crypto.c revision 1.83 1 /* $NetBSD: crypto.c,v 1.83 2017/06/06 01:51:39 knakahara Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $ */
3 /* $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */
4
5 /*-
6 * Copyright (c) 2008 The NetBSD Foundation, Inc.
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by Coyote Point Systems, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
36 *
37 * This code was written by Angelos D. Keromytis in Athens, Greece, in
38 * February 2000. Network Security Technologies Inc. (NSTI) kindly
39 * supported the development of this code.
40 *
41 * Copyright (c) 2000, 2001 Angelos D. Keromytis
42 *
43 * Permission to use, copy, and modify this software with or without fee
44 * is hereby granted, provided that this entire notice is included in
45 * all source code copies of any software which is or includes a copy or
46 * modification of this software.
47 *
48 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
49 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
50 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
51 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
52 * PURPOSE.
53 */
54
55 #include <sys/cdefs.h>
56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.83 2017/06/06 01:51:39 knakahara Exp $");
57
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/malloc.h>
62 #include <sys/proc.h>
63 #include <sys/pool.h>
64 #include <sys/kthread.h>
65 #include <sys/once.h>
66 #include <sys/sysctl.h>
67 #include <sys/intr.h>
68 #include <sys/errno.h>
69 #include <sys/module.h>
70
71 #if defined(_KERNEL_OPT)
72 #include "opt_ocf.h"
73 #endif
74
75 #include <opencrypto/cryptodev.h>
76 #include <opencrypto/xform.h> /* XXX for M_XDATA */
77
78 static kmutex_t crypto_q_mtx;
79 static kmutex_t crypto_ret_q_mtx;
80 static kcondvar_t cryptoret_cv;
81
82 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
83 #define SWI_CRYPTO 17
84 #define register_swi(lvl, fn) \
85 softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
86 #define unregister_swi(lvl, fn) softint_disestablish(softintr_cookie)
87 #define setsoftcrypto(x) \
88 do{ \
89 kpreempt_disable(); \
90 softint_schedule(x); \
91 kpreempt_enable(); \
92 }while(0)
93
94 int crypto_ret_q_check(struct cryptop *);
95
96 /*
97 * Crypto drivers register themselves by allocating a slot in the
98 * crypto_drivers table with crypto_get_driverid() and then registering
99 * each algorithm they support with crypto_register() and crypto_kregister().
100 */
101 static kmutex_t crypto_drv_mtx;
102 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
103 static struct cryptocap *crypto_drivers;
104 static int crypto_drivers_num;
105 static void *softintr_cookie;
106 static int crypto_exit_flag;
107
108 /*
109 * There are two queues for crypto requests; one for symmetric (e.g.
110 * cipher) operations and one for asymmetric (e.g. MOD) operations.
111 * See below for how synchronization is handled.
112 */
113 static TAILQ_HEAD(,cryptop) crp_q = /* request queues */
114 TAILQ_HEAD_INITIALIZER(crp_q);
115 static TAILQ_HEAD(,cryptkop) crp_kq =
116 TAILQ_HEAD_INITIALIZER(crp_kq);
117
118 /*
119 * There are two queues for processing completed crypto requests; one
120 * for the symmetric and one for the asymmetric ops. We only need one
121 * but have two to avoid type futzing (cryptop vs. cryptkop). See below
122 * for how synchronization is handled.
123 */
124 static TAILQ_HEAD(crprethead, cryptop) crp_ret_q = /* callback queues */
125 TAILQ_HEAD_INITIALIZER(crp_ret_q);
126 static TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
127 TAILQ_HEAD_INITIALIZER(crp_ret_kq);
128
129 #define DEFINIT_CRYPTO_Q_LEN(name) \
130 static int crypto_##name##_len = 0
131
132 #define DEFINIT_CRYPTO_Q_DROPS(name) \
133 static int crypto_##name##_drops = 0
134
135 #define DEFINIT_CRYPTO_Q_MAXLEN(name, defval) \
136 static int crypto_##name##_maxlen = defval
137
138 #define CRYPTO_Q_INC(name) \
139 do { \
140 crypto_##name##_len++; \
141 } while(0);
142
143 #define CRYPTO_Q_DEC(name) \
144 do { \
145 crypto_##name##_len--; \
146 } while(0);
147
148 #define CRYPTO_Q_INC_DROPS(name) \
149 do { \
150 crypto_##name##_drops++; \
151 } while(0);
152
153 #define CRYPTO_Q_IS_FULL(name) \
154 (crypto_##name##_maxlen > 0 \
155 && (crypto_##name##_len > crypto_##name##_maxlen))
156
157 /*
158 * current queue length.
159 */
160 DEFINIT_CRYPTO_Q_LEN(crp_ret_q);
161 DEFINIT_CRYPTO_Q_LEN(crp_ret_kq);
162
163 /*
164 * queue dropped count.
165 */
166 DEFINIT_CRYPTO_Q_DROPS(crp_ret_q);
167 DEFINIT_CRYPTO_Q_DROPS(crp_ret_kq);
168
169 #ifndef CRYPTO_RET_Q_MAXLEN
170 #define CRYPTO_RET_Q_MAXLEN 0
171 #endif
172 #ifndef CRYPTO_RET_KQ_MAXLEN
173 #define CRYPTO_RET_KQ_MAXLEN 0
174 #endif
175 /*
176 * queue length limit.
177 * default value is 0. <=0 means unlimited.
178 */
179 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_q, CRYPTO_RET_Q_MAXLEN);
180 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_kq, CRYPTO_RET_KQ_MAXLEN);
181
182 /*
183 * TODO:
184 * make percpu
185 */
186 static int
187 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
188 {
189 int error;
190
191 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
192 if (error || newp == NULL)
193 return error;
194
195 return 0;
196 }
197
198 /*
199 * TODO:
200 * make percpu
201 */
202 static int
203 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
204 {
205 int error;
206
207 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
208 if (error || newp == NULL)
209 return error;
210
211 return 0;
212 }
213
214 /*
215 * need to make percpu?
216 */
217 static int
218 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
219 {
220 int error;
221
222 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
223 if (error || newp == NULL)
224 return error;
225
226 return 0;
227 }
228
229 /*
230 * Crypto op and desciptor data structures are allocated
231 * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
232 */
233 struct pool cryptop_pool;
234 struct pool cryptodesc_pool;
235 struct pool cryptkop_pool;
236
237 int crypto_usercrypto = 1; /* userland may open /dev/crypto */
238 int crypto_userasymcrypto = 1; /* userland may do asym crypto reqs */
239 /*
240 * cryptodevallowsoft is (intended to be) sysctl'able, controlling
241 * access to hardware versus software transforms as below:
242 *
243 * crypto_devallowsoft < 0: Force userlevel requests to use software
244 * transforms, always
245 * crypto_devallowsoft = 0: Use hardware if present, grant userlevel
246 * requests for non-accelerated transforms
247 * (handling the latter in software)
248 * crypto_devallowsoft > 0: Allow user requests only for transforms which
249 * are hardware-accelerated.
250 */
251 int crypto_devallowsoft = 1; /* only use hardware crypto */
252
253 static void
254 sysctl_opencrypto_setup(struct sysctllog **clog)
255 {
256 const struct sysctlnode *ocnode;
257 const struct sysctlnode *retqnode, *retkqnode;
258
259 sysctl_createv(clog, 0, NULL, NULL,
260 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
261 CTLTYPE_INT, "usercrypto",
262 SYSCTL_DESCR("Enable/disable user-mode access to "
263 "crypto support"),
264 NULL, 0, &crypto_usercrypto, 0,
265 CTL_KERN, CTL_CREATE, CTL_EOL);
266 sysctl_createv(clog, 0, NULL, NULL,
267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
268 CTLTYPE_INT, "userasymcrypto",
269 SYSCTL_DESCR("Enable/disable user-mode access to "
270 "asymmetric crypto support"),
271 NULL, 0, &crypto_userasymcrypto, 0,
272 CTL_KERN, CTL_CREATE, CTL_EOL);
273 sysctl_createv(clog, 0, NULL, NULL,
274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
275 CTLTYPE_INT, "cryptodevallowsoft",
276 SYSCTL_DESCR("Enable/disable use of software "
277 "asymmetric crypto support"),
278 NULL, 0, &crypto_devallowsoft, 0,
279 CTL_KERN, CTL_CREATE, CTL_EOL);
280
281 sysctl_createv(clog, 0, NULL, &ocnode,
282 CTLFLAG_PERMANENT,
283 CTLTYPE_NODE, "opencrypto",
284 SYSCTL_DESCR("opencrypto related entries"),
285 NULL, 0, NULL, 0,
286 CTL_CREATE, CTL_EOL);
287
288 sysctl_createv(clog, 0, &ocnode, &retqnode,
289 CTLFLAG_PERMANENT,
290 CTLTYPE_NODE, "crypto_ret_q",
291 SYSCTL_DESCR("crypto_ret_q related entries"),
292 NULL, 0, NULL, 0,
293 CTL_CREATE, CTL_EOL);
294 sysctl_createv(clog, 0, &retqnode, NULL,
295 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
296 CTLTYPE_INT, "len",
297 SYSCTL_DESCR("Current queue length"),
298 sysctl_opencrypto_q_len, 0,
299 (void *)&crypto_crp_ret_q_len, 0,
300 CTL_CREATE, CTL_EOL);
301 sysctl_createv(clog, 0, &retqnode, NULL,
302 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
303 CTLTYPE_INT, "drops",
304 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
305 sysctl_opencrypto_q_drops, 0,
306 (void *)&crypto_crp_ret_q_drops, 0,
307 CTL_CREATE, CTL_EOL);
308 sysctl_createv(clog, 0, &retqnode, NULL,
309 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
310 CTLTYPE_INT, "maxlen",
311 SYSCTL_DESCR("Maximum allowed queue length"),
312 sysctl_opencrypto_q_maxlen, 0,
313 (void *)&crypto_crp_ret_q_maxlen, 0,
314 CTL_CREATE, CTL_EOL);
315
316 sysctl_createv(clog, 0, &ocnode, &retkqnode,
317 CTLFLAG_PERMANENT,
318 CTLTYPE_NODE, "crypto_ret_kq",
319 SYSCTL_DESCR("crypto_ret_kq related entries"),
320 NULL, 0, NULL, 0,
321 CTL_CREATE, CTL_EOL);
322 sysctl_createv(clog, 0, &retkqnode, NULL,
323 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
324 CTLTYPE_INT, "len",
325 SYSCTL_DESCR("Current queue length"),
326 sysctl_opencrypto_q_len, 0,
327 (void *)&crypto_crp_ret_kq_len, 0,
328 CTL_CREATE, CTL_EOL);
329 sysctl_createv(clog, 0, &retkqnode, NULL,
330 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
331 CTLTYPE_INT, "drops",
332 SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
333 sysctl_opencrypto_q_drops, 0,
334 (void *)&crypto_crp_ret_kq_drops, 0,
335 CTL_CREATE, CTL_EOL);
336 sysctl_createv(clog, 0, &retkqnode, NULL,
337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
338 CTLTYPE_INT, "maxlen",
339 SYSCTL_DESCR("Maximum allowed queue length"),
340 sysctl_opencrypto_q_maxlen, 0,
341 (void *)&crypto_crp_ret_kq_maxlen, 0,
342 CTL_CREATE, CTL_EOL);
343 }
344
345 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
346
347 /*
348 * Synchronization: read carefully, this is non-trivial.
349 *
350 * Crypto requests are submitted via crypto_dispatch. Typically
351 * these come in from network protocols at spl0 (output path) or
352 * spl[,soft]net (input path).
353 *
354 * Requests are typically passed on the driver directly, but they
355 * may also be queued for processing by a software interrupt thread,
356 * cryptointr, that runs at splsoftcrypto. This thread dispatches
357 * the requests to crypto drivers (h/w or s/w) who call crypto_done
358 * when a request is complete. Hardware crypto drivers are assumed
359 * to register their IRQ's as network devices so their interrupt handlers
360 * and subsequent "done callbacks" happen at spl[imp,net].
361 *
362 * Completed crypto ops are queued for a separate kernel thread that
363 * handles the callbacks at spl0. This decoupling insures the crypto
364 * driver interrupt service routine is not delayed while the callback
365 * takes place and that callbacks are delivered after a context switch
366 * (as opposed to a software interrupt that clients must block).
367 *
368 * This scheme is not intended for SMP machines.
369 */
370 static void cryptointr(void); /* swi thread to dispatch ops */
371 static void cryptoret(void); /* kernel thread for callbacks*/
372 static struct lwp *cryptothread;
373 static int crypto_destroy(bool);
374 static int crypto_invoke(struct cryptop *crp, int hint);
375 static int crypto_kinvoke(struct cryptkop *krp, int hint);
376
377 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
378 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
379 static void crypto_driver_lock(struct cryptocap *);
380 static void crypto_driver_unlock(struct cryptocap *);
381 static void crypto_driver_clear(struct cryptocap *);
382
383 static struct cryptostats cryptostats;
384 #ifdef CRYPTO_TIMING
385 static int crypto_timing = 0;
386 #endif
387
388 static struct sysctllog *sysctl_opencrypto_clog;
389
390 static int
391 crypto_init0(void)
392 {
393 int error;
394
395 mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
396 mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NONE);
397 mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
398 cv_init(&cryptoret_cv, "crypto_w");
399 pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
400 0, "cryptop", NULL, IPL_NET);
401 pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
402 0, "cryptodesc", NULL, IPL_NET);
403 pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
404 0, "cryptkop", NULL, IPL_NET);
405
406 crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
407 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
408 if (crypto_drivers == NULL) {
409 printf("crypto_init: cannot malloc driver table\n");
410 return ENOMEM;
411 }
412 crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
413
414 softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
415 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
416 (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
417 if (error) {
418 printf("crypto_init: cannot start cryptoret thread; error %d",
419 error);
420 return crypto_destroy(false);
421 }
422
423 sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
424
425 return 0;
426 }
427
428 int
429 crypto_init(void)
430 {
431 static ONCE_DECL(crypto_init_once);
432
433 return RUN_ONCE(&crypto_init_once, crypto_init0);
434 }
435
436 static int
437 crypto_destroy(bool exit_kthread)
438 {
439 int i;
440
441 if (exit_kthread) {
442 struct cryptocap *cap = NULL;
443
444 /* if we have any in-progress requests, don't unload */
445 mutex_enter(&crypto_q_mtx);
446 if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
447 mutex_exit(&crypto_q_mtx);
448 return EBUSY;
449 }
450 mutex_exit(&crypto_q_mtx);
451 /* FIXME:
452 * prohibit enqueue to crp_q and crp_kq after here.
453 */
454
455 mutex_enter(&crypto_drv_mtx);
456 for (i = 0; i < crypto_drivers_num; i++) {
457 cap = crypto_checkdriver_uninit(i);
458 if (cap == NULL)
459 continue;
460 if (cap->cc_sessions != 0) {
461 mutex_exit(&crypto_drv_mtx);
462 return EBUSY;
463 }
464 }
465 mutex_exit(&crypto_drv_mtx);
466 /* FIXME:
467 * prohibit touch crypto_drivers[] and each element after here.
468 */
469
470 mutex_spin_enter(&crypto_ret_q_mtx);
471 /* kick the cryptoret thread and wait for it to exit */
472 crypto_exit_flag = 1;
473 cv_signal(&cryptoret_cv);
474
475 while (crypto_exit_flag != 0)
476 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
477 mutex_spin_exit(&crypto_ret_q_mtx);
478 }
479
480 if (sysctl_opencrypto_clog != NULL)
481 sysctl_teardown(&sysctl_opencrypto_clog);
482
483 unregister_swi(SWI_CRYPTO, cryptointr);
484
485 mutex_enter(&crypto_drv_mtx);
486 if (crypto_drivers != NULL)
487 free(crypto_drivers, M_CRYPTO_DATA);
488 mutex_exit(&crypto_drv_mtx);
489
490 pool_destroy(&cryptop_pool);
491 pool_destroy(&cryptodesc_pool);
492 pool_destroy(&cryptkop_pool);
493
494 cv_destroy(&cryptoret_cv);
495
496 mutex_destroy(&crypto_ret_q_mtx);
497 mutex_destroy(&crypto_q_mtx);
498 mutex_destroy(&crypto_drv_mtx);
499
500 return 0;
501 }
502
503 /*
504 * Create a new session.
505 */
506 int
507 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
508 {
509 struct cryptoini *cr;
510 struct cryptocap *cap;
511 u_int32_t hid, lid;
512 int err = EINVAL;
513
514 mutex_enter(&crypto_drv_mtx);
515
516 /*
517 * The algorithm we use here is pretty stupid; just use the
518 * first driver that supports all the algorithms we need.
519 *
520 * XXX We need more smarts here (in real life too, but that's
521 * XXX another story altogether).
522 */
523
524 for (hid = 0; hid < crypto_drivers_num; hid++) {
525 cap = crypto_checkdriver_uninit(hid);
526 if (cap == NULL)
527 continue;
528
529 crypto_driver_lock(cap);
530
531 /*
532 * If it's not initialized or has remaining sessions
533 * referencing it, skip.
534 */
535 if (cap->cc_newsession == NULL ||
536 (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
537 crypto_driver_unlock(cap);
538 continue;
539 }
540
541 /* Hardware required -- ignore software drivers. */
542 if (hard > 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
543 crypto_driver_unlock(cap);
544 continue;
545 }
546 /* Software required -- ignore hardware drivers. */
547 if (hard < 0 && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
548 crypto_driver_unlock(cap);
549 continue;
550 }
551
552 /* See if all the algorithms are supported. */
553 for (cr = cri; cr; cr = cr->cri_next)
554 if (cap->cc_alg[cr->cri_alg] == 0) {
555 DPRINTF("alg %d not supported\n", cr->cri_alg);
556 break;
557 }
558
559 if (cr == NULL) {
560 /* Ok, all algorithms are supported. */
561
562 /*
563 * Can't do everything in one session.
564 *
565 * XXX Fix this. We need to inject a "virtual" session layer right
566 * XXX about here.
567 */
568
569 /* Call the driver initialization routine. */
570 lid = hid; /* Pass the driver ID. */
571 err = cap->cc_newsession(cap->cc_arg, &lid, cri);
572 if (err == 0) {
573 (*sid) = hid;
574 (*sid) <<= 32;
575 (*sid) |= (lid & 0xffffffff);
576 (cap->cc_sessions)++;
577 } else {
578 DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
579 hid, err);
580 }
581 crypto_driver_unlock(cap);
582 goto done;
583 /*break;*/
584 }
585
586 crypto_driver_unlock(cap);
587 }
588 done:
589 mutex_exit(&crypto_drv_mtx);
590 return err;
591 }
592
593 /*
594 * Delete an existing session (or a reserved session on an unregistered
595 * driver).
596 */
597 int
598 crypto_freesession(u_int64_t sid)
599 {
600 struct cryptocap *cap;
601 int err = 0;
602
603 /* Determine two IDs. */
604 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
605 if (cap == NULL)
606 return ENOENT;
607
608 if (cap->cc_sessions)
609 (cap->cc_sessions)--;
610
611 /* Call the driver cleanup routine, if available. */
612 if (cap->cc_freesession)
613 err = cap->cc_freesession(cap->cc_arg, sid);
614 else
615 err = 0;
616
617 /*
618 * If this was the last session of a driver marked as invalid,
619 * make the entry available for reuse.
620 */
621 if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
622 crypto_driver_clear(cap);
623
624 crypto_driver_unlock(cap);
625 return err;
626 }
627
628 /*
629 * Return an unused driver id. Used by drivers prior to registering
630 * support for the algorithms they handle.
631 */
632 int32_t
633 crypto_get_driverid(u_int32_t flags)
634 {
635 struct cryptocap *newdrv;
636 struct cryptocap *cap = NULL;
637 int i;
638
639 (void)crypto_init(); /* XXX oh, this is foul! */
640
641 mutex_enter(&crypto_drv_mtx);
642 for (i = 0; i < crypto_drivers_num; i++) {
643 cap = crypto_checkdriver_uninit(i);
644 if (cap == NULL)
645 continue;
646 if (cap->cc_process == NULL &&
647 (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0 &&
648 cap->cc_sessions == 0)
649 break;
650 }
651
652 /* Out of entries, allocate some more. */
653 if (cap == NULL) {
654 /* Be careful about wrap-around. */
655 if (2 * crypto_drivers_num <= crypto_drivers_num) {
656 mutex_exit(&crypto_drv_mtx);
657 printf("crypto: driver count wraparound!\n");
658 return -1;
659 }
660
661 newdrv = malloc(2 * crypto_drivers_num *
662 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
663 if (newdrv == NULL) {
664 mutex_exit(&crypto_drv_mtx);
665 printf("crypto: no space to expand driver table!\n");
666 return -1;
667 }
668
669 memcpy(newdrv, crypto_drivers,
670 crypto_drivers_num * sizeof(struct cryptocap));
671
672 crypto_drivers_num *= 2;
673
674 free(crypto_drivers, M_CRYPTO_DATA);
675 crypto_drivers = newdrv;
676
677 cap = crypto_checkdriver_uninit(i);
678 KASSERT(cap != NULL);
679 }
680
681 /* NB: state is zero'd on free */
682 cap->cc_sessions = 1; /* Mark */
683 cap->cc_flags = flags;
684 mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
685
686 if (bootverbose)
687 printf("crypto: assign driver %u, flags %u\n", i, flags);
688
689 mutex_exit(&crypto_drv_mtx);
690
691 return i;
692 }
693
694 static struct cryptocap *
695 crypto_checkdriver_lock(u_int32_t hid)
696 {
697 struct cryptocap *cap;
698
699 KASSERT(crypto_drivers != NULL);
700
701 if (hid >= crypto_drivers_num)
702 return NULL;
703
704 cap = &crypto_drivers[hid];
705 mutex_enter(&cap->cc_lock);
706 return cap;
707 }
708
709 /*
710 * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
711 * situations
712 * - crypto_drivers[] may not be allocated
713 * - crypto_drivers[hid] may not be initialized
714 */
715 static struct cryptocap *
716 crypto_checkdriver_uninit(u_int32_t hid)
717 {
718
719 KASSERT(mutex_owned(&crypto_drv_mtx));
720
721 if (crypto_drivers == NULL)
722 return NULL;
723
724 return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
725 }
726
727 static inline void
728 crypto_driver_lock(struct cryptocap *cap)
729 {
730
731 KASSERT(cap != NULL);
732
733 mutex_enter(&cap->cc_lock);
734 }
735
736 static inline void
737 crypto_driver_unlock(struct cryptocap *cap)
738 {
739
740 KASSERT(cap != NULL);
741
742 mutex_exit(&cap->cc_lock);
743 }
744
745 static void
746 crypto_driver_clear(struct cryptocap *cap)
747 {
748
749 if (cap == NULL)
750 return;
751
752 KASSERT(mutex_owned(&cap->cc_lock));
753
754 cap->cc_sessions = 0;
755 memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
756 memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
757 memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
758 cap->cc_flags = 0;
759 cap->cc_qblocked = 0;
760 cap->cc_kqblocked = 0;
761
762 cap->cc_arg = NULL;
763 cap->cc_newsession = NULL;
764 cap->cc_process = NULL;
765 cap->cc_freesession = NULL;
766 cap->cc_kprocess = NULL;
767 }
768
769 /*
770 * Register support for a key-related algorithm. This routine
771 * is called once for each algorithm supported a driver.
772 */
773 int
774 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
775 int (*kprocess)(void *, struct cryptkop *, int),
776 void *karg)
777 {
778 struct cryptocap *cap;
779 int err;
780
781 mutex_enter(&crypto_drv_mtx);
782
783 cap = crypto_checkdriver_lock(driverid);
784 if (cap != NULL &&
785 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
786 /*
787 * XXX Do some performance testing to determine placing.
788 * XXX We probably need an auxiliary data structure that
789 * XXX describes relative performances.
790 */
791
792 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
793 if (bootverbose) {
794 printf("crypto: driver %u registers key alg %u "
795 " flags %u\n",
796 driverid,
797 kalg,
798 flags
799 );
800 }
801
802 if (cap->cc_kprocess == NULL) {
803 cap->cc_karg = karg;
804 cap->cc_kprocess = kprocess;
805 }
806 err = 0;
807 } else
808 err = EINVAL;
809
810 mutex_exit(&crypto_drv_mtx);
811 return err;
812 }
813
814 /*
815 * Register support for a non-key-related algorithm. This routine
816 * is called once for each such algorithm supported by a driver.
817 */
818 int
819 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
820 u_int32_t flags,
821 int (*newses)(void *, u_int32_t*, struct cryptoini*),
822 int (*freeses)(void *, u_int64_t),
823 int (*process)(void *, struct cryptop *, int),
824 void *arg)
825 {
826 struct cryptocap *cap;
827 int err;
828
829 cap = crypto_checkdriver_lock(driverid);
830 if (cap == NULL)
831 return EINVAL;
832
833 /* NB: algorithms are in the range [1..max] */
834 if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
835 /*
836 * XXX Do some performance testing to determine placing.
837 * XXX We probably need an auxiliary data structure that
838 * XXX describes relative performances.
839 */
840
841 cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
842 cap->cc_max_op_len[alg] = maxoplen;
843 if (bootverbose) {
844 printf("crypto: driver %u registers alg %u "
845 "flags %u maxoplen %u\n",
846 driverid,
847 alg,
848 flags,
849 maxoplen
850 );
851 }
852
853 if (cap->cc_process == NULL) {
854 cap->cc_arg = arg;
855 cap->cc_newsession = newses;
856 cap->cc_process = process;
857 cap->cc_freesession = freeses;
858 cap->cc_sessions = 0; /* Unmark */
859 }
860 err = 0;
861 } else
862 err = EINVAL;
863
864 crypto_driver_unlock(cap);
865
866 return err;
867 }
868
869 static int
870 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
871 {
872 int i;
873 u_int32_t ses;
874 bool lastalg = true;
875
876 KASSERT(cap != NULL);
877 KASSERT(mutex_owned(&cap->cc_lock));
878
879 if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
880 return EINVAL;
881
882 if (!all && cap->cc_alg[alg] == 0)
883 return EINVAL;
884
885 cap->cc_alg[alg] = 0;
886 cap->cc_max_op_len[alg] = 0;
887
888 if (all) {
889 if (alg != CRYPTO_ALGORITHM_MAX)
890 lastalg = false;
891 } else {
892 /* Was this the last algorithm ? */
893 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
894 if (cap->cc_alg[i] != 0) {
895 lastalg = false;
896 break;
897 }
898 }
899 if (lastalg) {
900 ses = cap->cc_sessions;
901 crypto_driver_clear(cap);
902 if (ses != 0) {
903 /*
904 * If there are pending sessions, just mark as invalid.
905 */
906 cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
907 cap->cc_sessions = ses;
908 }
909 }
910
911 return 0;
912 }
913
914 /*
915 * Unregister a crypto driver. If there are pending sessions using it,
916 * leave enough information around so that subsequent calls using those
917 * sessions will correctly detect the driver has been unregistered and
918 * reroute requests.
919 */
920 int
921 crypto_unregister(u_int32_t driverid, int alg)
922 {
923 int err;
924 struct cryptocap *cap;
925
926 cap = crypto_checkdriver_lock(driverid);
927 err = crypto_unregister_locked(cap, alg, false);
928 crypto_driver_unlock(cap);
929
930 return err;
931 }
932
933 /*
934 * Unregister all algorithms associated with a crypto driver.
935 * If there are pending sessions using it, leave enough information
936 * around so that subsequent calls using those sessions will
937 * correctly detect the driver has been unregistered and reroute
938 * requests.
939 */
940 int
941 crypto_unregister_all(u_int32_t driverid)
942 {
943 int err, i;
944 struct cryptocap *cap;
945
946 cap = crypto_checkdriver_lock(driverid);
947 for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
948 err = crypto_unregister_locked(cap, i, true);
949 if (err)
950 break;
951 }
952 crypto_driver_unlock(cap);
953
954 return err;
955 }
956
957 /*
958 * Clear blockage on a driver. The what parameter indicates whether
959 * the driver is now ready for cryptop's and/or cryptokop's.
960 */
961 int
962 crypto_unblock(u_int32_t driverid, int what)
963 {
964 struct cryptocap *cap;
965 int needwakeup = 0;
966
967 cap = crypto_checkdriver_lock(driverid);
968 if (cap == NULL)
969 return EINVAL;
970
971 if (what & CRYPTO_SYMQ) {
972 needwakeup |= cap->cc_qblocked;
973 cap->cc_qblocked = 0;
974 }
975 if (what & CRYPTO_ASYMQ) {
976 needwakeup |= cap->cc_kqblocked;
977 cap->cc_kqblocked = 0;
978 }
979 crypto_driver_unlock(cap);
980 if (needwakeup)
981 setsoftcrypto(softintr_cookie);
982
983 return 0;
984 }
985
986 /*
987 * Dispatch a crypto request to a driver or queue
988 * it, to be processed by the kernel thread.
989 */
990 int
991 crypto_dispatch(struct cryptop *crp)
992 {
993 int result;
994 struct cryptocap *cap;
995
996 KASSERT(crp != NULL);
997
998 DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
999
1000 cryptostats.cs_ops++;
1001
1002 #ifdef CRYPTO_TIMING
1003 if (crypto_timing)
1004 nanouptime(&crp->crp_tstamp);
1005 #endif
1006
1007 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1008 int wasempty;
1009 /*
1010 * Caller marked the request as ``ok to delay'';
1011 * queue it for the swi thread. This is desirable
1012 * when the operation is low priority and/or suitable
1013 * for batching.
1014 *
1015 * don't care list order in batch job.
1016 */
1017 mutex_enter(&crypto_q_mtx);
1018 wasempty = TAILQ_EMPTY(&crp_q);
1019 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1020 mutex_exit(&crypto_q_mtx);
1021 if (wasempty)
1022 setsoftcrypto(softintr_cookie);
1023
1024 return 0;
1025 }
1026
1027 mutex_enter(&crypto_q_mtx);
1028 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1029 /*
1030 * TODO:
1031 * If we can ensure the driver has been valid until the driver is
1032 * done crypto_unregister(), this migrate operation is not required.
1033 */
1034 if (cap == NULL) {
1035 /*
1036 * The driver must be detached, so this request will migrate
1037 * to other drivers in cryptointr() later.
1038 */
1039 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1040 mutex_exit(&crypto_q_mtx);
1041 return 0;
1042 }
1043
1044 if (cap->cc_qblocked != 0) {
1045 crypto_driver_unlock(cap);
1046 /*
1047 * The driver is blocked, just queue the op until
1048 * it unblocks and the swi thread gets kicked.
1049 */
1050 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1051 mutex_exit(&crypto_q_mtx);
1052 return 0;
1053 }
1054
1055 /*
1056 * Caller marked the request to be processed
1057 * immediately; dispatch it directly to the
1058 * driver unless the driver is currently blocked.
1059 */
1060 crypto_driver_unlock(cap);
1061 result = crypto_invoke(crp, 0);
1062 if (result == ERESTART) {
1063 /*
1064 * The driver ran out of resources, mark the
1065 * driver ``blocked'' for cryptop's and put
1066 * the op on the queue.
1067 */
1068 crypto_driver_lock(cap);
1069 cap->cc_qblocked = 1;
1070 crypto_driver_unlock(cap);
1071 TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
1072 cryptostats.cs_blocks++;
1073
1074 /*
1075 * The crp is enqueued to crp_q, that is,
1076 * no error occurs. So, this function should
1077 * not return error.
1078 */
1079 result = 0;
1080 }
1081
1082 mutex_exit(&crypto_q_mtx);
1083 return result;
1084 }
1085
1086 /*
1087 * Add an asymetric crypto request to a queue,
1088 * to be processed by the kernel thread.
1089 */
1090 int
1091 crypto_kdispatch(struct cryptkop *krp)
1092 {
1093 struct cryptocap *cap;
1094 int result;
1095
1096 KASSERT(krp != NULL);
1097
1098 cryptostats.cs_kops++;
1099
1100 cap = crypto_checkdriver_lock(krp->krp_hid);
1101 /*
1102 * TODO:
1103 * If we can ensure the driver has been valid until the driver is
1104 * done crypto_unregister(), this migrate operation is not required.
1105 */
1106 if (cap == NULL) {
1107 mutex_enter(&crypto_q_mtx);
1108 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1109 mutex_exit(&crypto_q_mtx);
1110
1111 return 0;
1112 }
1113
1114 if (cap->cc_kqblocked != 0) {
1115 crypto_driver_unlock(cap);
1116 /*
1117 * The driver is blocked, just queue the op until
1118 * it unblocks and the swi thread gets kicked.
1119 */
1120 mutex_enter(&crypto_q_mtx);
1121 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1122 mutex_exit(&crypto_q_mtx);
1123
1124 return 0;
1125 }
1126
1127 crypto_driver_unlock(cap);
1128 result = crypto_kinvoke(krp, 0);
1129 if (result == ERESTART) {
1130 /*
1131 * The driver ran out of resources, mark the
1132 * driver ``blocked'' for cryptop's and put
1133 * the op on the queue.
1134 */
1135 crypto_driver_lock(cap);
1136 cap->cc_kqblocked = 1;
1137 crypto_driver_unlock(cap);
1138 mutex_enter(&crypto_q_mtx);
1139 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1140 cryptostats.cs_kblocks++;
1141 mutex_exit(&crypto_q_mtx);
1142
1143 /*
1144 * The krp is enqueued to crp_kq, that is,
1145 * no error occurs. So, this function should
1146 * not return error.
1147 */
1148 result = 0;
1149 }
1150
1151 return result;
1152 }
1153
1154 /*
1155 * Dispatch an assymetric crypto request to the appropriate crypto devices.
1156 */
1157 static int
1158 crypto_kinvoke(struct cryptkop *krp, int hint)
1159 {
1160 struct cryptocap *cap = NULL;
1161 u_int32_t hid;
1162 int error;
1163
1164 KASSERT(krp != NULL);
1165
1166 /* Sanity checks. */
1167 if (krp->krp_callback == NULL) {
1168 cv_destroy(&krp->krp_cv);
1169 crypto_kfreereq(krp);
1170 return EINVAL;
1171 }
1172
1173 mutex_enter(&crypto_drv_mtx);
1174 for (hid = 0; hid < crypto_drivers_num; hid++) {
1175 cap = crypto_checkdriver_uninit(hid);
1176 if (cap == NULL)
1177 continue;
1178 crypto_driver_lock(cap);
1179 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1180 crypto_devallowsoft == 0) {
1181 crypto_driver_unlock(cap);
1182 continue;
1183 }
1184 if (cap->cc_kprocess == NULL) {
1185 crypto_driver_unlock(cap);
1186 continue;
1187 }
1188 if ((cap->cc_kalg[krp->krp_op] &
1189 CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
1190 crypto_driver_unlock(cap);
1191 continue;
1192 }
1193 break;
1194 }
1195 mutex_exit(&crypto_drv_mtx);
1196 if (cap != NULL) {
1197 int (*process)(void *, struct cryptkop *, int);
1198 void *arg;
1199
1200 process = cap->cc_kprocess;
1201 arg = cap->cc_karg;
1202 krp->krp_hid = hid;
1203 crypto_driver_unlock(cap);
1204 error = (*process)(arg, krp, hint);
1205 } else {
1206 error = ENODEV;
1207 }
1208
1209 if (error) {
1210 krp->krp_status = error;
1211 crypto_kdone(krp);
1212 }
1213 return 0;
1214 }
1215
1216 #ifdef CRYPTO_TIMING
1217 static void
1218 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
1219 {
1220 struct timespec now, t;
1221
1222 nanouptime(&now);
1223 t.tv_sec = now.tv_sec - tv->tv_sec;
1224 t.tv_nsec = now.tv_nsec - tv->tv_nsec;
1225 if (t.tv_nsec < 0) {
1226 t.tv_sec--;
1227 t.tv_nsec += 1000000000;
1228 }
1229 timespecadd(&ts->acc, &t, &t);
1230 if (timespeccmp(&t, &ts->min, <))
1231 ts->min = t;
1232 if (timespeccmp(&t, &ts->max, >))
1233 ts->max = t;
1234 ts->count++;
1235
1236 *tv = now;
1237 }
1238 #endif
1239
1240 /*
1241 * Dispatch a crypto request to the appropriate crypto devices.
1242 */
1243 static int
1244 crypto_invoke(struct cryptop *crp, int hint)
1245 {
1246 struct cryptocap *cap;
1247
1248 KASSERT(crp != NULL);
1249
1250 #ifdef CRYPTO_TIMING
1251 if (crypto_timing)
1252 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1253 #endif
1254 /* Sanity checks. */
1255 if (crp->crp_callback == NULL) {
1256 return EINVAL;
1257 }
1258 if (crp->crp_desc == NULL) {
1259 crp->crp_etype = EINVAL;
1260 crypto_done(crp);
1261 return 0;
1262 }
1263
1264 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
1265 if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
1266 int (*process)(void *, struct cryptop *, int);
1267 void *arg;
1268
1269 process = cap->cc_process;
1270 arg = cap->cc_arg;
1271
1272 /*
1273 * Invoke the driver to process the request.
1274 */
1275 DPRINTF("calling process for %p\n", crp);
1276 crypto_driver_unlock(cap);
1277 return (*process)(arg, crp, hint);
1278 } else {
1279 struct cryptodesc *crd;
1280 u_int64_t nid = 0;
1281
1282 if (cap != NULL)
1283 crypto_driver_unlock(cap);
1284
1285 /*
1286 * Driver has unregistered; migrate the session and return
1287 * an error to the caller so they'll resubmit the op.
1288 */
1289 crypto_freesession(crp->crp_sid);
1290
1291 for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1292 crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1293
1294 if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
1295 crp->crp_sid = nid;
1296
1297 crp->crp_etype = EAGAIN;
1298
1299 crypto_done(crp);
1300 return 0;
1301 }
1302 }
1303
1304 /*
1305 * Release a set of crypto descriptors.
1306 */
1307 void
1308 crypto_freereq(struct cryptop *crp)
1309 {
1310 struct cryptodesc *crd;
1311
1312 if (crp == NULL)
1313 return;
1314 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1315
1316 /* sanity check */
1317 if (crp->crp_flags & CRYPTO_F_ONRETQ) {
1318 panic("crypto_freereq() freeing crp on RETQ\n");
1319 }
1320
1321 while ((crd = crp->crp_desc) != NULL) {
1322 crp->crp_desc = crd->crd_next;
1323 pool_put(&cryptodesc_pool, crd);
1324 }
1325 pool_put(&cryptop_pool, crp);
1326 }
1327
1328 /*
1329 * Acquire a set of crypto descriptors.
1330 */
1331 struct cryptop *
1332 crypto_getreq(int num)
1333 {
1334 struct cryptodesc *crd;
1335 struct cryptop *crp;
1336
1337 /*
1338 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
1339 * by error callback.
1340 */
1341 if (CRYPTO_Q_IS_FULL(crp_ret_q)) {
1342 CRYPTO_Q_INC_DROPS(crp_ret_q);
1343 return NULL;
1344 }
1345
1346 crp = pool_get(&cryptop_pool, 0);
1347 if (crp == NULL) {
1348 return NULL;
1349 }
1350 memset(crp, 0, sizeof(struct cryptop));
1351
1352 while (num--) {
1353 crd = pool_get(&cryptodesc_pool, 0);
1354 if (crd == NULL) {
1355 crypto_freereq(crp);
1356 return NULL;
1357 }
1358
1359 memset(crd, 0, sizeof(struct cryptodesc));
1360 crd->crd_next = crp->crp_desc;
1361 crp->crp_desc = crd;
1362 }
1363
1364 return crp;
1365 }
1366
1367 /*
1368 * Release a set of asymmetric crypto descriptors.
1369 * Currently, support one descriptor only.
1370 */
1371 void
1372 crypto_kfreereq(struct cryptkop *krp)
1373 {
1374
1375 if (krp == NULL)
1376 return;
1377
1378 DPRINTF("krp %p\n", krp);
1379
1380 /* sanity check */
1381 if (krp->krp_flags & CRYPTO_F_ONRETQ) {
1382 panic("crypto_kfreereq() freeing krp on RETQ\n");
1383 }
1384
1385 pool_put(&cryptkop_pool, krp);
1386 }
1387
1388 /*
1389 * Acquire a set of asymmetric crypto descriptors.
1390 * Currently, support one descriptor only.
1391 */
1392 struct cryptkop *
1393 crypto_kgetreq(int num __unused, int prflags)
1394 {
1395 struct cryptkop *krp;
1396
1397 /*
1398 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
1399 * overflow by error callback.
1400 */
1401 if (CRYPTO_Q_IS_FULL(crp_ret_kq)) {
1402 CRYPTO_Q_INC_DROPS(crp_ret_kq);
1403 return NULL;
1404 }
1405
1406 krp = pool_get(&cryptkop_pool, prflags);
1407 if (krp == NULL) {
1408 return NULL;
1409 }
1410 memset(krp, 0, sizeof(struct cryptkop));
1411
1412 return krp;
1413 }
1414
1415 /*
1416 * Invoke the callback on behalf of the driver.
1417 */
1418 void
1419 crypto_done(struct cryptop *crp)
1420 {
1421 int wasempty;
1422
1423 KASSERT(crp != NULL);
1424
1425 if (crp->crp_etype != 0)
1426 cryptostats.cs_errs++;
1427 #ifdef CRYPTO_TIMING
1428 if (crypto_timing)
1429 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1430 #endif
1431 DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
1432
1433 /*
1434 * Normal case; queue the callback for the thread.
1435 *
1436 * The return queue is manipulated by the swi thread
1437 * and, potentially, by crypto device drivers calling
1438 * back to mark operations completed. Thus we need
1439 * to mask both while manipulating the return queue.
1440 */
1441 if (crp->crp_flags & CRYPTO_F_CBIMM) {
1442 /*
1443 * Do the callback directly. This is ok when the
1444 * callback routine does very little (e.g. the
1445 * /dev/crypto callback method just does a wakeup).
1446 */
1447 mutex_spin_enter(&crypto_ret_q_mtx);
1448 crp->crp_flags |= CRYPTO_F_DONE;
1449 mutex_spin_exit(&crypto_ret_q_mtx);
1450
1451 #ifdef CRYPTO_TIMING
1452 if (crypto_timing) {
1453 /*
1454 * NB: We must copy the timestamp before
1455 * doing the callback as the cryptop is
1456 * likely to be reclaimed.
1457 */
1458 struct timespec t = crp->crp_tstamp;
1459 crypto_tstat(&cryptostats.cs_cb, &t);
1460 crp->crp_callback(crp);
1461 crypto_tstat(&cryptostats.cs_finis, &t);
1462 } else
1463 #endif
1464 crp->crp_callback(crp);
1465 } else {
1466 mutex_spin_enter(&crypto_ret_q_mtx);
1467 crp->crp_flags |= CRYPTO_F_DONE;
1468 #if 0
1469 if (crp->crp_flags & CRYPTO_F_USER) {
1470 /*
1471 * TODO:
1472 * If crp->crp_flags & CRYPTO_F_USER and the used
1473 * encryption driver does all the processing in
1474 * the same context, we can skip enqueueing crp_ret_q
1475 * and cv_signal(&cryptoret_cv).
1476 */
1477 DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
1478 CRYPTO_SESID2LID(crp->crp_sid), crp);
1479 } else
1480 #endif
1481 {
1482 wasempty = TAILQ_EMPTY(&crp_ret_q);
1483 DPRINTF("lid[%u]: queueing %p\n",
1484 CRYPTO_SESID2LID(crp->crp_sid), crp);
1485 crp->crp_flags |= CRYPTO_F_ONRETQ;
1486 TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1487 CRYPTO_Q_INC(crp_ret_q);
1488 if (wasempty) {
1489 DPRINTF("lid[%u]: waking cryptoret, "
1490 "crp %p hit empty queue\n.",
1491 CRYPTO_SESID2LID(crp->crp_sid), crp);
1492 cv_signal(&cryptoret_cv);
1493 }
1494 }
1495 mutex_spin_exit(&crypto_ret_q_mtx);
1496 }
1497 }
1498
1499 /*
1500 * Invoke the callback on behalf of the driver.
1501 */
1502 void
1503 crypto_kdone(struct cryptkop *krp)
1504 {
1505 int wasempty;
1506
1507 KASSERT(krp != NULL);
1508
1509 if (krp->krp_status != 0)
1510 cryptostats.cs_kerrs++;
1511
1512 krp->krp_flags |= CRYPTO_F_DONE;
1513
1514 /*
1515 * The return queue is manipulated by the swi thread
1516 * and, potentially, by crypto device drivers calling
1517 * back to mark operations completed. Thus we need
1518 * to mask both while manipulating the return queue.
1519 */
1520 if (krp->krp_flags & CRYPTO_F_CBIMM) {
1521 krp->krp_callback(krp);
1522 } else {
1523 mutex_spin_enter(&crypto_ret_q_mtx);
1524 wasempty = TAILQ_EMPTY(&crp_ret_kq);
1525 krp->krp_flags |= CRYPTO_F_ONRETQ;
1526 TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1527 CRYPTO_Q_INC(crp_ret_kq);
1528 if (wasempty)
1529 cv_signal(&cryptoret_cv);
1530 mutex_spin_exit(&crypto_ret_q_mtx);
1531 }
1532 }
1533
1534 int
1535 crypto_getfeat(int *featp)
1536 {
1537 int hid, kalg, feat = 0;
1538
1539 if (crypto_userasymcrypto == 0)
1540 return 0;
1541
1542 mutex_enter(&crypto_drv_mtx);
1543
1544 for (hid = 0; hid < crypto_drivers_num; hid++) {
1545 struct cryptocap *cap;
1546 cap = crypto_checkdriver_uninit(hid);
1547 if (cap == NULL)
1548 continue;
1549
1550 if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1551 crypto_devallowsoft == 0) {
1552 crypto_driver_unlock(cap);
1553 continue;
1554 }
1555 if (cap->cc_kprocess == NULL) {
1556 crypto_driver_unlock(cap);
1557 continue;
1558 }
1559 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1560 if ((cap->cc_kalg[kalg] &
1561 CRYPTO_ALG_FLAG_SUPPORTED) != 0)
1562 feat |= 1 << kalg;
1563
1564 crypto_driver_unlock(cap);
1565 }
1566
1567 mutex_exit(&crypto_drv_mtx);
1568 *featp = feat;
1569 return (0);
1570 }
1571
1572 /*
1573 * Software interrupt thread to dispatch crypto requests.
1574 */
1575 static void
1576 cryptointr(void)
1577 {
1578 struct cryptop *crp, *submit, *cnext;
1579 struct cryptkop *krp, *knext;
1580 struct cryptocap *cap;
1581 int result, hint;
1582
1583 cryptostats.cs_intrs++;
1584 mutex_enter(&crypto_q_mtx);
1585 do {
1586 /*
1587 * Find the first element in the queue that can be
1588 * processed and look-ahead to see if multiple ops
1589 * are ready for the same driver.
1590 */
1591 submit = NULL;
1592 hint = 0;
1593 TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
1594 u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
1595 cap = crypto_checkdriver_lock(hid);
1596 if (cap == NULL || cap->cc_process == NULL) {
1597 if (cap != NULL)
1598 crypto_driver_unlock(cap);
1599 /* Op needs to be migrated, process it. */
1600 submit = crp;
1601 break;
1602 }
1603
1604 /*
1605 * skip blocked crp regardless of CRYPTO_F_BATCH
1606 */
1607 if (cap->cc_qblocked != 0) {
1608 crypto_driver_unlock(cap);
1609 continue;
1610 }
1611 crypto_driver_unlock(cap);
1612
1613 /*
1614 * skip batch crp until the end of crp_q
1615 */
1616 if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
1617 if (submit == NULL) {
1618 submit = crp;
1619 } else {
1620 if (CRYPTO_SESID2HID(submit->crp_sid)
1621 == hid)
1622 hint = CRYPTO_HINT_MORE;
1623 }
1624
1625 continue;
1626 }
1627
1628 /*
1629 * found first crp which is neither blocked nor batch.
1630 */
1631 submit = crp;
1632 /*
1633 * batch crp can be processed much later, so clear hint.
1634 */
1635 hint = 0;
1636 break;
1637 }
1638 if (submit != NULL) {
1639 TAILQ_REMOVE(&crp_q, submit, crp_next);
1640 result = crypto_invoke(submit, hint);
1641 /* we must take here as the TAILQ op or kinvoke
1642 may need this mutex below. sigh. */
1643 if (result == ERESTART) {
1644 /*
1645 * The driver ran out of resources, mark the
1646 * driver ``blocked'' for cryptop's and put
1647 * the request back in the queue. It would
1648 * best to put the request back where we got
1649 * it but that's hard so for now we put it
1650 * at the front. This should be ok; putting
1651 * it at the end does not work.
1652 */
1653 /* validate sid again */
1654 cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
1655 if (cap == NULL) {
1656 /* migrate again, sigh... */
1657 TAILQ_INSERT_TAIL(&crp_q, submit, crp_next);
1658 } else {
1659 cap->cc_qblocked = 1;
1660 crypto_driver_unlock(cap);
1661 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1662 cryptostats.cs_blocks++;
1663 }
1664 }
1665 }
1666
1667 /* As above, but for key ops */
1668 TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
1669 cap = crypto_checkdriver_lock(krp->krp_hid);
1670 if (cap == NULL || cap->cc_kprocess == NULL) {
1671 if (cap != NULL)
1672 crypto_driver_unlock(cap);
1673 /* Op needs to be migrated, process it. */
1674 break;
1675 }
1676 if (!cap->cc_kqblocked) {
1677 crypto_driver_unlock(cap);
1678 break;
1679 }
1680 crypto_driver_unlock(cap);
1681 }
1682 if (krp != NULL) {
1683 TAILQ_REMOVE(&crp_kq, krp, krp_next);
1684 result = crypto_kinvoke(krp, 0);
1685 /* the next iteration will want the mutex. :-/ */
1686 if (result == ERESTART) {
1687 /*
1688 * The driver ran out of resources, mark the
1689 * driver ``blocked'' for cryptkop's and put
1690 * the request back in the queue. It would
1691 * best to put the request back where we got
1692 * it but that's hard so for now we put it
1693 * at the front. This should be ok; putting
1694 * it at the end does not work.
1695 */
1696 /* validate sid again */
1697 cap = crypto_checkdriver_lock(krp->krp_hid);
1698 if (cap == NULL) {
1699 /* migrate again, sigh... */
1700 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1701 } else {
1702 cap->cc_kqblocked = 1;
1703 crypto_driver_unlock(cap);
1704 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1705 cryptostats.cs_kblocks++;
1706 }
1707 }
1708 }
1709 } while (submit != NULL || krp != NULL);
1710 mutex_exit(&crypto_q_mtx);
1711 }
1712
1713 /*
1714 * Kernel thread to do callbacks.
1715 */
1716 static void
1717 cryptoret(void)
1718 {
1719 struct cryptop *crp;
1720 struct cryptkop *krp;
1721
1722 mutex_spin_enter(&crypto_ret_q_mtx);
1723 for (;;) {
1724 crp = TAILQ_FIRST(&crp_ret_q);
1725 if (crp != NULL) {
1726 TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
1727 CRYPTO_Q_DEC(crp_ret_q);
1728 crp->crp_flags &= ~CRYPTO_F_ONRETQ;
1729 }
1730 krp = TAILQ_FIRST(&crp_ret_kq);
1731 if (krp != NULL) {
1732 TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
1733 CRYPTO_Q_DEC(crp_ret_kq);
1734 krp->krp_flags &= ~CRYPTO_F_ONRETQ;
1735 }
1736
1737 /* drop before calling any callbacks. */
1738 if (crp == NULL && krp == NULL) {
1739
1740 /* Check for the exit condition. */
1741 if (crypto_exit_flag != 0) {
1742
1743 /* Time to die. */
1744 crypto_exit_flag = 0;
1745 cv_broadcast(&cryptoret_cv);
1746 mutex_spin_exit(&crypto_ret_q_mtx);
1747 kthread_exit(0);
1748 }
1749
1750 cryptostats.cs_rets++;
1751 cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
1752 continue;
1753 }
1754
1755 mutex_spin_exit(&crypto_ret_q_mtx);
1756
1757 if (crp != NULL) {
1758 #ifdef CRYPTO_TIMING
1759 if (crypto_timing) {
1760 /*
1761 * NB: We must copy the timestamp before
1762 * doing the callback as the cryptop is
1763 * likely to be reclaimed.
1764 */
1765 struct timespec t = crp->crp_tstamp;
1766 crypto_tstat(&cryptostats.cs_cb, &t);
1767 crp->crp_callback(crp);
1768 crypto_tstat(&cryptostats.cs_finis, &t);
1769 } else
1770 #endif
1771 {
1772 crp->crp_callback(crp);
1773 }
1774 }
1775 if (krp != NULL)
1776 krp->krp_callback(krp);
1777
1778 mutex_spin_enter(&crypto_ret_q_mtx);
1779 }
1780 }
1781
1782 /* NetBSD module interface */
1783
1784 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
1785
1786 static int
1787 opencrypto_modcmd(modcmd_t cmd, void *opaque)
1788 {
1789 int error = 0;
1790
1791 switch (cmd) {
1792 case MODULE_CMD_INIT:
1793 #ifdef _MODULE
1794 error = crypto_init();
1795 #endif
1796 break;
1797 case MODULE_CMD_FINI:
1798 #ifdef _MODULE
1799 error = crypto_destroy(true);
1800 #endif
1801 break;
1802 default:
1803 error = ENOTTY;
1804 }
1805 return error;
1806 }
1807