Home | History | Annotate | Line # | Download | only in opencrypto
crypto.c revision 1.90
      1 /*	$NetBSD: crypto.c,v 1.90 2017/06/15 12:45:10 knakahara Exp $ */
      2 /*	$FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $	*/
      3 /*	$OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Coyote Point Systems, Inc.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * The author of this code is Angelos D. Keromytis (angelos (at) cis.upenn.edu)
     36  *
     37  * This code was written by Angelos D. Keromytis in Athens, Greece, in
     38  * February 2000. Network Security Technologies Inc. (NSTI) kindly
     39  * supported the development of this code.
     40  *
     41  * Copyright (c) 2000, 2001 Angelos D. Keromytis
     42  *
     43  * Permission to use, copy, and modify this software with or without fee
     44  * is hereby granted, provided that this entire notice is included in
     45  * all source code copies of any software which is or includes a copy or
     46  * modification of this software.
     47  *
     48  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
     49  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
     50  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
     51  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
     52  * PURPOSE.
     53  */
     54 
     55 #include <sys/cdefs.h>
     56 __KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.90 2017/06/15 12:45:10 knakahara Exp $");
     57 
     58 #include <sys/param.h>
     59 #include <sys/reboot.h>
     60 #include <sys/systm.h>
     61 #include <sys/malloc.h>
     62 #include <sys/proc.h>
     63 #include <sys/pool.h>
     64 #include <sys/kthread.h>
     65 #include <sys/once.h>
     66 #include <sys/sysctl.h>
     67 #include <sys/intr.h>
     68 #include <sys/errno.h>
     69 #include <sys/module.h>
     70 
     71 #if defined(_KERNEL_OPT)
     72 #include "opt_ocf.h"
     73 #endif
     74 
     75 #include <opencrypto/cryptodev.h>
     76 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
     77 
     78 static kmutex_t crypto_q_mtx;
     79 static kmutex_t crypto_ret_q_mtx;
     80 static kcondvar_t cryptoret_cv;
     81 
     82 /* below are kludges for residual code wrtitten to FreeBSD interfaces */
     83   #define SWI_CRYPTO 17
     84   #define register_swi(lvl, fn)  \
     85   softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, (void (*)(void *))fn, NULL)
     86   #define unregister_swi(lvl, fn)  softint_disestablish(softintr_cookie)
     87   #define setsoftcrypto(x)			\
     88 	do{					\
     89 		kpreempt_disable();		\
     90 		softint_schedule(x);		\
     91 		kpreempt_enable();		\
     92 	}while(0)
     93 
     94 int crypto_ret_q_check(struct cryptop *);
     95 
     96 /*
     97  * Crypto drivers register themselves by allocating a slot in the
     98  * crypto_drivers table with crypto_get_driverid() and then registering
     99  * each algorithm they support with crypto_register() and crypto_kregister().
    100  */
    101 static kmutex_t crypto_drv_mtx;
    102 /* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
    103 static	struct cryptocap *crypto_drivers;
    104 static	int crypto_drivers_num;
    105 static	void *softintr_cookie;
    106 static	int crypto_exit_flag;
    107 
    108 /*
    109  * There are two queues for crypto requests; one for symmetric (e.g.
    110  * cipher) operations and one for asymmetric (e.g. MOD) operations.
    111  * See below for how synchronization is handled.
    112  */
    113 static	TAILQ_HEAD(,cryptop) crp_q =		/* request queues */
    114 		TAILQ_HEAD_INITIALIZER(crp_q);
    115 static	TAILQ_HEAD(,cryptkop) crp_kq =
    116 		TAILQ_HEAD_INITIALIZER(crp_kq);
    117 
    118 /*
    119  * There are two queues for processing completed crypto requests; one
    120  * for the symmetric and one for the asymmetric ops.  We only need one
    121  * but have two to avoid type futzing (cryptop vs. cryptkop).  See below
    122  * for how synchronization is handled.
    123  */
    124 static	TAILQ_HEAD(crprethead, cryptop) crp_ret_q =	/* callback queues */
    125 		TAILQ_HEAD_INITIALIZER(crp_ret_q);
    126 static	TAILQ_HEAD(krprethead, cryptkop) crp_ret_kq =
    127 		TAILQ_HEAD_INITIALIZER(crp_ret_kq);
    128 
    129 #define DEFINIT_CRYPTO_Q_LEN(name)		\
    130 	static int crypto_##name##_len = 0
    131 
    132 #define DEFINIT_CRYPTO_Q_DROPS(name)		\
    133 	static int crypto_##name##_drops = 0
    134 
    135 #define DEFINIT_CRYPTO_Q_MAXLEN(name, defval)		\
    136 	static int crypto_##name##_maxlen = defval
    137 
    138 #define CRYPTO_Q_INC(name)			\
    139 	do {					\
    140 		crypto_##name##_len++;		\
    141 	} while(0);
    142 
    143 #define CRYPTO_Q_DEC(name)			\
    144 	do {					\
    145 		crypto_##name##_len--;		\
    146 	} while(0);
    147 
    148 #define CRYPTO_Q_INC_DROPS(name)		\
    149 	do {					\
    150 		crypto_##name##_drops++;	\
    151 	} while(0);
    152 
    153 #define CRYPTO_Q_IS_FULL(name)					\
    154 	(crypto_##name##_maxlen > 0				\
    155 	    && (crypto_##name##_len > crypto_##name##_maxlen))
    156 
    157 /*
    158  * current queue length.
    159  */
    160 DEFINIT_CRYPTO_Q_LEN(crp_ret_q);
    161 DEFINIT_CRYPTO_Q_LEN(crp_ret_kq);
    162 
    163 /*
    164  * queue dropped count.
    165  */
    166 DEFINIT_CRYPTO_Q_DROPS(crp_ret_q);
    167 DEFINIT_CRYPTO_Q_DROPS(crp_ret_kq);
    168 
    169 #ifndef CRYPTO_RET_Q_MAXLEN
    170 #define CRYPTO_RET_Q_MAXLEN 0
    171 #endif
    172 #ifndef CRYPTO_RET_KQ_MAXLEN
    173 #define CRYPTO_RET_KQ_MAXLEN 0
    174 #endif
    175 /*
    176  * queue length limit.
    177  * default value is 0. <=0 means unlimited.
    178  */
    179 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_q, CRYPTO_RET_Q_MAXLEN);
    180 DEFINIT_CRYPTO_Q_MAXLEN(crp_ret_kq, CRYPTO_RET_KQ_MAXLEN);
    181 
    182 /*
    183  * TODO:
    184  * make percpu
    185  */
    186 static int
    187 sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
    188 {
    189 	int error;
    190 
    191 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    192 	if (error || newp == NULL)
    193 		return error;
    194 
    195 	return 0;
    196 }
    197 
    198 /*
    199  * TODO:
    200  * make percpu
    201  */
    202 static int
    203 sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
    204 {
    205 	int error;
    206 
    207 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    208 	if (error || newp == NULL)
    209 		return error;
    210 
    211 	return 0;
    212 }
    213 
    214 /*
    215  * need to make percpu?
    216  */
    217 static int
    218 sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
    219 {
    220 	int error;
    221 
    222 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    223 	if (error || newp == NULL)
    224 		return error;
    225 
    226 	return 0;
    227 }
    228 
    229 /*
    230  * Crypto op and desciptor data structures are allocated
    231  * from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
    232  */
    233 struct pool cryptop_pool;
    234 struct pool cryptodesc_pool;
    235 struct pool cryptkop_pool;
    236 
    237 int	crypto_usercrypto = 1;		/* userland may open /dev/crypto */
    238 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
    239 /*
    240  * cryptodevallowsoft is (intended to be) sysctl'able, controlling
    241  * access to hardware versus software transforms as below:
    242  *
    243  * crypto_devallowsoft < 0:  Force userlevel requests to use software
    244  *                              transforms, always
    245  * crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
    246  *                              requests for non-accelerated transforms
    247  *                              (handling the latter in software)
    248  * crypto_devallowsoft > 0:  Allow user requests only for transforms which
    249  *                               are hardware-accelerated.
    250  */
    251 int	crypto_devallowsoft = 1;	/* only use hardware crypto */
    252 
    253 static void
    254 sysctl_opencrypto_setup(struct sysctllog **clog)
    255 {
    256 	const struct sysctlnode *ocnode;
    257 	const struct sysctlnode *retqnode, *retkqnode;
    258 
    259 	sysctl_createv(clog, 0, NULL, NULL,
    260 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    261 		       CTLTYPE_INT, "usercrypto",
    262 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    263 			   "crypto support"),
    264 		       NULL, 0, &crypto_usercrypto, 0,
    265 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    266 	sysctl_createv(clog, 0, NULL, NULL,
    267 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    268 		       CTLTYPE_INT, "userasymcrypto",
    269 		       SYSCTL_DESCR("Enable/disable user-mode access to "
    270 			   "asymmetric crypto support"),
    271 		       NULL, 0, &crypto_userasymcrypto, 0,
    272 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    273 	sysctl_createv(clog, 0, NULL, NULL,
    274 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    275 		       CTLTYPE_INT, "cryptodevallowsoft",
    276 		       SYSCTL_DESCR("Enable/disable use of software "
    277 			   "asymmetric crypto support"),
    278 		       NULL, 0, &crypto_devallowsoft, 0,
    279 		       CTL_KERN, CTL_CREATE, CTL_EOL);
    280 
    281 	sysctl_createv(clog, 0, NULL, &ocnode,
    282 		       CTLFLAG_PERMANENT,
    283 		       CTLTYPE_NODE, "opencrypto",
    284 		       SYSCTL_DESCR("opencrypto related entries"),
    285 		       NULL, 0, NULL, 0,
    286 		       CTL_CREATE, CTL_EOL);
    287 
    288 	sysctl_createv(clog, 0, &ocnode, &retqnode,
    289 		       CTLFLAG_PERMANENT,
    290 		       CTLTYPE_NODE, "crypto_ret_q",
    291 		       SYSCTL_DESCR("crypto_ret_q related entries"),
    292 		       NULL, 0, NULL, 0,
    293 		       CTL_CREATE, CTL_EOL);
    294 	sysctl_createv(clog, 0, &retqnode, NULL,
    295 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    296 		       CTLTYPE_INT, "len",
    297 		       SYSCTL_DESCR("Current queue length"),
    298 		       sysctl_opencrypto_q_len, 0,
    299 		       (void *)&crypto_crp_ret_q_len, 0,
    300 		       CTL_CREATE, CTL_EOL);
    301 	sysctl_createv(clog, 0, &retqnode, NULL,
    302 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    303 		       CTLTYPE_INT, "drops",
    304 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    305 		       sysctl_opencrypto_q_drops, 0,
    306 		       (void *)&crypto_crp_ret_q_drops, 0,
    307 		       CTL_CREATE, CTL_EOL);
    308 	sysctl_createv(clog, 0, &retqnode, NULL,
    309 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    310 		       CTLTYPE_INT, "maxlen",
    311 		       SYSCTL_DESCR("Maximum allowed queue length"),
    312 		       sysctl_opencrypto_q_maxlen, 0,
    313 		       (void *)&crypto_crp_ret_q_maxlen, 0,
    314 		       CTL_CREATE, CTL_EOL);
    315 
    316 	sysctl_createv(clog, 0, &ocnode, &retkqnode,
    317 		       CTLFLAG_PERMANENT,
    318 		       CTLTYPE_NODE, "crypto_ret_kq",
    319 		       SYSCTL_DESCR("crypto_ret_kq related entries"),
    320 		       NULL, 0, NULL, 0,
    321 		       CTL_CREATE, CTL_EOL);
    322 	sysctl_createv(clog, 0, &retkqnode, NULL,
    323 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    324 		       CTLTYPE_INT, "len",
    325 		       SYSCTL_DESCR("Current queue length"),
    326 		       sysctl_opencrypto_q_len, 0,
    327 		       (void *)&crypto_crp_ret_kq_len, 0,
    328 		       CTL_CREATE, CTL_EOL);
    329 	sysctl_createv(clog, 0, &retkqnode, NULL,
    330 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    331 		       CTLTYPE_INT, "drops",
    332 		       SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
    333 		       sysctl_opencrypto_q_drops, 0,
    334 		       (void *)&crypto_crp_ret_kq_drops, 0,
    335 		       CTL_CREATE, CTL_EOL);
    336 	sysctl_createv(clog, 0, &retkqnode, NULL,
    337 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    338 		       CTLTYPE_INT, "maxlen",
    339 		       SYSCTL_DESCR("Maximum allowed queue length"),
    340 		       sysctl_opencrypto_q_maxlen, 0,
    341 		       (void *)&crypto_crp_ret_kq_maxlen, 0,
    342 		       CTL_CREATE, CTL_EOL);
    343 }
    344 
    345 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
    346 
    347 /*
    348  * Synchronization: read carefully, this is non-trivial.
    349  *
    350  * Crypto requests are submitted via crypto_dispatch.  Typically
    351  * these come in from network protocols at spl0 (output path) or
    352  * spl[,soft]net (input path).
    353  *
    354  * Requests are typically passed on the driver directly, but they
    355  * may also be queued for processing by a software interrupt thread,
    356  * cryptointr, that runs at splsoftcrypto.  This thread dispatches
    357  * the requests to crypto drivers (h/w or s/w) who call crypto_done
    358  * when a request is complete.  Hardware crypto drivers are assumed
    359  * to register their IRQ's as network devices so their interrupt handlers
    360  * and subsequent "done callbacks" happen at spl[imp,net].
    361  *
    362  * Completed crypto ops are queued for a separate kernel thread that
    363  * handles the callbacks at spl0.  This decoupling insures the crypto
    364  * driver interrupt service routine is not delayed while the callback
    365  * takes place and that callbacks are delivered after a context switch
    366  * (as opposed to a software interrupt that clients must block).
    367  *
    368  * This scheme is not intended for SMP machines.
    369  */
    370 static	void cryptointr(void);		/* swi thread to dispatch ops */
    371 static	void cryptoret(void);		/* kernel thread for callbacks*/
    372 static	struct lwp *cryptothread;
    373 static	int crypto_destroy(bool);
    374 static	int crypto_invoke(struct cryptop *crp, int hint);
    375 static	int crypto_kinvoke(struct cryptkop *krp, int hint);
    376 
    377 static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
    378 static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
    379 static struct cryptocap *crypto_checkdriver(u_int32_t);
    380 static void crypto_driver_lock(struct cryptocap *);
    381 static void crypto_driver_unlock(struct cryptocap *);
    382 static void crypto_driver_clear(struct cryptocap *);
    383 
    384 static struct cryptostats cryptostats;
    385 #ifdef CRYPTO_TIMING
    386 static	int crypto_timing = 0;
    387 #endif
    388 
    389 static struct sysctllog *sysctl_opencrypto_clog;
    390 
    391 static int
    392 crypto_init0(void)
    393 {
    394 	int error;
    395 
    396 	mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
    397 	mutex_init(&crypto_q_mtx, MUTEX_DEFAULT, IPL_NONE);
    398 	mutex_init(&crypto_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
    399 	cv_init(&cryptoret_cv, "crypto_w");
    400 	pool_init(&cryptop_pool, sizeof(struct cryptop), 0, 0,
    401 		  0, "cryptop", NULL, IPL_NET);
    402 	pool_init(&cryptodesc_pool, sizeof(struct cryptodesc), 0, 0,
    403 		  0, "cryptodesc", NULL, IPL_NET);
    404 	pool_init(&cryptkop_pool, sizeof(struct cryptkop), 0, 0,
    405 		  0, "cryptkop", NULL, IPL_NET);
    406 
    407 	crypto_drivers = malloc(CRYPTO_DRIVERS_INITIAL *
    408 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
    409 	if (crypto_drivers == NULL) {
    410 		printf("crypto_init: cannot malloc driver table\n");
    411 		return ENOMEM;
    412 	}
    413 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
    414 
    415 	softintr_cookie = register_swi(SWI_CRYPTO, cryptointr);
    416 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    417 	    (void (*)(void *))cryptoret, NULL, &cryptothread, "cryptoret");
    418 	if (error) {
    419 		printf("crypto_init: cannot start cryptoret thread; error %d",
    420 			error);
    421 		return crypto_destroy(false);
    422 	}
    423 
    424 	sysctl_opencrypto_setup(&sysctl_opencrypto_clog);
    425 
    426 	return 0;
    427 }
    428 
    429 int
    430 crypto_init(void)
    431 {
    432 	static ONCE_DECL(crypto_init_once);
    433 
    434 	return RUN_ONCE(&crypto_init_once, crypto_init0);
    435 }
    436 
    437 static int
    438 crypto_destroy(bool exit_kthread)
    439 {
    440 	int i;
    441 
    442 	if (exit_kthread) {
    443 		struct cryptocap *cap = NULL;
    444 
    445 		/* if we have any in-progress requests, don't unload */
    446 		mutex_enter(&crypto_q_mtx);
    447 		if (!TAILQ_EMPTY(&crp_q) || !TAILQ_EMPTY(&crp_kq)) {
    448 			mutex_exit(&crypto_q_mtx);
    449 			return EBUSY;
    450 		}
    451 		mutex_exit(&crypto_q_mtx);
    452 		/* FIXME:
    453 		 * prohibit enqueue to crp_q and crp_kq after here.
    454 		 */
    455 
    456 		mutex_enter(&crypto_drv_mtx);
    457 		for (i = 0; i < crypto_drivers_num; i++) {
    458 			cap = crypto_checkdriver(i);
    459 			if (cap == NULL)
    460 				continue;
    461 			if (cap->cc_sessions != 0) {
    462 				mutex_exit(&crypto_drv_mtx);
    463 				return EBUSY;
    464 			}
    465 		}
    466 		mutex_exit(&crypto_drv_mtx);
    467 		/* FIXME:
    468 		 * prohibit touch crypto_drivers[] and each element after here.
    469 		 */
    470 
    471 		mutex_spin_enter(&crypto_ret_q_mtx);
    472 		/* kick the cryptoret thread and wait for it to exit */
    473 		crypto_exit_flag = 1;
    474 		cv_signal(&cryptoret_cv);
    475 
    476 		while (crypto_exit_flag != 0)
    477 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
    478 		mutex_spin_exit(&crypto_ret_q_mtx);
    479 	}
    480 
    481 	if (sysctl_opencrypto_clog != NULL)
    482 		sysctl_teardown(&sysctl_opencrypto_clog);
    483 
    484 	unregister_swi(SWI_CRYPTO, cryptointr);
    485 
    486 	mutex_enter(&crypto_drv_mtx);
    487 	if (crypto_drivers != NULL)
    488 		free(crypto_drivers, M_CRYPTO_DATA);
    489 	mutex_exit(&crypto_drv_mtx);
    490 
    491 	pool_destroy(&cryptop_pool);
    492 	pool_destroy(&cryptodesc_pool);
    493 	pool_destroy(&cryptkop_pool);
    494 
    495 	cv_destroy(&cryptoret_cv);
    496 
    497 	mutex_destroy(&crypto_ret_q_mtx);
    498 	mutex_destroy(&crypto_q_mtx);
    499 	mutex_destroy(&crypto_drv_mtx);
    500 
    501 	return 0;
    502 }
    503 
    504 static bool
    505 crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
    506 {
    507 	struct cryptoini *cr;
    508 
    509 	for (cr = cri; cr; cr = cr->cri_next)
    510 		if (cap->cc_alg[cr->cri_alg] == 0) {
    511 			DPRINTF("alg %d not supported\n", cr->cri_alg);
    512 			return false;
    513 		}
    514 
    515 	return true;
    516 }
    517 
    518 #define CRYPTO_ACCEPT_HARDWARE 0x1
    519 #define CRYPTO_ACCEPT_SOFTWARE 0x2
    520 /*
    521  * The algorithm we use here is pretty stupid; just use the
    522  * first driver that supports all the algorithms we need.
    523  * If there are multiple drivers we choose the driver with
    524  * the fewest active sessions. We prefer hardware-backed
    525  * drivers to software ones.
    526  *
    527  * XXX We need more smarts here (in real life too, but that's
    528  * XXX another story altogether).
    529  */
    530 static struct cryptocap *
    531 crypto_select_driver_lock(struct cryptoini *cri, int hard)
    532 {
    533 	u_int32_t hid;
    534 	int accept;
    535 	struct cryptocap *cap, *best;
    536 
    537 	best = NULL;
    538 	/*
    539 	 * hard == 0 can use both hardware and software drivers.
    540 	 * We use hardware drivers prior to software drivers, so search
    541 	 * hardware drivers at first time.
    542 	 */
    543 	if (hard >= 0)
    544 		accept = CRYPTO_ACCEPT_HARDWARE;
    545 	else
    546 		accept = CRYPTO_ACCEPT_SOFTWARE;
    547 again:
    548 	for (hid = 0; hid < crypto_drivers_num; hid++) {
    549 		cap = crypto_checkdriver(hid);
    550 		if (cap == NULL)
    551 			continue;
    552 
    553 		crypto_driver_lock(cap);
    554 
    555 		/*
    556 		 * If it's not initialized or has remaining sessions
    557 		 * referencing it, skip.
    558 		 */
    559 		if (cap->cc_newsession == NULL ||
    560 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
    561 			crypto_driver_unlock(cap);
    562 			continue;
    563 		}
    564 
    565 		/* Hardware required -- ignore software drivers. */
    566 		if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
    567 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
    568 			crypto_driver_unlock(cap);
    569 			continue;
    570 		}
    571 		/* Software required -- ignore hardware drivers. */
    572 		if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
    573 		    && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
    574 			crypto_driver_unlock(cap);
    575 			continue;
    576 		}
    577 
    578 		/* See if all the algorithms are supported. */
    579 		if (crypto_driver_suitable(cap, cri)) {
    580 			if (best == NULL) {
    581 				/* keep holding crypto_driver_lock(cap) */
    582 				best = cap;
    583 				continue;
    584 			} else if (cap->cc_sessions < best->cc_sessions) {
    585 				crypto_driver_unlock(best);
    586 				/* keep holding crypto_driver_lock(cap) */
    587 				best = cap;
    588 				continue;
    589 			}
    590 		}
    591 
    592 		crypto_driver_unlock(cap);
    593 	}
    594 	if (best == NULL && hard == 0
    595 	    && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
    596 		accept = CRYPTO_ACCEPT_SOFTWARE;
    597 		goto again;
    598 	}
    599 
    600 	return best;
    601 }
    602 
    603 /*
    604  * Create a new session.
    605  */
    606 int
    607 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
    608 {
    609 	struct cryptocap *cap;
    610 	int err = EINVAL;
    611 
    612 	mutex_enter(&crypto_drv_mtx);
    613 
    614 	cap = crypto_select_driver_lock(cri, hard);
    615 	if (cap != NULL) {
    616 		u_int32_t hid, lid;
    617 
    618 		hid = cap - crypto_drivers;
    619 		/*
    620 		 * Can't do everything in one session.
    621 		 *
    622 		 * XXX Fix this. We need to inject a "virtual" session layer right
    623 		 * XXX about here.
    624 		 */
    625 
    626 		/* Call the driver initialization routine. */
    627 		lid = hid;		/* Pass the driver ID. */
    628 		crypto_driver_unlock(cap);
    629 		err = cap->cc_newsession(cap->cc_arg, &lid, cri);
    630 		crypto_driver_lock(cap);
    631 		if (err == 0) {
    632 			(*sid) = hid;
    633 			(*sid) <<= 32;
    634 			(*sid) |= (lid & 0xffffffff);
    635 			(cap->cc_sessions)++;
    636 		} else {
    637 			DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
    638 			    hid, err);
    639 		}
    640 		crypto_driver_unlock(cap);
    641 	}
    642 
    643 	mutex_exit(&crypto_drv_mtx);
    644 
    645 	return err;
    646 }
    647 
    648 /*
    649  * Delete an existing session (or a reserved session on an unregistered
    650  * driver).
    651  */
    652 int
    653 crypto_freesession(u_int64_t sid)
    654 {
    655 	struct cryptocap *cap;
    656 	int err = 0;
    657 
    658 	/* Determine two IDs. */
    659 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
    660 	if (cap == NULL)
    661 		return ENOENT;
    662 
    663 	if (cap->cc_sessions)
    664 		(cap->cc_sessions)--;
    665 
    666 	/* Call the driver cleanup routine, if available. */
    667 	if (cap->cc_freesession)
    668 		err = cap->cc_freesession(cap->cc_arg, sid);
    669 	else
    670 		err = 0;
    671 
    672 	/*
    673 	 * If this was the last session of a driver marked as invalid,
    674 	 * make the entry available for reuse.
    675 	 */
    676 	if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
    677 		crypto_driver_clear(cap);
    678 
    679 	crypto_driver_unlock(cap);
    680 	return err;
    681 }
    682 
    683 static bool
    684 crypto_checkdriver_initialized(const struct cryptocap *cap)
    685 {
    686 
    687 	return cap->cc_process != NULL ||
    688 	    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
    689 	    cap->cc_sessions != 0;
    690 }
    691 
    692 /*
    693  * Return an unused driver id.  Used by drivers prior to registering
    694  * support for the algorithms they handle.
    695  */
    696 int32_t
    697 crypto_get_driverid(u_int32_t flags)
    698 {
    699 	struct cryptocap *newdrv;
    700 	struct cryptocap *cap = NULL;
    701 	int i;
    702 
    703 	(void)crypto_init();		/* XXX oh, this is foul! */
    704 
    705 	mutex_enter(&crypto_drv_mtx);
    706 	for (i = 0; i < crypto_drivers_num; i++) {
    707 		cap = crypto_checkdriver_uninit(i);
    708 		if (cap == NULL || crypto_checkdriver_initialized(cap))
    709 			continue;
    710 		break;
    711 	}
    712 
    713 	/* Out of entries, allocate some more. */
    714 	if (cap == NULL) {
    715 		/* Be careful about wrap-around. */
    716 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
    717 			mutex_exit(&crypto_drv_mtx);
    718 			printf("crypto: driver count wraparound!\n");
    719 			return -1;
    720 		}
    721 
    722 		newdrv = malloc(2 * crypto_drivers_num *
    723 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
    724 		if (newdrv == NULL) {
    725 			mutex_exit(&crypto_drv_mtx);
    726 			printf("crypto: no space to expand driver table!\n");
    727 			return -1;
    728 		}
    729 
    730 		memcpy(newdrv, crypto_drivers,
    731 		    crypto_drivers_num * sizeof(struct cryptocap));
    732 
    733 		crypto_drivers_num *= 2;
    734 
    735 		free(crypto_drivers, M_CRYPTO_DATA);
    736 		crypto_drivers = newdrv;
    737 
    738 		cap = crypto_checkdriver_uninit(i);
    739 		KASSERT(cap != NULL);
    740 	}
    741 
    742 	/* NB: state is zero'd on free */
    743 	cap->cc_sessions = 1;	/* Mark */
    744 	cap->cc_flags = flags;
    745 	mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);
    746 
    747 	if (bootverbose)
    748 		printf("crypto: assign driver %u, flags %u\n", i, flags);
    749 
    750 	mutex_exit(&crypto_drv_mtx);
    751 
    752 	return i;
    753 }
    754 
    755 static struct cryptocap *
    756 crypto_checkdriver_lock(u_int32_t hid)
    757 {
    758 	struct cryptocap *cap;
    759 
    760 	KASSERT(crypto_drivers != NULL);
    761 
    762 	if (hid >= crypto_drivers_num)
    763 		return NULL;
    764 
    765 	cap = &crypto_drivers[hid];
    766 	mutex_enter(&cap->cc_lock);
    767 	return cap;
    768 }
    769 
    770 /*
    771  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    772  * situations
    773  *     - crypto_drivers[] may not be allocated
    774  *     - crypto_drivers[hid] may not be initialized
    775  */
    776 static struct cryptocap *
    777 crypto_checkdriver_uninit(u_int32_t hid)
    778 {
    779 
    780 	KASSERT(mutex_owned(&crypto_drv_mtx));
    781 
    782 	if (crypto_drivers == NULL)
    783 		return NULL;
    784 
    785 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
    786 }
    787 
    788 /*
    789  * Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
    790  * situations
    791  *     - crypto_drivers[] may not be allocated
    792  *     - crypto_drivers[hid] may not be initialized
    793  */
    794 static struct cryptocap *
    795 crypto_checkdriver(u_int32_t hid)
    796 {
    797 
    798 	KASSERT(mutex_owned(&crypto_drv_mtx));
    799 
    800 	if (crypto_drivers == NULL || hid >= crypto_drivers_num)
    801 		return NULL;
    802 
    803 	struct cryptocap *cap = &crypto_drivers[hid];
    804 	return crypto_checkdriver_initialized(cap) ? cap : NULL;
    805 }
    806 
    807 static inline void
    808 crypto_driver_lock(struct cryptocap *cap)
    809 {
    810 
    811 	KASSERT(cap != NULL);
    812 
    813 	mutex_enter(&cap->cc_lock);
    814 }
    815 
    816 static inline void
    817 crypto_driver_unlock(struct cryptocap *cap)
    818 {
    819 
    820 	KASSERT(cap != NULL);
    821 
    822 	mutex_exit(&cap->cc_lock);
    823 }
    824 
    825 static void
    826 crypto_driver_clear(struct cryptocap *cap)
    827 {
    828 
    829 	if (cap == NULL)
    830 		return;
    831 
    832 	KASSERT(mutex_owned(&cap->cc_lock));
    833 
    834 	cap->cc_sessions = 0;
    835 	memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
    836 	memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
    837 	memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
    838 	cap->cc_flags = 0;
    839 	cap->cc_qblocked = 0;
    840 	cap->cc_kqblocked = 0;
    841 
    842 	cap->cc_arg = NULL;
    843 	cap->cc_newsession = NULL;
    844 	cap->cc_process = NULL;
    845 	cap->cc_freesession = NULL;
    846 	cap->cc_kprocess = NULL;
    847 }
    848 
    849 /*
    850  * Register support for a key-related algorithm.  This routine
    851  * is called once for each algorithm supported a driver.
    852  */
    853 int
    854 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
    855     int (*kprocess)(void *, struct cryptkop *, int),
    856     void *karg)
    857 {
    858 	struct cryptocap *cap;
    859 	int err;
    860 
    861 	mutex_enter(&crypto_drv_mtx);
    862 
    863 	cap = crypto_checkdriver_lock(driverid);
    864 	if (cap != NULL &&
    865 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
    866 		/*
    867 		 * XXX Do some performance testing to determine placing.
    868 		 * XXX We probably need an auxiliary data structure that
    869 		 * XXX describes relative performances.
    870 		 */
    871 
    872 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    873 		if (bootverbose) {
    874 			printf("crypto: driver %u registers key alg %u "
    875 			       " flags %u\n",
    876 				driverid,
    877 				kalg,
    878 				flags
    879 			);
    880 		}
    881 
    882 		if (cap->cc_kprocess == NULL) {
    883 			cap->cc_karg = karg;
    884 			cap->cc_kprocess = kprocess;
    885 		}
    886 		err = 0;
    887 	} else
    888 		err = EINVAL;
    889 
    890 	mutex_exit(&crypto_drv_mtx);
    891 	return err;
    892 }
    893 
    894 /*
    895  * Register support for a non-key-related algorithm.  This routine
    896  * is called once for each such algorithm supported by a driver.
    897  */
    898 int
    899 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
    900     u_int32_t flags,
    901     int (*newses)(void *, u_int32_t*, struct cryptoini*),
    902     int (*freeses)(void *, u_int64_t),
    903     int (*process)(void *, struct cryptop *, int),
    904     void *arg)
    905 {
    906 	struct cryptocap *cap;
    907 	int err;
    908 
    909 	cap = crypto_checkdriver_lock(driverid);
    910 	if (cap == NULL)
    911 		return EINVAL;
    912 
    913 	/* NB: algorithms are in the range [1..max] */
    914 	if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
    915 		/*
    916 		 * XXX Do some performance testing to determine placing.
    917 		 * XXX We probably need an auxiliary data structure that
    918 		 * XXX describes relative performances.
    919 		 */
    920 
    921 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
    922 		cap->cc_max_op_len[alg] = maxoplen;
    923 		if (bootverbose) {
    924 			printf("crypto: driver %u registers alg %u "
    925 				"flags %u maxoplen %u\n",
    926 				driverid,
    927 				alg,
    928 				flags,
    929 				maxoplen
    930 			);
    931 		}
    932 
    933 		if (cap->cc_process == NULL) {
    934 			cap->cc_arg = arg;
    935 			cap->cc_newsession = newses;
    936 			cap->cc_process = process;
    937 			cap->cc_freesession = freeses;
    938 			cap->cc_sessions = 0;		/* Unmark */
    939 		}
    940 		err = 0;
    941 	} else
    942 		err = EINVAL;
    943 
    944 	crypto_driver_unlock(cap);
    945 
    946 	return err;
    947 }
    948 
    949 static int
    950 crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
    951 {
    952 	int i;
    953 	u_int32_t ses;
    954 	bool lastalg = true;
    955 
    956 	KASSERT(cap != NULL);
    957 	KASSERT(mutex_owned(&cap->cc_lock));
    958 
    959 	if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
    960 		return EINVAL;
    961 
    962 	if (!all && cap->cc_alg[alg] == 0)
    963 		return EINVAL;
    964 
    965 	cap->cc_alg[alg] = 0;
    966 	cap->cc_max_op_len[alg] = 0;
    967 
    968 	if (all) {
    969 		if (alg != CRYPTO_ALGORITHM_MAX)
    970 			lastalg = false;
    971 	} else {
    972 		/* Was this the last algorithm ? */
    973 		for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
    974 			if (cap->cc_alg[i] != 0) {
    975 				lastalg = false;
    976 				break;
    977 			}
    978 	}
    979 	if (lastalg) {
    980 		ses = cap->cc_sessions;
    981 		crypto_driver_clear(cap);
    982 		if (ses != 0) {
    983 			/*
    984 			 * If there are pending sessions, just mark as invalid.
    985 			 */
    986 			cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
    987 			cap->cc_sessions = ses;
    988 		}
    989 	}
    990 
    991 	return 0;
    992 }
    993 
    994 /*
    995  * Unregister a crypto driver. If there are pending sessions using it,
    996  * leave enough information around so that subsequent calls using those
    997  * sessions will correctly detect the driver has been unregistered and
    998  * reroute requests.
    999  */
   1000 int
   1001 crypto_unregister(u_int32_t driverid, int alg)
   1002 {
   1003 	int err;
   1004 	struct cryptocap *cap;
   1005 
   1006 	cap = crypto_checkdriver_lock(driverid);
   1007 	err = crypto_unregister_locked(cap, alg, false);
   1008 	crypto_driver_unlock(cap);
   1009 
   1010 	return err;
   1011 }
   1012 
   1013 /*
   1014  * Unregister all algorithms associated with a crypto driver.
   1015  * If there are pending sessions using it, leave enough information
   1016  * around so that subsequent calls using those sessions will
   1017  * correctly detect the driver has been unregistered and reroute
   1018  * requests.
   1019  */
   1020 int
   1021 crypto_unregister_all(u_int32_t driverid)
   1022 {
   1023 	int err, i;
   1024 	struct cryptocap *cap;
   1025 
   1026 	cap = crypto_checkdriver_lock(driverid);
   1027 	for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
   1028 		err = crypto_unregister_locked(cap, i, true);
   1029 		if (err)
   1030 			break;
   1031 	}
   1032 	crypto_driver_unlock(cap);
   1033 
   1034 	return err;
   1035 }
   1036 
   1037 /*
   1038  * Clear blockage on a driver.  The what parameter indicates whether
   1039  * the driver is now ready for cryptop's and/or cryptokop's.
   1040  */
   1041 int
   1042 crypto_unblock(u_int32_t driverid, int what)
   1043 {
   1044 	struct cryptocap *cap;
   1045 	int needwakeup = 0;
   1046 
   1047 	cap = crypto_checkdriver_lock(driverid);
   1048 	if (cap == NULL)
   1049 		return EINVAL;
   1050 
   1051 	if (what & CRYPTO_SYMQ) {
   1052 		needwakeup |= cap->cc_qblocked;
   1053 		cap->cc_qblocked = 0;
   1054 	}
   1055 	if (what & CRYPTO_ASYMQ) {
   1056 		needwakeup |= cap->cc_kqblocked;
   1057 		cap->cc_kqblocked = 0;
   1058 	}
   1059 	crypto_driver_unlock(cap);
   1060 	if (needwakeup)
   1061 		setsoftcrypto(softintr_cookie);
   1062 
   1063 	return 0;
   1064 }
   1065 
   1066 /*
   1067  * Dispatch a crypto request to a driver or queue
   1068  * it, to be processed by the kernel thread.
   1069  */
   1070 int
   1071 crypto_dispatch(struct cryptop *crp)
   1072 {
   1073 	int result;
   1074 	struct cryptocap *cap;
   1075 
   1076 	KASSERT(crp != NULL);
   1077 
   1078 	DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);
   1079 
   1080 	cryptostats.cs_ops++;
   1081 
   1082 #ifdef CRYPTO_TIMING
   1083 	if (crypto_timing)
   1084 		nanouptime(&crp->crp_tstamp);
   1085 #endif
   1086 
   1087 	if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1088 		int wasempty;
   1089 		/*
   1090 		 * Caller marked the request as ``ok to delay'';
   1091 		 * queue it for the swi thread.  This is desirable
   1092 		 * when the operation is low priority and/or suitable
   1093 		 * for batching.
   1094 		 *
   1095 		 * don't care list order in batch job.
   1096 		 */
   1097 		mutex_enter(&crypto_q_mtx);
   1098 		wasempty  = TAILQ_EMPTY(&crp_q);
   1099 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
   1100 		mutex_exit(&crypto_q_mtx);
   1101 		if (wasempty)
   1102 			setsoftcrypto(softintr_cookie);
   1103 
   1104 		return 0;
   1105 	}
   1106 
   1107 	mutex_enter(&crypto_q_mtx);
   1108 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1109 	/*
   1110 	 * TODO:
   1111 	 * If we can ensure the driver has been valid until the driver is
   1112 	 * done crypto_unregister(), this migrate operation is not required.
   1113 	 */
   1114 	if (cap == NULL) {
   1115 		/*
   1116 		 * The driver must be detached, so this request will migrate
   1117 		 * to other drivers in cryptointr() later.
   1118 		 */
   1119 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
   1120 		mutex_exit(&crypto_q_mtx);
   1121 		return 0;
   1122 	}
   1123 
   1124 	if (cap->cc_qblocked != 0) {
   1125 		crypto_driver_unlock(cap);
   1126 		/*
   1127 		 * The driver is blocked, just queue the op until
   1128 		 * it unblocks and the swi thread gets kicked.
   1129 		 */
   1130 		TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
   1131 		mutex_exit(&crypto_q_mtx);
   1132 		return 0;
   1133 	}
   1134 
   1135 	/*
   1136 	 * Caller marked the request to be processed
   1137 	 * immediately; dispatch it directly to the
   1138 	 * driver unless the driver is currently blocked.
   1139 	 */
   1140 	crypto_driver_unlock(cap);
   1141 	result = crypto_invoke(crp, 0);
   1142 	if (result == ERESTART) {
   1143 		/*
   1144 		 * The driver ran out of resources, mark the
   1145 		 * driver ``blocked'' for cryptop's and put
   1146 		 * the op on the queue.
   1147 		 */
   1148 		crypto_driver_lock(cap);
   1149 		cap->cc_qblocked = 1;
   1150 		crypto_driver_unlock(cap);
   1151 		TAILQ_INSERT_HEAD(&crp_q, crp, crp_next);
   1152 		cryptostats.cs_blocks++;
   1153 
   1154 		/*
   1155 		 * The crp is enqueued to crp_q, that is,
   1156 		 * no error occurs. So, this function should
   1157 		 * not return error.
   1158 		 */
   1159 		result = 0;
   1160 	}
   1161 
   1162 	mutex_exit(&crypto_q_mtx);
   1163 	return result;
   1164 }
   1165 
   1166 /*
   1167  * Add an asymetric crypto request to a queue,
   1168  * to be processed by the kernel thread.
   1169  */
   1170 int
   1171 crypto_kdispatch(struct cryptkop *krp)
   1172 {
   1173 	struct cryptocap *cap;
   1174 	int result;
   1175 
   1176 	KASSERT(krp != NULL);
   1177 
   1178 	cryptostats.cs_kops++;
   1179 
   1180 	mutex_enter(&crypto_q_mtx);
   1181 	cap = crypto_checkdriver_lock(krp->krp_hid);
   1182 	/*
   1183 	 * TODO:
   1184 	 * If we can ensure the driver has been valid until the driver is
   1185 	 * done crypto_unregister(), this migrate operation is not required.
   1186 	 */
   1187 	if (cap == NULL) {
   1188 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
   1189 		mutex_exit(&crypto_q_mtx);
   1190 		return 0;
   1191 	}
   1192 
   1193 	if (cap->cc_kqblocked != 0) {
   1194 		crypto_driver_unlock(cap);
   1195 		/*
   1196 		 * The driver is blocked, just queue the op until
   1197 		 * it unblocks and the swi thread gets kicked.
   1198 		 */
   1199 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
   1200 		mutex_exit(&crypto_q_mtx);
   1201 		return 0;
   1202 	}
   1203 
   1204 	crypto_driver_unlock(cap);
   1205 	result = crypto_kinvoke(krp, 0);
   1206 	if (result == ERESTART) {
   1207 		/*
   1208 		 * The driver ran out of resources, mark the
   1209 		 * driver ``blocked'' for cryptop's and put
   1210 		 * the op on the queue.
   1211 		 */
   1212 		crypto_driver_lock(cap);
   1213 		cap->cc_kqblocked = 1;
   1214 		crypto_driver_unlock(cap);
   1215 		TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1216 		cryptostats.cs_kblocks++;
   1217 		mutex_exit(&crypto_q_mtx);
   1218 
   1219 		/*
   1220 		 * The krp is enqueued to crp_kq, that is,
   1221 		 * no error occurs. So, this function should
   1222 		 * not return error.
   1223 		 */
   1224 		result = 0;
   1225 	}
   1226 
   1227 	return result;
   1228 }
   1229 
   1230 /*
   1231  * Dispatch an assymetric crypto request to the appropriate crypto devices.
   1232  */
   1233 static int
   1234 crypto_kinvoke(struct cryptkop *krp, int hint)
   1235 {
   1236 	struct cryptocap *cap = NULL;
   1237 	u_int32_t hid;
   1238 	int error;
   1239 
   1240 	KASSERT(krp != NULL);
   1241 
   1242 	/* Sanity checks. */
   1243 	if (krp->krp_callback == NULL) {
   1244 		cv_destroy(&krp->krp_cv);
   1245 		crypto_kfreereq(krp);
   1246 		return EINVAL;
   1247 	}
   1248 
   1249 	mutex_enter(&crypto_drv_mtx);
   1250 	for (hid = 0; hid < crypto_drivers_num; hid++) {
   1251 		cap = crypto_checkdriver(hid);
   1252 		if (cap == NULL)
   1253 			continue;
   1254 		crypto_driver_lock(cap);
   1255 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1256 		    crypto_devallowsoft == 0) {
   1257 			crypto_driver_unlock(cap);
   1258 			continue;
   1259 		}
   1260 		if (cap->cc_kprocess == NULL) {
   1261 			crypto_driver_unlock(cap);
   1262 			continue;
   1263 		}
   1264 		if ((cap->cc_kalg[krp->krp_op] &
   1265 			CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
   1266 			crypto_driver_unlock(cap);
   1267 			continue;
   1268 		}
   1269 		break;
   1270 	}
   1271 	mutex_exit(&crypto_drv_mtx);
   1272 	if (cap != NULL) {
   1273 		int (*process)(void *, struct cryptkop *, int);
   1274 		void *arg;
   1275 
   1276 		process = cap->cc_kprocess;
   1277 		arg = cap->cc_karg;
   1278 		krp->krp_hid = hid;
   1279 		crypto_driver_unlock(cap);
   1280 		error = (*process)(arg, krp, hint);
   1281 	} else {
   1282 		error = ENODEV;
   1283 	}
   1284 
   1285 	if (error) {
   1286 		krp->krp_status = error;
   1287 		crypto_kdone(krp);
   1288 	}
   1289 	return 0;
   1290 }
   1291 
   1292 #ifdef CRYPTO_TIMING
   1293 static void
   1294 crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
   1295 {
   1296 	struct timespec now, t;
   1297 
   1298 	nanouptime(&now);
   1299 	t.tv_sec = now.tv_sec - tv->tv_sec;
   1300 	t.tv_nsec = now.tv_nsec - tv->tv_nsec;
   1301 	if (t.tv_nsec < 0) {
   1302 		t.tv_sec--;
   1303 		t.tv_nsec += 1000000000;
   1304 	}
   1305 	timespecadd(&ts->acc, &t, &t);
   1306 	if (timespeccmp(&t, &ts->min, <))
   1307 		ts->min = t;
   1308 	if (timespeccmp(&t, &ts->max, >))
   1309 		ts->max = t;
   1310 	ts->count++;
   1311 
   1312 	*tv = now;
   1313 }
   1314 #endif
   1315 
   1316 /*
   1317  * Dispatch a crypto request to the appropriate crypto devices.
   1318  */
   1319 static int
   1320 crypto_invoke(struct cryptop *crp, int hint)
   1321 {
   1322 	struct cryptocap *cap;
   1323 
   1324 	KASSERT(crp != NULL);
   1325 
   1326 #ifdef CRYPTO_TIMING
   1327 	if (crypto_timing)
   1328 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
   1329 #endif
   1330 	/* Sanity checks. */
   1331 	if (crp->crp_callback == NULL) {
   1332 		return EINVAL;
   1333 	}
   1334 	if (crp->crp_desc == NULL) {
   1335 		crp->crp_etype = EINVAL;
   1336 		crypto_done(crp);
   1337 		return 0;
   1338 	}
   1339 
   1340 	cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
   1341 	if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
   1342 		int (*process)(void *, struct cryptop *, int);
   1343 		void *arg;
   1344 
   1345 		process = cap->cc_process;
   1346 		arg = cap->cc_arg;
   1347 
   1348 		/*
   1349 		 * Invoke the driver to process the request.
   1350 		 */
   1351 		DPRINTF("calling process for %p\n", crp);
   1352 		crypto_driver_unlock(cap);
   1353 		return (*process)(arg, crp, hint);
   1354 	} else {
   1355 		struct cryptodesc *crd;
   1356 		u_int64_t nid = 0;
   1357 
   1358 		if (cap != NULL)
   1359 			crypto_driver_unlock(cap);
   1360 
   1361 		/*
   1362 		 * Driver has unregistered; migrate the session and return
   1363 		 * an error to the caller so they'll resubmit the op.
   1364 		 */
   1365 		crypto_freesession(crp->crp_sid);
   1366 
   1367 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
   1368 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
   1369 
   1370 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI), 0) == 0)
   1371 			crp->crp_sid = nid;
   1372 
   1373 		crp->crp_etype = EAGAIN;
   1374 
   1375 		crypto_done(crp);
   1376 		return 0;
   1377 	}
   1378 }
   1379 
   1380 /*
   1381  * Release a set of crypto descriptors.
   1382  */
   1383 void
   1384 crypto_freereq(struct cryptop *crp)
   1385 {
   1386 	struct cryptodesc *crd;
   1387 
   1388 	if (crp == NULL)
   1389 		return;
   1390 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1391 
   1392 	/* sanity check */
   1393 	if (crp->crp_flags & CRYPTO_F_ONRETQ) {
   1394 		panic("crypto_freereq() freeing crp on RETQ\n");
   1395 	}
   1396 
   1397 	while ((crd = crp->crp_desc) != NULL) {
   1398 		crp->crp_desc = crd->crd_next;
   1399 		pool_put(&cryptodesc_pool, crd);
   1400 	}
   1401 	pool_put(&cryptop_pool, crp);
   1402 }
   1403 
   1404 /*
   1405  * Acquire a set of crypto descriptors.
   1406  */
   1407 struct cryptop *
   1408 crypto_getreq(int num)
   1409 {
   1410 	struct cryptodesc *crd;
   1411 	struct cryptop *crp;
   1412 
   1413 	/*
   1414 	 * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
   1415 	 * by error callback.
   1416 	 */
   1417 	if (CRYPTO_Q_IS_FULL(crp_ret_q)) {
   1418 		CRYPTO_Q_INC_DROPS(crp_ret_q);
   1419 		return NULL;
   1420 	}
   1421 
   1422 	crp = pool_get(&cryptop_pool, 0);
   1423 	if (crp == NULL) {
   1424 		return NULL;
   1425 	}
   1426 	memset(crp, 0, sizeof(struct cryptop));
   1427 
   1428 	while (num--) {
   1429 		crd = pool_get(&cryptodesc_pool, 0);
   1430 		if (crd == NULL) {
   1431 			crypto_freereq(crp);
   1432 			return NULL;
   1433 		}
   1434 
   1435 		memset(crd, 0, sizeof(struct cryptodesc));
   1436 		crd->crd_next = crp->crp_desc;
   1437 		crp->crp_desc = crd;
   1438 	}
   1439 
   1440 	return crp;
   1441 }
   1442 
   1443 /*
   1444  * Release a set of asymmetric crypto descriptors.
   1445  * Currently, support one descriptor only.
   1446  */
   1447 void
   1448 crypto_kfreereq(struct cryptkop *krp)
   1449 {
   1450 
   1451 	if (krp == NULL)
   1452 		return;
   1453 
   1454 	DPRINTF("krp %p\n", krp);
   1455 
   1456 	/* sanity check */
   1457 	if (krp->krp_flags & CRYPTO_F_ONRETQ) {
   1458 		panic("crypto_kfreereq() freeing krp on RETQ\n");
   1459 	}
   1460 
   1461 	pool_put(&cryptkop_pool, krp);
   1462 }
   1463 
   1464 /*
   1465  * Acquire a set of asymmetric crypto descriptors.
   1466  * Currently, support one descriptor only.
   1467  */
   1468 struct cryptkop *
   1469 crypto_kgetreq(int num __unused, int prflags)
   1470 {
   1471 	struct cryptkop *krp;
   1472 
   1473 	/*
   1474 	 * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
   1475 	 * overflow by error callback.
   1476 	 */
   1477 	if (CRYPTO_Q_IS_FULL(crp_ret_kq)) {
   1478 		CRYPTO_Q_INC_DROPS(crp_ret_kq);
   1479 		return NULL;
   1480 	}
   1481 
   1482 	krp = pool_get(&cryptkop_pool, prflags);
   1483 	if (krp == NULL) {
   1484 		return NULL;
   1485 	}
   1486 	memset(krp, 0, sizeof(struct cryptkop));
   1487 
   1488 	return krp;
   1489 }
   1490 
   1491 /*
   1492  * Invoke the callback on behalf of the driver.
   1493  */
   1494 void
   1495 crypto_done(struct cryptop *crp)
   1496 {
   1497 
   1498 	KASSERT(crp != NULL);
   1499 
   1500 	if (crp->crp_etype != 0)
   1501 		cryptostats.cs_errs++;
   1502 #ifdef CRYPTO_TIMING
   1503 	if (crypto_timing)
   1504 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
   1505 #endif
   1506 	DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
   1507 
   1508 	/*
   1509 	 * Normal case; queue the callback for the thread.
   1510 	 *
   1511 	 * The return queue is manipulated by the swi thread
   1512 	 * and, potentially, by crypto device drivers calling
   1513 	 * back to mark operations completed.  Thus we need
   1514 	 * to mask both while manipulating the return queue.
   1515 	 */
   1516   	if (crp->crp_flags & CRYPTO_F_CBIMM) {
   1517 		/*
   1518 	 	* Do the callback directly.  This is ok when the
   1519   	 	* callback routine does very little (e.g. the
   1520 	 	* /dev/crypto callback method just does a wakeup).
   1521 	 	*/
   1522 		crp->crp_flags |= CRYPTO_F_DONE;
   1523 
   1524 #ifdef CRYPTO_TIMING
   1525 		if (crypto_timing) {
   1526 			/*
   1527 		 	* NB: We must copy the timestamp before
   1528 		 	* doing the callback as the cryptop is
   1529 		 	* likely to be reclaimed.
   1530 		 	*/
   1531 			struct timespec t = crp->crp_tstamp;
   1532 			crypto_tstat(&cryptostats.cs_cb, &t);
   1533 			crp->crp_callback(crp);
   1534 			crypto_tstat(&cryptostats.cs_finis, &t);
   1535 		} else
   1536 #endif
   1537 		crp->crp_callback(crp);
   1538 	} else {
   1539 		crp->crp_flags |= CRYPTO_F_DONE;
   1540 #if 0
   1541 		if (crp->crp_flags & CRYPTO_F_USER) {
   1542 			/*
   1543 			 * TODO:
   1544 			 * If crp->crp_flags & CRYPTO_F_USER and the used
   1545 			 * encryption driver does all the processing in
   1546 			 * the same context, we can skip enqueueing crp_ret_q
   1547 			 * and cv_signal(&cryptoret_cv).
   1548 			 */
   1549 			DPRINTF("lid[%u]: crp %p CRYPTO_F_USER\n",
   1550 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1551 		} else
   1552 #endif
   1553 		{
   1554 			int wasempty;
   1555 
   1556 			mutex_spin_enter(&crypto_ret_q_mtx);
   1557 			wasempty = TAILQ_EMPTY(&crp_ret_q);
   1558 			DPRINTF("lid[%u]: queueing %p\n",
   1559 				CRYPTO_SESID2LID(crp->crp_sid), crp);
   1560 			crp->crp_flags |= CRYPTO_F_ONRETQ;
   1561 			TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
   1562 			CRYPTO_Q_INC(crp_ret_q);
   1563 			if (wasempty) {
   1564 				DPRINTF("lid[%u]: waking cryptoret, "
   1565 					"crp %p hit empty queue\n.",
   1566 					CRYPTO_SESID2LID(crp->crp_sid), crp);
   1567 				cv_signal(&cryptoret_cv);
   1568 			}
   1569 			mutex_spin_exit(&crypto_ret_q_mtx);
   1570 		}
   1571 	}
   1572 }
   1573 
   1574 /*
   1575  * Invoke the callback on behalf of the driver.
   1576  */
   1577 void
   1578 crypto_kdone(struct cryptkop *krp)
   1579 {
   1580 
   1581 	KASSERT(krp != NULL);
   1582 
   1583 	if (krp->krp_status != 0)
   1584 		cryptostats.cs_kerrs++;
   1585 
   1586 	krp->krp_flags |= CRYPTO_F_DONE;
   1587 
   1588 	/*
   1589 	 * The return queue is manipulated by the swi thread
   1590 	 * and, potentially, by crypto device drivers calling
   1591 	 * back to mark operations completed.  Thus we need
   1592 	 * to mask both while manipulating the return queue.
   1593 	 */
   1594 	if (krp->krp_flags & CRYPTO_F_CBIMM) {
   1595 		krp->krp_callback(krp);
   1596 	} else {
   1597 		int wasempty;
   1598 
   1599 		mutex_spin_enter(&crypto_ret_q_mtx);
   1600 		wasempty = TAILQ_EMPTY(&crp_ret_kq);
   1601 		krp->krp_flags |= CRYPTO_F_ONRETQ;
   1602 		TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
   1603 		CRYPTO_Q_INC(crp_ret_kq);
   1604 		if (wasempty)
   1605 			cv_signal(&cryptoret_cv);
   1606 		mutex_spin_exit(&crypto_ret_q_mtx);
   1607 	}
   1608 }
   1609 
   1610 int
   1611 crypto_getfeat(int *featp)
   1612 {
   1613 
   1614 	if (crypto_userasymcrypto == 0) {
   1615 		*featp = 0;
   1616 		return 0;
   1617 	}
   1618 
   1619 	mutex_enter(&crypto_drv_mtx);
   1620 
   1621 	int feat = 0;
   1622 	for (int hid = 0; hid < crypto_drivers_num; hid++) {
   1623 		struct cryptocap *cap;
   1624 		cap = crypto_checkdriver(hid);
   1625 		if (cap == NULL)
   1626 			continue;
   1627 
   1628 		crypto_driver_lock(cap);
   1629 
   1630 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
   1631 		    crypto_devallowsoft == 0)
   1632 			goto unlock;
   1633 
   1634 		if (cap->cc_kprocess == NULL)
   1635 			goto unlock;
   1636 
   1637 		for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
   1638 			if ((cap->cc_kalg[kalg] &
   1639 			    CRYPTO_ALG_FLAG_SUPPORTED) != 0)
   1640 				feat |=  1 << kalg;
   1641 
   1642 unlock:		crypto_driver_unlock(cap);
   1643 	}
   1644 
   1645 	mutex_exit(&crypto_drv_mtx);
   1646 	*featp = feat;
   1647 	return (0);
   1648 }
   1649 
   1650 /*
   1651  * Software interrupt thread to dispatch crypto requests.
   1652  */
   1653 static void
   1654 cryptointr(void)
   1655 {
   1656 	struct cryptop *crp, *submit, *cnext;
   1657 	struct cryptkop *krp, *knext;
   1658 	struct cryptocap *cap;
   1659 	int result, hint;
   1660 
   1661 	cryptostats.cs_intrs++;
   1662 	mutex_enter(&crypto_q_mtx);
   1663 	do {
   1664 		/*
   1665 		 * Find the first element in the queue that can be
   1666 		 * processed and look-ahead to see if multiple ops
   1667 		 * are ready for the same driver.
   1668 		 */
   1669 		submit = NULL;
   1670 		hint = 0;
   1671 		TAILQ_FOREACH_SAFE(crp, &crp_q, crp_next, cnext) {
   1672 			u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
   1673 			cap = crypto_checkdriver_lock(hid);
   1674 			if (cap == NULL || cap->cc_process == NULL) {
   1675 				if (cap != NULL)
   1676 					crypto_driver_unlock(cap);
   1677 				/* Op needs to be migrated, process it. */
   1678 				submit = crp;
   1679 				break;
   1680 			}
   1681 
   1682 			/*
   1683 			 * skip blocked crp regardless of CRYPTO_F_BATCH
   1684 			 */
   1685 			if (cap->cc_qblocked != 0) {
   1686 				crypto_driver_unlock(cap);
   1687 				continue;
   1688 			}
   1689 			crypto_driver_unlock(cap);
   1690 
   1691 			/*
   1692 			 * skip batch crp until the end of crp_q
   1693 			 */
   1694 			if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
   1695 				if (submit == NULL) {
   1696 					submit = crp;
   1697 				} else {
   1698 					if (CRYPTO_SESID2HID(submit->crp_sid)
   1699 					    == hid)
   1700 						hint = CRYPTO_HINT_MORE;
   1701 				}
   1702 
   1703 				continue;
   1704 			}
   1705 
   1706 			/*
   1707 			 * found first crp which is neither blocked nor batch.
   1708 			 */
   1709 			submit = crp;
   1710 			/*
   1711 			 * batch crp can be processed much later, so clear hint.
   1712 			 */
   1713 			hint = 0;
   1714 			break;
   1715 		}
   1716 		if (submit != NULL) {
   1717 			TAILQ_REMOVE(&crp_q, submit, crp_next);
   1718 			result = crypto_invoke(submit, hint);
   1719 			/* we must take here as the TAILQ op or kinvoke
   1720 			   may need this mutex below.  sigh. */
   1721 			if (result == ERESTART) {
   1722 				/*
   1723 				 * The driver ran out of resources, mark the
   1724 				 * driver ``blocked'' for cryptop's and put
   1725 				 * the request back in the queue.  It would
   1726 				 * best to put the request back where we got
   1727 				 * it but that's hard so for now we put it
   1728 				 * at the front.  This should be ok; putting
   1729 				 * it at the end does not work.
   1730 				 */
   1731 				/* validate sid again */
   1732 				cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
   1733 				if (cap == NULL) {
   1734 					/* migrate again, sigh... */
   1735 					TAILQ_INSERT_TAIL(&crp_q, submit, crp_next);
   1736 				} else {
   1737 					cap->cc_qblocked = 1;
   1738 					crypto_driver_unlock(cap);
   1739 					TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
   1740 					cryptostats.cs_blocks++;
   1741 				}
   1742 			}
   1743 		}
   1744 
   1745 		/* As above, but for key ops */
   1746 		TAILQ_FOREACH_SAFE(krp, &crp_kq, krp_next, knext) {
   1747 			cap = crypto_checkdriver_lock(krp->krp_hid);
   1748 			if (cap == NULL || cap->cc_kprocess == NULL) {
   1749 				if (cap != NULL)
   1750 					crypto_driver_unlock(cap);
   1751 				/* Op needs to be migrated, process it. */
   1752 				break;
   1753 			}
   1754 			if (!cap->cc_kqblocked) {
   1755 				crypto_driver_unlock(cap);
   1756 				break;
   1757 			}
   1758 			crypto_driver_unlock(cap);
   1759 		}
   1760 		if (krp != NULL) {
   1761 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
   1762 			result = crypto_kinvoke(krp, 0);
   1763 			/* the next iteration will want the mutex. :-/ */
   1764 			if (result == ERESTART) {
   1765 				/*
   1766 				 * The driver ran out of resources, mark the
   1767 				 * driver ``blocked'' for cryptkop's and put
   1768 				 * the request back in the queue.  It would
   1769 				 * best to put the request back where we got
   1770 				 * it but that's hard so for now we put it
   1771 				 * at the front.  This should be ok; putting
   1772 				 * it at the end does not work.
   1773 				 */
   1774 				/* validate sid again */
   1775 				cap = crypto_checkdriver_lock(krp->krp_hid);
   1776 				if (cap == NULL) {
   1777 					/* migrate again, sigh... */
   1778 					TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
   1779 				} else {
   1780 					cap->cc_kqblocked = 1;
   1781 					crypto_driver_unlock(cap);
   1782 					TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
   1783 					cryptostats.cs_kblocks++;
   1784 				}
   1785 			}
   1786 		}
   1787 	} while (submit != NULL || krp != NULL);
   1788 	mutex_exit(&crypto_q_mtx);
   1789 }
   1790 
   1791 /*
   1792  * Kernel thread to do callbacks.
   1793  */
   1794 static void
   1795 cryptoret(void)
   1796 {
   1797 	struct cryptop *crp;
   1798 	struct cryptkop *krp;
   1799 
   1800 	mutex_spin_enter(&crypto_ret_q_mtx);
   1801 	for (;;) {
   1802 		crp = TAILQ_FIRST(&crp_ret_q);
   1803 		if (crp != NULL) {
   1804 			TAILQ_REMOVE(&crp_ret_q, crp, crp_next);
   1805 			CRYPTO_Q_DEC(crp_ret_q);
   1806 			crp->crp_flags &= ~CRYPTO_F_ONRETQ;
   1807 		}
   1808 		krp = TAILQ_FIRST(&crp_ret_kq);
   1809 		if (krp != NULL) {
   1810 			TAILQ_REMOVE(&crp_ret_kq, krp, krp_next);
   1811 			CRYPTO_Q_DEC(crp_ret_kq);
   1812 			krp->krp_flags &= ~CRYPTO_F_ONRETQ;
   1813 		}
   1814 
   1815 		/* drop before calling any callbacks. */
   1816 		if (crp == NULL && krp == NULL) {
   1817 
   1818                         /* Check for the exit condition. */
   1819 			if (crypto_exit_flag != 0) {
   1820 
   1821         			/* Time to die. */
   1822 				crypto_exit_flag = 0;
   1823         			cv_broadcast(&cryptoret_cv);
   1824 				mutex_spin_exit(&crypto_ret_q_mtx);
   1825         			kthread_exit(0);
   1826 			}
   1827 
   1828 			cryptostats.cs_rets++;
   1829 			cv_wait(&cryptoret_cv, &crypto_ret_q_mtx);
   1830 			continue;
   1831 		}
   1832 
   1833 		mutex_spin_exit(&crypto_ret_q_mtx);
   1834 
   1835 		if (crp != NULL) {
   1836 #ifdef CRYPTO_TIMING
   1837 			if (crypto_timing) {
   1838 				/*
   1839 				 * NB: We must copy the timestamp before
   1840 				 * doing the callback as the cryptop is
   1841 				 * likely to be reclaimed.
   1842 				 */
   1843 				struct timespec t = crp->crp_tstamp;
   1844 				crypto_tstat(&cryptostats.cs_cb, &t);
   1845 				crp->crp_callback(crp);
   1846 				crypto_tstat(&cryptostats.cs_finis, &t);
   1847 			} else
   1848 #endif
   1849 			{
   1850 				crp->crp_callback(crp);
   1851 			}
   1852 		}
   1853 		if (krp != NULL)
   1854 			krp->krp_callback(krp);
   1855 
   1856 		mutex_spin_enter(&crypto_ret_q_mtx);
   1857 	}
   1858 }
   1859 
   1860 /* NetBSD module interface */
   1861 
   1862 MODULE(MODULE_CLASS_MISC, opencrypto, NULL);
   1863 
   1864 static int
   1865 opencrypto_modcmd(modcmd_t cmd, void *opaque)
   1866 {
   1867 	int error = 0;
   1868 
   1869 	switch (cmd) {
   1870 	case MODULE_CMD_INIT:
   1871 #ifdef _MODULE
   1872 		error = crypto_init();
   1873 #endif
   1874 		break;
   1875 	case MODULE_CMD_FINI:
   1876 #ifdef _MODULE
   1877 		error = crypto_destroy(true);
   1878 #endif
   1879 		break;
   1880 	default:
   1881 		error = ENOTTY;
   1882 	}
   1883 	return error;
   1884 }
   1885