crypto.c revision 1.82 1 /* $NetBSD: crypto.c,v 1.82 2017/06/06 01:47:23 knakahara Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.82 2017/06/06 01:47:23 knakahara Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 static kmutex_t crypto_q_mtx;
79 static kmutex_t crypto_ret_q_mtx;
80 static kcondvar_t cryptoret_cv;
81
82 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
83 #define SWI_CRYPTO 17
84 #define register_swi(lvl, fn) \
85 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
86 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
87 #define setsoftcrypto(x) \
88 do{ \
89 kpreempt_disable(); \
90 softint_schedule(x); \
91 kpreempt_enable(); \
92 }while(0)
93
94 int crypto_ret_q_check(struct cryptop *);
95
96 /*
97 * Crypto drivers register themselves by allocating a slot in the
98 * crypto_drivers table with crypto_get_driverid() and then registering
99 * each algorithm they support with crypto_register() and crypto_kregister().
100 */
101 static kmutex_t crypto_drv_mtx;
102 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
103 static struct cryptocap *crypto_drivers;
104 static int crypto_drivers_num;
105 static void *softintr_cookie;
106 static int crypto_exit_flag;
107
108 /*
109 * There are two queues for crypto requests; one for symmetric (e.g.
110 * cipher) operations and one for asymmetric (e.g. MOD) operations.
111 * See below for how synchronization is handled.
112 */
113 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
114 TAILQ_HEAD_INITIALIZER(crp_q);
115 static TAILQ_HEAD(,cryptkop) crp_kq =
116 TAILQ_HEAD_INITIALIZER(crp_kq);
117
118 /*
119 * There are two queues for processing completed crypto requests; one
120 * for the symmetric and one for the asymmetric ops. We only need one
121 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
122 * for how synchronization is handled.
123 */
124 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
125 TAILQ_HEAD_INITIALIZER(crp_ret_q);
126 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
127 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
128
129 #define DEFINIT_CRYPTO_Q_LEN(name) \
130 static int crypto_##name##_len = 0
131
132 #define DEFINIT_CRYPTO_Q_DROPS(name) \
133 static int crypto_##name##_drops = 0
134
135 #define DEFINIT_CRYPTO_Q_MAXLEN(name, defval) \
136 static int crypto_##name##_maxlen = defval
137
138 #define CRYPTO_Q_INC(name) \
139 do { \
140 crypto_##name##_len++; \
141 } while(0);
142
143 #define CRYPTO_Q_DEC(name) \
144 do { \
145 crypto_##name##_len--; \
146 } while(0);
147
148 #define CRYPTO_Q_INC_DROPS(name) \
149 do { \
150 crypto_##name##_drops++; \
151 } while(0);
152
153 #define CRYPTO_Q_IS_FULL(name) \
154 (crypto_##name##_maxlen > 0 \
155 && (crypto_##name##_len > crypto_##name##_maxlen))
156
157 /*
158 * current queue length.
159 */
160 DEFINIT_CRYPTO_Q_LEN(crp_ret_q);
161 DEFINIT_CRYPTO_Q_LEN(crp_ret_kq);
162
163 /*
164 * queue dropped count.
165 */
166 DEFINIT_CRYPTO_Q_DROPS(crp_ret_q);
167 DEFINIT_CRYPTO_Q_DROPS(crp_ret_kq);
168
169 #ifndef CRYPTO_RET_Q_MAXLEN
170 #define CRYPTO_RET_Q_MAXLEN 0
171 #endif
172 #ifndef CRYPTO_RET_KQ_MAXLEN
173 #define CRYPTO_RET_KQ_MAXLEN 0
174 #endif
175 /*
176 * queue length limit.
177 * default value is 0. <=0 means unlimited.
178 */
179 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_q, CRYPTO_RET_Q_MAXLEN);
180 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_kq, CRYPTO_RET_KQ_MAXLEN);
181
182 /*
183 * TODO:
184 * make percpu
185 */
186 static int
187 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
188 {
189 int error;
190
191 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
192 if (error || newp == NULL)
193 return error;
194
195 return 0;
196 }
197
198 /*
199 * TODO:
200 * make percpu
201 */
202 static int
203 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
204 {
205 int error;
206
207 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
208 if (error || newp == NULL)
209 return error;
210
211 return 0;
212 }
213
214 /*
215 * need to make percpu?
216 */
217 static int
218 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
219 {
220 int error;
221
222 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
223 if (error || newp == NULL)
224 return error;
225
226 return 0;
227 }
228
229 /*
230 * Crypto op and desciptor data structures are allocated
231 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
232 */
233 struct pool cryptop_pool;
234 struct pool cryptodesc_pool;
235 struct pool cryptkop_pool;
236
237 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
238 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
239 /*
240 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
241 * access to hardware versus software transforms as below:
242 *
243 * crypto_devallowsoft < 0: Force userlevel requests to use software
244 * transforms, always
245 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
246 * requests for non-accelerated transforms
247 * (handling the latter in software)
248 * crypto_devallowsoft > 0: Allow user requests only for transforms which
249 * are hardware-accelerated.
250 */
251 int crypto_devallowsoft = 1; /* only use hardware crypto */
252
253 static void
254 sysctl_opencrypto_setup(struct sysctllog **clog)
255 {
256 const struct sysctlnode *ocnode;
257 const struct sysctlnode *retqnode, *retkqnode;
258
259 sysctl_createv(clog, 0, NULL, NULL,
260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
261 CTLTYPE_INT, "usercrypto",
262 SYSCTL_DESCR("Enable/disable user-mode access to "
263 "crypto support"),
264 NULL, 0, &crypto_usercrypto, 0,
265 CTL_KERN, CTL_CREATE, CTL_EOL);
266 sysctl_createv(clog, 0, NULL, NULL,
267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
268 CTLTYPE_INT, "userasymcrypto",
269 SYSCTL_DESCR("Enable/disable user-mode access to "
270 "asymmetric crypto support"),
271 NULL, 0, &crypto_userasymcrypto, 0,
272 CTL_KERN, CTL_CREATE, CTL_EOL);
273 sysctl_createv(clog, 0, NULL, NULL,
274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
275 CTLTYPE_INT, "cryptodevallowsoft",
276 SYSCTL_DESCR("Enable/disable use of software "
277 "asymmetric crypto support"),
278 NULL, 0, &crypto_devallowsoft, 0,
279 CTL_KERN, CTL_CREATE, CTL_EOL);
280
281 sysctl_createv(clog, 0, NULL, &ocnode,
282 CTLFLAG_PERMANENT,
283 CTLTYPE_NODE, "opencrypto",
284 SYSCTL_DESCR("opencrypto related entries"),
285 NULL, 0, NULL, 0,
286 CTL_CREATE, CTL_EOL);
287
288 sysctl_createv(clog, 0, &ocnode, &retqnode,
289 CTLFLAG_PERMANENT,
290 CTLTYPE_NODE, "crypto_ret_q",
291 SYSCTL_DESCR("crypto_ret_q related entries"),
292 NULL, 0, NULL, 0,
293 CTL_CREATE, CTL_EOL);
294 sysctl_createv(clog, 0, &retqnode, NULL,
295 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
296 CTLTYPE_INT, "len",
297 SYSCTL_DESCR("Current queue length"),
298 sysctl_opencrypto_q_len, 0,
299 (void *)&crypto_crp_ret_q_len, 0,
300 CTL_CREATE, CTL_EOL);
301 sysctl_createv(clog, 0, &retqnode, NULL,
302 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
303 CTLTYPE_INT, "drops",
304 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
305 sysctl_opencrypto_q_drops, 0,
306 (void *)&crypto_crp_ret_q_drops, 0,
307 CTL_CREATE, CTL_EOL);
308 sysctl_createv(clog, 0, &retqnode, NULL,
309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
310 CTLTYPE_INT, "maxlen",
311 SYSCTL_DESCR("Maximum allowed queue length"),
312 sysctl_opencrypto_q_maxlen, 0,
313 (void *)&crypto_crp_ret_q_maxlen, 0,
314 CTL_CREATE, CTL_EOL);
315
316 sysctl_createv(clog, 0, &ocnode, &retkqnode,
317 CTLFLAG_PERMANENT,
318 CTLTYPE_NODE, "crypto_ret_kq",
319 SYSCTL_DESCR("crypto_ret_kq related entries"),
320 NULL, 0, NULL, 0,
321 CTL_CREATE, CTL_EOL);
322 sysctl_createv(clog, 0, &retkqnode, NULL,
323 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
324 CTLTYPE_INT, "len",
325 SYSCTL_DESCR("Current queue length"),
326 sysctl_opencrypto_q_len, 0,
327 (void *)&crypto_crp_ret_kq_len, 0,
328 CTL_CREATE, CTL_EOL);
329 sysctl_createv(clog, 0, &retkqnode, NULL,
330 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
331 CTLTYPE_INT, "drops",
332 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
333 sysctl_opencrypto_q_drops, 0,
334 (void *)&crypto_crp_ret_kq_drops, 0,
335 CTL_CREATE, CTL_EOL);
336 sysctl_createv(clog, 0, &retkqnode, NULL,
337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
338 CTLTYPE_INT, "maxlen",
339 SYSCTL_DESCR("Maximum allowed queue length"),
340 sysctl_opencrypto_q_maxlen, 0,
341 (void *)&crypto_crp_ret_kq_maxlen, 0,
342 CTL_CREATE, CTL_EOL);
343 }
344
345 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
346
347 /*
348 * Synchronization: read carefully, this is non-trivial.
349 *
350 * Crypto requests are submitted via crypto_dispatch. Typically
351 * these come in from network protocols at spl0 (output path) or
352 * spl[,soft]net (input path).
353 *
354 * Requests are typically passed on the driver directly, but they
355 * may also be queued for processing by a software interrupt thread,
356 * cryptointr, that runs at splsoftcrypto. This thread dispatches
357 * the requests to crypto drivers (h/w or s/w) who call crypto_done
358 * when a request is complete. Hardware crypto drivers are assumed
359 * to register their IRQ's as network devices so their interrupt handlers
360 * and subsequent "done callbacks" happen at spl[imp,net].
361 *
362 * Completed crypto ops are queued for a separate kernel thread that
363 * handles the callbacks at spl0. This decoupling insures the crypto
364 * driver interrupt service routine is not delayed while the callback
365 * takes place and that callbacks are delivered after a context switch
366 * (as opposed to a software interrupt that clients must block).
367 *
368 * This scheme is not intended for SMP machines.
369 */
370 static void cryptointr(void); /* swi thread to dispatch ops */
371 static void cryptoret(void); /* kernel thread for callbacks*/
372 static struct lwp *cryptothread;
373 static int crypto_destroy(bool);
374 static int crypto_invoke(struct cryptop *crp, int hint);
375 static int crypto_kinvoke(struct cryptkop *krp, int hint);
376
377 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
378 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
379 static void crypto_driver_lock(struct cryptocap *);
380 static void crypto_driver_unlock(struct cryptocap *);
381 static void crypto_driver_clear(struct cryptocap *);
382
383 static struct cryptostats cryptostats;
384 #ifdef CRYPTO_TIMING
385 static int crypto_timing = 0;
386 #endif
387
388 static struct sysctllog *sysctl_opencrypto_clog;
389
390 static int
391 crypto_init0(void)
392 {
393 int error;
394
395 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
396 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NONE);
397 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
398 cv_init(&cryptoret_cv, "crypto_w");
399 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
400 0, "cryptop", NULL, IPL_NET);
401 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
402 0, "cryptodesc", NULL, IPL_NET);
403 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
404 0, "cryptkop", NULL, IPL_NET);
405
406 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
407 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
408 if (crypto_drivers == NULL) {
409 printf("crypto_init: cannot malloc driver table\n");
410 return ENOMEM;
411 }
412 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
413
414 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
415 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
416 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
417 if (error) {
418 printf("crypto_init: cannot start cryptoret thread; error %d",
419 error);
420 return crypto_destroy(false);
421 }
422
423 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
424
425 return 0;
426 }
427
428 int
429 crypto_init(void)
430 {
431 static ONCE_DECL(crypto_init_once);
432
433 return RUN_ONCE(&crypto_init_once, crypto_init0);
434 }
435
436 static int
437 crypto_destroy(bool exit_kthread)
438 {
439 int i;
440
441 if (exit_kthread) {
442 struct cryptocap *cap = NULL;
443
444 /* if we have any in-progress requests, don't unload */
445 mutex_enter(&crypto_q_mtx);
446 if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
447 mutex_exit(&crypto_q_mtx);
448 return EBUSY;
449 }
450 mutex_exit(&crypto_q_mtx);
451 /* FIXME:
452 * prohibit enqueue to crp_q and crp_kq after here.
453 */
454
455 mutex_enter(&crypto_drv_mtx);
456 for (i = 0; i < crypto_drivers_num; i++) {
457 cap = crypto_checkdriver_uninit(i);
458 if (cap == NULL)
459 continue;
460 if (cap->cc_sessions != 0) {
461 mutex_exit(&crypto_drv_mtx);
462 return EBUSY;
463 }
464 }
465 mutex_exit(&crypto_drv_mtx);
466 /* FIXME:
467 * prohibit touch crypto_drivers[] and each element after here.
468 */
469
470 mutex_spin_enter(&crypto_ret_q_mtx);
471 /* kick the cryptoret thread and wait for it to exit */
472 crypto_exit_flag = 1;
473 cv_signal(&cryptoret_cv);
474
475 while (crypto_exit_flag != 0)
476 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
477 mutex_spin_exit(&crypto_ret_q_mtx);
478 }
479
480 if (sysctl_opencrypto_clog != NULL)
481 sysctl_teardown(&sysctl_opencrypto_clog);
482
483 unregister_swi(SWI_CRYPTO, cryptointr);
484
485 mutex_enter(&crypto_drv_mtx);
486 if (crypto_drivers != NULL)
487 free(crypto_drivers, M_CRYPTO_DATA);
488 mutex_exit(&crypto_drv_mtx);
489
490 pool_destroy(&cryptop_pool);
491 pool_destroy(&cryptodesc_pool);
492 pool_destroy(&cryptkop_pool);
493
494 cv_destroy(&cryptoret_cv);
495
496 mutex_destroy(&crypto_ret_q_mtx);
497 mutex_destroy(&crypto_q_mtx);
498 mutex_destroy(&crypto_drv_mtx);
499
500 return 0;
501 }
502
503 /*
504 * Create a new session.
505 */
506 int
507 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
508 {
509 struct cryptoini *cr;
510 struct cryptocap *cap;
511 u_int32_t hid, lid;
512 int err = EINVAL;
513
514 mutex_enter(&crypto_drv_mtx);
515
516 /*
517 * The algorithm we use here is pretty stupid; just use the
518 * first driver that supports all the algorithms we need.
519 *
520 * XXX We need more smarts here (in real life too, but that's
521 * XXX another story altogether).
522 */
523
524 for (hid = 0; hid < crypto_drivers_num; hid++) {
525 cap = crypto_checkdriver_uninit(hid);
526 if (cap == NULL)
527 continue;
528
529 crypto_driver_lock(cap);
530
531 /*
532 * If it's not initialized or has remaining sessions
533 * referencing it, skip.
534 */
535 if (cap->cc_newsession == NULL ||
536 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
537 crypto_driver_unlock(cap);
538 continue;
539 }
540
541 /* Hardware required -- ignore software drivers. */
542 if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
543 crypto_driver_unlock(cap);
544 continue;
545 }
546 /* Software required -- ignore hardware drivers. */
547 if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
548 crypto_driver_unlock(cap);
549 continue;
550 }
551
552 /* See if all the algorithms are supported. */
553 for (cr = cri; cr; cr = cr->cri_next)
554 if (cap->cc_alg[cr->cri_alg] == 0) {
555 DPRINTF("alg %d not supported\n", cr->cri_alg);
556 break;
557 }
558
559 if (cr == NULL) {
560 /* Ok, all algorithms are supported. */
561
562 /*
563 * Can't do everything in one session.
564 *
565 * XXX Fix this. We need to inject a "virtual" session layer right
566 * XXX about here.
567 */
568
569 /* Call the driver initialization routine. */
570 lid = hid; /* Pass the driver ID. */
571 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
572 if (err == 0) {
573 (*sid) = hid;
574 (*sid) <<= 32;
575 (*sid) |= (lid & 0xffffffff);
576 (cap->cc_sessions)++;
577 } else {
578 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
579 hid, err);
580 }
581 crypto_driver_unlock(cap);
582 goto done;
583 /*break;*/
584 }
585
586 crypto_driver_unlock(cap);
587 }
588 done:
589 mutex_exit(&crypto_drv_mtx);
590 return err;
591 }
592
593 /*
594 * Delete an existing session (or a reserved session on an unregistered
595 * driver).
596 */
597 int
598 crypto_freesession(u_int64_t sid)
599 {
600 struct cryptocap *cap;
601 int err = 0;
602
603 /* Determine two IDs. */
604 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
605 if (cap == NULL)
606 return ENOENT;
607
608 if (cap->cc_sessions)
609 (cap->cc_sessions)--;
610
611 /* Call the driver cleanup routine, if available. */
612 if (cap->cc_freesession)
613 err = cap->cc_freesession(cap->cc_arg, sid);
614 else
615 err = 0;
616
617 /*
618 * If this was the last session of a driver marked as invalid,
619 * make the entry available for reuse.
620 */
621 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
622 crypto_driver_clear(cap);
623
624 crypto_driver_unlock(cap);
625 return err;
626 }
627
628 /*
629 * Return an unused driver id. Used by drivers prior to registering
630 * support for the algorithms they handle.
631 */
632 int32_t
633 crypto_get_driverid(u_int32_t flags)
634 {
635 struct cryptocap *newdrv;
636 struct cryptocap *cap = NULL;
637 int i;
638
639 (void)crypto_init(); /* XXX oh, this is foul! */
640
641 mutex_enter(&crypto_drv_mtx);
642 for (i = 0; i < crypto_drivers_num; i++) {
643 cap = crypto_checkdriver_uninit(i);
644 if (cap == NULL)
645 continue;
646 if (cap->cc_process == NULL &&
647 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
648 cap->cc_sessions == 0)
649 break;
650 }
651
652 /* Out of entries, allocate some more. */
653 if (cap == NULL) {
654 /* Be careful about wrap-around. */
655 if (2 * crypto_drivers_num <= crypto_drivers_num) {
656 mutex_exit(&crypto_drv_mtx);
657 printf("crypto: driver count wraparound!\n");
658 return -1;
659 }
660
661 newdrv = malloc(2 * crypto_drivers_num *
662 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
663 if (newdrv == NULL) {
664 mutex_exit(&crypto_drv_mtx);
665 printf("crypto: no space to expand driver table!\n");
666 return -1;
667 }
668
669 memcpy(newdrv, crypto_drivers,
670 crypto_drivers_num * sizeof(struct cryptocap));
671
672 crypto_drivers_num *= 2;
673
674 free(crypto_drivers, M_CRYPTO_DATA);
675 crypto_drivers = newdrv;
676
677 cap = crypto_checkdriver_uninit(i);
678 KASSERT(cap != NULL);
679 }
680
681 /* NB: state is zero'd on free */
682 cap->cc_sessions = 1; /* Mark */
683 cap->cc_flags = flags;
684 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
685
686 if (bootverbose)
687 printf("crypto: assign driver %u, flags %u\n", i, flags);
688
689 mutex_exit(&crypto_drv_mtx);
690
691 return i;
692 }
693
694 static struct cryptocap *
695 crypto_checkdriver_lock(u_int32_t hid)
696 {
697 struct cryptocap *cap;
698
699 KASSERT(crypto_drivers != NULL);
700
701 if (hid >= crypto_drivers_num)
702 return NULL;
703
704 cap = &crypto_drivers[hid];
705 mutex_enter(&cap->cc_lock);
706 return cap;
707 }
708
709 /*
710 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
711 * situations
712 * - crypto_drivers[] may not be allocated
713 * - crypto_drivers[hid] may not be initialized
714 */
715 static struct cryptocap *
716 crypto_checkdriver_uninit(u_int32_t hid)
717 {
718
719 KASSERT(mutex_owned(&crypto_drv_mtx));
720
721 if (crypto_drivers == NULL)
722 return NULL;
723
724 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
725 }
726
727 static inline void
728 crypto_driver_lock(struct cryptocap *cap)
729 {
730
731 KASSERT(cap != NULL);
732
733 mutex_enter(&cap->cc_lock);
734 }
735
736 static inline void
737 crypto_driver_unlock(struct cryptocap *cap)
738 {
739
740 KASSERT(cap != NULL);
741
742 mutex_exit(&cap->cc_lock);
743 }
744
745 static void
746 crypto_driver_clear(struct cryptocap *cap)
747 {
748
749 if (cap == NULL)
750 return;
751
752 KASSERT(mutex_owned(&cap->cc_lock));
753
754 cap->cc_sessions = 0;
755 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
756 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
757 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
758 cap->cc_flags = 0;
759 cap->cc_qblocked = 0;
760 cap->cc_kqblocked = 0;
761
762 cap->cc_arg = NULL;
763 cap->cc_newsession = NULL;
764 cap->cc_process = NULL;
765 cap->cc_freesession = NULL;
766 cap->cc_kprocess = NULL;
767 }
768
769 /*
770 * Register support for a key-related algorithm. This routine
771 * is called once for each algorithm supported a driver.
772 */
773 int
774 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
775 int (*kprocess)(void *, struct cryptkop *, int),
776 void *karg)
777 {
778 struct cryptocap *cap;
779 int err;
780
781 mutex_enter(&crypto_drv_mtx);
782
783 cap = crypto_checkdriver_lock(driverid);
784 if (cap != NULL &&
785 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
786 /*
787 * XXX Do some performance testing to determine placing.
788 * XXX We probably need an auxiliary data structure that
789 * XXX describes relative performances.
790 */
791
792 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
793 if (bootverbose) {
794 printf("crypto: driver %u registers key alg %u "
795 " flags %u\n",
796 driverid,
797 kalg,
798 flags
799 );
800 }
801
802 if (cap->cc_kprocess == NULL) {
803 cap->cc_karg = karg;
804 cap->cc_kprocess = kprocess;
805 }
806 err = 0;
807 } else
808 err = EINVAL;
809
810 mutex_exit(&crypto_drv_mtx);
811 return err;
812 }
813
814 /*
815 * Register support for a non-key-related algorithm. This routine
816 * is called once for each such algorithm supported by a driver.
817 */
818 int
819 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
820 u_int32_t flags,
821 int (*newses)(void *, u_int32_t*, struct cryptoini*),
822 int (*freeses)(void *, u_int64_t),
823 int (*process)(void *, struct cryptop *, int),
824 void *arg)
825 {
826 struct cryptocap *cap;
827 int err;
828
829 cap = crypto_checkdriver_lock(driverid);
830 if (cap == NULL)
831 return EINVAL;
832
833 /* NB: algorithms are in the range [1..max] */
834 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
835 /*
836 * XXX Do some performance testing to determine placing.
837 * XXX We probably need an auxiliary data structure that
838 * XXX describes relative performances.
839 */
840
841 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
842 cap->cc_max_op_len[alg] = maxoplen;
843 if (bootverbose) {
844 printf("crypto: driver %u registers alg %u "
845 "flags %u maxoplen %u\n",
846 driverid,
847 alg,
848 flags,
849 maxoplen
850 );
851 }
852
853 if (cap->cc_process == NULL) {
854 cap->cc_arg = arg;
855 cap->cc_newsession = newses;
856 cap->cc_process = process;
857 cap->cc_freesession = freeses;
858 cap->cc_sessions = 0; /* Unmark */
859 }
860 err = 0;
861 } else
862 err = EINVAL;
863
864 crypto_driver_unlock(cap);
865
866 return err;
867 }
868
869 static int
870 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
871 {
872 int i;
873 u_int32_t ses;
874 bool lastalg = true;
875
876 KASSERT(cap != NULL);
877 KASSERT(mutex_owned(&cap->cc_lock));
878
879 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
880 return EINVAL;
881
882 if (!all && cap->cc_alg[alg] == 0)
883 return EINVAL;
884
885 cap->cc_alg[alg] = 0;
886 cap->cc_max_op_len[alg] = 0;
887
888 if (all) {
889 if (alg != CRYPTO_ALGORITHM_MAX)
890 lastalg = false;
891 } else {
892 /* Was this the last algorithm ? */
893 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
894 if (cap->cc_alg[i] != 0) {
895 lastalg = false;
896 break;
897 }
898 }
899 if (lastalg) {
900 ses = cap->cc_sessions;
901 crypto_driver_clear(cap);
902 if (ses != 0) {
903 /*
904 * If there are pending sessions, just mark as invalid.
905 */
906 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
907 cap->cc_sessions = ses;
908 }
909 }
910
911 return 0;
912 }
913
914 /*
915 * Unregister a crypto driver. If there are pending sessions using it,
916 * leave enough information around so that subsequent calls using those
917 * sessions will correctly detect the driver has been unregistered and
918 * reroute requests.
919 */
920 int
921 crypto_unregister(u_int32_t driverid, int alg)
922 {
923 int err;
924 struct cryptocap *cap;
925
926 cap = crypto_checkdriver_lock(driverid);
927 err = crypto_unregister_locked(cap, alg, false);
928 crypto_driver_unlock(cap);
929
930 return err;
931 }
932
933 /*
934 * Unregister all algorithms associated with a crypto driver.
935 * If there are pending sessions using it, leave enough information
936 * around so that subsequent calls using those sessions will
937 * correctly detect the driver has been unregistered and reroute
938 * requests.
939 */
940 int
941 crypto_unregister_all(u_int32_t driverid)
942 {
943 int err, i;
944 struct cryptocap *cap;
945
946 cap = crypto_checkdriver_lock(driverid);
947 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
948 err = crypto_unregister_locked(cap, i, true);
949 if (err)
950 break;
951 }
952 crypto_driver_unlock(cap);
953
954 return err;
955 }
956
957 /*
958 * Clear blockage on a driver. The what parameter indicates whether
959 * the driver is now ready for cryptop's and/or cryptokop's.
960 */
961 int
962 crypto_unblock(u_int32_t driverid, int what)
963 {
964 struct cryptocap *cap;
965 int needwakeup = 0;
966
967 cap = crypto_checkdriver_lock(driverid);
968 if (cap == NULL)
969 return EINVAL;
970
971 if (what & CRYPTO_SYMQ) {
972 needwakeup |= cap->cc_qblocked;
973 cap->cc_qblocked = 0;
974 }
975 if (what & CRYPTO_ASYMQ) {
976 needwakeup |= cap->cc_kqblocked;
977 cap->cc_kqblocked = 0;
978 }
979 crypto_driver_unlock(cap);
980 if (needwakeup)
981 setsoftcrypto(softintr_cookie);
982
983 return 0;
984 }
985
986 /*
987 * Dispatch a crypto request to a driver or queue
988 * it, to be processed by the kernel thread.
989 */
990 int
991 crypto_dispatch(struct cryptop *crp)
992 {
993 int result;
994 struct cryptocap *cap;
995
996 KASSERT(crp != NULL);
997
998 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
999
1000 cryptostats.cs_ops++;
1001
1002 #ifdef CRYPTO_TIMING
1003 if (crypto_timing)
1004 nanouptime(&crp->crp_tstamp);
1005 #endif
1006
1007 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1008 int wasempty;
1009 /*
1010 * Caller marked the request as ``ok to delay'';
1011 * queue it for the swi thread. This is desirable
1012 * when the operation is low priority and/or suitable
1013 * for batching.
1014 */
1015 mutex_enter(&crypto_q_mtx);
1016 wasempty = TAILQ_EMPTY(&crp_q);
1017 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1018 mutex_exit(&crypto_q_mtx);
1019 if (wasempty)
1020 setsoftcrypto(softintr_cookie);
1021
1022 return 0;
1023 }
1024
1025 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1026 /*
1027 * TODO:
1028 * If we can ensure the driver has been valid until the driver is
1029 * done crypto_unregister(), this migrate operation is not required.
1030 */
1031 if (cap == NULL) {
1032 /*
1033 * The driver must be detached, so this request will migrate
1034 * to other drivers in cryptointr() later.
1035 */
1036 mutex_enter(&crypto_q_mtx);
1037 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1038 mutex_exit(&crypto_q_mtx);
1039
1040 return 0;
1041 }
1042
1043 if (cap->cc_qblocked != 0) {
1044 crypto_driver_unlock(cap);
1045 /*
1046 * The driver is blocked, just queue the op until
1047 * it unblocks and the swi thread gets kicked.
1048 */
1049 mutex_enter(&crypto_q_mtx);
1050 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1051 mutex_exit(&crypto_q_mtx);
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * Caller marked the request to be processed
1058 * immediately; dispatch it directly to the
1059 * driver unless the driver is currently blocked.
1060 */
1061 crypto_driver_unlock(cap);
1062 result = crypto_invoke(crp, 0);
1063 if (result == ERESTART) {
1064 /*
1065 * The driver ran out of resources, mark the
1066 * driver ``blocked'' for cryptop's and put
1067 * the op on the queue.
1068 */
1069 crypto_driver_lock(cap);
1070 cap->cc_qblocked = 1;
1071 crypto_driver_unlock(cap);
1072 mutex_enter(&crypto_q_mtx);
1073 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
1074 cryptostats.cs_blocks++;
1075 mutex_exit(&crypto_q_mtx);
1076
1077 /*
1078 * The crp is enqueued to crp_q, that is,
1079 * no error occurs. So, this function should
1080 * not return error.
1081 */
1082 result = 0;
1083 }
1084
1085 return result;
1086 }
1087
1088 /*
1089 * Add an asymetric crypto request to a queue,
1090 * to be processed by the kernel thread.
1091 */
1092 int
1093 crypto_kdispatch(struct cryptkop *krp)
1094 {
1095 struct cryptocap *cap;
1096 int result;
1097
1098 KASSERT(krp != NULL);
1099
1100 cryptostats.cs_kops++;
1101
1102 cap = crypto_checkdriver_lock(krp->krp_hid);
1103 /*
1104 * TODO:
1105 * If we can ensure the driver has been valid until the driver is
1106 * done crypto_unregister(), this migrate operation is not required.
1107 */
1108 if (cap == NULL) {
1109 mutex_enter(&crypto_q_mtx);
1110 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1111 mutex_exit(&crypto_q_mtx);
1112
1113 return 0;
1114 }
1115
1116 if (cap->cc_kqblocked != 0) {
1117 crypto_driver_unlock(cap);
1118 /*
1119 * The driver is blocked, just queue the op until
1120 * it unblocks and the swi thread gets kicked.
1121 */
1122 mutex_enter(&crypto_q_mtx);
1123 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1124 mutex_exit(&crypto_q_mtx);
1125
1126 return 0;
1127 }
1128
1129 crypto_driver_unlock(cap);
1130 result = crypto_kinvoke(krp, 0);
1131 if (result == ERESTART) {
1132 /*
1133 * The driver ran out of resources, mark the
1134 * driver ``blocked'' for cryptop's and put
1135 * the op on the queue.
1136 */
1137 crypto_driver_lock(cap);
1138 cap->cc_kqblocked = 1;
1139 crypto_driver_unlock(cap);
1140 mutex_enter(&crypto_q_mtx);
1141 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1142 cryptostats.cs_kblocks++;
1143 mutex_exit(&crypto_q_mtx);
1144
1145 /*
1146 * The krp is enqueued to crp_kq, that is,
1147 * no error occurs. So, this function should
1148 * not return error.
1149 */
1150 result = 0;
1151 }
1152
1153 return result;
1154 }
1155
1156 /*
1157 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1158 */
1159 static int
1160 crypto_kinvoke(struct cryptkop *krp, int hint)
1161 {
1162 struct cryptocap *cap = NULL;
1163 u_int32_t hid;
1164 int error;
1165
1166 KASSERT(krp != NULL);
1167
1168 /* Sanity checks. */
1169 if (krp->krp_callback == NULL) {
1170 cv_destroy(&krp->krp_cv);
1171 crypto_kfreereq(krp);
1172 return EINVAL;
1173 }
1174
1175 mutex_enter(&crypto_drv_mtx);
1176 for (hid = 0; hid < crypto_drivers_num; hid++) {
1177 cap = crypto_checkdriver_uninit(hid);
1178 if (cap == NULL)
1179 continue;
1180 crypto_driver_lock(cap);
1181 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1182 crypto_devallowsoft == 0) {
1183 crypto_driver_unlock(cap);
1184 continue;
1185 }
1186 if (cap->cc_kprocess == NULL) {
1187 crypto_driver_unlock(cap);
1188 continue;
1189 }
1190 if ((cap->cc_kalg[krp->krp_op] &
1191 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1192 crypto_driver_unlock(cap);
1193 continue;
1194 }
1195 break;
1196 }
1197 mutex_exit(&crypto_drv_mtx);
1198 if (cap != NULL) {
1199 int (*process)(void *, struct cryptkop *, int);
1200 void *arg;
1201
1202 process = cap->cc_kprocess;
1203 arg = cap->cc_karg;
1204 krp->krp_hid = hid;
1205 crypto_driver_unlock(cap);
1206 error = (*process)(arg, krp, hint);
1207 } else {
1208 error = ENODEV;
1209 }
1210
1211 if (error) {
1212 krp->krp_status = error;
1213 crypto_kdone(krp);
1214 }
1215 return 0;
1216 }
1217
1218 #ifdef CRYPTO_TIMING
1219 static void
1220 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1221 {
1222 struct timespec now, t;
1223
1224 nanouptime(&now);
1225 t.tv_sec = now.tv_sec - tv->tv_sec;
1226 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1227 if (t.tv_nsec < 0) {
1228 t.tv_sec--;
1229 t.tv_nsec += 1000000000;
1230 }
1231 timespecadd(&ts->acc, &t, &t);
1232 if (timespeccmp(&t, &ts->min, <))
1233 ts->min = t;
1234 if (timespeccmp(&t, &ts->max, >))
1235 ts->max = t;
1236 ts->count++;
1237
1238 *tv = now;
1239 }
1240 #endif
1241
1242 /*
1243 * Dispatch a crypto request to the appropriate crypto devices.
1244 */
1245 static int
1246 crypto_invoke(struct cryptop *crp, int hint)
1247 {
1248 struct cryptocap *cap;
1249
1250 KASSERT(crp != NULL);
1251
1252 #ifdef CRYPTO_TIMING
1253 if (crypto_timing)
1254 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1255 #endif
1256 /* Sanity checks. */
1257 if (crp->crp_callback == NULL) {
1258 return EINVAL;
1259 }
1260 if (crp->crp_desc == NULL) {
1261 crp->crp_etype = EINVAL;
1262 crypto_done(crp);
1263 return 0;
1264 }
1265
1266 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1267 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1268 int (*process)(void *, struct cryptop *, int);
1269 void *arg;
1270
1271 process = cap->cc_process;
1272 arg = cap->cc_arg;
1273
1274 /*
1275 * Invoke the driver to process the request.
1276 */
1277 DPRINTF("calling process for %p\n", crp);
1278 crypto_driver_unlock(cap);
1279 return (*process)(arg, crp, hint);
1280 } else {
1281 struct cryptodesc *crd;
1282 u_int64_t nid = 0;
1283
1284 if (cap != NULL)
1285 crypto_driver_unlock(cap);
1286
1287 /*
1288 * Driver has unregistered; migrate the session and return
1289 * an error to the caller so they'll resubmit the op.
1290 */
1291 crypto_freesession(crp->crp_sid);
1292
1293 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1294 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1295
1296 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1297 crp->crp_sid = nid;
1298
1299 crp->crp_etype = EAGAIN;
1300
1301 crypto_done(crp);
1302 return 0;
1303 }
1304 }
1305
1306 /*
1307 * Release a set of crypto descriptors.
1308 */
1309 void
1310 crypto_freereq(struct cryptop *crp)
1311 {
1312 struct cryptodesc *crd;
1313
1314 if (crp == NULL)
1315 return;
1316 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1317
1318 /* sanity check */
1319 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1320 panic("crypto_freereq() freeing crp on RETQ\n");
1321 }
1322
1323 while ((crd = crp->crp_desc) != NULL) {
1324 crp->crp_desc = crd->crd_next;
1325 pool_put(&cryptodesc_pool, crd);
1326 }
1327 pool_put(&cryptop_pool, crp);
1328 }
1329
1330 /*
1331 * Acquire a set of crypto descriptors.
1332 */
1333 struct cryptop *
1334 crypto_getreq(int num)
1335 {
1336 struct cryptodesc *crd;
1337 struct cryptop *crp;
1338
1339 /*
1340 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1341 * by error callback.
1342 */
1343 if (CRYPTO_Q_IS_FULL(crp_ret_q)) {
1344 CRYPTO_Q_INC_DROPS(crp_ret_q);
1345 return NULL;
1346 }
1347
1348 crp = pool_get(&cryptop_pool, 0);
1349 if (crp == NULL) {
1350 return NULL;
1351 }
1352 memset(crp, 0, sizeof(struct cryptop));
1353
1354 while (num--) {
1355 crd = pool_get(&cryptodesc_pool, 0);
1356 if (crd == NULL) {
1357 crypto_freereq(crp);
1358 return NULL;
1359 }
1360
1361 memset(crd, 0, sizeof(struct cryptodesc));
1362 crd->crd_next = crp->crp_desc;
1363 crp->crp_desc = crd;
1364 }
1365
1366 return crp;
1367 }
1368
1369 /*
1370 * Release a set of asymmetric crypto descriptors.
1371 * Currently, support one descriptor only.
1372 */
1373 void
1374 crypto_kfreereq(struct cryptkop *krp)
1375 {
1376
1377 if (krp == NULL)
1378 return;
1379
1380 DPRINTF("krp %p\n", krp);
1381
1382 /* sanity check */
1383 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1384 panic("crypto_kfreereq() freeing krp on RETQ\n");
1385 }
1386
1387 pool_put(&cryptkop_pool, krp);
1388 }
1389
1390 /*
1391 * Acquire a set of asymmetric crypto descriptors.
1392 * Currently, support one descriptor only.
1393 */
1394 struct cryptkop *
1395 crypto_kgetreq(int num __unused, int prflags)
1396 {
1397 struct cryptkop *krp;
1398
1399 /*
1400 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1401 * overflow by error callback.
1402 */
1403 if (CRYPTO_Q_IS_FULL(crp_ret_kq)) {
1404 CRYPTO_Q_INC_DROPS(crp_ret_kq);
1405 return NULL;
1406 }
1407
1408 krp = pool_get(&cryptkop_pool, prflags);
1409 if (krp == NULL) {
1410 return NULL;
1411 }
1412 memset(krp, 0, sizeof(struct cryptkop));
1413
1414 return krp;
1415 }
1416
1417 /*
1418 * Invoke the callback on behalf of the driver.
1419 */
1420 void
1421 crypto_done(struct cryptop *crp)
1422 {
1423 int wasempty;
1424
1425 KASSERT(crp != NULL);
1426
1427 if (crp->crp_etype != 0)
1428 cryptostats.cs_errs++;
1429 #ifdef CRYPTO_TIMING
1430 if (crypto_timing)
1431 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1432 #endif
1433 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1434
1435 /*
1436 * Normal case; queue the callback for the thread.
1437 *
1438 * The return queue is manipulated by the swi thread
1439 * and, potentially, by crypto device drivers calling
1440 * back to mark operations completed. Thus we need
1441 * to mask both while manipulating the return queue.
1442 */
1443 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1444 /*
1445 * Do the callback directly. This is ok when the
1446 * callback routine does very little (e.g. the
1447 * /dev/crypto callback method just does a wakeup).
1448 */
1449 mutex_spin_enter(&crypto_ret_q_mtx);
1450 crp->crp_flags |= CRYPTO_F_DONE;
1451 mutex_spin_exit(&crypto_ret_q_mtx);
1452
1453 #ifdef CRYPTO_TIMING
1454 if (crypto_timing) {
1455 /*
1456 * NB: We must copy the timestamp before
1457 * doing the callback as the cryptop is
1458 * likely to be reclaimed.
1459 */
1460 struct timespec t = crp->crp_tstamp;
1461 crypto_tstat(&cryptostats.cs_cb, &t);
1462 crp->crp_callback(crp);
1463 crypto_tstat(&cryptostats.cs_finis, &t);
1464 } else
1465 #endif
1466 crp->crp_callback(crp);
1467 } else {
1468 mutex_spin_enter(&crypto_ret_q_mtx);
1469 crp->crp_flags |= CRYPTO_F_DONE;
1470 #if 0
1471 if (crp->crp_flags & CRYPTO_F_USER) {
1472 /*
1473 * TODO:
1474 * If crp->crp_flags & CRYPTO_F_USER and the used
1475 * encryption driver does all the processing in
1476 * the same context, we can skip enqueueing crp_ret_q
1477 * and cv_signal(&cryptoret_cv).
1478 */
1479 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1480 CRYPTO_SESID2LID(crp->crp_sid), crp);
1481 } else
1482 #endif
1483 {
1484 wasempty = TAILQ_EMPTY(&crp_ret_q);
1485 DPRINTF("lid[%u]: queueing %p\n",
1486 CRYPTO_SESID2LID(crp->crp_sid), crp);
1487 crp->crp_flags |= CRYPTO_F_ONRETQ;
1488 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1489 CRYPTO_Q_INC(crp_ret_q);
1490 if (wasempty) {
1491 DPRINTF("lid[%u]: waking cryptoret, "
1492 "crp %p hit empty queue\n.",
1493 CRYPTO_SESID2LID(crp->crp_sid), crp);
1494 cv_signal(&cryptoret_cv);
1495 }
1496 }
1497 mutex_spin_exit(&crypto_ret_q_mtx);
1498 }
1499 }
1500
1501 /*
1502 * Invoke the callback on behalf of the driver.
1503 */
1504 void
1505 crypto_kdone(struct cryptkop *krp)
1506 {
1507 int wasempty;
1508
1509 KASSERT(krp != NULL);
1510
1511 if (krp->krp_status != 0)
1512 cryptostats.cs_kerrs++;
1513
1514 krp->krp_flags |= CRYPTO_F_DONE;
1515
1516 /*
1517 * The return queue is manipulated by the swi thread
1518 * and, potentially, by crypto device drivers calling
1519 * back to mark operations completed. Thus we need
1520 * to mask both while manipulating the return queue.
1521 */
1522 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1523 krp->krp_callback(krp);
1524 } else {
1525 mutex_spin_enter(&crypto_ret_q_mtx);
1526 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1527 krp->krp_flags |= CRYPTO_F_ONRETQ;
1528 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1529 CRYPTO_Q_INC(crp_ret_kq);
1530 if (wasempty)
1531 cv_signal(&cryptoret_cv);
1532 mutex_spin_exit(&crypto_ret_q_mtx);
1533 }
1534 }
1535
1536 int
1537 crypto_getfeat(int *featp)
1538 {
1539 int hid, kalg, feat = 0;
1540
1541 if (crypto_userasymcrypto == 0)
1542 return 0;
1543
1544 mutex_enter(&crypto_drv_mtx);
1545
1546 for (hid = 0; hid < crypto_drivers_num; hid++) {
1547 struct cryptocap *cap;
1548 cap = crypto_checkdriver_uninit(hid);
1549 if (cap == NULL)
1550 continue;
1551
1552 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1553 crypto_devallowsoft == 0) {
1554 crypto_driver_unlock(cap);
1555 continue;
1556 }
1557 if (cap->cc_kprocess == NULL) {
1558 crypto_driver_unlock(cap);
1559 continue;
1560 }
1561 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1562 if ((cap->cc_kalg[kalg] &
1563 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1564 feat |= 1 << kalg;
1565
1566 crypto_driver_unlock(cap);
1567 }
1568
1569 mutex_exit(&crypto_drv_mtx);
1570 *featp = feat;
1571 return (0);
1572 }
1573
1574 /*
1575 * Software interrupt thread to dispatch crypto requests.
1576 */
1577 static void
1578 cryptointr(void)
1579 {
1580 struct cryptop *crp, *submit, *cnext;
1581 struct cryptkop *krp, *knext;
1582 struct cryptocap *cap;
1583 int result, hint;
1584
1585 cryptostats.cs_intrs++;
1586 mutex_enter(&crypto_q_mtx);
1587 do {
1588 /*
1589 * Find the first element in the queue that can be
1590 * processed and look-ahead to see if multiple ops
1591 * are ready for the same driver.
1592 */
1593 submit = NULL;
1594 hint = 0;
1595 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1596 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1597 cap = crypto_checkdriver_lock(hid);
1598 if (cap == NULL || cap->cc_process == NULL) {
1599 if (cap != NULL)
1600 crypto_driver_unlock(cap);
1601 /* Op needs to be migrated, process it. */
1602 submit = crp;
1603 break;
1604 }
1605
1606 /*
1607 * skip blocked crp regardless of CRYPTO_F_BATCH
1608 */
1609 if (cap->cc_qblocked != 0) {
1610 crypto_driver_unlock(cap);
1611 continue;
1612 }
1613 crypto_driver_unlock(cap);
1614
1615 /*
1616 * skip batch crp until the end of crp_q
1617 */
1618 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1619 if (submit == NULL) {
1620 submit = crp;
1621 } else {
1622 if (CRYPTO_SESID2HID(submit->crp_sid)
1623 == hid)
1624 hint = CRYPTO_HINT_MORE;
1625 }
1626
1627 continue;
1628 }
1629
1630 /*
1631 * found first crp which is neither blocked nor batch.
1632 */
1633 submit = crp;
1634 /*
1635 * batch crp can be processed much later, so clear hint.
1636 */
1637 hint = 0;
1638 break;
1639 }
1640 if (submit != NULL) {
1641 TAILQ_REMOVE(&crp_q, submit, crp_next);
1642 mutex_exit(&crypto_q_mtx);
1643 result = crypto_invoke(submit, hint);
1644 /* we must take here as the TAILQ op or kinvoke
1645 may need this mutex below. sigh. */
1646 mutex_enter(&crypto_q_mtx);
1647 if (result == ERESTART) {
1648 /*
1649 * The driver ran out of resources, mark the
1650 * driver ``blocked'' for cryptop's and put
1651 * the request back in the queue. It would
1652 * best to put the request back where we got
1653 * it but that's hard so for now we put it
1654 * at the front. This should be ok; putting
1655 * it at the end does not work.
1656 */
1657 /* validate sid again */
1658 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1659 if (cap == NULL) {
1660 /* migrate again, sigh... */
1661 TAILQ_INSERT_TAIL(&crp_q, submit, crp_next);
1662 } else {
1663 cap->cc_qblocked = 1;
1664 crypto_driver_unlock(cap);
1665 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1666 cryptostats.cs_blocks++;
1667 }
1668 }
1669 }
1670
1671 /* As above, but for key ops */
1672 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1673 cap = crypto_checkdriver_lock(krp->krp_hid);
1674 if (cap == NULL || cap->cc_kprocess == NULL) {
1675 if (cap != NULL)
1676 crypto_driver_unlock(cap);
1677 /* Op needs to be migrated, process it. */
1678 break;
1679 }
1680 if (!cap->cc_kqblocked) {
1681 crypto_driver_unlock(cap);
1682 break;
1683 }
1684 crypto_driver_unlock(cap);
1685 }
1686 if (krp != NULL) {
1687 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1688 mutex_exit(&crypto_q_mtx);
1689 result = crypto_kinvoke(krp, 0);
1690 /* the next iteration will want the mutex. :-/ */
1691 mutex_enter(&crypto_q_mtx);
1692 if (result == ERESTART) {
1693 /*
1694 * The driver ran out of resources, mark the
1695 * driver ``blocked'' for cryptkop's and put
1696 * the request back in the queue. It would
1697 * best to put the request back where we got
1698 * it but that's hard so for now we put it
1699 * at the front. This should be ok; putting
1700 * it at the end does not work.
1701 */
1702 /* validate sid again */
1703 cap = crypto_checkdriver_lock(krp->krp_hid);
1704 if (cap == NULL) {
1705 /* migrate again, sigh... */
1706 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1707 } else {
1708 cap->cc_kqblocked = 1;
1709 crypto_driver_unlock(cap);
1710 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1711 cryptostats.cs_kblocks++;
1712 }
1713 }
1714 }
1715 } while (submit != NULL || krp != NULL);
1716 mutex_exit(&crypto_q_mtx);
1717 }
1718
1719 /*
1720 * Kernel thread to do callbacks.
1721 */
1722 static void
1723 cryptoret(void)
1724 {
1725 struct cryptop *crp;
1726 struct cryptkop *krp;
1727
1728 mutex_spin_enter(&crypto_ret_q_mtx);
1729 for (;;) {
1730 crp = TAILQ_FIRST(&crp_ret_q);
1731 if (crp != NULL) {
1732 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1733 CRYPTO_Q_DEC(crp_ret_q);
1734 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1735 }
1736 krp = TAILQ_FIRST(&crp_ret_kq);
1737 if (krp != NULL) {
1738 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1739 CRYPTO_Q_DEC(crp_ret_kq);
1740 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1741 }
1742
1743 /* drop before calling any callbacks. */
1744 if (crp == NULL && krp == NULL) {
1745
1746 /* Check for the exit condition. */
1747 if (crypto_exit_flag != 0) {
1748
1749 /* Time to die. */
1750 crypto_exit_flag = 0;
1751 cv_broadcast(&cryptoret_cv);
1752 mutex_spin_exit(&crypto_ret_q_mtx);
1753 kthread_exit(0);
1754 }
1755
1756 cryptostats.cs_rets++;
1757 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1758 continue;
1759 }
1760
1761 mutex_spin_exit(&crypto_ret_q_mtx);
1762
1763 if (crp != NULL) {
1764 #ifdef CRYPTO_TIMING
1765 if (crypto_timing) {
1766 /*
1767 * NB: We must copy the timestamp before
1768 * doing the callback as the cryptop is
1769 * likely to be reclaimed.
1770 */
1771 struct timespec t = crp->crp_tstamp;
1772 crypto_tstat(&cryptostats.cs_cb, &t);
1773 crp->crp_callback(crp);
1774 crypto_tstat(&cryptostats.cs_finis, &t);
1775 } else
1776 #endif
1777 {
1778 crp->crp_callback(crp);
1779 }
1780 }
1781 if (krp != NULL)
1782 krp->krp_callback(krp);
1783
1784 mutex_spin_enter(&crypto_ret_q_mtx);
1785 }
1786 }
1787
1788 /* NetBSD module interface */
1789
1790 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1791
1792 static int
1793 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1794 {
1795 int error = 0;
1796
1797 switch (cmd) {
1798 case MODULE_CMD_INIT:
1799 #ifdef _MODULE
1800 error = crypto_init();
1801 #endif
1802 break;
1803 case MODULE_CMD_FINI:
1804 #ifdef _MODULE
1805 error = crypto_destroy(true);
1806 #endif
1807 break;
1808 default:
1809 error = ENOTTY;
1810 }
1811 return error;
1812 }
1813