_init(); /* XXX oh, this is foul! */
650
651 mutex_enter(&crypto_drv_mtx);
652 for (i = 0; i < crypto_drivers_num; i++) {
653 cap = crypto_checkdriver_uninit(i);
654 if (cap == NULL || crypto_checkdriver_initialized(cap))
655 continue;
656 break;
657 }
658
659 /* Out of entries, allocate some more. */
660 if (cap == NULL) {
661 /* Be careful about wrap-around. */
662 if (2 * crypto_drivers_num <= crypto_drivers_num) {
663 mutex_exit(&crypto_drv_mtx);
664 printf("crypto: driver count wraparound!\n");
665 return -1;
666 }
667
668 newdrv = malloc(2 * crypto_drivers_num *
669 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
670 if (newdrv == NULL) {
671 mutex_exit(&crypto_drv_mtx);
672 printf("crypto: no space to expand driver table!\n");
673 return -1;
674 }
675
676 memcpy(newdrv, crypto_drivers,
677 crypto_drivers_num * sizeof(struct cryptocap));
678
679 crypto_drivers_num *= 2;
680
681 free(crypto_drivers, M_CRYPTO_DATA);
682 crypto_drivers = newdrv;
683
684 cap = crypto_checkdriver_uninit(i);
685 KASSERT(cap != NULL);
686 }
687
688 /* NB: state is zero'd on free */
689 cap->cc_sessions = 1; /* Mark */
690 cap->cc_flags = flags;
691 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
692
693 if (bootverbose)
694 printf("crypto: assign driver %u, flags %u\n", i, flags);
695
696 mutex_exit(&crypto_drv_mtx);
697
698 return i;
699 }
700
701 static struct cryptocap *
702 crypto_checkdriver_lock(u_int32_t hid)
703 {
704 struct cryptocap *cap;
705
706 KASSERT(crypto_drivers != NULL);
707
708 if (hid >= crypto_drivers_num)
709 return NULL;
710
711 cap = &crypto_drivers[hid];
712 mutex_enter(&cap->cc_lock);
713 return cap;
714 }
715
716 /*
717 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
718 * situations
719 * - crypto_drivers[] may not be allocated
720 * - crypto_drivers[hid] may not be initialized
721 */
722 static struct cryptocap *
723 crypto_checkdriver_uninit(u_int32_t hid)
724 {
725
726 KASSERT(mutex_owned(&crypto_drv_mtx));
727
728 if (crypto_drivers == NULL)
729 return NULL;
730
731 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
732 }
733
734 /*
735 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
736 * situations
737 * - crypto_drivers[] may not be allocated
738 * - crypto_drivers[hid] may not be initialized
739 */
740 static struct cryptocap *
741 crypto_checkdriver(u_int32_t hid)
742 {
743
744 KASSERT(mutex_owned(&crypto_drv_mtx));
745
746 if (crypto_drivers == NULL || hid >= crypto_drivers_num)
747 return NULL;
748
749 struct cryptocap *cap = &crypto_drivers[hid];
750 return crypto_checkdriver_initialized(cap) ? cap : NULL;
751 }
752
753 static inline void
754 crypto_driver_lock(struct cryptocap *cap)
755 {
756
757 KASSERT(cap != NULL);
758
759 mutex_enter(&cap->cc_lock);
760 }
761
762 static inline void
763 crypto_driver_unlock(struct cryptocap *cap)
764 {
765
766 KASSERT(cap != NULL);
767
768 mutex_exit(&cap->cc_lock);
769 }
770
771 static void
772 crypto_driver_clear(struct cryptocap *cap)
773 {
774
775 if (cap == NULL)
776 return;
777
778 KASSERT(mutex_owned(&cap->cc_lock));
779
780 cap->cc_sessions = 0;
781 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
782 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
783 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
784 cap->cc_flags = 0;
785 cap->cc_qblocked = 0;
786 cap->cc_kqblocked = 0;
787
788 cap->cc_arg = NULL;
789 cap->cc_newsession = NULL;
790 cap->cc_process = NULL;
791 cap->cc_freesession = NULL;
792 cap->cc_kprocess = NULL;
793 }
794
795 /*
796 * Register support for a key-related algorithm. This routine
797 * is called once for each algorithm supported a driver.
798 */
799 int
800 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
801 int (*kprocess)(void *, struct cryptkop *, int),
802 void *karg)
803 {
804 struct cryptocap *cap;
805 int err;
806
807 mutex_enter(&crypto_drv_mtx);
808
809 cap = crypto_checkdriver_lock(driverid);
810 if (cap != NULL &&
811 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
812 /*
813 * XXX Do some performance testing to determine placing.
814 * XXX We probably need an auxiliary data structure that
815 * XXX describes relative performances.
816 */
817
818 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
819 if (bootverbose) {
820 printf("crypto: driver %u registers key alg %u "
821 " flags %u\n",
822 driverid,
823 kalg,
824 flags
825 );
826 }
827
828 if (cap->cc_kprocess == NULL) {
829 cap->cc_karg = karg;
830 cap->cc_kprocess = kprocess;
831 }
832 err = 0;
833 } else
834 err = EINVAL;
835
836 mutex_exit(&crypto_drv_mtx);
837 return err;
838 }
839
840 /*
841 * Register support for a non-key-related algorithm. This routine
842 * is called once for each such algorithm supported by a driver.
843 */
844 int
845 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
846 u_int32_t flags,
847 int (*newses)(void *, u_int32_t*, struct cryptoini*),
848 int (*freeses)(void *, u_int64_t),
849 int (*process)(void *, struct cryptop *, int),
850 void *arg)
851 {
852 struct cryptocap *cap;
853 int err;
854
855 cap = crypto_checkdriver_lock(driverid);
856 if (cap == NULL)
857 return EINVAL;
858
859 /* NB: algorithms are in the range [1..max] */
860 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
861 /*
862 * XXX Do some performance testing to determine placing.
863 * XXX We probably need an auxiliary data structure that
864 * XXX describes relative performances.
865 */
866
867 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
868 cap->cc_max_op_len[alg] = maxoplen;
869 if (bootverbose) {
870 printf("crypto: driver %u registers alg %u "
871 "flags %u maxoplen %u\n",
872 driverid,
873 alg,
874 flags,
875 maxoplen
876 );
877 }
878
879 if (cap->cc_process == NULL) {
880 cap->cc_arg = arg;
881 cap->cc_newsession = newses;
882 cap->cc_process = process;
883 cap->cc_freesession = freeses;
884 cap->cc_sessions = 0; /* Unmark */
885 }
886 err = 0;
887 } else
888 err = EINVAL;
889
890 crypto_driver_unlock(cap);
891
892 return err;
893 }
894
895 static int
896 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
897 {
898 int i;
899 u_int32_t ses;
900 bool lastalg = true;
901
902 KASSERT(cap != NULL);
903 KASSERT(mutex_owned(&cap->cc_lock));
904
905 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
906 return EINVAL;
907
908 if (!all && cap->cc_alg[alg] == 0)
909 return EINVAL;
910
911 cap->cc_alg[alg] = 0;
912 cap->cc_max_op_len[alg] = 0;
913
914 if (all) {
915 if (alg != CRYPTO_ALGORITHM_MAX)
916 lastalg = false;
917 } else {
918 /* Was this the last algorithm ? */
919 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
920 if (cap->cc_alg[i] != 0) {
921 lastalg = false;
922 break;
923 }
924 }
925 if (lastalg) {
926 ses = cap->cc_sessions;
927 crypto_driver_clear(cap);
928 if (ses != 0) {
929 /*
930 * If there are pending sessions, just mark as invalid.
931 */
932 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
933 cap->cc_sessions = ses;
934 }
935 }
936
937 return 0;
938 }
939
940 /*
941 * Unregister a crypto driver. If there are pending sessions using it,
942 * leave enough information around so that subsequent calls using those
943 * sessions will correctly detect the driver has been unregistered and
944 * reroute requests.
945 */
946 int
947 crypto_unregister(u_int32_t driverid, int alg)
948 {
949 int err;
950 struct cryptocap *cap;
951
952 cap = crypto_checkdriver_lock(driverid);
953 err = crypto_unregister_locked(cap, alg, false);
954 crypto_driver_unlock(cap);
955
956 return err;
957 }
958
959 /*
960 * Unregister all algorithms associated with a crypto driver.
961 * If there are pending sessions using it, leave enough information
962 * around so that subsequent calls using those sessions will
963 * correctly detect the driver has been unregistered and reroute
964 * requests.
965 */
966 int
967 crypto_unregister_all(u_int32_t driverid)
968 {
969 int err, i;
970 struct cryptocap *cap;
971
972 cap = crypto_checkdriver_lock(driverid);
973 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
974 err = crypto_unregister_locked(cap, i, true);
975 if (err)
976 break;
977 }
978 crypto_driver_unlock(cap);
979
980 return err;
981 }
982
983 /*
984 * Clear blockage on a driver. The what parameter indicates whether
985 * the driver is now ready for cryptop's and/or cryptokop's.
986 */
987 int
988 crypto_unblock(u_int32_t driverid, int what)
989 {
990 struct cryptocap *cap;
991 int needwakeup = 0;
992
993 cap = crypto_checkdriver_lock(driverid);
994 if (cap == NULL)
995 return EINVAL;
996
997 if (what & CRYPTO_SYMQ) {
998 needwakeup |= cap->cc_qblocked;
999 cap->cc_qblocked = 0;
1000 }
1001 if (what & CRYPTO_ASYMQ) {
1002 needwakeup |= cap->cc_kqblocked;
1003 cap->cc_kqblocked = 0;
1004 }
1005 crypto_driver_unlock(cap);
1006 if (needwakeup)
1007 setsoftcrypto(softintr_cookie);
1008
1009 return 0;
1010 }
1011
1012 /*
1013 * Dispatch a crypto request to a driver or queue
1014 * it, to be processed by the kernel thread.
1015 */
1016 int
1017 crypto_dispatch(struct cryptop *crp)
1018 {
1019 int result;
1020 struct cryptocap *cap;
1021
1022 KASSERT(crp != NULL);
1023
1024 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
1025
1026 cryptostats.cs_ops++;
1027
1028 #ifdef CRYPTO_TIMING
1029 if (crypto_timing)
1030 nanouptime(&crp->crp_tstamp);
1031 #endif
1032
1033 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1034 int wasempty;
1035 /*
1036 * Caller marked the request as ``ok to delay'';
1037 * queue it for the swi thread. This is desirable
1038 * when the operation is low priority and/or suitable
1039 * for batching.
1040 *
1041 * don't care list order in batch job.
1042 */
1043 mutex_enter(&crypto_q_mtx);
1044 wasempty = TAILQ_EMPTY(&crp_q);
1045 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1046 mutex_exit(&crypto_q_mtx);
1047 if (wasempty)
1048 setsoftcrypto(softintr_cookie);
1049
1050 return 0;
1051 }
1052
1053 mutex_enter(&crypto_q_mtx);
1054 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1055 /*
1056 * TODO:
1057 * If we can ensure the driver has been valid until the driver is
1058 * done crypto_unregister(), this migrate operation is not required.
1059 */
1060 if (cap == NULL) {
1061 /*
1062 * The driver must be detached, so this request will migrate
1063 * to other drivers in cryptointr() later.
1064 */
1065 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1066 mutex_exit(&crypto_q_mtx);
1067 return 0;
1068 }
1069
1070 if (cap->cc_qblocked != 0) {
1071 crypto_driver_unlock(cap);
1072 /*
1073 * The driver is blocked, just queue the op until
1074 * it unblocks and the swi thread gets kicked.
1075 */
1076 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1077 mutex_exit(&crypto_q_mtx);
1078 return 0;
1079 }
1080
1081 /*
1082 * Caller marked the request to be processed
1083 * immediately; dispatch it directly to the
1084 * driver unless the driver is currently blocked.
1085 */
1086 crypto_driver_unlock(cap);
1087 result = crypto_invoke(crp, 0);
1088 if (result == ERESTART) {
1089 /*
1090 * The driver ran out of resources, mark the
1091 * driver ``blocked'' for cryptop's and put
1092 * the op on the queue.
1093 */
1094 crypto_driver_lock(cap);
1095 cap->cc_qblocked = 1;
1096 crypto_driver_unlock(cap);
1097 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
1098 cryptostats.cs_blocks++;
1099
1100 /*
1101 * The crp is enqueued to crp_q, that is,
1102 * no error occurs. So, this function should
1103 * not return error.
1104 */
1105 result = 0;
1106 }
1107
1108 mutex_exit(&crypto_q_mtx);
1109 return result;
1110 }
1111
1112 /*
1113 * Add an asymetric crypto request to a queue,
1114 * to be processed by the kernel thread.
1115 */
1116 int
1117 crypto_kdispatch(struct cryptkop *krp)
1118 {
1119 struct cryptocap *cap;
1120 int result;
1121
1122 KASSERT(krp != NULL);
1123
1124 cryptostats.cs_kops++;
1125
1126 mutex_enter(&crypto_q_mtx);
1127 cap = crypto_checkdriver_lock(krp->krp_hid);
1128 /*
1129 * TODO:
1130 * If we can ensure the driver has been valid until the driver is
1131 * done crypto_unregister(), this migrate operation is not required.
1132 */
1133 if (cap == NULL) {
1134 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1135 mutex_exit(&crypto_q_mtx);
1136 return 0;
1137 }
1138
1139 if (cap->cc_kqblocked != 0) {
1140 crypto_driver_unlock(cap);
1141 /*
1142 * The driver is blocked, just queue the op until
1143 * it unblocks and the swi thread gets kicked.
1144 */
1145 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1146 mutex_exit(&crypto_q_mtx);
1147 return 0;
1148 }
1149
1150 crypto_driver_unlock(cap);
1151 result = crypto_kinvoke(krp, 0);
1152 if (result == ERESTART) {
1153 /*
1154 * The driver ran out of resources, mark the
1155 * driver ``blocked'' for cryptop's and put
1156 * the op on the queue.
1157 */
1158 crypto_driver_lock(cap);
1159 cap->cc_kqblocked = 1;
1160 crypto_driver_unlock(cap);
1161 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1162 cryptostats.cs_kblocks++;
1163 mutex_exit(&crypto_q_mtx);
1164
1165 /*
1166 * The krp is enqueued to crp_kq, that is,
1167 * no error occurs. So, this function should
1168 * not return error.
1169 */
1170 result = 0;
1171 }
1172
1173 return result;
1174 }
1175
1176 /*
1177 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1178 */
1179 static int
1180 crypto_kinvoke(struct cryptkop *krp, int hint)
1181 {
1182 struct cryptocap *cap = NULL;
1183 u_int32_t hid;
1184 int error;
1185
1186 KASSERT(krp != NULL);
1187
1188 /* Sanity checks. */
1189 if (krp->krp_callback == NULL) {
1190 cv_destroy(&krp->krp_cv);
1191 crypto_kfreereq(krp);
1192 return EINVAL;
1193 }
1194
1195 mutex_enter(&crypto_drv_mtx);
1196 for (hid = 0; hid < crypto_drivers_num; hid++) {
1197 cap = crypto_checkdriver(hid);
1198 if (cap == NULL)
1199 continue;
1200 crypto_driver_lock(cap);
1201 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1202 crypto_devallowsoft == 0) {
1203 crypto_driver_unlock(cap);
1204 continue;
1205 }
1206 if (cap->cc_kprocess == NULL) {
1207 crypto_driver_unlock(cap);
1208 continue;
1209 }
1210 if ((cap->cc_kalg[krp->krp_op] &
1211 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1212 crypto_driver_unlock(cap);
1213 continue;
1214 }
1215 break;
1216 }
1217 mutex_exit(&crypto_drv_mtx);
1218 if (cap != NULL) {
1219 int (*process)(void *, struct cryptkop *, int);
1220 void *arg;
1221
1222 process = cap->cc_kprocess;
1223 arg = cap->cc_karg;
1224 krp->krp_hid = hid;
1225 crypto_driver_unlock(cap);
1226 error = (*process)(arg, krp, hint);
1227 } else {
1228 error = ENODEV;
1229 }
1230
1231 if (error) {
1232 krp->krp_status = error;
1233 crypto_kdone(krp);
1234 }
1235 return 0;
1236 }
1237
1238 #ifdef CRYPTO_TIMING
1239 static void
1240 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1241 {
1242 struct timespec now, t;
1243
1244 nanouptime(&now);
1245 t.tv_sec = now.tv_sec - tv->tv_sec;
1246 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1247 if (t.tv_nsec < 0) {
1248 t.tv_sec--;
1249 t.tv_nsec += 1000000000;
1250 }
1251 timespecadd(&ts->acc, &t, &t);
1252 if (timespeccmp(&t, &ts->min, <))
1253 ts->min = t;
1254 if (timespeccmp(&t, &ts->max, >))
1255 ts->max = t;
1256 ts->count++;
1257
1258 *tv = now;
1259 }
1260 #endif
1261
1262 /*
1263 * Dispatch a crypto request to the appropriate crypto devices.
1264 */
1265 static int
1266 crypto_invoke(struct cryptop *crp, int hint)
1267 {
1268 struct cryptocap *cap;
1269
1270 KASSERT(crp != NULL);
1271
1272 #ifdef CRYPTO_TIMING
1273 if (crypto_timing)
1274 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1275 #endif
1276 /* Sanity checks. */
1277 if (crp->crp_callback == NULL) {
1278 return EINVAL;
1279 }
1280 if (crp->crp_desc == NULL) {
1281 crp->crp_etype = EINVAL;
1282 crypto_done(crp);
1283 return 0;
1284 }
1285
1286 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1287 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1288 int (*process)(void *, struct cryptop *, int);
1289 void *arg;
1290
1291 process = cap->cc_process;
1292 arg = cap->cc_arg;
1293
1294 /*
1295 * Invoke the driver to process the request.
1296 */
1297 DPRINTF("calling process for %p\n", crp);
1298 crypto_driver_unlock(cap);
1299 return (*process)(arg, crp, hint);
1300 } else {
1301 struct cryptodesc *crd;
1302 u_int64_t nid = 0;
1303
1304 if (cap != NULL)
1305 crypto_driver_unlock(cap);
1306
1307 /*
1308 * Driver has unregistered; migrate the session and return
1309 * an error to the caller so they'll resubmit the op.
1310 */
1311 crypto_freesession(crp->crp_sid);
1312
1313 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1314 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1315
1316 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1317 crp->crp_sid = nid;
1318
1319 crp->crp_etype = EAGAIN;
1320
1321 crypto_done(crp);
1322 return 0;
1323 }
1324 }
1325
1326 /*
1327 * Release a set of crypto descriptors.
1328 */
1329 void
1330 crypto_freereq(struct cryptop *crp)
1331 {
1332 struct cryptodesc *crd;
1333
1334 if (crp == NULL)
1335 return;
1336 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1337
1338 /* sanity check */
1339 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1340 panic("crypto_freereq() freeing crp on RETQ\n");
1341 }
1342
1343 while ((crd = crp->crp_desc) != NULL) {
1344 crp->crp_desc = crd->crd_next;
1345 pool_put(&cryptodesc_pool, crd);
1346 }
1347 pool_put(&cryptop_pool, crp);
1348 }
1349
1350 /*
1351 * Acquire a set of crypto descriptors.
1352 */
1353 struct cryptop *
1354 crypto_getreq(int num)
1355 {
1356 struct cryptodesc *crd;
1357 struct cryptop *crp;
1358
1359 /*
1360 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1361 * by error callback.
1362 */
1363 if (CRYPTO_Q_IS_FULL(crp_ret_q)) {
1364 CRYPTO_Q_INC_DROPS(crp_ret_q);
1365 return NULL;
1366 }
1367
1368 crp = pool_get(&cryptop_pool, 0);
1369 if (crp == NULL) {
1370 return NULL;
1371 }
1372 memset(crp, 0, sizeof(struct cryptop));
1373
1374 while (num--) {
1375 crd = pool_get(&cryptodesc_pool, 0);
1376 if (crd == NULL) {
1377 crypto_freereq(crp);
1378 return NULL;
1379 }
1380
1381 memset(crd, 0, sizeof(struct cryptodesc));
1382 crd->crd_next = crp->crp_desc;
1383 crp->crp_desc = crd;
1384 }
1385
1386 return crp;
1387 }
1388
1389 /*
1390 * Release a set of asymmetric crypto descriptors.
1391 * Currently, support one descriptor only.
1392 */
1393 void
1394 crypto_kfreereq(struct cryptkop *krp)
1395 {
1396
1397 if (krp == NULL)
1398 return;
1399
1400 DPRINTF("krp %p\n", krp);
1401
1402 /* sanity check */
1403 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1404 panic("crypto_kfreereq() freeing krp on RETQ\n");
1405 }
1406
1407 pool_put(&cryptkop_pool, krp);
1408 }
1409
1410 /*
1411 * Acquire a set of asymmetric crypto descriptors.
1412 * Currently, support one descriptor only.
1413 */
1414 struct cryptkop *
1415 crypto_kgetreq(int num __unused, int prflags)
1416 {
1417 struct cryptkop *krp;
1418
1419 /*
1420 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1421 * overflow by error callback.
1422 */
1423 if (CRYPTO_Q_IS_FULL(crp_ret_kq)) {
1424 CRYPTO_Q_INC_DROPS(crp_ret_kq);
1425 return NULL;
1426 }
1427
1428 krp = pool_get(&cryptkop_pool, prflags);
1429 if (krp == NULL) {
1430 return NULL;
1431 }
1432 memset(krp, 0, sizeof(struct cryptkop));
1433
1434 return krp;
1435 }
1436
1437 /*
1438 * Invoke the callback on behalf of the driver.
1439 */
1440 void
1441 crypto_done(struct cryptop *crp)
1442 {
1443 int wasempty;
1444
1445 KASSERT(crp != NULL);
1446
1447 if (crp->crp_etype != 0)
1448 cryptostats.cs_errs++;
1449 #ifdef CRYPTO_TIMING
1450 if (crypto_timing)
1451 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1452 #endif
1453 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1454
1455 /*
1456 * Normal case; queue the callback for the thread.
1457 *
1458 * The return queue is manipulated by the swi thread
1459 * and, potentially, by crypto device drivers calling
1460 * back to mark operations completed. Thus we need
1461 * to mask both while manipulating the return queue.
1462 */
1463 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1464 /*
1465 * Do the callback directly. This is ok when the
1466 * callback routine does very little (e.g. the
1467 * /dev/crypto callback method just does a wakeup).
1468 */
1469 mutex_spin_enter(&crypto_ret_q_mtx);
1470 crp->crp_flags |= CRYPTO_F_DONE;
1471 mutex_spin_exit(&crypto_ret_q_mtx);
1472
1473 #ifdef CRYPTO_TIMING
1474 if (crypto_timing) {
1475 /*
1476 * NB: We must copy the timestamp before
1477 * doing the callback as the cryptop is
1478 * likely to be reclaimed.
1479 */
1480 struct timespec t = crp->crp_tstamp;
1481 crypto_tstat(&cryptostats.cs_cb, &t);
1482 crp->crp_callback(crp);
1483 crypto_tstat(&cryptostats.cs_finis, &t);
1484 } else
1485 #endif
1486 crp->crp_callback(crp);
1487 } else {
1488 mutex_spin_enter(&crypto_ret_q_mtx);
1489 crp->crp_flags |= CRYPTO_F_DONE;
1490 #if 0
1491 if (crp->crp_flags & CRYPTO_F_USER) {
1492 /*
1493 * TODO:
1494 * If crp->crp_flags & CRYPTO_F_USER and the used
1495 * encryption driver does all the processing in
1496 * the same context, we can skip enqueueing crp_ret_q
1497 * and cv_signal(&cryptoret_cv).
1498 */
1499 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1500 CRYPTO_SESID2LID(crp->crp_sid), crp);
1501 } else
1502 #endif
1503 {
1504 wasempty = TAILQ_EMPTY(&crp_ret_q);
1505 DPRINTF("lid[%u]: queueing %p\n",
1506 CRYPTO_SESID2LID(crp->crp_sid), crp);
1507 crp->crp_flags |= CRYPTO_F_ONRETQ;
1508 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1509 CRYPTO_Q_INC(crp_ret_q);
1510 if (wasempty) {
1511 DPRINTF("lid[%u]: waking cryptoret, "
1512 "crp %p hit empty queue\n.",
1513 CRYPTO_SESID2LID(crp->crp_sid), crp);
1514 cv_signal(&cryptoret_cv);
1515 }
1516 }
1517 mutex_spin_exit(&crypto_ret_q_mtx);
1518 }
1519 }
1520
1521 /*
1522 * Invoke the callback on behalf of the driver.
1523 */
1524 void
1525 crypto_kdone(struct cryptkop *krp)
1526 {
1527 int wasempty;
1528
1529 KASSERT(krp != NULL);
1530
1531 if (krp->krp_status != 0)
1532 cryptostats.cs_kerrs++;
1533
1534 krp->krp_flags |= CRYPTO_F_DONE;
1535
1536 /*
1537 * The return queue is manipulated by the swi thread
1538 * and, potentially, by crypto device drivers calling
1539 * back to mark operations completed. Thus we need
1540 * to mask both while manipulating the return queue.
1541 */
1542 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1543 krp->krp_callback(krp);
1544 } else {
1545 mutex_spin_enter(&crypto_ret_q_mtx);
1546 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1547 krp->krp_flags |= CRYPTO_F_ONRETQ;
1548 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1549 CRYPTO_Q_INC(crp_ret_kq);
1550 if (wasempty)
1551 cv_signal(&cryptoret_cv);
1552 mutex_spin_exit(&crypto_ret_q_mtx);
1553 }
1554 }
1555
1556 int
1557 crypto_getfeat(int *featp)
1558 {
1559
1560 if (crypto_userasymcrypto == 0) {
1561 *featp = 0;
1562 return 0;
1563 }
1564
1565 mutex_enter(&crypto_drv_mtx);
1566
1567 int feat = 0;
1568 for (int hid = 0; hid < crypto_drivers_num; hid++) {
1569 struct cryptocap *cap;
1570 cap = crypto_checkdriver(hid);
1571 if (cap == NULL)
1572 continue;
1573
1574 crypto_driver_lock(cap);
1575
1576 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1577 crypto_devallowsoft == 0)
1578 goto unlock;
1579
1580 if (cap->cc_kprocess == NULL)
1581 goto unlock;
1582
1583 for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1584 if ((cap->cc_kalg[kalg] &
1585 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1586 feat |= 1 << kalg;
1587
1588 unlock: crypto_driver_unlock(cap);
1589 }
1590
1591 mutex_exit(&crypto_drv_mtx);
1592 *featp = feat;
1593 return (0);
1594 }
1595
1596 /*
1597 * Software interrupt thread to dispatch crypto requests.
1598 */
1599 static void
1600 cryptointr(void)
1601 {
1602 struct cryptop *crp, *submit, *cnext;
1603 struct cryptkop *krp, *knext;
1604 struct cryptocap *cap;
1605 int result, hint;
1606
1607 cryptostats.cs_intrs++;
1608 mutex_enter(&crypto_q_mtx);
1609 do {
1610 /*
1611 * Find the first element in the queue that can be
1612 * processed and look-ahead to see if multiple ops
1613 * are ready for the same driver.
1614 */
1615 submit = NULL;
1616 hint = 0;
1617 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1618 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1619 cap = crypto_checkdriver_lock(hid);
1620 if (cap == NULL || cap->cc_process == NULL) {
1621 if (cap != NULL)
1622 crypto_driver_unlock(cap);
1623 /* Op needs to be migrated, process it. */
1624 submit = crp;
1625 break;
1626 }
1627
1628 /*
1629 * skip blocked crp regardless of CRYPTO_F_BATCH
1630 */
1631 if (cap->cc_qblocked != 0) {
1632 crypto_driver_unlock(cap);
1633 continue;
1634 }
1635 crypto_driver_unlock(cap);
1636
1637 /*
1638 * skip batch crp until the end of crp_q
1639 */
1640 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1641 if (submit == NULL) {
1642 submit = crp;
1643 } else {
1644 if (CRYPTO_SESID2HID(submit->crp_sid)
1645 == hid)
1646 hint = CRYPTO_HINT_MORE;
1647 }
1648
1649 continue;
1650 }
1651
1652 /*
1653 * found first crp which is neither blocked nor batch.
1654 */
1655 submit = crp;
1656 /*
1657 * batch crp can be processed much later, so clear hint.
1658 */
1659 hint = 0;
1660 break;
1661 }
1662 if (submit != NULL) {
1663 TAILQ_REMOVE(&crp_q, submit, crp_next);
1664 result = crypto_invoke(submit, hint);
1665 /* we must take here as the TAILQ op or kinvoke
1666 may need this mutex below. sigh. */
1667 if (result == ERESTART) {
1668 /*
1669 * The driver ran out of resources, mark the
1670 * driver ``blocked'' for cryptop's and put
1671 * the request back in the queue. It would
1672 * best to put the request back where we got
1673 * it but that's hard so for now we put it
1674 * at the front. This should be ok; putting
1675 * it at the end does not work.
1676 */
1677 /* validate sid again */
1678 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1679 if (cap == NULL) {
1680 /* migrate again, sigh... */
1681 TAILQ_INSERT_TAIL(&crp_q, submit, crp_next);
1682 } else {
1683 cap->cc_qblocked = 1;
1684 crypto_driver_unlock(cap);
1685 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1686 cryptostats.cs_blocks++;
1687 }
1688 }
1689 }
1690
1691 /* As above, but for key ops */
1692 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1693 cap = crypto_checkdriver_lock(krp->krp_hid);
1694 if (cap == NULL || cap->cc_kprocess == NULL) {
1695 if (cap != NULL)
1696 crypto_driver_unlock(cap);
1697 /* Op needs to be migrated, process it. */
1698 break;
1699 }
1700 if (!cap->cc_kqblocked) {
1701 crypto_driver_unlock(cap);
1702 break;
1703 }
1704 crypto_driver_unlock(cap);
1705 }
1706 if (krp != NULL) {
1707 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1708 result = crypto_kinvoke(krp, 0);
1709 /* the next iteration will want the mutex. :-/ */
1710 if (result == ERESTART) {
1711 /*
1712 * The driver ran out of resources, mark the
1713 * driver ``blocked'' for cryptkop's and put
1714 * the request back in the queue. It would
1715 * best to put the request back where we got
1716 * it but that's hard so for now we put it
1717 * at the front. This should be ok; putting
1718 * it at the end does not work.
1719 */
1720 /* validate sid again */
1721 cap = crypto_checkdriver_lock(krp->krp_hid);
1722 if (cap == NULL) {
1723 /* migrate again, sigh... */
1724 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1725 } else {
1726 cap->cc_kqblocked = 1;
1727 crypto_driver_unlock(cap);
1728 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1729 cryptostats.cs_kblocks++;
1730 }
1731 }
1732 }
1733 } while (submit != NULL || krp != NULL);
1734 mutex_exit(&crypto_q_mtx);
1735 }
1736
1737 /*
1738 * Kernel thread to do callbacks.
1739 */
1740 static void
1741 cryptoret(void)
1742 {
1743 struct cryptop *crp;
1744 struct cryptkop *krp;
1745
1746 mutex_spin_enter(&crypto_ret_q_mtx);
1747 for (;;) {
1748 crp = TAILQ_FIRST(&crp_ret_q);
1749 if (crp != NULL) {
1750 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1751 CRYPTO_Q_DEC(crp_ret_q);
1752 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1753 }
1754 krp = TAILQ_FIRST(&crp_ret_kq);
1755 if (krp != NULL) {
1756 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1757 CRYPTO_Q_DEC(crp_ret_kq);
1758 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1759 }
1760
1761 /* drop before calling any callbacks. */
1762 if (crp == NULL && krp == NULL) {
1763
1764 /* Check for the exit condition. */
1765 if (crypto_exit_flag != 0) {
1766
1767 /* Time to die. */
1768 crypto_exit_flag = 0;
1769 cv_broadcast(&cryptoret_cv);
1770 mutex_spin_exit(&crypto_ret_q_mtx);
1771 kthread_exit(0);
1772 }
1773
1774 cryptostats.cs_rets++;
1775 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1776 continue;
1777 }
1778
1779 mutex_spin_exit(&crypto_ret_q_mtx);
1780
1781 if (crp != NULL) {
1782 #ifdef CRYPTO_TIMING
1783 if (crypto_timing) {
1784 /*
1785 * NB: We must copy the timestamp before
1786 * doing the callback as the cryptop is
1787 * likely to be reclaimed.
1788 */
1789 struct timespec t = crp->crp_tstamp;
1790 crypto_tstat(&cryptostats.cs_cb, &t);
1791 crp->crp_callback(crp);
1792 crypto_tstat(&cryptostats.cs_finis, &t);
1793 } else
1794 #endif
1795 {
1796 crp->crp_callback(crp);
1797 }
1798 }
1799 if (krp != NULL)
1800 krp->krp_callback(krp);
1801
1802 mutex_spin_enter(&crypto_ret_q_mtx);
1803 }
1804 }
1805
1806 /* NetBSD module interface */
1807
1808 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1809
1810 static int
1811 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1812 {
1813 int error = 0;
1814
1815 switch (cmd) {
1816 case MODULE_CMD_INIT:
1817 #ifdef _MODULE
1818 error = crypto_init();
1819 #endif
1820 break;
1821 case MODULE_CMD_FINI:
1822 #ifdef _MODULE
1823 error = crypto_destroy(true);
1824 #endif
1825 break;
1826 default:
1827 error = ENOTTY;
1828 }
1829 return error;
1830 }
1831